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Abstract
In this short note, we remove the small degeneracy assumption in our earlier works (Guo et
al. in Diameter estimates in Kähler geometry. Commun Pure Appl Math. arXiv:2209.09428;
Sobolev inequalities on Kähler spaces. arXiv:2311.00221). This is achieved by a technical
improvement ofCorollary 5.1 inGuo et al.As a consequence,we establish the samegeometric
estimates for diameter, Green’s functions and Sobolev inequalities under an entropy bound
for the Kähler metrics, without any small degeneracy assumption.

1 Introduction

Theclassicalworks ofYauandhis collaborators havebuilt awide rangeof geometric estimates
for Riemannian manifolds. A lower bound for the Ricci curvature is usually required to
guarantee uniformity and compactness (c.f. [1, 2, 15]). In our developing program to build
geometric analysis on complex varieties with singularities [10, 11], we managed to establish
uniform diameter bounds, Sobolev inequalities and the spectral theorem for a large family
of Kähler metrics on both smooth compact Kähler manifolds and normal Kähler varieties.
Furthermore, these uniform estimates do not require any Ricci curvature bound. Instead they
only depend on an entropy bound and a small degeneracy assumption (c.f. (1.4)).

In his celebrated work [17] on the Calabi conjecture, Yau initiated the theory of global
complex Monge-Ampère equations. The analytic theory was subsequently developed by
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Kolodziej [14] in the framework of pluripotential theory. It was further extended to complex
Monge–Ampère equations on singular Kähler varieties [3, 4]. Recently the PDE methods
developed by Guo-Phong-Tong in [12] gave an alternative proof of Kolodziej’s estimates.
This approach has had many important geometric consequences [7, 10, 11].

We begin by reviewing the set-up and results of [10, 11]. Let (X , θX ) be an n-dimensional
compact Kähler manifold equipped with a Kähler metric θX . LetK(X) be the space of Kähler
metrics on X and let the p-th Nash–Yau entropy of a Kähler metric ω ∈ K(X) associated to
(X , θX ) be defined by

NX ,θX ,p(ω) = 1

Vω

∫
X

∣∣∣∣log
(

(Vω)−1 ωn

θnX

)∣∣∣∣
p

ωn, Vω =
∫
X

ωn = [ω]n, (1.1)

for p > 0.
We introduce the following set of admissible metrics for given parameters A, K > 0,

p > n,

V(X , θX , n, A, p, K ) = {
ω ∈ K(X) : [ω] · [θX ]n−1 ≤ A, NX ,θX ,p(ω) ≤ K

}
. (1.2)

Let γ be a non-negative continuous function. We further define a subset of
V(X , θX , n, A, p, K ) by

W(X , θX , n, A, p, K ; γ ) =
{
ω ∈ V(X , θX , n, A, p, K ) : (Vω)−1 ωn

θnX
≥ γ

}
. (1.3)

In the earlier works [10, 11] of the authors, uniform geometric estimates for the
Green’s function, Sobolev constant and diameter were established for Kähler metrics in
W(X , θX , n, A, p, K ; γ ) if γ is a non-negative continuous function on X satisfying

dimH{γ = 0} < 2n − 1. (1.4)

The small degeneracy assumption (1.4) requires theMonge-Ampèremeasure to be uniformly
positive away from a closed subset of X of Hausdorff co-dimension strictly greater than 1. In
fact, this assumption naturally arises in most of geometric applications, because degeneration
usually occurs along an analytic subvariety of X , which is closed and of complex codimension
no less than 1. The small degeneracy assumption was removed in [5] for the uniform diameter
estimate if the underlying Kähler class lies in a compact set in the Kähler cone of a smooth
Kähler manifold. Very recently, Vu [16] applied the Sobolev inequality of [11] to derive
the diameter bounds for V(X , θX , n, A, p, K ). This leads us to try and remove the small
degeneracy assumption in general, particularly for the Green’s function and the Sobolev
inequality in [10, 11].

Indeed in this note,wewill remove the small degeneracy assumption (1.4) for all the results
of [9–11]. This is achieved by the following simple technical improvement of Corollary 5.1
of [10].

Proposition 1.1 Suppose ω ∈ V(X , θX , n, A, p, K ). If v ∈ C2 satisfies |�ωv| ≤ 1 and∫
X vωn = 0, then there is a uniform constant C = C(X , θX , n, A, p, K ) > 0 such that

sup
X

|v| ≤ C .

The proof of Proposition 1.1 is a straightforward iteration of the original argument in [10].
It utilizes the same auxiliary complex Monge-Ampère equation and is entirely based on the
standard maximum principle. With Proposition 1.1, all the results of [9–11] will hold without
the small degeneracy assumption (1.4).Wewill summarize these results in the general setting
of normal Kähler spaces.
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Definition 1.1 Let X be an n-dimensional compact normal Kähler space. Let π : Y → X
be a log resolution of singularities and let θY be a smooth Kähler metric on the nonsingular
model Y . We define the set of admissible semi-Kähler currents

AK(X , θY , n, p, A, K ),

to be the set of any semi-Kähler current ω on X satisfying the following conditions.

(1) [ω] is a Kähler class on X and ω has bounded local potentials.
(2) [π∗ω] · [θY ]n−1 ≤ A.
(3) The p-th Nash-Yau entropy is bounded for some p > n, i.e.

Np(ω) = 1

Vω

∫
Y

∣∣∣∣log 1

Vω

(π∗ω)n

(θY )n

∣∣∣∣
p

(π∗ω)n ≤ K ,

where Vω = [ω]n .
(4) The log volume measure ratio

log

(
(π∗ω)n

Vω(θY )n

)

has log type analytic singularities (c.f. Definition 7.2 of [11]).

The spaceAK(X , θX , n, p, A, K ) is larger than theAK(X , θX , n, p, A, K , γ ) defined in
Definition 3.1 of [11] by removing the small degeneracy assumption as well as the volume
non-collapsing condition [ω]n ≥ A−1. If X is a smooth Kähler manifold,

AK(X , θX , n, p, A, K ) = V(X , θX , n, A, p, K )

by considering the identity map π = id : X → X . Hence AK(X , θX , n, p, A, K ) is the
natural generalization of V(X , θX , n, A, p, K ) on normal Kahler spaces. Proposition 1.1
enables us to enlarge the AK-space in [11] to the AK-space in Definition 1.1.

Let X be an n-dimensional normal Kähler variety. For any p > n and any ω ∈
AK(X , θY , n, p, A, K ), we let (X , d, ωn) the metric measure space associated to (X , ω)

as in [11]. The Sobolev space W 1,2(X , d, ωn) and its spectral theory are established in [11]
on the metric measure space (X , d, ωn) associated to ω.

We now state the geometric consequence of Proposition 1.1 for the works in [11].

Theorem 1.1 Let X be an n-dimensional compact normal Kähler space. For any ω ∈
AK(X , θY , n, p, A, K ), the metric measure space (X , d, ωn) associated to (X , ω) satisfies
the following properties.

(1) There exists C = C(X , θY , n, p, A, K ) > 0 such that

diam(X , d) ≤ C .

In particular, (X , d) is a compact metric space.
(2) There exist q > 1 and CS = CS(X , θY , n, p, A, K , q) > 0 such that

( 1

Vω

∫
X

|u|2qωn
)1/q ≤ CS

(
Iω
Vω

∫
X

|∇u|2 ωn + 1

Vω

∫
X
u2ωn

)
.

for all u ∈ W 1,2(X , d, ωn).
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(3) There exists C = C(X , θY , n, p, A, K ) > 0 such that the following trace formula holds
for the heat kernel H(x, y, t) of (X , d, ωn)

H(x, x, t) ≤ 1

Vω

+ C

Vω

I
q

q−1
ω t−

q
q−1

on X × (0,∞).
(4) Let 0 = λ0 < λ1 ≤ λ2 ≤ ... be the increasing sequence of eigenvalues of the Laplacian

−�ω on (X , d, ωn). Then there exists c = c(X , θY , n, p, A, K ) > 0 such that

λk ≥ cI−1
ω k

q−1
q .

Wemake the final remark that the estimates inTheorem1.1 of [10] also hold for theGreen’s
functions and local volume non-collapsing for Kähler currents in AK(X , θY , n, p, A, K ).

2 Proof of Proposition 1.1

We will prove Proposition 1.1 in this section. The following lemma is proved in [10]
(Corollary 5.1).

Lemma 2.1 Suppose ω ∈ V(X , θX , n, A, p, K ). If v ∈ C2(X) satisfies

|�ωv| ≤ 1 and
∫
X

vωn = 0, (2.5)

then there is C = C(X , θX , n, A, p, K ) > 0 such that

sup
X

|v| ≤ C

(
1 + 1

[ω]n
∫
X

|v|ωn
)

.

Proposition 2.1 Suppose ω ∈ V(X , θX , n, A, p, K ). If v ∈ C2(X) satisfies |�ωv| ≤ 1 and∫
X vωn = 0, then there is C = C(X , θX , n, A, p, K ) > 0 such that

sup
X

|v| ≤ C .

Proof The proof is to repeat the argument of Lemma 5.1 of [10] by the maximum principle.
For convenience, we denote by C > 0 uniform constants that only depend on X , θX , n, A,
p, K throughout the argument. Without loss of generality we may assume that

1

Vω

∫
{v>0}

ωn ≤ 1

2
, (2.6)

otherwise we consider −v.
Given v+ = max(v, 0), we consider the auxiliary complex Monge-Ampère equation

(ω + √−1∂∂ψ)n = v+
B

ωn, sup
X

ψ = 0, (2.7)

with

B = 1

Vω

∫
X

v+ωn ∈ R
+.

In fact, 1
Vω

∫
X |v|ωn = 2B as

∫
X vωn = 0. Therefore we can assume B ≥ 1, otherwise, the

proposition automatically holds. One can easily replace v+ by a positive smoothing of v+ as

123



Diameter estimates in Kähler geometry... Page 5 of 7 43

in [10] and then take limits. For simplicity, we work with v+ directly. There exists C > 0
such that

‖v+‖L∞(X) ≤ ‖v‖L∞(X) ≤ CB

by applying Lemma 2.1. Consequetially, ω + √−1∂∂ψ ∈ V(X , θX , n, A, p,CK ) for some
uniform C > 0. We can apply Corollary 4.1 in [10] to derive the L∞-estimate

‖ψ‖L∞(X) ≤ C . (2.8)

for some uniform C > 0.
We now consider the following auxiliary function constructed in Lemma 5.1 of [10].


 = −E(−ψ + D)
n

n+1 + (v+),

where E, D > 0 are to be determined later. We compute as in [10], at a maximum point p
of 
, so that

0 ≥�ω


≥ nE

n + 1
(−ψ + D)−

1
n+1 �ωψ + �ωv+

≥ n2E

n + 1
(−ψ + D)−

1
n+1

(
(ω + √−1∂∂ψ)n

ωn

) 1
n

− 1 − n2E

n + 1
(−ψ + D)−

1
n+1

≥ n2E

n + 1
(−ψ + D)−

1
n+1

(v+
B

) 1
n − 1 − n2E

(n + 1)D
1

n+1

.

Therefore at p, we have

v+ ≤
(
1 + n2E

(n + 1)D
1

n+1

)n (
n + 1

n2E

)n

B(−ψ + D)
n

n+1 . (2.9)

We set (
1 + n2E

(n + 1)D1/(n+1)

)
(n + 1)

n2E
B

1
n = E

1
n

by choosing E and D to satsisfy

E =
(
n + 1

n2δ

) n
n+1

B
1

n+1 , D = n2δ

(1 − δ)n+1(n + 1)
B (2.10)

for some sufficiently small δ > 0 to be determined later. This makes 
 ≤ 0 at p, hence
supX 
 ≤ 0. We now have on �+ = {v > 0},

v+ ≤ E(−ψ + D)
n

n+1 =
(
n + 1

n2δ

) n
n+1

B
1

n+1

(
−ψ + n2δ

(1 − δ)n+1(n + 1)
B

) n
n+1

by plugging the expressions of E and D in (2.10). Integrating over �+, we have

B = 1

Vω

∫
�+

v+ωn ≤ 1

2

(
n + 1

n2δ

) n
n+1

B
1

n+1

(
C + n2δ

(1 − δ)n+1(n + 1)
B

) n
n+1
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by (2.8) and (2.6). Therefore

B ≤ 2− n+1
n

(
n + 1

n2δ
C + 1

(1 − δ)n+1 B

)
. (2.11)

By choosing δ = δ(n) > 0 with 1
2(1−δ)n+1 = 2

3 , we have B ≤ C for some uniform constant
C .

Finally, as observed earlier, 1
Vω

∫
X |v|ωn = 2B ≤ 2C . We now can complete the proof of

the proposition by invoking Lemma 2.1 again. ��

3 Proof of Theorem 1.1

Wewill combine the results of [10, 11] for V(X , θX , n, p, A, K ). Due to Proposition 1.1, we
can remove the small degeneracy assumption in all the results and applications of [10, 11]
on a barrier function γ . As an example, we have the following theorem for smooth Kähler
metrics in V(X , θX , n, p, A, K ).

Theorem 3.1 Let X be an n-dimensional compact Kähler manifold. For any ω ∈
V(X , θX , n, p, A, K ), the following hold.

(1) There exists C = C(X , θX , n, p, A, K ) > 0 such that

diam(X , ω) ≤ C .

(2) There exist q > 1 and CS = CS(X , θX , n, p, A, K , q) > 0 such that

( 1

Vω

∫
X

|u|2qωn
) 1

q ≤ CS

(
Iω
Vω

∫
X

|∇u|2ω ωn + 1

Vω

∫
X
u2ωn

)
.

for all u ∈ W 1,2(X).
(3) There exists C = C(X , θX , n, p, A, K ) > 0 such that the following trace formula holds

for the heat kernel H(x, y, t) of (X , d, ωn)

H(x, x, t) ≤ 1

Vω

+ C

Vω

I
q

q−1
ω t−

q
q−1

on X × (0,∞).
(4) Let 0 = λ0 < λ1 ≤ λ2 ≤ ... be the increasing sequence of eigenvalues of the Laplacian

−�ω on (X , d, ωn). Then there exists c = c(X , θX , n, p, A, K ) > 0 such that

λk ≥ cI−1
ω k

q−1
q .

Here Iω = [ω] · [θX ]n−1 is the normalization constant.

The proof of Theorem 3.1 follows line by line in the argument of [10, 11] due to Propo-
sition 1.1. Now we can reduce Theorem 1.1 to Theorem 3.1 by the smoothing arguments in
Section 7 of [11].
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