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Kaniz Mishty and Mehdi Sadi , Member, IEEE

Abstract—Modern Artificial Intelligence (AI) workloads de-
mand computing systems with large silicon area to sustain
throughput and competitive performance. However, prohibitive
manufacturing costs and yield limitations at advanced tech nodes
and die-size reaching the reticle limit restrain us from achiev-
ing this. With the recent innovations in advanced packaging
technologies, chiplet-based architectures have gained significant
attention in the AI hardware domain. However, the vast design
space of chiplet-based AI accelerator design and the absence
of system and package-level co-design methodology make it
difficult for the designer to find the optimum design point
regarding Power, Performance, Area, and manufacturing Cost
(PPAC). This paper presents Chiplet-Gym, a Reinforcement
Learning (RL)-based optimization framework to explore the vast
design space of chiplet-based AI accelerators, encompassing the
resource allocation, placement, and packaging architecture. We
analytically model the PPAC of the chiplet-based AI accelerator
and integrate it into an OpenAI gym environment to evaluate
the design points. We also explore non-RL-based optimization
approaches and combine these two approaches to ensure the
robustness of the optimizer. The optimizer-suggested design point
achieves 1.52× throughput, 0.27× energy, and 0.89× cost of
its monolithic counterpart at iso-area.

Index Terms—AI accelerator, chiplet, heterogeneous integra-
tion, design space exploration, reinforcement learning.

I. INTRODUCTION

A
S Large Language Models (LLMs), such as chatGPT,

GPT-4, LLaMA [1], etc., gain widespread use, there is

a growing demand for energy-efficient hardware that can de-

liver high throughput. To support hundreds of trillions of op-

erations and hundreds of gigabytes of data movement, the

high-performance and energy-efficient hardware demands more

silicon area, accommodating more compute cores and memory

capacity. Training any state-of-the-art AI or Deep Learning

(DL) model with a single GPU or accelerator is nearly im-

possible due to extreme computing and memory demands. The

data centers are equipped with clusters of powerful computers

and GPUs connected via PCIe, NVLink, etc. [2], [3]. Even

though these supercomputers can deal with large workloads,

they consume a significant amount of energy [2] and involve
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longer latency. Because off-board communications consume at

least one order of magnitude more power and time than any

on-package communications [4]. The ideal scenario would be

a hardware capable of housing the entire model parameters and

intermediate activations on-chip [5], promising optimal perfor-

mance and energy efficiency. Unfortunately, this is not feasible

due to the stagnation of Moore’s law and Dennard scaling, die

size reaching the reticle limit, and the prohibitive manufacturing

cost and yield limitations [3]. Consequently, researchers en-

deavor to replicate this ‘hypothetical ideal’ hardware concept

by integrating multiple smaller chiplets at the package level,

allowing near-ideal performance while minimizing costs and

energy consumption.

With the advent of advanced packaging technologies, the

chiplet-based heterogeneous integration has opened up a

new dimension of chip design, More-than-Moore [3]. In

chiplet-based system, multiple chiplets (i.e., SoCs) of diverse

functionalities (e.g., logic dies, memories, analog IPs, accel-

erators etc.) and tech nodes (e.g., 7nm or beyond) from dif-

ferent foundries are interconnected in package level using the

advanced packaging technologies, such as CoWoS, EMIB, etc.

[3]. The value proposition of chiplet-based architectures is man-

ifold. Compared to multiple monolithic SoCs interconnected

via off-package or off-board links such as PCIe, NVLink,

CXL etc. [3], package-level integration of multiple monolithic

SoCs via 2.5D or 3D has accelerated performance and lower

energy consumption alleviating off-package communications.

Chiplet-based systems offer lower RE (Recurrent Engineering)

cost by providing higher yield and lower NRE (Non-Recurrent

Engineering) by enabling IP reuse and shortening IC design

cycle [6].

The commercial chiplet-based general purpose products [7],

[8] are designed and developed at vertically integrated com-

panies without exposing much knowledge about the chiplet-

based architectures’ design space. Unlike these general purpose

products, chiplet-based AI accelerators demand extensive de-

sign space exploration to hit the target Power, Performance,

Area, and Cost (PPAC) budget. From architectural perspective,

designers must consider the resource allocation, mapping and

dataflow of the DNN workloads. From communication and

integration perspective, chiplet placement, routing protocols,

stacking/packaging technologies, interconnect types, and fi-

nally from application perspective, system requirement, such as

reliability, scalibility etc., should be considered all at the same

time while optimizing for PPAC [9]. The existing works often
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focus either on the architectural or integration aspects as a sep-

arate design flow: explore routing and packaging given chiplets

[10], [11], [12] or explore chiplets architecture given the pack-

aging [5], [13], [14], [15]. An isolated approach, addressing

individual aspects independently, may result in sub-optimal

designs due to the inter-dependency among these factors. For

instance, varying resource allocation impacts communication

demands, influencing the choice of packaging and its configu-

ration, consequently leading to cost variations.

Currently, many flavors of packaging technologies, both from

2.5D and 3D, are available from the industry leaders, which

makes it difficult for system designers and integrators to choose

the optimum set of configurations from the vast design space

based on the system requirements [3]. The various packaging

technologies differ in fabrication cost and complexity, perfor-

mance, and underlying integration technologies [3]. As a result,

no single package technology can be marked as superior to

others. Each of the other domains, such as resource allocation,

chiplet granularity, placement, Network on Package (NoP), and

interconnect architectures, to name a few, also has an exten-

sive design space. A proper co-optimization across all these

domains based on the system and application requirements at

the available cost is necessary for a successful chiplet based

system design. Optimizing all possible domains results in a

combinatorial explosion where brute force search is not an

option and random search might not result in the optimum

point. The expensive simulation environment of chip design

exacerbates this problem.

To overcome these limitations, in this paper, we make the

following contributions bridging the gap between the system

requirements and design aggregation, planning, and optimiza-

tion for chiplet-based architecture.

• We develop a co-design methodology for chiplet-based

AI accelerators. The co-design task contemplates re-

source allocation, such as the number of AI chiplets,

memory capacity, and bandwidth; partitioning and place-

ment of chiplets such as aspect ratio of the accelerator

chiplet arrays, and logical placement of accelerator and

memory chiplet; different packaging technologies (i.e.,

CoWoS, EMIB, SoIC, and FOVEROS [3]) and their at-

tributes such as bandwidth, bump pitch density, cost and

complexity, to optimize the system-level Power, Perfor-

mance, Area, and Cost (PPAC) of the chiplet-based AI

accelerators.

• We formulate an analytical cost model for assessing the

chiplet-based architectures. This analytical model enables

us to assess the chiplet-based AI accelerator in a time-and-

resource-constrained environment.

• To optimize throughput, energy efficiency, and cost,

we identify the inter-dependency of the design space

parameters and formulate the optimization problem as a

Reinforcement Learning (RL) problem. We also explore

non-RL based optimization approaches, such as simulated

annealing, and combine these two approaches to ensure

the robustness of the optimizer.

• Finally, we validate our methodology by comparing the

performance of our optimized design against state-of-the-

art monolithic GPU on MLPerf benchmark and justify the

performance improvement.

Fig. 1. AI accelerator chiplet architecture.

The rest of the article is organized as follows. Section II

presents the background. Section III describes the analyti-

cal modeling and design space exploration. The optimization

framework is presented in Section IV followed by experiments

and results in Section V, related works in Section VI, limitations

and future works in Section VII and conclusion in Section VIII.

II. BACKGROUND

A. AI Workloads and Accelerators

1) AI Workloads: The primary domains of AI encompass

Computer Vision (CV), Natural Language Processing (NLP),

Recommender Systems, and Reinforcement Learning. The inte-

gration of these domains has led to the emergence of Generative

AI, enabling models to generate diverse content, including text

and images. In Generative or Multi-modal AI, diverse AI/DNN

(Deep Neural Network) models are fused together to generate

an output. While the architectural characteristics and param-

eters of LLM and CV models may differ, their fundamental

components share similarities with the structure of Transformer

[16] for NLP and ResNet [17] for CV, respectively. The critical

operations in CV models involve regular convolution, Depth-

wise or Point-wise convolution, residual blocks, FC (Fully Con-

nected) operations, whereas the scaled-dot product attention

operations, and FC operations dominate in LLM. These opera-

tions can be expressed as or converted to matrix-matrix/vector

multiplication (GEMM) with massive parallelism.

2) AI Accelerator: Systolic array [18] type architecture,

leveraging the inherent parallelism of DNN workloads, has

been used as the core of AI accelerators. A typical AI ac-

celerator is composed of arrays of Processing Element (PE)

for computation and on-chip buffer to hold the weights and

activations. PEs are composed of Multiplier-Adder (MAC) units

and small register file for each MAC units to hold the stationary

data, depending on the dataflow. The size of PE array, memory

hierarchy, and memory size are critical design parameter of a

AI accelerator. Fig. 1 shows a AI accelerator with a PE core,

Special Function Unit (SFU), and Global Buffer. The PE core

contains a small SRAM buffer and bunch of PE units. Each PE

consists of a MAC unit and a reg. file [19].

B. Chiplets and Heterogeneous Integration

1) 2.5D Architecture: In 2.5D architecture, two or more

chiplets, fabricated separately, are connected side-by-side with

each other in package-level through interposer (silicon/organic)

or silicon bridge. Two commercial 2.5D interconnects are Chip

on Wafer on Substrate (CoWoS) from TSMC [20] and Embed-

ded Multi-die Interconnect Bridge (EMIB) from Intel [21]. In
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Fig. 2. Top-level system architecture for different scenarios. (a) CPU, AI accelerator and HBM chiplets are connected in package level through 2.5D
interconnects. CoWoS and EMIB are two options of 2.5D interconnects. (b) CPU and AI accelerator chiplets are connected through 2.5D interconnects and
HBM is stacked on top of CPU and AI accelerator through 3D interconnects. (c) Two AI accelerator chiplets are stacked on top of each other through 3D
interconnects and they are interconnected to CPU, HBM and other AI chiplets pair through 2.5D.

CoWoS, two side-by-side dies are connected with each other

and with package substrate through an intermediate interposer

layer [20].

Interposer can be active and passive. Active interposer con-

tains embedded logics and Re-Distribution Layers (RDL) where

as passive interposer containing RDLs are only used for routing

purpose. CoWoS typically employs passive interposer for 2.5D

integration. In contrast, Intel’s EMIB utilizes thin silicon pieces

with multilayer BEOL interconnects (Silicon Bridge) embed-

ded in the organic package substrate for high-density localized

interconnects, eliminating the need for a separate interposer

layer [21]. CoWoS and EMIB architectures are illustrated in

Fig. 2(a).

2) 3D Architecture: In 3D, two or more separately fabri-

cated chiplets are stacked on top of each other through 3D in-

terconnects formed with copper micro-bumps, or hybrid wafer

bonding [22]. Depending on the bonding interface orientation

of the interconnected dies, different bonding configurations are

possible, such as face-to-face (F2F), face-to-back (F2B), back-

to-back (B2B) etc. Intel’s FOVEROS [23] uses F2F bonding

where the face of the top die is bonded to the face of the bottom

die (active interposer) through Cu micro-bump connections.

Bottom die is connected to the package through TSV [23].

TSMC has the option of both F2F and F2B bonding config-

uration in their System on Integrated Chips (SoIC), however,

they use hybrid bonding instead of Cu µ-bumps [24]. The latest

upgrade of FOVEROS, FOVEROS-Direct, also leverages direct

cu-cu hybrid bonding for inter-die interconnection. Recently,

both 2.5D and 3D can be integrated on the same package and

these architectures are known as 5.5D [25].

III. THROUGHPUT FORMULATION AND DESIGN

SPACE EXPLORATION

In this section, we formulate the cost model for chiplet-based

AI accelerators, including throughput, energy, and cost. We

perform design space exploration to comprehend the influence

of various design parameters on the cost model.

A. Top Level Architectural Exploration

We explore two architectural approaches: (i) 2.5D architec-

ture, where all chiplets are connected with each other at the

package level through 2.5D interconnects (Fig. 2(a)). (ii) 5.5D

(combining 2.5D and 3D) [25] where two or more 3D-stacked

(connected via 3D interconnects) chiplets are further linked

through 2.5D interconnects (Fig. 2(b) & (c)). In all cases, the

architecture of the AI accelerator chiplet is a regular systolic-

array composed of PE array and dedicated on-chip buffer shown

in Fig. 1 [19]. However, the number of PE units and on-chip

buffer size varies with the number of allocated chiplets, as we

consider a fixed package size.

1) 2.5D Architecture: In 2.5D architecture, we consider

that CPU, AI accelerator, and HBM chiplets are connected at

the package level through 2.5D interconnects (Fig. 2(a)). We

explore two 2.5D integration technologies, EMIB and CoWoS,

and their different configurations.

2) 5.5D Architecture (Combining 2.5D and 3D): 5.5D

architecture is divided into two cases: (i) memory-on-logic,

where HBMs are stacked on top of CPU and/or AI chiplets

as shown in Fig. 2(b), and (ii) logic-on-logic, where two AI

chiplets are 3D-stacked on top of each other. These 3D-stacked

AI chiplets are connected to CPU and/or HBM and other 3D-

stacked AI chiplets through 2.5D interconnects as shown in Fig.

2(c). To avoid temperature-induced breakdowns [22], we limit

our exploration to only 2-tiers. We explore the off-the-shelf 3D

integration techniques, SoIC and FOVEROS, and their different

configurations. Depending on the integration technology and

their configuration settings, these architectures offer different

bandwidths, energy efficiency, area efficiency, and cost.

B. Throughput and Energy Efficiency Formulation

1) Throughput: We define system throughput as tasks com-

pleted per second,

T =
tasks

sec
(1)
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tasks represents different entities depending on the DNN do-

main and its mode of operations. During inference, tasks rep-

resents the number of inferences. During training of CV and

NLP models, tasks means the number of images and tokens
processed per second, respectively. tasks/sec can be decom-

posed into [26]

tasks

sec
=

ops

sec
×

1

( ops
task )G

×
1

( ops
task )nG

×Meff (2)

Here, ops/sec depends on both DNN hardware and DNN

models. GEMM operations per task, (ops/task)G, and non-

GEMM operations per task (ops/task)nG depend on only

DNN models, and Meff , mapping efficiency depends on DNN

models and hardware, along with mapping strategies. ops
means the MAC operation. The GEMM operations are per-

formed in the systolic array. The non-GEMM operations such as

softmax is performed in the SFU of the accelerator. Dropout and

residual operations, manifested as Element-wise multiplication

and addition, is also performed using the MAC modules. Layer

normalization and other reduction or control flow operations are

taken care in the ALU or scalar unit of the SFU.

For a system comprising multiple AI accelerator chiplets, the

operations/sec is expressed as,
(ops

sec

)

sys
=
(ops

sec

)

AI_chip
×AI_chiptot × Usys (3)

Where (ops/sec)AI_chip is the peak throughput per AI chiplet,

AI_chiptot = total number of AI chiplets, and Usys = system

utilization factor. It represents the effective fraction of the active

chiplets out of the total chiplets. It depends on the interchiplet

communication bandwidth (BWAI−AI ), determined by choice

of the packaging architecture, package type, and their different

configuration. In section III-D1, we describe this in detail. The

peak throughput per AI chiplet is expressed as

(ops

sec

)

AI_chip
=

(

1
cycles
op

×
cycles

sec

)

× PEtot × UAI_chip

(4)

Where,

cycles

op
= cyclecomm + cycleop∗ (5)

cyclecomm = chiplet-to-chiplet communication latency,

cycleop∗ = arithmetic operation latency of the chiplet

microachitecture, and cycles/sec=f , frequency of the AI

accelerator chiplets. cyclecomm depends on the distance

between the data source and destination. It is impacted by the

chiplet allocation, chiplet array dimension (i.e., number of AI

chiplets in X and Y dimension) and the physical location of

the AI and HBM chiplets. cycleop∗ depends on the micro-

architecture of the chiplet (design of PE array, MAC unit) and

the type of operations. We assume that all AI chiplets can

operate at the same frequency and have the same architectural

and functional configuration. However, the frequency of each

chiplet can be further controlled based on the data traffic and

location of chiplets to optimize system throughput and energy.

PEtot = total number of PEs per AI chiplet, and UAI_chip

Fig. 3. (a) Yield (left y-axis) and normalized cost per yielded area (right
y-axis) vs area at different tech nodes. (b) Normalized latency vs number of
chiplets.

= chiplet utilization representing the fraction of PEs utilized

during computation. UAI_chip depends on mapping of the AI

model tasks to the accelerator.

2) Energy Efficiency: Energy efficiency is paramount when

processing DNN at edge devices and cloud data centers. Edge

devices are usually constrained by battery life and thermal

budget, and data centers are typically constrained by electricity

bills, thermal budget, and environmental impact [2]. Data cen-

ters are mainly focused on achieving higher throughput, which

requires higher energy budget. In this work, we closely monitor

energy efficiency while maximizing the throughput.

We define energy efficiency (Eeff ) of a system as tasks

completed per joule:

Eeff =
tasks

joule
=

1
joules
ops

∗
1
ops
task

(6)

joules/operations depends on both DNN hardware and DNN

models, whereas operations/task depends only on the consid-

ered DNN model. We break down the energy per operations,

Eop, (i.e. joules/operations) into its constituent parts:

Eop = Ecomm + Eop∗ (7)

Ecomm is the energy required to transfer data from chiplet-to-

chiplet and Eop∗ is the energy to perform an arithmetic opera-

tion. Ecomm depends on the choice of packaging architectures

(e.g., 2.5D, 3D) and interconnect types (e.g., EMIB, CoWoS,

FOVEROS, SoIC) and Eop∗ depends on the microarchitecture.

C. Chiplet Allocation and Placement

In the context of chiplet-based accelerator design, determin-

ing the number of chiplets, area allocated to each chiplet, and

their placement becomes pivotal, as they impact the throughput,

energy, and cost. Here we will delve into the relationship be-

tween yield, area, cost, communication latency across various

chiplet configurations.

1) Yield and Cost vs Area: Intuitively, as the chip area

increases, its compute and memory capacity increases, ensuring

high performance and energy-efficiency. However, as shown in

Fig. 3(a), we are limited by the fact that in advanced tech nodes,

as the chip area increases, yield decreases, resulting in increased

cost per area [6]. The yield of the manufactured chip, Ydie is

expressed as the following Negative Binomial model:

Ychip =

(

1 +
dA

α

)

−α

(8)
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where d is the defect density of the tech node, A is the area of

the chip, and α is the cluster parameter. Assuming P0 as unit

price, we can also estimate the cost per yielded area as

Cyield =
P0

Ychip
≈ P0(1 + dA+

α− 1

2α
d2A2) (9)

2) Inter-Chiplet Communication Latency: As mentioned

earlier, the chiplet-to-chiplet data communication latency,

cyclecomm, impacts the system performance by contributing

to cycles/operations. Data transfer between chiplets occurs

through the package-level interconnects such as CoWoS, EMIB,

FOVEROS, SoIC etc. Considering that the data might be sup-

plied from another AI-chiplet or directly from HBM, we esti-

mate both AI-AI chiplet communication latency, LAI−AI , and

HBM-AI communication latency, LHBM−AI .

cyclecomm =

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

LAI−AI if data moves from AI to AI

chip

LHBM−AI if data moves from mem. to

AI chip

(10)

Impact of AI chiplet count. As the number of chiplet in-

creases, the physical distance between the source and desti-

nation chiplet increases, resulting in increased communication

latency. We consider 2D-mesh topology, which is widely used

in tile-based architecture for its simplicity and scalability. Rout-

ing in the package substrate is more intricate than on-chip. As

a result, tile-based chiplet architectures have been architected

with mesh topology [13]. Fig. 3(b) shows that communication

latency increases drastically with the number of chiplets for a

mesh topology.

Impact of Chiplet array dimension. The longest AI-to-AI

chiplet communication latency is expressed as

LAI−AI =HAI−AI × tw +HAI−AI × tr + Tc + Ts (11)

As we consider a 2D mesh of AI accelerator chiplets,

HAI−AI =m+ n− 2 denotes the number of hops between

the source-destination pair. m,n represent the number of AI

chiplets in the X and Y dimension of the array, respectively. tw
is per-hop wire delay, tr, Tc, and Ts are router delay, contention

delay, and serialization delay, respectively [27]. Here, tw, tr, Ts

are design time metrics, that depend on tech. node, interconnect

technologies, circuit, and microarchitecture design, Tc depends

on workload/data traffic. For a fixed number of chiplets and

routing topology, HAI−AI depends on the chiplet array X and

Y dimension. We try to keep the aspect ratio of the chiplet array

as close as possible to 1 to reduce the communication latency.

In addition, the physical dimension of the chiplet array impacts

the system performance by affecting the choice of dataflow

and workload mapping strategies [14]. For a fixed dataflow and

mapping strategy, the system performance largely depends on

the chiplet array dimension as shown in Fig. 4.

Impact of HBM/CPU count and location. We analyze the

impact of dividing the allocated HBM into multiple chiplets

and placing the chiplets in multiple positions on system latency.

Partitioning a large chunk of memory into multiple memory

Fig. 4. Illustration of latency (in terms of hop) calculation. (a) AI2AI chiplet
communication, considering the farthest chiplets as source-destination pair.
(b) One HBM chiplet, located at the left connected in 2.5D, and the farthest
AI chiplet as source-destination pair. (c) One HBM chiplet, 3D-stacked on top
of a left-most AI chiplet, and the farthest AI chiplet as source-destination pair.
(d) 5 HBM chiplets are placed in 5 different positions. The highest latency
decreases from 6 hops (case (c)) to 3 hops with most of the AI chiplets can
be provided with data in 2 hops by nearest HBMs.

chiplets (instead of placing the large memory in one place) and

placing these multiple memory chiplets in different locations

improves the system latency. Unlike, AI chiplet counts, as the

number of HBM chiplets increases, communication latency

decreases. Because the communication latency depends on the

physical location of the data [13]. Fig. 4 illustrates how chiplet

partitioning and placement improve the system latency. As we

consider a 2D mesh of AI accelerator chiplets, there are 6

locations: left, right, top, bottom, middle, and 3D stacking, to

place the HBM chiplets around the AI chiplets array. These

locations result in 26 − 1 combinations for HBM/CPU place-

ments. We model LHBM/CPU−AI same as equation 11, where

HAI−AI is replaced by HHBM/CPU−AI . We use the model

presented in [28] to calculate HHBM/CPU−AI for different

locations of HBM/CPU pair. We consider a 16GB (8-stack, each

stack 16Gb) HBM3 chiplet [29], giving the highest capacity

of 80GB with 5 chiplets. We assume that each HBM chiplet

has a dedicated memory controller and NoC router integrated

within it [30]. As a result, at iso-memory-capacity (i.e, same

number of HBMs with integrated memory controller) the cost

associated with HBM for both monolithic and chiplet systems

is equivalent.

The host CPU is primarily responsible for dispatching the

workloads to the accelerator chiplets. The package area is

shared by accelerator chiplet, HBMs as well as CPUs. However,

the majority of the package area is used for AI computing and

HBM memories [13], [30]. Hence, in this work we only focus

on the AI accelerator and HBMs.

The above discussion suggests that, for cost-effective integra-

tion of more functionalities, we should partition the total chip

area into multiple chiplets, each with smaller areas. From the

yield and cost perspective, the more the number of chiplets, the

better throughput and less cost. However, this also introduces
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Fig. 5. Illustration of mapping and dataflow. (a) Splitting the matrices into smaller parts for different chiplets. (b) Initial data supply from DRAM. Once the
chiplets are loaded with required data, computation begins. (c) Final output collection to the DRAM. In this dataflow, there is no inter-chiplet communication
during computation for partial sum.

another consideration: an increase in the number of chiplets re-

sults in higher inter-chiplet communication latency, ultimately

diminishing throughput and energy efficiency. Therefore, a bal-

ance must be struck between dividing the area into an appropri-

ate number of chiplets to enhance functionality and ensure the

associated communication latency does not compromise overall

system performance and efficiency.

D. Package Architectures and Configurations

We explore different packaging architectures, interconnects,

and their different configurations [20], [21], [23], [24] to ana-

lyze their impact on the system performance and budget.

1) Inter-Chiplet Communication Bandwidth: The system

utilization term, Usys, of equation 3 depends on the inter-chiplet

communication bandwidth. We define Usys:

Usys =
BWact

BWreq
(12)

Where, BWact is the actual bytes of data transferred per sec

and BWreq is the required bytes to keep all the neighboring

AI chiplets at 100% utilization, i.e., no stalling for data. For

the layout of AI and HBM chiplets we consider in this work,

the HBM chiplet needs to deliver data to its 4 neighboring AI

chiplets simultaneously at most, and any AI chiplet needs to

deliver data to its 1 neighboring chiplets at most. However, it

can change with the mapping strategies. As the communication

between CPU and AI chiplet primarily involves the instruction

dispatch and output accumulation, the communication band-

width is dominated by bandwidth requirements of the AI ac-

celerator to HBM chiplet.

Chiplet mapping exploration. For large sequence lengths and

batch sizes of NLP/LLM models as well for large FC/Conv.

layers of DNN models, the matrix sizes get larger, which need

to be split temporally in the monolithic chips if the monolithic

chip does not contain enough PE units and memory. Having

multiple chiplets, the matrices can be split spatially and mapped

to multiple chiplets, performing parallel computation. As illus-

trated in Fig. 5(a-c), the input matrix is split along rows (A, B,

C, D), and the weight matrix is split along columns (E, F, G, H).

Chiplets 1, 3, 5, 7 handle data chunks A and B, while Chiplets 2,

4, 6, 8 handle C and D. The weight matrix portions (E, F, G, H)

are distributed to all chiplets accordingly. During initialization,

the DRAM supplies data 4× [A,B,C,D], and [E,F,G,H]
simultaneously to chiplets 1, 3, 5, 4, with A and B reaching

neighboring chiplets in one hop and C and D reaching distant

chiplets in the next hop. Data chunks E, F, G, H reach neighbor-

ing and distant chiplets in one hop and two hops, respectively.

The outputs are collected back to DRAM once the computations

are completed. Outputs from neighboring chiplets (ch-1, ch-3,

ch-5, ch-7) reach DRAM in one hop, while outputs from distant

chiplets reach DRAM in two hops. No inter-chiplet communi-

cation is required for partial sum accumulation, however, the

required AI-HBM bandwidth (or the number of channels) is

higher in this mapping strategy, as DRAM needs to broadcast

[A,B,C,D] to all four neighboring chiplets. According to the

above mentioned mapping and dataflow, the required bandwidth

is formulated as

BWreq =

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

4×No × dw × f × ( opssec )AI_chip if src. is

HBM

1×No × dw × f × ( opssec )AI_chip if src. is AI

chip

(13)

Where, No is the number of operands required to perform a

MAC operation, which is 2 in general (two multipliers for the

multiplication and no new external operands are needed for

addition). dw is the data width and (ops/sec)AI_chip is the

peak throughput of the AI chiplet, and f is the frequency of

the accelerator. If BWact ≥BWreq, then there is no stalling

in initializing the chiplets’ PE array with data. However, if

BWact <BWreq , then there will be �
BWreq

BWact
� cycle stalling for

operand data to start the computation. We penalize the overall

system throughput with these stalling periods while estimating

the system throughput. From equation 13, the required band-

width is smaller if the peak throughput of the AI chiplet is low,

resulting in less penalty.

Impact of Data rates and Link count. The data rate per pin

(in Gbps), DR, and the number of links assigned for data trans-

fer,L, of different package type determine the active bandwidth,

BWact,

BWact =DR× L (14)

DR and L depend on the interconnect technology. It plays a

significant role in the system throughput by contributing to the

system utilization.
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TABLE I
PARAMETERS AND VALUES OF DESIGN SPACE

Parameter Values

Architecture type 2.5D, 5.5D: (i) memory-on-logic
(ii) logic-on-logic

No. of chiplets 1 to 128 @ step of 1

No. & location of HBMs
Left, right, top, bottom, middle,

3D stacked; 26 -1 location

AI2AI interconnect 2.5D CoWoS, EMIB

AI2AI data rate 2.5D (Gbps) 1 to 20 @ step of 1

AI2AI link count 2.5D 50 to 5000 @ step of 50

AI2AI trace length (mm) 2.5D 1 to 10 @ step of 1

AI2AI interconnect 3D SoIC, FOVEROS

AI2AI data rate 3D (Gbps) 20 to 50 @ step of 1

AI2AI link count 3D 100 to 10,000 @ step of 100

AI2HBM interconnect 2.5D CoWoS, EMIB

AI2HBM data rate 2.5D (Gbps) 1 to 20 @ step of 1

AI2HBM link count 2.5D 50 to 5000 @ step of 50

AI2HBM trace length 2.5D (mm) 1 to 10 @ step of 1

2) Inter-Chiplet Communication Energy: Interchiplet com-

munication energy Ecomm depends on the packaging architec-

ture and the data transfer volume. We model it as

Ecomm = Ebit_pkg × bittot (15)

Ebit_pkg is the energy per bit data communication for different

interconnect technologies, and bittot is the data traffic required

for the desired operation.

Impact of trace length and no. of RDL layers. For a specific

data rate and link count, Ebit_pkg again depends on trace length,

tr_len, (link-to-link distance between two interconnected dies).

To achieve a specified data rate over a longer trace length,

intricate circuit techniques and more RDL layers are required

resulting in the Ebit_pkg ∝ tr_len relationship [20].

3) Packaging Cost: The packaging cost (CP ) depends on

the packaging architecture and interconnect type. For the same

package type, the packaging cost again depends on (i) package

area (AP ), (ii) number of layers (i.e., core and RDL), and (iii)

link count (L) and modeled as [31]:

CP = µ0AP + µ1L+ µ2 (16)

Where µ0, µ1, and µ2 are the regression parameters based on

the number of core and RD layers. In this work, we consider

a fixed package area of 900mm2, leaving the packaging cost

dependent on the number of package layers and link density.

The above discussion suggests that, based on the BWreq,

which also depends on the number of chiplets, energy and

cost budget, appropriate allocation of DR and L requires co-

optimization, such that the hardware is not suffering from

under-utilization while not spending too much budget unnec-

essarily.

IV. OPTIMIZING CHIPLET-BASED ARCHITECTURE

In this section, we build a framework to efficiently navigate

the search space, as detailed in Table I, aiming to optimize

throughput, energy, and cost efficiency.

Comprising of 14 parameters and their possible values, our

parameter space has more than 2× 1017 design points which

poses challenges for exhaustive search due to its time and

resource-intensive nature. To address this, we explore learning-

based and meta-heuristic search approaches to efficiently reach

global or near-global optima.

Because of the inherent stochastic nature of Reinforcement

Learning (RL) and Simulated Annealing (SA) algorithms, we

observe slight variations in the achieved objective function

values. To enhance the robustness of the optimizer, we train

multiple RL models and SA algorithms with different seed val-

ues. Subsequently, we perform an exhaustive search across the

outcomes of these algorithms to pinpoint the optimum solution

(refer to Alg. 1). An overview of the optimization framework

is presented in Fig. 6. It takes the design space and constraints

as input and outputs the optimized design points.

Algorithm 1: Proposed optimization algorithm

1 t← Trialmax;
2 objbest ←−inf ;
3 while t≤ Trialmax do
4 paramSA, objSA ← SA();
5 if objSA > objbest then
6 parambest, objbest ← paramSA, objSA;
7 end
8 paramRL, objRL ←RL();
9 if objRL > objbest then

10 parambest, objbest ← paramRL, objRL;
11 end
12 end
13 return parambest, objbest

A. RL Problem Formulation

RL tries to mimic human learning behavior to learn about a

new environment. In RL, an Agent continuously interacts with

an Environment, takes Actions by observing the present State

of the environment, receives feedback as a form of Reward

from the environment, and updates its underlying Policy to take

new actions to maximize reward. After enough interaction with

the environment, the agent can take a specific set (sequence)

of actions that maximize the reward in the given environment.

Formulating a Markov Decision Process (MDP) consisting of

a tuple of five key elements: < S,A,P, r, δ > is at the core

of formulating an RL problem. Where S = State space, A =

Action space, P = Transition probability matrix of going to St

from St−1 by taking action At−1, r = Reward function, and

δ = discount factor that takes any value between [0, 1] [32].

Environment provides feedback to the agent by quantifying the

rewards. In our case, we incorporate our analytical expressions

discussed in Section III into a Gym [33] environment, known

as Chiplet-Gym, to assess the performance of the action taken

by the agent.

State or Observation space contains the set of all possible

states of the environment. It should include all the information

for the agent to take the next action, making the process an

MDP. In our case, the observation space contains the following

items: {maximum package area, the maximum area allowed

per chiplet, current area per chiplet, ai2ai communication la-

tency, ai2hbm communication latency, current communication

energy, current packaging cost, current throughput}.

Action space defines the set of all possible actions available

to the agent each time step. Our action space, consisting of a
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Fig. 6. Optimization framework overview.

combination of discrete integers and categorical values, corre-

sponds to the parameters we aim to optimize. Given the state

of the environment and the reward, the agent selects values for

each of the parameters in Table I to maximize the reward.

Reward is provided to the agent as a form of feedback in

response to every action it takes. We formulate the reward

function same as the objective function we want to maximize

r = αT − βE − γC (17)

Where T,E,C represent the throughput, communication

energy, and packaging cost respectively. α, β, γ are the user-

defined constants that let the users put specific weight on

specific parameters of the objections function, such as through-

put, cost, energy-efficiency during optimization. Based on the

reward, which is formulated from the analytical expressions

of Section III, RL finds the optimum design choices consid-

ering complex trade-offs of chiplet area, bandwidth, chiplet-to-

chiplet communication.

RL algorithm We use Proximal Policy Optimization (PPO)

algorithm [34] implemented by Stable-Baselines3 [35] because

of its simplicity, computational efficiency, and compatibility

with the action and state space of our problem. PPO is a on-

policy policy gradient method that combines the idea of having

multiple workers from Advantage Actor-Critic (A2C) algorithm

and the idea of using trust region to improve the current policy

from Trust Region Policy Optimization (TRPO) algorithm [35].

B. Simulated Annealing

In addition to RL, we also explore meta-heuristic search ap-

proaches, such as simulated annealing, to evaluate their efficacy

in navigating the design space. Simulated annealing adds an

exploitation step on top of random search. It randomly samples

the design points and in addition to accepting the better design

points, based on the acceptance criterion, it also accepts the

design points that worsen the objective function. We modify

the simulated annealing algorithm by slightly changing the

acceptance criterion for our problem. The algorithm is shown in

Algorithm 2. We optimize the same objective function as shown

in Equation 17.

Algorithm 2: Modified simulated annealing algorithm

1 iteration← Tmax;
2 temp← temperature;
3 st_sz ← step_size;
4 Xcurr ← randomly choose initial solution;
5 Ocurr ← evaluate initial solution;
6 Xbest, Obest ←Xcurr, Obest;
7 while iterations≤ Tmax do

/* find candidate solution */

8 Xcand ←Xcurr + uniform(−1, 1) ∗ st_sz;
/* evaluate candidate solution */

9 Ocand ← f(Xcand);
10 if Ocand >Obest then
11 Obest ←Ocand;
12 Xbest ←Xbest;
13 end
14 t← temp/iterations;
15 if Ocand >Ocurr OR rand()< t then
16 Xcurr, Ocurr ←Xcand, Ocand;
17 end
18 end

19 return Xbest, Obest

Finally, we deploy RL and SA algorithm multiple times,

followed by conducting a comprehensive search on the outputs

produced by SA and RL agents.

While demonstrated explicitly for AI accelerators and mesh

routing topology, the proposed optimization framework can be

generalized to diverse chiplet-based designs and routing topol-

ogy, requiring users to model their architectures and network

topology in equation 4, 10, 11, and 13, to find the correct

blend of package and interconnect architecture. For example,

I/O chiplets provide signal transmission and regeneration. Their

performance can be modeled as extra latency in our framework.
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TABLE II
PER HOP WIRE LENGTH AND DELAY FOR 2.5D AND 3D

ARCHITECTURE [21], [36]

Packaging arch. Per hop wire length (mm) Delay, tw (ps)

2.5D 1 17.2

3D 0.08 1.6

TABLE III
INTERCONNECTS’ PROPERTIES [20]

Interconnect Bond/bump TSV pitch Energy Implementation
pitch (µm) pitch(µm) (pJ/bit) cost

CoWoS 30 - 40 - 0.2 ∼0.5 Medium

EMIB 55 - 45 - 0.17 ∼0.7 Low

SoIC 9 9 0.1 ∼0.2 High

FOVEROS < 10 - < 0.05 Highest

V. EXPERIMENTS AND RESULTS

A. Experimental Method

As shown in Fig. 6, at the core of the optimizer we imple-

ment PPO and simulated annealing algorithm. The optimizer

explores the design space and tries to select the best parameters

sticking to the design constraints and user-given optimization

objective, such as throughput optimization, energy, and/or cost

optimization. To evaluate the optimizer’s objective function,

we implement our cost model, explained in Section III, in an

OpenAI Gym [33] environment named as Chiplet-Gym.

We consider a fixed amount of package area, 900mm2, dedi-

cated for AI and HBM chiplets [30]. To avoid thermal hotspot,

we place the chiplets at 1mm apart from each other in a mesh

topology [37]. This leaves (900− (m+ n+ 2)mm2) of area

for the chiplets. The optimizer will select the number of chiplets

such that it maximizes the throughput while sticking to the area

constraint. The area per chiplet is calculated as the total package

area available for AI chiplets over the number of chiplets.

Analyzing the yield vs area curve (Fig. 3) we set the maximum

allowable area per chiplet to 400mm2 as a constraint. Because,

at 14nm, for the die area beyond 400mm2 the yield is even

lower than 75%. Inspired by the recent trend of higher on-chip

memory to reduce the DRAM accesses [18], we allocate 40%

of the chiplet area to the compute resources, 40% to the on-chip

SRAM, and rest 20% to other blocks such as control, IO, NoC,

routing etc. For 3D architecture, we have to sacrifice some of the

area of the chiplet for the TSV and its associated keepout zone.

From SoIC TSV pitch of 9um [20], >12K TSVs can be fit into

1mm2. So we keep at most 2mm2 for TSV in 3D architecture.

Which is enough for both signal and power supply [38]. We use

the values shown in Table II and III in our throughput, cost, and

energy model to calculate the cost function of the design points.

B. Implementation Details

The optimization framework1 is written in Python v3.9. and

run on an Intel hexa-core i5-9500 @ 3 GHz machine.

1) RL: The Chiplet-Gym environment is constructed by

integrating our analytical simulator into OpenAI Gym v0.26.2

1https://github.com/KFM135/chiplet-optimizer

Fig. 7. Impact of episode length in convergence (PPO algorithm). Inset
shows the zoomed-in version of each plot.

[33] to establish a unified interface between the RL algorithm

and the analytical simulator. We define the action space as Mul-

tiDiscrete and observation space as Box space. The simulator

receives the RL policy’s action (i.e., a combination of various

parameters forming a design point) as input and produces cor-

responding throughput, energy, and cost values. The environ-

ment’s state is then updated, and the reward is calculated. The

state and reward are fed to the agent, enabling it to adjust its

network to maximize rewards for subsequent actions.

Policy-Value network. PPO utilizes the Multi-Layer Percep-

tron (MLP) as both of its policy and value network. The ar-

chitecture of the actor or policy network is defined as [10, 64,

64, 810], and the architecture of the critic or value network is

set as [10, 64, 64, 1], employing the tanh activation function.

The size of the input for both networks is determined by the

dimension of the observation space, while the output layer size

of the policy network is determined by the action space. The

output layer size of the value network is set to 1.

Impact of episode length on RL convergence. The algo-

rithms are trained with an episode length of 2. While a longer

episode length often results in a higher mean episodic reward, it

does not guarantee a superior cost model value for the optimized

parameters. Although longer episodes are generally associated

with increased exploration, our hypothesis is that, in our specific

case, the agents lean towards exploitation to maximize rewards.

This hypothesis arises from the fact that our reward values span

from a large negative value to a positive one. Once the agent

discovers a positive value, it tends to exploit that particular

action to maximize the mean episodic reward neglecting further

exploration of the design space. Figure 7(a) shows that the agent

achieves a mean episodic reward of 800 at episode length of

10, where as the cost model value of these actions are less

than 100 (Fig. 7(b)). On contrary, at episode length of 2, the

mean episodic reward is around 300 and the cost model value

is around 150. (Note: The cost model value at each timesteps

are calculated as mean_episodic_reward/episode_length.)

Impact of entropy coefficient on RL convergence. Another

hyper-parameter impacting the exploration and exploitation bal-

ance is entropy coefficient. Serving as a regularizer, entropy

coefficient plays a crucial role in shaping the behavior of the

RL agent during training. A larger entropy coefficient implies

that all actions are equally likely, fostering exploration, while a

smaller entropy coefficient indicates that one action’s probabil-

ity within the policy dominates, emphasizing exploitation. Fig.

8(a) shows that when entropy coefficient is set to 0, the agent

stabilizes to a lower reward value more rapidly. However, when

the entropy coefficient is increased to 0.1, the agent achieves a
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Fig. 8. (a) Impact of entropy coefficient in RL convergence and (b) impact
of temperature on SA convergence. Inset shows the zoomed-in version of each
plot.

TABLE IV
PPO HYPER-PARAMETERS & THEIR VALUES

n_steps 2048 n_epoch 10

batch_size 64 learning rate 0.0003

clip range 0.2 value func. coef. 0.5

entropy_coeff. 0.1 discount factor 0.99

bias-variance trade-off factor 0.95

Fig. 9. Convergence behavior of (a) SA and (b) RL for multiple runs with
10 different seed values for case (i) (i.e., 64 chiplets). Inset shows the zoomed-
in version of each plot.

higher reward value, albeit with a slightly less stable trajectory.

In this case, we use an entropy coefficient of 0.1 to reach higher

convergence value. Other significant hyperparameters of PPO

algorithm are shown in Table IV.

2) Simulated Annealing: We employ Algorithm 2, initial-

izing it with a randomly chosen candidate solution from the

design space. Like PPO, SA’s performance is also sensitive to

initial temperature, a measure of exploration vs exploitation.

As shown is Fig. 8(b), SA achieves significant higher cost

model value with higher temperature value. Higher temperature

value ensures more exploration by increasing the probability of

accepting a worse trial point. As a result, the initial temperature

to 200, and a step size of 10 is employed for locating the neigh-

boring points. We do not use the general Metropolis acceptance

criterion, metropolis= exp− {(Ocurr −Ocand)/t}, due to

the potential for (Ocurr −Ocand) to become very large or very

small, leading to the metropolis evaluating to either infinity or

0. Instead, we solely utilize the parameter t to statistically ac-

cept poorer solutions in the early stages, facilitating exploration

of the search space.Ocurr = cost model value for current design

point and Ocand = cost model value at candidate design point.

C. Results

1) Performance and Runtime Analysis of Optimizer: In

our investigation of the design space, we consider two distinct

Fig. 10. Convergence behavior of (a) SA and (b) RL for multiple runs
with 10 different seed values for case (ii) (i.e., 128 chiplets). Inset shows the
zoomed-in version of each plot.

Fig. 11. Highest cost model value achieved by the SA and RL algorithms
for multiple runs: (a) for 64 chiplets and (b) for 128 chiplets.

scenarios: case (i), wherein the upper limit for the number of

AI chiplets is set to 64, and case (ii), where this upper limit is

increased to 128. We ran each of the algorithms multiple times

for each cases with different seed values to ensure their conver-

gence stability. Fig. 9 and 10(a) and (b) show the convergence

behavior of SA and PPO algorithm for case (i) and case (ii)

for 10 runs, respectively. As expected, both algorithms achieve

a better cost model value for case (ii) because of its higher

throughput, however, due to large packaging cost, case (i) 64

chiplets as the upper bound, is considered more practical. Fig.

11(a) and (b) show the highest cost model value achieved by SA

and RL algorithm over 10 runs for case (i) and (ii), respectively.

We observe that RL achieves higher cost model values each run

and more stable over multiple runs ranging from 178 - 185 for

case (i) and 188 - 194 for case (ii). Where SA achieves 151 -

176 and 170 - 188 for case (i) and case (ii), respectively.

The run time of SA for 500K iterations is less than a minute

and the run time to train the PPO agent for 250K timesteps

is <20 mins. We finally integrated several trained RL agents

and performed SA optimization on-the-go, and performed an

exhaustive search among those SA and RL agents. The final

optimizer with 20 SAs and 20 RL trained RL agents take around

10 mins to report the optimized parameter. As the RL is used

in inference mode, here the SA dominates the runtime.

2) Optimized Architecture Evaluation: Table V shows the

optimized parameter found by the optimizer for both cases for

a specific α, β, γ value (user-defined weights on the objective

function as explained in Eqn. 17). We observe that the RL PPO

algorithm found the best parameter. Please note that multiple

design configurations may coexist, achieving almost identical

cost model value.

The optimal design point for case (i) consists of 30 3D AI

chiplet pairs arranged in a mesh topology 5× 6, resulting in

60 chiplets in total. 2 chiplets (forming a pair) are connected

with SoIC 3D integration technology with a data rate of 42Gbps
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TABLE V
OPTIMIZED PARAMETERS FOR α, β, γ = [1, 1, 0.1] FOUND BY PPO ALGORITHM

Parameter Case (i): 64 chiplets as upper bound Case (ii): 128 chiplets as upper bound

Architecture type 5.5D-Logic-on-Logic 5.5D-Logic-on-Logic

No. of chiplets 60 (30 3D chiplet pairs arranged in 5X6 2.5D mesh) 112 (56 3D chiplet pairs arranged in 7X8 2.5D mesh

Package area; per-chiplet area 900 mm2; 26mm2 900 mm2; 14mm2

HBMs placement & capacity
4 16GB HBM chiplets @ top, bottom, right, and middle

of 5X6 chiplet pairs with a total capacity of 64GB
4 16GB HBM chiplets @ left, right, bottom, and middle

of 7X8 chiplet pairs with a total capacity of 64GB

AI2AI 2.5D interconnect type;
data rate; link density; trace length

EMIB; 20Gbps; 3100; 1mm EMIB; 20Gbps; 1450; 1mm

AI2AI 3D interconnect type;
data rate; link density

SoIC; 42Gbps; 3200 FOVEROS; 34 Gbps; 4400

AI2HBM 2.5D interconnect type;
data rate; link density; trace length

EMIB; 20Gbps; 4900; 1mm EMIB; 20 GBps; 3850; 1mm

Fig. 12. Comparison of 60-chiplet, 112-chiplet, 2-chiplet and monolithic system: (a) Inferences/sec, (b) Inferences/joule for MLPerf benchmark, and (c)
cost. (d) Cost breakdown of monolithic, 2-chiplet, 60-chiplet, and 112-chiplet system at 99% and 100% package bonding yield (BY = bonding yield).

per link and link count of 3200 providing up to 131.25 Tbps of

bandwidth. Each chiplet pair is connected with other chiplet pair

with 2.5D EMIB integration with a data rate of 20Gbps and a

link count of 3100 delivering up to 60 Tbps of bandwidth. Four

16GB HBM chiplets, located at top, right, bottom, and middle

of the 5× 6 mesh topology, are connected to 2 to 4 neighboring

AI chiplets with EMIB 2.5D integration technology with a data

rate of 20Gbps per link and a link count of 4900, resulting in

a bandwidth of 95 Tbps. The trace length for each 2.5D inter-

connect is selected as the minimum trace length possible (mini-

mum chiplet-to-chiplet distance). In case (ii), when we increase

the maximum number of chiplets to 128, we observe that the

optimum design configuration contains 112 chiplets (56 chiplet

pairs) and the communication bandwidth decreases for all cases.

This is because, as the number of chiplets increases, area per

chiplet decreases, resulting in smaller throughput per chiplet,

less bandwidth demand, and high system utilization. We ob-

serve that 3D architecture, even with area penalty for TSV and

TSV-associated keep-out zone [39], achieves 1.52× more logic

density than its 2D/2.5D counterpart at the same package size.

We synthesize the chiplet module, found by the optimizer,

with Synopsys Fusion Compiler using their 14nm PDK [40]

at 1GHz clock frequency and obtain the peak throughput per

chiplet, (ops/sec)AI_chip, and energy consumption per MAC

operation, Eop∗. We use these values in our analytical model to

estimate the throughput and energy efficiency of the 60 and 112

chiplet system. For cost estimation, we use the model from [6].

Fig. 12 compares the 60-chiplet, 112-chiplet, 2-chiplet and

monolithic GPU for MLPerf benchmark [41]. The benchmark

features are briefly summarized in Table VI. We observe that 3D

TABLE VI
DNN BENCHMARK FEATURES

Benchmark
model

Domain Dataset
Ops. per

forward pass

Resnet50 Image classification Imagenet 4 GFLOPs

Efficientdet Light weight object detection COCO 2017 410 GFLOPs

mask-RCNN Heavy weight object detection COCO 2014 447 GFLOPs

3D-UNet Biomedical image segmentation KiTS19 947 GFLOPs

BERT Natural Language Processing Wikipedia 2020 32 GFLOPs

112-chiplet, 60-chiplet, and 2-chiplet systems achieve 1.60×,

1.52×, and 1.24× higher throughput of the monolithic one,

respectively (Fig. 12(a)). The higher throughput of the chiplet-

based system can be explained with three facts. First, higher

logic density in 3D logic-on-logic systems in the same area

footprint increases the peak theoretical throughput. This ex-

plains why all chiplet-based systems show higher through-

put than the monolithic one. Second, as the peak theoretical

throughput per chiplet (or chiplet pair) increases, the required

inter-chiplet communication bandwidth increases. If the active

bandwidth cannot sustain the required inter-chiplet (both AI2AI

and AI2HBM) bandwidth, system utilization decreases, result-

ing in decreased achieved throughput. This explains why the

112-chiplet system has the highest throughput compared to

the 60-chiplet and 2-chiplet systems. The per-chiplet through-

put in the 112-chiplet system is smaller, requiring less inter-

chiplet bandwidth and ensuring higher system utilization. Con-

versely, the 2-chiplet system requires a higher inter-chiplet

bandwidth due to its higher per-chiplet throughput, leading to

underutilization and reduced overall throughput. Third, as the
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number of AI chiplet increases, the inter-chiplet communication

latency increases. However, the lower bandwidth penalty of

the 112-chiplet system outweighs the higher latency penalty,

resulting in a superior overall throughput compared to the 60-

chiplet and 2-chiplet systems.

The 2-chiplet, 60-chiplet, and 112-chiplet systems are 4.63×,

3.76×, and 3.62× energy-efficient (inverse of energy consump-

tion) compared to the monolithic, respectively (Fig. 12(b)).

The monolithic system is less energy-efficient than the 3D

chiplet based system at iso-throughput. Because, to achieve

equal throughput, more than one monolithic chips need to be

connected off-board on the PCB, consuming at least one order

of magnitude more energy [4] than on-package communication.

Among the 3 chiplet-based configurations, 2-chiplet system

achieves slightly higher energy-efficiency, 1.23× and 1.28×
compared to 60-chiplet and 112-chiplet system, respectively, as

it requires less inter-chiplet communication. However, handling

the thermal hotspot and heat removal for such large and high-

throughput 3D stacked chiplets presents a significant challenge.

Fig. 12(c) shows the cost comparison of the monolithic vs

chiplet based systems at different bonding yields. The raw die

costs of 60-chiplet, 112-chiplet, and 2-chiplet configuration

are 0.01×, 0.007×, and 0.94×, respectively, of the monolithic

system. This significant cost difference arises from the low

yield (48%) of the monolithic chip of 826mm2, compared to

the 97% and 98% die yield of the 60 and 112 chiplet systems,

with a die size of 26mm2 and 14mm2, respectively, at 7nm

node. In addition to that, the cost of Known Good Dies (KGD)

is inversely proportional to the number of KGD (NKGD). As

the die area (A) increases, the number of good dies (NKGD)

decreases, leading to a substantial increase in cost. The rela-

tionship between the cost and die area can be approximated as

costKGD ∝A
5

2 (taking up to 2 terms of Taylor series expansion

of die yield) [4], [6].

We estimate the packaging cost of chiplets at 99% and 100%

inter-chiplet bonding yield. With better process control and

TSV/pad repair techniques, TSMC reported that the bonding

yield can reach 100% [24], [42]. Although the raw die cost is

smaller, for chiplet based configurations, the integration cost,

including all the defected and wasted chips and packages, of

chiplet based system are 1.62× (for 60-chiplet), 2.46× (for 112-

chiplet), and 2.31× (for 2-chiplet) higher than the monolithic

system at 99% bonding yield. The integration cost improves

with the 100% bond yield. Finally, combining the die and

integration cost, we observe that the total cost for the 60-chiplet

system can achieve the 0.89× cost of the monolithic system

with the 100% bonding yield, while the total cost for 112-

chiplet configurations is slightly higher (1.13×) than that of

the monolithic system. The 2-chiplet system is the most cost

inefficient, as it does not benefit from the lower raw die cost and

also suffers the high 3D integration cost. Fig. 12(d) shows the

breakdown of the total cost of the different configurations. For

all configurations, wasted KGD (i.e., wasted chips) consumes a

significant amount of total cost, with a maximum of 40% of the

total cost for the 112-chiplet system at 99% bonding yield and

a minimum of 29% of the total cost for the 60-chiplet at 100%

bonding yield. In monolithic and 2-chip systems, die and chip

costs (raw and defective) contribute equally to the total cost, and

package-related costs (raw and defective) only consume 6% and

20% of the total cost, respectively. On the other hand, in 60 and

112 chiplet-based configurations, the cost of the defected dies

and chips are less than 1%. The cost of raw chips and packages

(raw and defected) dominates the total cost in these cases. We

implement our chiplet in synopsys 14nm free PDK. However,

we estimate the cost for 7nm to have a fair comparison between

the monolithic one, which was fabricated in 7nm technode [43].

VI. RELATED WORKS

A. Chiplet-Based Architecture Exploration

1) DNN Accelerator: SIMBA [13] is a pioneering work in

chiplet-based AI accelerator, that integrates 36 NVDLA-like

accelerator chiplets on a package. Centaur [51] integrates CPU

and FPGA chiplets on package, specially for recommendation

system workload. SPRINT [15] is a 64-chiplet system with

photonic interconnect for DNN inference. There have been

few works in chiplet based architecture focusing on different

aspect of design space exploration. NN-Baton [14] proposes a

framework for DNN workload mapping and chiplet granularity

in small scale (1 to 8 chiplets), however, they do not consider the

packaging integration aspect and fabrication cost. While Monad

[9] incorporates mapping, resource allocation, communication

and different package substrate to optimize for PPA and fabri-

cation cost, their packaging integration design space is limited

to 2.5D, excluding 3D. [5] proposes ChipletCloud for LLM

inference, however, their chiplets are connected in board-level

instead of package level.

2) General Purpose: Some works focus on the exploration

of Network-on-Package (NoP) and reliable routing protocols

[10] for chiplet-based architecture. [11] explores network topol-

ogy and cost-aware chiplet placement for 2.5D architecture.

[6] puts forward a cost model for evaluating the 2.5D manu-

facturing cost. [4], [52] suggest the importance of chiplet de-

sign space exploration for performance, energy, cost, reliability

enhancement. Table VII shows the comparative summary of

existing AI accelerator simulator frameworks for design space

exploration.

B. RL in Design-Space Exploration

Deep Reinforcement Learning has gained popularity in ex-

ploring the design space exploration and optimization of the

EDA domain, spanning from front-end (i.e., planning and archi-

tectural exploration) [2], [12], [49], and [53] to back-end (i.e.,

implementation, physical design and circuit design) [54], [55],

and [56]. To the best of our knowledge, this work is the first to

perform a comprehensive design space search, encompassing

resource allocation, placement, packaging architectures (both

2.5D and 3D), and their configurations to optimize for Power,

Performance, Area, and Cost (PPAC) using Deep Reinforce-

ment Learning (DRL).

VII. LIMITATIONS AND FUTURE WORKS

In order to keep the design space concise and tractable, we

limit it as mentioned in Table I and make severalassumptions
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TABLE VII
COMPARATIVE SUMMARY OF AI ACCELERATOR SIMULATOR FRAMEWORKS FOR DESIGN SPACE ANALYSIS

Simulator/Optimizer/
Architecture

Design space/Architectural details
Monolithic/
Chiplet-based

Scale-sim [44] Performance Simulator
(i) Dataflow: WS, IS, OS; (ii) HW resource: No. of PE, on-chip memory size;
(iii) Architecture type: Eyeriss, TPU

Monolithic

Timeloop+
accelergy [45]

Mapping optimizer + Performance,
energy, and area simulator

(i) Dataflow: WS, IS, OS; (ii) HW resource: No. of PE, on-chip memory size;
(iii) Different memory hierarchies; (iv) Architecture type: Eyeriss, Simba

Monolithic

Maestro [46]
Performance and energy
Simulator +Optimizer

(i) Dataflow: flexible; (ii) HW resources: Number of PEs, NoC BW/Latency,
on-chip memory size; (iii) Architecture type: NVDLA-like

Monolithic

Astra-sim [47] Performance Simulator

(i) Distributed training: data, model, hybrid parallelism; (ii) Hierarchical
collective algorithms: on-load, off-load; (iii) Fabric design: number of links
& latency/BW per link; (iv) Fabric topology: pt-to-pt, 2D/3D Torus

Multi-chip
(package/board level)

STONNE [48]
Performance, energy and area
Simulator

Architecture type: flexible & reconfigurable architecture Monolithic

Confucuix [49]
Performance and energy
optimizer

(i) HW resource: Number of PE, on-chip buffer size Monolithic

SIMBA [13]
Performance & power
Optimizer + 36-chiplet Architecture

(i) Mapping and tiling strategies; (ii) 36 NVDLA chiplets connected in 2D mesh
Multi-chip
(package level)

SPRINT [15] 64-chiplet Architecure 64-chiplet architecture with photonic interconnect for interchiplet communication
Multi-chip
(package level)

NN-Baton [14] Simulator + Optimizer
(i) No. of accelerator chiplets: 1, 2, 4, 8; (ii) On-chip memory: 36 to 642KB;
(iii) Different mapping strategies; (iv) Routing topology: Ring

Multi-chip
(package level)

Moand [9] Optimizer
(i) No. of accelerator chiplets; (ii) mapping & tiling; (iii) packaging;
(iv) network topology; (v) placement

Multi-chip
(package level)

TVLSI’20 [50] Simulator (i) 64-core ROCKET-64 architecture; (ii) 2.5D interposer-based centralized NoC
Multi-chip
(package level)

Chiplet-gym
(This work)

Performance, power, area and
cost Optimizer

(i) No. of AI accelerator chiplets, no. & location of HBM chiplets;
(ii) package architecture: 2.5D, 3D; (iii) Interconnect types & configuration
(details in Table I)

Multi-chip
(package level)

as mentioned in Section V-A. We also assume that the HBM3e

chiplets have their integrated memory controller and NoC router

that can be used as a node in the mesh topology. The anal-

ysis of the cost of additional chips with the NoC+memory

interface, exploring other routing topology such as p2p with

photonic interconnects, H tree, bus, ring etc., exploring more

heterogeneous architectures, multi-tier 3D-stacks, placement

of host CPU chiplets and exploring their different layouts are

future works.

VIII. CONCLUSION

This paper proposes Chiplet-Gym to explore the design space

of chiplet-based AI accelerators to optimize for Power, Perfor-

mance, Area, and Cost (PPAC). To evaluate the design points,

we analytically model the PPAC for chiplet-based AI acceler-

ator. With reinforcement learning and simulated annealing, the

optimizer is robust and efficient in locating the global or near-

global optima of the design space for PPAC. The results show

that the optimizer finds the design point that achieves 1.52×
throughput, 0.27× energy, and 0.89× cost of its monolithic

counterpart in iso-area.
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