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Chiplet-Gym: Optimizing Chiplet-Based Al
Accelerator Design With Reinforcement Learning

Kaniz Mishty

Abstract—Modern Artificial Intelligence (AI) workloads de-
mand computing systems with large silicon area to sustain
throughput and competitive performance. However, prohibitive
manufacturing costs and yield limitations at advanced tech nodes
and die-size reaching the reticle limit restrain us from achiev-
ing this. With the recent innovations in advanced packaging
technologies, chiplet-based architectures have gained significant
attention in the AI hardware domain. However, the vast design
space of chiplet-based AI accelerator design and the absence
of system and package-level co-design methodology make it
difficult for the designer to find the optimum design point
regarding Power, Performance, Area, and manufacturing Cost
(PPAC). This paper presents Chiplet-Gym, a Reinforcement
Learning (RL)-based optimization framework to explore the vast
design space of chiplet-based Al accelerators, encompassing the
resource allocation, placement, and packaging architecture. We
analytically model the PPAC of the chiplet-based Al accelerator
and integrate it into an OpenAl gym environment to evaluate
the design points. We also explore non-RL-based optimization
approaches and combine these two approaches to ensure the
robustness of the optimizer. The optimizer-suggested design point
achieves 1.52 X throughput, 0.27 X energy, and 0.89X cost of
its monolithic counterpart at iso-area.

Index Terms—Al accelerator, chiplet, heterogeneous integra-
tion, design space exploration, reinforcement learning.

I. INTRODUCTION

S Large Language Models (LLMs), such as chatGPT,

GPT-4, LLaMA [1], etc., gain widespread use, there is
a growing demand for energy-efficient hardware that can de-
liver high throughput. To support hundreds of trillions of op-
erations and hundreds of gigabytes of data movement, the
high-performance and energy-efficient hardware demands more
silicon area, accommodating more compute cores and memory
capacity. Training any state-of-the-art Al or Deep Learning
(DL) model with a single GPU or accelerator is nearly im-
possible due to extreme computing and memory demands. The
data centers are equipped with clusters of powerful computers
and GPUs connected via PCle, NVLink, etc. [2], [3]. Even
though these supercomputers can deal with large workloads,
they consume a significant amount of energy [2] and involve
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longer latency. Because off-board communications consume at
least one order of magnitude more power and time than any
on-package communications [4]. The ideal scenario would be
a hardware capable of housing the entire model parameters and
intermediate activations on-chip [5], promising optimal perfor-
mance and energy efficiency. Unfortunately, this is not feasible
due to the stagnation of Moore’s law and Dennard scaling, die
size reaching the reticle limit, and the prohibitive manufacturing
cost and yield limitations [3]. Consequently, researchers en-
deavor to replicate this ‘hypothetical ideal’ hardware concept
by integrating multiple smaller chiplets at the package level,
allowing near-ideal performance while minimizing costs and
energy consumption.

With the advent of advanced packaging technologies, the
chiplet-based heterogeneous integration has opened up a
new dimension of chip design, More-than-Moore [3]. In
chiplet-based system, multiple chiplets (i.e., SoCs) of diverse
functionalities (e.g., logic dies, memories, analog IPs, accel-
erators etc.) and tech nodes (e.g., 7nm or beyond) from dif-
ferent foundries are interconnected in package level using the
advanced packaging technologies, such as CoWoS, EMIB, etc.
[3]. The value proposition of chiplet-based architectures is man-
ifold. Compared to multiple monolithic SoCs interconnected
via off-package or off-board links such as PCle, NVLink,
CXL etc. [3], package-level integration of multiple monolithic
SoCs via 2.5D or 3D has accelerated performance and lower
energy consumption alleviating off-package communications.
Chiplet-based systems offer lower RE (Recurrent Engineering)
cost by providing higher yield and lower NRE (Non-Recurrent
Engineering) by enabling IP reuse and shortening IC design
cycle [6].

The commercial chiplet-based general purpose products [7],
[8] are designed and developed at vertically integrated com-
panies without exposing much knowledge about the chiplet-
based architectures’ design space. Unlike these general purpose
products, chiplet-based Al accelerators demand extensive de-
sign space exploration to hit the target Power, Performance,
Area, and Cost (PPAC) budget. From architectural perspective,
designers must consider the resource allocation, mapping and
dataflow of the DNN workloads. From communication and
integration perspective, chiplet placement, routing protocols,
stacking/packaging technologies, interconnect types, and fi-
nally from application perspective, system requirement, such as
reliability, scalibility etc., should be considered all at the same
time while optimizing for PPAC [9]. The existing works often
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focus either on the architectural or integration aspects as a sep-
arate design flow: explore routing and packaging given chiplets
[10], [11], [12] or explore chiplets architecture given the pack-
aging [5], [13], [14], [15]. An isolated approach, addressing
individual aspects independently, may result in sub-optimal
designs due to the inter-dependency among these factors. For
instance, varying resource allocation impacts communication
demands, influencing the choice of packaging and its configu-
ration, consequently leading to cost variations.

Currently, many flavors of packaging technologies, both from
2.5D and 3D, are available from the industry leaders, which
makes it difficult for system designers and integrators to choose
the optimum set of configurations from the vast design space
based on the system requirements [3]. The various packaging
technologies differ in fabrication cost and complexity, perfor-
mance, and underlying integration technologies [3]. As a result,
no single package technology can be marked as superior to
others. Each of the other domains, such as resource allocation,
chiplet granularity, placement, Network on Package (NoP), and
interconnect architectures, to name a few, also has an exten-
sive design space. A proper co-optimization across all these
domains based on the system and application requirements at
the available cost is necessary for a successful chiplet based
system design. Optimizing all possible domains results in a
combinatorial explosion where brute force search is not an
option and random search might not result in the optimum
point. The expensive simulation environment of chip design
exacerbates this problem.

To overcome these limitations, in this paper, we make the
following contributions bridging the gap between the system
requirements and design aggregation, planning, and optimiza-
tion for chiplet-based architecture.

* We develop a co-design methodology for chiplet-based
Al accelerators. The co-design task contemplates re-
source allocation, such as the number of Al chiplets,
memory capacity, and bandwidth; partitioning and place-
ment of chiplets such as aspect ratio of the accelerator
chiplet arrays, and logical placement of accelerator and
memory chiplet; different packaging technologies (i.e.,
CoWoS, EMIB, SolC, and FOVEROS [3]) and their at-
tributes such as bandwidth, bump pitch density, cost and
complexity, to optimize the system-level Power, Perfor-
mance, Area, and Cost (PPAC) of the chiplet-based Al
accelerators.

e We formulate an analytical cost model for assessing the
chiplet-based architectures. This analytical model enables
us to assess the chiplet-based Al accelerator in a time-and-
resource-constrained environment.

* To optimize throughput, energy efficiency, and cost,
we identify the inter-dependency of the design space
parameters and formulate the optimization problem as a
Reinforcement Learning (RL) problem. We also explore
non-RL based optimization approaches, such as simulated
annealing, and combine these two approaches to ensure
the robustness of the optimizer.

 Finally, we validate our methodology by comparing the
performance of our optimized design against state-of-the-
art monolithic GPU on MLPerf benchmark and justify the
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Fig. 1. Al accelerator chiplet architecture.

The rest of the article is organized as follows. Section II
presents the background. Section III describes the analyti-
cal modeling and design space exploration. The optimization
framework is presented in Section IV followed by experiments
and results in Section V, related works in Section VI, limitations
and future works in Section VII and conclusion in Section VIII.

II. BACKGROUND
A. Al Workloads and Accelerators

1) Al Workloads: The primary domains of Al encompass
Computer Vision (CV), Natural Language Processing (NLP),
Recommender Systems, and Reinforcement Learning. The inte-
gration of these domains has led to the emergence of Generative
Al, enabling models to generate diverse content, including text
and images. In Generative or Multi-modal Al, diverse AI/DNN
(Deep Neural Network) models are fused together to generate
an output. While the architectural characteristics and param-
eters of LLM and CV models may differ, their fundamental
components share similarities with the structure of Transformer
[16] for NLP and ResNet [17] for CV, respectively. The critical
operations in CV models involve regular convolution, Depth-
wise or Point-wise convolution, residual blocks, FC (Fully Con-
nected) operations, whereas the scaled-dot product attention
operations, and FC operations dominate in LLM. These opera-
tions can be expressed as or converted to matrix-matrix/vector
multiplication (GEMM) with massive parallelism.

2) Al Accelerator: Systolic array [18] type architecture,
leveraging the inherent parallelism of DNN workloads, has
been used as the core of Al accelerators. A typical Al ac-
celerator is composed of arrays of Processing Element (PE)
for computation and on-chip buffer to hold the weights and
activations. PEs are composed of Multiplier-Adder (MAC) units
and small register file for each MAC units to hold the stationary
data, depending on the dataflow. The size of PE array, memory
hierarchy, and memory size are critical design parameter of a
Al accelerator. Fig. 1 shows a Al accelerator with a PE core,
Special Function Unit (SFU), and Global Buffer. The PE core
contains a small SRAM buffer and bunch of PE units. Each PE
consists of a MAC unit and a reg. file [19].

B. Chiplets and Heterogeneous Integration

1) 2.5D Architecture: In 2.5D architecture, two or more
chiplets, fabricated separately, are connected side-by-side with
each other in package-level through interposer (silicon/organic)
or silicon bridge. Two commercial 2.5D interconnects are Chip
on Wafer on Substrate (CoWoS) from TSMC [20] and Embed-
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Fig. 2.

Top-level system architecture for different scenarios. (a) CPU, Al accelerator and HBM chiplets are connected in package level through 2.5D

interconnects. CoWoS and EMIB are two options of 2.5D interconnects. (b) CPU and Al accelerator chiplets are connected through 2.5D interconnects and
HBM is stacked on top of CPU and Al accelerator through 3D interconnects. (¢) Two Al accelerator chiplets are stacked on top of each other through 3D
interconnects and they are interconnected to CPU, HBM and other Al chiplets pair through 2.5D.

CoWoS, two side-by-side dies are connected with each other
and with package substrate through an intermediate interposer
layer [20].

Interposer can be active and passive. Active interposer con-
tains embedded logics and Re-Distribution Layers (RDL) where
as passive interposer containing RDLs are only used for routing
purpose. CoWoS typically employs passive interposer for 2.5D
integration. In contrast, Intel’s EMIB utilizes thin silicon pieces
with multilayer BEOL interconnects (Silicon Bridge) embed-
ded in the organic package substrate for high-density localized
interconnects, eliminating the need for a separate interposer
layer [21]. CoWoS and EMIB architectures are illustrated in
Fig. 2(a).

2) 3D Architecture: In 3D, two or more separately fabri-
cated chiplets are stacked on top of each other through 3D in-
terconnects formed with copper micro-bumps, or hybrid wafer
bonding [22]. Depending on the bonding interface orientation
of the interconnected dies, different bonding configurations are
possible, such as face-to-face (F2F), face-to-back (F2B), back-
to-back (B2B) etc. Intel’s FOVEROS [23] uses F2F bonding
where the face of the top die is bonded to the face of the bottom
die (active interposer) through Cu micro-bump connections.
Bottom die is connected to the package through TSV [23].
TSMC has the option of both F2F and F2B bonding config-
uration in their System on Integrated Chips (SoIC), however,
they use hybrid bonding instead of Cu pi-bumps [24]. The latest
upgrade of FOVEROS, FOVEROS-Direct, also leverages direct
cu-cu hybrid bonding for inter-die interconnection. Recently,
both 2.5D and 3D can be integrated on the same package and
these architectures are known as 5.5D [25].

III. THROUGHPUT FORMULATION AND DESIGN
SPACE EXPLORATION

In this section, we formulate the cost model for chiplet-based
Al accelerators, including throughput, energy, and cost. We
perform design space exploration to comprehend the influence
of various design parameters on the cost model.

A. Top Level Architectural Exploration

We explore two architectural approaches: (i) 2.5D architec-
ture, where all chiplets are connected with each other at the
package level through 2.5D interconnects (Fig. 2(a)). (ii) 5.5D
(combining 2.5D and 3D) [25] where two or more 3D-stacked
(connected via 3D interconnects) chiplets are further linked
through 2.5D interconnects (Fig. 2(b) & (c)). In all cases, the
architecture of the AI accelerator chiplet is a regular systolic-
array composed of PE array and dedicated on-chip buffer shown
in Fig. 1 [19]. However, the number of PE units and on-chip
buffer size varies with the number of allocated chiplets, as we
consider a fixed package size.

1) 2.5D Architecture: In 2.5D architecture, we consider
that CPU, AI accelerator, and HBM chiplets are connected at
the package level through 2.5D interconnects (Fig. 2(a)). We
explore two 2.5D integration technologies, EMIB and CoWoS,
and their different configurations.

2) 5.5D Architecture (Combining 2.5D and 3D): 5.5D
architecture is divided into two cases: (i) memory-on-logic,
where HBMs are stacked on top of CPU and/or Al chiplets
as shown in Fig. 2(b), and (ii) logic-on-logic, where two Al
chiplets are 3D-stacked on top of each other. These 3D-stacked
Al chiplets are connected to CPU and/or HBM and other 3D-
stacked Al chiplets through 2.5D interconnects as shown in Fig.
2(c). To avoid temperature-induced breakdowns [22], we limit
our exploration to only 2-tiers. We explore the off-the-shelf 3D
integration techniques, SoIC and FOVEROS, and their different
configurations. Depending on the integration technology and
their configuration settings, these architectures offer different
bandwidths, energy efficiency, area efficiency, and cost.

B. Throughput and Energy Efficiency Formulation

1) Throughput: We define system throughput as tasks com-
pleted per second,

T_ tasks

ey

sec
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tasks represents different entities depending on the DNN do-
main and its mode of operations. During inference, tasks rep-
resents the number of in ferences. During training of CV and
NLP models, tasks means the number of images and tokens
processed per second, respectively. tasks/sec can be decom-
posed into [26]

tasks  ops 1 1
= X oy X ey X Mepp @
sec Sec (task )G (task )”G

Here, ops/sec depends on both DNN hardware and DNN
models. GEMM operations per task, (ops/task)c, and non-
GEMM operations per task (ops/task),c depend on only
DNN models, and M. ¢, mapping efficiency depends on DNN
models and hardware, along with mapping strategies. ops
means the MAC operation. The GEMM operations are per-
formed in the systolic array. The non-GEMM operations such as
softmax is performed in the SFU of the accelerator. Dropout and
residual operations, manifested as Element-wise multiplication
and addition, is also performed using the MAC modules. Layer
normalization and other reduction or control flow operations are
taken care in the ALU or scalar unit of the SFU.

For a system comprising multiple Al accelerator chiplets, the
operations/sec is expressed as,

(Ops) = (%) X AI_Ch/iptOt X Usys (3)
sys Al _chip

sec sec

Where (ops/sec) ar_chip is the peak throughput per Al chiplet,
AI_chipio; = total number of Al chiplets, and Uy, = system
utilization factor. It represents the effective fraction of the active
chiplets out of the total chiplets. It depends on the interchiplet
communication bandwidth (BW 47— 41), determined by choice
of the packaging architecture, package type, and their different
configuration. In section III-D1, we describe this in detail. The
peak throughput per Al chiplet is expressed as

0ps> 1 cycles
— = X X PEiot x U i
(sec Al_chip (‘WOCIZJSS sec tot > L AL chip
4)
Where,
cycles
= cyclecomm + cydeop* ©)
op
cyclecomm = chiplet-to-chiplet communication latency,
cycleyp= = arithmetic operation latency of the chiplet

microachitecture, and cycles/sec=f, frequency of the Al
accelerator chiplets. cyclecom.mm depends on the distance
between the data source and destination. It is impacted by the
chiplet allocation, chiplet array dimension (i.e., number of Al
chiplets in X and Y dimension) and the physical location of
the Al and HBM chiplets. cycle,,- depends on the micro-
architecture of the chiplet (design of PE array, MAC unit) and
the type of operations. We assume that all Al chiplets can
operate at the same frequency and have the same architectural
and functional configuration. However, the frequency of each
chiplet can be further controlled based on the data traffic and
location of chiplets to optimize system throughput and energy.
PE,y = total number of PEs per Al chiplet, and Uar_chip
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chiplets.

= chiplet utilization representing the fraction of PEs utilized
during computation. Uy _chsp depends on mapping of the Al
model tasks to the accelerator.

2) Energy Efficiency: Energy efficiency is paramount when
processing DNN at edge devices and cloud data centers. Edge
devices are usually constrained by battery life and thermal
budget, and data centers are typically constrained by electricity
bills, thermal budget, and environmental impact [2]. Data cen-
ters are mainly focused on achieving higher throughput, which
requires higher energy budget. In this work, we closely monitor
energy efficiency while maximizing the throughput.

We define energy efficiency (E.ry) of a system as tasks
completed per joule:

tasks 1 1

= - * (6)
; joules ops
joule I sk

Eeyr=

joules/operations depends on both DNN hardware and DNN
models, whereas operations/task depends only on the consid-
ered DNN model. We break down the energy per operations,
E,,, (i.e. joules/operations) into its constituent parts:

Eop = Ecomm, + Eop* (7)

Ecomm 1s the energy required to transfer data from chiplet-to-
chiplet and F,,,~ is the energy to perform an arithmetic opera-
tion. E¢ypqm depends on the choice of packaging architectures
(e.g., 2.5D, 3D) and interconnect types (e.g., EMIB, CoWoS,
FOVEROS, SolC) and F,,,~ depends on the microarchitecture.

C. Chiplet Allocation and Placement

In the context of chiplet-based accelerator design, determin-
ing the number of chiplets, area allocated to each chiplet, and
their placement becomes pivotal, as they impact the throughput,
energy, and cost. Here we will delve into the relationship be-
tween yield, area, cost, communication latency across various
chiplet configurations.

1) Yield and Cost vs Area: Intuitively, as the chip area
increases, its compute and memory capacity increases, ensuring
high performance and energy-efficiency. However, as shown in
Fig. 3(a), we are limited by the fact that in advanced tech nodes,
as the chip area increases, yield decreases, resulting in increased
cost per area [6]. The yield of the manufactured chip, Yy;. is
expressed as the following Negative Binomial model:

dA\
Ychip = (1 + ) (8)
«
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where d is the defect density of the tech node, A is the area of
the chip, and « is the cluster parameter. Assuming P as unit
price, we can also estimate the cost per yielded area as

P, -1
Cyictd = —— %PO(l—l-dA—i-a?szAQ) ©)

}/;hip

2) Inter-Chiplet Communication Latency: As mentioned
earlier, the chiplet-to-chiplet data communication latency,
cyclecomm, impacts the system performance by contributing
to cycles/operations. Data transfer between chiplets occurs
through the package-level interconnects such as CoWoS, EMIB,
FOVEROS, SolC etc. Considering that the data might be sup-
plied from another Al-chiplet or directly from HBM, we esti-
mate both AI-AI chiplet communication latency, L a7— 45, and
HBM-AI communication latency, Lypar—ag.

Lar_ar if data moves from Al to Al
I chip
cyclecomm =
YetCeomm Lupym—ar if data moves from mem. to

Al chip
(10)

Impact of AI chiplet count. As the number of chiplet in-
creases, the physical distance between the source and desti-
nation chiplet increases, resulting in increased communication
latency. We consider 2D-mesh topology, which is widely used
in tile-based architecture for its simplicity and scalability. Rout-
ing in the package substrate is more intricate than on-chip. As
a result, tile-based chiplet architectures have been architected
with mesh topology [13]. Fig. 3(b) shows that communication
latency increases drastically with the number of chiplets for a
mesh topology.

Impact of Chiplet array dimension. The longest Al-to-Al
chiplet communication latency is expressed as

Lar—ar=Har—ar Xty +Har—ar Xt +T.+T, (11)

As we consider a 2D mesh of Al accelerator chiplets,
Har—ar =m+n — 2 denotes the number of hops between
the source-destination pair. m,n represent the number of Al
chiplets in the X and Y dimension of the array, respectively. ¢,,
is per-hop wire delay, ¢,., T, and T are router delay, contention
delay, and serialization delay, respectively [27]. Here, t,,, t,-, T
are design time metrics, that depend on tech. node, interconnect
technologies, circuit, and microarchitecture design, 7;. depends
on workload/data traffic. For a fixed number of chiplets and
routing topology, H 47— 4 depends on the chiplet array X and
Y dimension. We try to keep the aspect ratio of the chiplet array
as close as possible to 1 to reduce the communication latency.
In addition, the physical dimension of the chiplet array impacts
the system performance by affecting the choice of dataflow
and workload mapping strategies [14]. For a fixed dataflow and
mapping strategy, the system performance largely depends on
the chiplet array dimension as shown in Fig. 4.

Impact of HBM/CPU count and location. We analyze the
impact of dividing the allocated HBM into multiple chiplets
and placing the chiplets in multiple positions on system latency.
Partitioning a large chunk of memory into multiple memory

Latto-A1=7 hops

\
Al chiplet array
© (d)

Fig. 4. Illustration of latency (in terms of hop) calculation. (a) AI2AI chiplet
communication, considering the farthest chiplets as source-destination pair.
(b) One HBM chiplet, located at the left connected in 2.5D, and the farthest
Al chiplet as source-destination pair. (c) One HBM chiplet, 3D-stacked on top
of a left-most Al chiplet, and the farthest AI chiplet as source-destination pair.
(d) 5 HBM chiplets are placed in 5 different positions. The highest latency
decreases from 6 hops (case (c)) to 3 hops with most of the Al chiplets can
be provided with data in 2 hops by nearest HBMs.

chiplets (instead of placing the large memory in one place) and
placing these multiple memory chiplets in different locations
improves the system latency. Unlike, Al chiplet counts, as the
number of HBM chiplets increases, communication latency
decreases. Because the communication latency depends on the
physical location of the data [13]. Fig. 4 illustrates how chiplet
partitioning and placement improve the system latency. As we
consider a 2D mesh of Al accelerator chiplets, there are 6
locations: left, right, top, bottom, middle, and 3D stacking, to
place the HBM chiplets around the Al chiplets array. These
locations result in 26 — 1 combinations for HBM/CPU place-
ments. We model Ly gy cpu—ar same as equation 11, where
Hay—ay is replaced by Hypyrcpy—ar- We use the model
presented in [28] to calculate Hypar opy—ar for different
locations of HBM/CPU pair. We consider a 16GB (8-stack, each
stack 16Gb) HBM3 chiplet [29], giving the highest capacity
of 80GB with 5 chiplets. We assume that each HBM chiplet
has a dedicated memory controller and NoC router integrated
within it [30]. As a result, at iso-memory-capacity (i.e, same
number of HBMs with integrated memory controller) the cost
associated with HBM for both monolithic and chiplet systems
is equivalent.

The host CPU is primarily responsible for dispatching the
workloads to the accelerator chiplets. The package area is
shared by accelerator chiplet, HBMs as well as CPUs. However,
the majority of the package area is used for AI computing and
HBM memories [13], [30]. Hence, in this work we only focus
on the AI accelerator and HBMs.

The above discussion suggests that, for cost-effective integra-
tion of more functionalities, we should partition the total chip
area into multiple chiplets, each with smaller areas. From the
yield and cost perspective, the more the number of chiplets, the
better throughput and less cost. However, this also introduces
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Ilustration of mapping and dataflow. (a) Splitting the matrices into smaller parts for different chiplets. (b) Initial data supply from DRAM. Once the

chiplets are loaded with required data, computation begins. (c) Final output collection to the DRAM. In this dataflow, there is no inter-chiplet communication

during computation for partial sum.

another consideration: an increase in the number of chiplets re-
sults in higher inter-chiplet communication latency, ultimately
diminishing throughput and energy efficiency. Therefore, a bal-
ance must be struck between dividing the area into an appropri-
ate number of chiplets to enhance functionality and ensure the
associated communication latency does not compromise overall
system performance and efficiency.

D. Package Architectures and Configurations

We explore different packaging architectures, interconnects,
and their different configurations [20], [21], [23], [24] to ana-
lyze their impact on the system performance and budget.

1) Inter-Chiplet Communication Bandwidth: The system
utilization term, Uy, of equation 3 depends on the inter-chiplet
communication bandwidth. We define Uy, ,:

BWact
BWreq

Where, BW,.: is the actual bytes of data transferred per sec
and BW,., is the required bytes to keep all the neighboring
Al chiplets at 100% utilization, i.e., no stalling for data. For
the layout of AI and HBM chiplets we consider in this work,
the HBM chiplet needs to deliver data to its 4 neighboring Al
chiplets simultaneously at most, and any Al chiplet needs to
deliver data to its 1 neighboring chiplets at most. However, it
can change with the mapping strategies. As the communication
between CPU and Al chiplet primarily involves the instruction
dispatch and output accumulation, the communication band-
width is dominated by bandwidth requirements of the AI ac-
celerator to HBM chiplet.

Chiplet mapping exploration. For large sequence lengths and
batch sizes of NLP/LLM models as well for large FC/Conv.
layers of DNN models, the matrix sizes get larger, which need
to be split temporally in the monolithic chips if the monolithic
chip does not contain enough PE units and memory. Having
multiple chiplets, the matrices can be split spatially and mapped
to multiple chiplets, performing parallel computation. As illus-
trated in Fig. 5(a-c), the input matrix is split along rows (A, B,
C, D), and the weight matrix is split along columns (E, F, G, H).
Chiplets 1, 3, 5, 7 handle data chunks A and B, while Chiplets 2,
4, 6, 8 handle C and D. The weight matrix portions (E, F, G, H)
are distributed to all chiplets accordingly. During initialization,
the DRAM supplies data 4 x [A, B,C, D], and [E, F,G, H]
simultaneously to chiplets 1, 3, 5, 4, with A and B reaching

Usys = (12)

neighboring chiplets in one hop and C and D reaching distant
chiplets in the next hop. Data chunks E, F, G, H reach neighbor-
ing and distant chiplets in one hop and two hops, respectively.
The outputs are collected back to DRAM once the computations
are completed. Outputs from neighboring chiplets (ch-1, ch-3,
ch-5, ch-7) reach DRAM in one hop, while outputs from distant
chiplets reach DRAM in two hops. No inter-chiplet communi-
cation is required for partial sum accumulation, however, the
required AI-HBM bandwidth (or the number of channels) is
higher in this mapping strategy, as DRAM needs to broadcast
[A, B, C, D] to all four neighboring chiplets. According to the
above mentioned mapping and dataflow, the required bandwidth
is formulated as

4 x Ny X dy X [ X (ZL2) ar_chip  if stc. is
BW,., = HBM
L X Ny X dy X fx (E2)ar_chip if src. is Al
chip
(13)

Where, N, is the number of operands required to perform a
MAC operation, which is 2 in general (two multipliers for the
multiplication and no new external operands are needed for
addition). d,, is the data width and (ops/sec)ar chip is the
peak throughput of the AI chiplet, and f is the frequency of
the accelerator. If BW,; > BW,..q, then there is no stalling
in initializing the chiplets’ PE array with data. However, if
BWiet < BW,eq. then there will be [ 2172 cycle stalling for
operand data to start the computation. We penalize the overall
system throughput with these stalling periods while estimating
the system throughput. From equation 13, the required band-
width is smaller if the peak throughput of the Al chiplet is low,
resulting in less penalty.

Impact of Data rates and Link count. The data rate per pin
(in Gbps), D R, and the number of links assigned for data trans-
fer, L, of different package type determine the active bandwidth,
B Wact,

BWyet =DR X L (14)
DR and L depend on the interconnect technology. It plays a
significant role in the system throughput by contributing to the
system utilization.
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TABLE I
PARAMETERS AND VALUES OF DESIGN SPACE

Values
2.5D, 5.5D: (i) memory-on-logic
(ii) logic-on-logic
1 to 128 @ step of 1
Left, right, top, bottom, middle,
3D stacked; 20 -1 location
CoWoS, EMIB
1 to 20 @ step of 1
50 to 5000 @ step of 50
1to 10 @ step of 1
SolC, FOVEROS
20 to 50 @ step of 1
100 to 10,000 @ step of 100
CoWoS, EMIB
1 to 20 @ step of 1
50 to 5000 @ step of 50
1to 10 @ step of 1

Parameter
Architecture type

No. of chiplets
No. & location of HBMs

AI2AI interconnect 2.5D
AI2AI data rate 2.5D (Gbps)
AI2AI link count 2.5D
AI2AI trace length (mm) 2.5D
AI2AI interconnect 3D
AI2AI data rate 3D (Gbps)
AI2AI link count 3D
AI2HBM interconnect 2.5D
AI2HBM data rate 2.5D (Gbps)
AI2HBM link count 2.5D
AI2HBM trace length 2.5D (mm)

2) Inter-Chiplet Communication Energy: Interchiplet com-
munication energy F.,mm, depends on the packaging architec-
ture and the data transfer volume. We model it as

Ecomm = Ebit_pkg X bitio (15)

Eyit_pkg 1s the energy per bit data communication for different
interconnect technologies, and bit;,, is the data traffic required
for the desired operation.

Impact of trace length and no. of RDL layers. For a specific
data rate and link count, Fy;;_pk4 again depends on trace length,
tr_len, (link-to-link distance between two interconnected dies).
To achieve a specified data rate over a longer trace length,
intricate circuit techniques and more RDL layers are required
resulting in the Fy;; p1g o< tr_len relationship [20].

3) Packaging Cost: The packaging cost (C'p) depends on
the packaging architecture and interconnect type. For the same
package type, the packaging cost again depends on (i) package
area (Ap), (il) number of layers (i.e., core and RDL), and (iii)
link count (L) and modeled as [31]:

Cp=poAp + piL + po (16)

Where o, 141, and po are the regression parameters based on
the number of core and RD layers. In this work, we consider
a fixed package area of 900mm?, leaving the packaging cost
dependent on the number of package layers and link density.

The above discussion suggests that, based on the BW,.,
which also depends on the number of chiplets, energy and
cost budget, appropriate allocation of DR and L requires co-
optimization, such that the hardware is not suffering from
under-utilization while not spending too much budget unnec-
essarily.

IV. OPTIMIZING CHIPLET-BASED ARCHITECTURE

In this section, we build a framework to efficiently navigate
the search space, as detailed in Table I, aiming to optimize
throughput, energy, and cost efficiency.

Comprising of 14 parameters and their possible values, our
parameter space has more than 2 x 10'7 design points which
poses challenges for exhaustive search due to its time and

resource-intensive nature. To address this, we explore learning-
based and meta-heuristic search approaches to efficiently reach
global or near-global optima.

Because of the inherent stochastic nature of Reinforcement
Learning (RL) and Simulated Annealing (SA) algorithms, we
observe slight variations in the achieved objective function
values. To enhance the robustness of the optimizer, we train
multiple RL models and SA algorithms with different seed val-
ues. Subsequently, we perform an exhaustive search across the
outcomes of these algorithms to pinpoint the optimum solution
(refer to Alg. 1). An overview of the optimization framework
is presented in Fig. 6. It takes the design space and constraints
as input and outputs the optimized design points.

Algorithm 1: Proposed optimization algorithm

1 t <+ Trialmas;
2 Objpest < —inf;
3 while t < Trialmqz do

4 paramga,objsa < SA();

5 if objsa > objpest then

6 PaTampest, 0bjpest < paramsa, objsa;
7 end

8 parampgr,objrr < RL();

9 if objrr, > 0bjpest then

10 | parampest, 0bjpest < parampr,, 0bjrL;
11 end

12 end

13 return parampest, 0bjpest

A. RL Problem Formulation

RL tries to mimic human learning behavior to learn about a
new environment. In RL, an Agent continuously interacts with
an Environment, takes Actions by observing the present State
of the environment, receives feedback as a form of Reward
from the environment, and updates its underlying Policy to take
new actions to maximize reward. After enough interaction with
the environment, the agent can take a specific set (sequence)
of actions that maximize the reward in the given environment.
Formulating a Markov Decision Process (MDP) consisting of
a tuple of five key elements: < S, A, P,r,0 > is at the core
of formulating an RL problem. Where S = State space, A =
Action space, P = Transition probability matrix of going to S
from S;_; by taking action A; 1, r = Reward function, and
0 = discount factor that takes any value between [0, 1] [32].
Environment provides feedback to the agent by quantifying the
rewards. In our case, we incorporate our analytical expressions
discussed in Section III into a Gym [33] environment, known
as Chiplet-Gym, to assess the performance of the action taken
by the agent.

State or Observation space contains the set of all possible
states of the environment. It should include all the information
for the agent to take the next action, making the process an
MDP. In our case, the observation space contains the following
items: {maximum package area, the maximum area allowed
per chiplet, current area per chiplet, ai2ai communication la-
tency, ai2hbm communication latency, current communication
energy, current packaging cost, current throughput}.

Action space defines the set of all possible actions available
to the agent each time step. Our action space, consisting of a
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Design Space

- Architecture type, - Chiplet allocation & placement,
- HBM allocation & placement, - AI2AI interconnect type
data rate, bump density, trace length, - AIZHBM

interconnect type, data rate, bump density, trace length

v

- Constraints: Package area, max area per chiplet, compute &
memory resources per chiplet, min. distance between chiplets
- Optimization objective: Throughput, energy, cost etc.

Optimizer (Reinforcement Learning + Simulated Annealing)

Post synthesis

Explores design space and tries to select
best parameter

,I Throughput model |

area, power of

i bl | Analytical Simulator

—)I Energy model |

blocks

cost function

Convergence
criteria met?

Evaluates design
choices and quantifies

Output: Optimized
Terminate process |—> parameters (system

prototype)

Fig. 6.  Optimization framework overview.

combination of discrete integers and categorical values, corre-
sponds to the parameters we aim to optimize. Given the state
of the environment and the reward, the agent selects values for
each of the parameters in Table I to maximize the reward.
Reward is provided to the agent as a form of feedback in
response to every action it takes. We formulate the reward
function same as the objective function we want to maximize

r=al — BE —~C (17)

Where T, E,C represent the throughput, communication
energy, and packaging cost respectively. «, 3, are the user-
defined constants that let the users put specific weight on
specific parameters of the objections function, such as through-
put, cost, energy-efficiency during optimization. Based on the
reward, which is formulated from the analytical expressions
of Section III, RL finds the optimum design choices consid-
ering complex trade-offs of chiplet area, bandwidth, chiplet-to-
chiplet communication.

RL algorithm We use Proximal Policy Optimization (PPO)
algorithm [34] implemented by Stable-Baselines3 [35] because
of its simplicity, computational efficiency, and compatibility
with the action and state space of our problem. PPO is a on-
policy policy gradient method that combines the idea of having
multiple workers from Advantage Actor-Critic (A2C) algorithm
and the idea of using trust region to improve the current policy
from Trust Region Policy Optimization (TRPO) algorithm [35].

B. Simulated Annealing

In addition to RL, we also explore meta-heuristic search ap-
proaches, such as simulated annealing, to evaluate their efficacy
in navigating the design space. Simulated annealing adds an
exploitation step on top of random search. It randomly samples
the design points and in addition to accepting the better design
points, based on the acceptance criterion, it also accepts the
design points that worsen the objective function. We modify
the simulated annealing algorithm by slightly changing the

acceptance criterion for our problem. The algorithm is shown in
Algorithm 2. We optimize the same objective function as shown
in Equation 17.

Algorithm 2: Modified simulated annealing algorithm

iteration < Tyax)
temp < temperature;
st_sz < step_size;
Xecurr < randomly choose initial solution;
Ocurr < evaluate initial solution;
Xbest7 Obest <~ Xcur’m Obest;
while iterations < Thar do
/* find candidate solution
8 Xeand & Xeurr +uniform(—1,1) = st_sz;
/* evaluate candidate solution
9 Ocand f(X(:and);
if Ocand > Obest then
1 Obest < Ocand;
KXpest < Xpests
end
t < temp/iterations;
if Ocand > Ocurr OR rand() < t then
16 ‘ Xeurrs Ocurr < Xecand> Ocands
end

B N N

*/
*/

end
19 return Xpesr, Opest

Finally, we deploy RL and SA algorithm multiple times,
followed by conducting a comprehensive search on the outputs
produced by SA and RL agents.

While demonstrated explicitly for Al accelerators and mesh
routing topology, the proposed optimization framework can be
generalized to diverse chiplet-based designs and routing topol-
ogy, requiring users to model their architectures and network
topology in equation 4, 10, 11, and 13, to find the correct
blend of package and interconnect architecture. For example,
I/0O chiplets provide signal transmission and regeneration. Their
performance can be modeled as extra latency in our framework.
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TABLE II
PER HOP WIRE LENGTH AND DELAY FOR 2.5D AND 3D
ARCHITECTURE [21], [36]

Packaging arch. | Per hop wire length (mm) | Delay, ., (ps)
2.5D 1 17.2
3D 0.08 1.6
TABLE III
INTERCONNECTS’ PROPERTIES [20]
Interconnect | Bond/bump | TSV pitch | Energy | Implementation
pitch (um) | pitch(um) | (pJ/bit) cost
CoWoS 30 - 40 - 0.2 ~0.5 Medium
EMIB 55 -45 - 0.17 ~0.7 Low
SoIC 9 9 0.1 ~0.2 High
FOVEROS <10 - < 0.05 Highest

V. EXPERIMENTS AND RESULTS
A. Experimental Method

As shown in Fig. 6, at the core of the optimizer we imple-
ment PPO and simulated annealing algorithm. The optimizer
explores the design space and tries to select the best parameters
sticking to the design constraints and user-given optimization
objective, such as throughput optimization, energy, and/or cost
optimization. To evaluate the optimizer’s objective function,
we implement our cost model, explained in Section III, in an
OpenAl Gym [33] environment named as Chiplet-Gym.

We consider a fixed amount of package area, 900mm?, dedi-
cated for Al and HBM chiplets [30]. To avoid thermal hotspot,
we place the chiplets at Imm apart from each other in a mesh
topology [37]. This leaves (900 — (m + n + 2)mm?) of area
for the chiplets. The optimizer will select the number of chiplets
such that it maximizes the throughput while sticking to the area
constraint. The area per chiplet is calculated as the total package
area available for Al chiplets over the number of chiplets.
Analyzing the yield vs area curve (Fig. 3) we set the maximum
allowable area per chiplet to 400mm? as a constraint. Because,
at 14nm, for the die area beyond 400mm? the yield is even
lower than 75%. Inspired by the recent trend of higher on-chip
memory to reduce the DRAM accesses [18], we allocate 40%
of the chiplet area to the compute resources, 40% to the on-chip
SRAM, and rest 20% to other blocks such as control, 10, NoC,
routing etc. For 3D architecture, we have to sacrifice some of the
area of the chiplet for the TSV and its associated keepout zone.
From SolIC TSV pitch of 9um [20], >12K TSVs can be fit into
Imm?. So we keep at most 2mm? for TSV in 3D architecture.
Which is enough for both signal and power supply [38]. We use
the values shown in Table II and III in our throughput, cost, and
energy model to calculate the cost function of the design points.

B. Implementation Details

The optimization framework' is written in Python v3.9. and
run on an Intel hexa-core i5-9500 @ 3 GHz machine.

1) RL: The Chiplet-Gym environment is constructed by
integrating our analytical simulator into OpenAl Gym v(.26.2

Uhttps://github.com/KFM135/chiplet-optimizer
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Fig. 7. Impact of episode length in convergence (PPO algorithm). Inset

shows the zoomed-in version of each plot.

[33] to establish a unified interface between the RL algorithm
and the analytical simulator. We define the action space as Mul-
tiDiscrete and observation space as Box space. The simulator
receives the RL policy’s action (i.e., a combination of various
parameters forming a design point) as input and produces cor-
responding throughput, energy, and cost values. The environ-
ment’s state is then updated, and the reward is calculated. The
state and reward are fed to the agent, enabling it to adjust its
network to maximize rewards for subsequent actions.
Policy-Value network. PPO utilizes the Multi-Layer Percep-
tron (MLP) as both of its policy and value network. The ar-
chitecture of the actor or policy network is defined as [10, 64,
64, 810], and the architecture of the critic or value network is
set as [10, 64, 64, 1], employing the tanh activation function.
The size of the input for both networks is determined by the
dimension of the observation space, while the output layer size
of the policy network is determined by the action space. The
output layer size of the value network is set to 1.

Impact of episode length on RL convergence. The algo-
rithms are trained with an episode length of 2. While a longer
episode length often results in a higher mean episodic reward, it
does not guarantee a superior cost model value for the optimized
parameters. Although longer episodes are generally associated
with increased exploration, our hypothesis is that, in our specific
case, the agents lean towards exploitation to maximize rewards.
This hypothesis arises from the fact that our reward values span
from a large negative value to a positive one. Once the agent
discovers a positive value, it tends to exploit that particular
action to maximize the mean episodic reward neglecting further
exploration of the design space. Figure 7(a) shows that the agent
achieves a mean episodic reward of 800 at episode length of
10, where as the cost model value of these actions are less
than 100 (Fig. 7(b)). On contrary, at episode length of 2, the
mean episodic reward is around 300 and the cost model value
is around 150. (Note: The cost model value at each timesteps
are calculated as mean_episodic_reward/episode_length.)
Impact of entropy coefficient on RL convergence. Another
hyper-parameter impacting the exploration and exploitation bal-
ance is entropy coefficient. Serving as a regularizer, entropy
coefficient plays a crucial role in shaping the behavior of the
RL agent during training. A larger entropy coefficient implies
that all actions are equally likely, fostering exploration, while a
smaller entropy coefficient indicates that one action’s probabil-
ity within the policy dominates, emphasizing exploitation. Fig.
8(a) shows that when entropy coefficient is set to 0, the agent
stabilizes to a lower reward value more rapidly. However, when
the entropy coefficient is increased to 0.1, the agent achieves a
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(a) Impact of entropy coefficient in RL convergence and (b) impact

of temperature on SA convergence. Inset shows the zoomed-in version of each
plot.
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TABLE IV
PPO HYPER-PARAMETERS & THEIR VALUES
n_steps 2048 n_epoch 10
batch_size 64 learning rate 0.0003
clip range 0.2 | value func. coef. | 0.5
entropy_coeff. | 0.1 | discount factor | 0.99
bias-variance trade-off factor 0.95
T
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Fig. 9. Convergence behavior of (a) SA and (b) RL for multiple runs with

10 different seed values for case (i) (i.e., 64 chiplets). Inset shows the zoomed-
in version of each plot.

higher reward value, albeit with a slightly less stable trajectory.
In this case, we use an entropy coefficient of 0.1 to reach higher
convergence value. Other significant hyperparameters of PPO
algorithm are shown in Table I'V.

2) Simulated Annealing: We employ Algorithm 2, initial-
izing it with a randomly chosen candidate solution from the
design space. Like PPO, SA’s performance is also sensitive to
initial temperature, a measure of exploration vs exploitation.
As shown is Fig. 8(b), SA achieves significant higher cost
model value with higher temperature value. Higher temperature
value ensures more exploration by increasing the probability of
accepting a worse trial point. As a result, the initial temperature
to 200, and a step size of 10 is employed for locating the neigh-
boring points. We do not use the general Metropolis acceptance
criterion, metropolis = exp — {(Ocyrr — Ocand)/t}, due to
the potential for (Ocyrrr — Ocana) to become very large or very
small, leading to the metropolis evaluating to either infinity or
0. Instead, we solely utilize the parameter ¢ to statistically ac-
cept poorer solutions in the early stages, facilitating exploration
of the search space. O,-- = cost model value for current design
point and O_,,,q = cost model value at candidate design point.

C. Results

1) Performance and Runtime Analysis of Optimizer: In
our investigation of the design space, we consider two distinct

scenarios: case (i), wherein the upper limit for the number of
Al chiplets is set to 64, and case (ii), where this upper limit is
increased to 128. We ran each of the algorithms multiple times
for each cases with different seed values to ensure their conver-
gence stability. Fig. 9 and 10(a) and (b) show the convergence
behavior of SA and PPO algorithm for case (i) and case (ii)
for 10 runs, respectively. As expected, both algorithms achieve
a better cost model value for case (ii) because of its higher
throughput, however, due to large packaging cost, case (i) 64
chiplets as the upper bound, is considered more practical. Fig.
11(a) and (b) show the highest cost model value achieved by SA
and RL algorithm over 10 runs for case (i) and (ii), respectively.
We observe that RL achieves higher cost model values each run
and more stable over multiple runs ranging from 178 - 185 for
case (i) and 188 - 194 for case (ii). Where SA achieves 151 -
176 and 170 - 188 for case (i) and case (ii), respectively.

The run time of SA for 500K iterations is less than a minute
and the run time to train the PPO agent for 250K timesteps
is <20 mins. We finally integrated several trained RL agents
and performed SA optimization on-the-go, and performed an
exhaustive search among those SA and RL agents. The final
optimizer with 20 SAs and 20 RL trained RL agents take around
10 mins to report the optimized parameter. As the RL is used
in inference mode, here the SA dominates the runtime.

2) Optimized Architecture Evaluation: Table V shows the
optimized parameter found by the optimizer for both cases for
a specific «, 3,y value (user-defined weights on the objective
function as explained in Eqn. 17). We observe that the RL PPO
algorithm found the best parameter. Please note that multiple
design configurations may coexist, achieving almost identical
cost model value.

The optimal design point for case (i) consists of 30 3D Al
chiplet pairs arranged in a mesh topology 5 x 6, resulting in
60 chiplets in total. 2 chiplets (forming a pair) are connected
with SolC 3D integration technology with a data rate of 42Gbps
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TABLE V
OPTIMIZED PARAMETERS FOR «, 3, = [1,1,0.1] FOUND BY PPO ALGORITHM

Parameter

Case (i): 64 chiplets as upper bound

Case (ii): 128 chiplets as upper bound

Architecture type

5.5D-Logic-on-Logic

5.5D-Logic-on-Logic

No. of chiplets

60 (30 3D chiplet pairs arranged in 5X6 2.5D mesh)

112 (56 3D chiplet pairs arranged in 7X8 2.5D mesh

Package area; per-chiplet area 900 mm?; 26mm?

900 mm?; 14mm?

HBMs placement & capacity

4 16GB HBM chiplets @ top, bottom, right, and middle
of 5X6 chiplet pairs with a total capacity of 64GB

4 16GB HBM chiplets @ left, right, bottom, and middle
of 7X8 chiplet pairs with a total capacity of 64GB

AI2AI 2.5D interconnect type;
data rate; link density; trace length

EMIB; 20Gbps; 3100; 1mm

EMIB; 20Gbps; 1450; 1mm

AI2AI 3D interconnect type;
data rate; link density

SoIC; 42Gbps; 3200

FOVEROS; 34 Gbps; 4400

AI2HBM 2.5D interconnect type;
data rate; link density; trace length

EMIB; 20Gbps; 4900; Imm

EMIB; 20 GBps; 3850; 1mm
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Fig. 12.

Comparison of 60-chiplet, 112-chiplet, 2-chiplet and monolithic system: (a) Inferences/sec, (b) Inferences/joule for MLPerf benchmark, and (c)

cost. (d) Cost breakdown of monolithic, 2-chiplet, 60-chiplet, and 112-chiplet system at 99% and 100% package bonding yield (BY = bonding yield).

per link and link count of 3200 providing up to 131.25 Tbps of
bandwidth. Each chiplet pair is connected with other chiplet pair
with 2.5D EMIB integration with a data rate of 20Gbps and a
link count of 3100 delivering up to 60 Tbps of bandwidth. Four
16GB HBM chiplets, located at top, right, bottom, and middle
of the 5 x 6 mesh topology, are connected to 2 to 4 neighboring
Al chiplets with EMIB 2.5D integration technology with a data
rate of 20Gbps per link and a link count of 4900, resulting in
a bandwidth of 95 Tbps. The trace length for each 2.5D inter-
connect is selected as the minimum trace length possible (mini-
mum chiplet-to-chiplet distance). In case (ii), when we increase
the maximum number of chiplets to 128, we observe that the
optimum design configuration contains 112 chiplets (56 chiplet
pairs) and the communication bandwidth decreases for all cases.
This is because, as the number of chiplets increases, area per
chiplet decreases, resulting in smaller throughput per chiplet,
less bandwidth demand, and high system utilization. We ob-
serve that 3D architecture, even with area penalty for TSV and
TSV-associated keep-out zone [39], achieves 1.52x more logic
density than its 2D/2.5D counterpart at the same package size.

We synthesize the chiplet module, found by the optimizer,
with Synopsys Fusion Compiler using their 14nm PDK [40]
at 1GHz clock frequency and obtain the peak throughput per
chiplet, (ops/sec)ar_chip, and energy consumption per MAC
operation, F,,,. We use these values in our analytical model to
estimate the throughput and energy efficiency of the 60 and 112
chiplet system. For cost estimation, we use the model from [6].

Fig. 12 compares the 60-chiplet, 112-chiplet, 2-chiplet and
monolithic GPU for MLPerf benchmark [41]. The benchmark
features are briefly summarized in Table VI. We observe that 3D

TABLE VI
DNN BENCHMARK FEATURES
Benchmark Domain Dataset Ops. per
model forward pass
Resnet50 Image classification Imagenet 4 GFLOPs
Efficientdet | Light weight object detection | COCO 2017 |410 GFLOPs
mask-RCNN| Heavy weight object detection | COCO 2014 |447 GFLOPs
3D-UNet |Biomedical image segmentation KiTS19 947 GFLOPs
BERT Natural Language Processing |Wikipedia 2020| 32 GFLOPs

112-chiplet, 60-chiplet, and 2-chiplet systems achieve 1.60x,
1.52x, and 1.24x higher throughput of the monolithic one,
respectively (Fig. 12(a)). The higher throughput of the chiplet-
based system can be explained with three facts. First, higher
logic density in 3D logic-on-logic systems in the same area
footprint increases the peak theoretical throughput. This ex-
plains why all chiplet-based systems show higher through-
put than the monolithic one. Second, as the peak theoretical
throughput per chiplet (or chiplet pair) increases, the required
inter-chiplet communication bandwidth increases. If the active
bandwidth cannot sustain the required inter-chiplet (both AI2AI
and AI2HBM) bandwidth, system utilization decreases, result-
ing in decreased achieved throughput. This explains why the
112-chiplet system has the highest throughput compared to
the 60-chiplet and 2-chiplet systems. The per-chiplet through-
put in the 112-chiplet system is smaller, requiring less inter-
chiplet bandwidth and ensuring higher system utilization. Con-
versely, the 2-chiplet system requires a higher inter-chiplet
bandwidth due to its higher per-chiplet throughput, leading to
underutilization and reduced overall throughput. Third, as the
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number of Al chiplet increases, the inter-chiplet communication
latency increases. However, the lower bandwidth penalty of
the 112-chiplet system outweighs the higher latency penalty,
resulting in a superior overall throughput compared to the 60-
chiplet and 2-chiplet systems.

The 2-chiplet, 60-chiplet, and 112-chiplet systems are 4.63 %,
3.76x, and 3.62x energy-efficient (inverse of energy consump-
tion) compared to the monolithic, respectively (Fig. 12(b)).
The monolithic system is less energy-efficient than the 3D
chiplet based system at iso-throughput. Because, to achieve
equal throughput, more than one monolithic chips need to be
connected off-board on the PCB, consuming at least one order
of magnitude more energy [4] than on-package communication.
Among the 3 chiplet-based configurations, 2-chiplet system
achieves slightly higher energy-efficiency, 1.23x and 1.28x
compared to 60-chiplet and 112-chiplet system, respectively, as
it requires less inter-chiplet communication. However, handling
the thermal hotspot and heat removal for such large and high-
throughput 3D stacked chiplets presents a significant challenge.

Fig. 12(c) shows the cost comparison of the monolithic vs
chiplet based systems at different bonding yields. The raw die
costs of 60-chiplet, 112-chiplet, and 2-chiplet configuration
are 0.01x, 0.007x, and 0.94 x, respectively, of the monolithic
system. This significant cost difference arises from the low
yield (48%) of the monolithic chip of 826mm?, compared to
the 97% and 98% die yield of the 60 and 112 chiplet systems,
with a die size of 26mm? and 14mm?, respectively, at 7nm
node. In addition to that, the cost of Known Good Dies (KGD)
is inversely proportional to the number of KGD (Nxgp). As
the die area (A) increases, the number of good dies (Nxagp)
decreases, leading to a substantial increase in cost. The rela-
tionship between the cost and die area can be approximated as
costigap X A3 (taking up to 2 terms of Taylor series expansion
of die yield) [4], [6].

We estimate the packaging cost of chiplets at 99% and 100%
inter-chiplet bonding yield. With better process control and
TSV/pad repair techniques, TSMC reported that the bonding
yield can reach 100% [24], [42]. Although the raw die cost is
smaller, for chiplet based configurations, the integration cost,
including all the defected and wasted chips and packages, of
chiplet based system are 1.62 x (for 60-chiplet), 2.46 x (for 112-
chiplet), and 2.31x (for 2-chiplet) higher than the monolithic
system at 99% bonding yield. The integration cost improves
with the 100% bond yield. Finally, combining the die and
integration cost, we observe that the total cost for the 60-chiplet
system can achieve the 0.89x cost of the monolithic system
with the 100% bonding yield, while the total cost for 112-
chiplet configurations is slightly higher (1.13x) than that of
the monolithic system. The 2-chiplet system is the most cost
inefficient, as it does not benefit from the lower raw die cost and
also suffers the high 3D integration cost. Fig. 12(d) shows the
breakdown of the total cost of the different configurations. For
all configurations, wasted KGD (i.e., wasted chips) consumes a
significant amount of total cost, with a maximum of 40% of the
total cost for the 112-chiplet system at 99% bonding yield and
a minimum of 29% of the total cost for the 60-chiplet at 100%
bonding yield. In monolithic and 2-chip systems, die and chip
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costs (raw and defective) contribute equally to the total cost, and
package-related costs (raw and defective) only consume 6% and
20% of the total cost, respectively. On the other hand, in 60 and
112 chiplet-based configurations, the cost of the defected dies
and chips are less than 1%. The cost of raw chips and packages
(raw and defected) dominates the total cost in these cases. We
implement our chiplet in synopsys 14nm free PDK. However,
we estimate the cost for 7nm to have a fair comparison between
the monolithic one, which was fabricated in 7nm technode [43].

VI. RELATED WORKS

A. Chiplet-Based Architecture Exploration

1) DNN Accelerator: SIMBA [13] is a pioneering work in
chiplet-based Al accelerator, that integrates 36 NVDLA-like
accelerator chiplets on a package. Centaur [51] integrates CPU
and FPGA chiplets on package, specially for recommendation
system workload. SPRINT [15] is a 64-chiplet system with
photonic interconnect for DNN inference. There have been
few works in chiplet based architecture focusing on different
aspect of design space exploration. NN-Baton [14] proposes a
framework for DNN workload mapping and chiplet granularity
in small scale (1 to 8 chiplets), however, they do not consider the
packaging integration aspect and fabrication cost. While Monad
[9] incorporates mapping, resource allocation, communication
and different package substrate to optimize for PPA and fabri-
cation cost, their packaging integration design space is limited
to 2.5D, excluding 3D. [5] proposes ChipletCloud for LLM
inference, however, their chiplets are connected in board-level
instead of package level.

2) General Purpose: Some works focus on the exploration
of Network-on-Package (NoP) and reliable routing protocols
[10] for chiplet-based architecture. [11] explores network topol-
ogy and cost-aware chiplet placement for 2.5D architecture.
[6] puts forward a cost model for evaluating the 2.5D manu-
facturing cost. [4], [52] suggest the importance of chiplet de-
sign space exploration for performance, energy, cost, reliability
enhancement. Table VII shows the comparative summary of
existing Al accelerator simulator frameworks for design space
exploration.

B. RL in Design-Space Exploration

Deep Reinforcement Learning has gained popularity in ex-
ploring the design space exploration and optimization of the
EDA domain, spanning from front-end (i.e., planning and archi-
tectural exploration) [2], [12], [49], and [53] to back-end (i.e.,
implementation, physical design and circuit design) [54], [55],
and [56]. To the best of our knowledge, this work is the first to
perform a comprehensive design space search, encompassing
resource allocation, placement, packaging architectures (both
2.5D and 3D), and their configurations to optimize for Power,
Performance, Area, and Cost (PPAC) using Deep Reinforce-
ment Learning (DRL).

VII. LIMITATIONS AND FUTURE WORKS

In order to keep the design space concise and tractable, we
limit it as mentioned in Table I and make severalassumptions
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TABLE VII

COMPARATIVE SUMMARY OF Al ACCELERATOR SIMULATOR FRAMEWORKS FOR DESIGN SPACE ANALYSIS

Astra-sim [47]

Performance Simulator

collective algorithms: on-load, off-load; (iii) Fabric design: number of links
& latency/BW per link; (iv) Fabric topology: pt-to-pt, 2D/3D Torus

21::;:11?; ;rlir(Zptlmlzer/ Design space/Architectural details g[}?i;?eltglacs/e d
Scale-sim [44] [Performance Simulator (1) Dataﬂ9w: WS, IS,'OS; (i.i) HW resource: No. of PE, on-chip memory size; Monolithic
(iii) Architecture type: Eyeriss, TPU
Timeloop+ Mapping optimizer + Performance, |(i) Dataflow: WS, IS, OS; (i) HW resource: No. of PE, on-chip memory size; Monolithic
accelergy [45] |energy, and area simulator (iii) Different memory hierarchies; (iv) Architecture type: Eyeriss, Simba
Maestro [46] Performance and energy (1) Dataflow: ﬂexil_)le; (i}) HW resources: Number of PEs, NoC BW/Latency, Monolithic
Simulator +Optimizer on-chip memory size; (iii) Architecture type: NVDLA-like
(i) Distributed training: data, model, hybrid parallelism; (ii) Hierarchical Multi-chip

(package/board level)

Performance, energy and area

SIMBA [13]

Optimizer + 36-chiplet Architecture

(i) Mapping and tiling strategies; (ii) 36 NVDLA chiplets connected in 2D mesh

STONNE [48] Simulator Architecture type: flexible & reconfigurable architecture Monolithic
Confucuix [49] Perforfnance and energy (i) HW resource: Number of PE, on-chip buffer size Monolithic
optimizer
Performance & power Multi-chip

(package level)

SPRINT [15]

64-chiplet Architecure

64-chiplet architecture with photonic interconnect for interchiplet communication

Multi-chip
(package level)

TVLSI’20 [50]|Simulator

(i) 64-core ROCKET-64 architecture; (ii) 2.5D interposer-based centralized NoC

. .. (1) No. of accelerator chiplets: 1, 2, 4, 8; (ii) On-chip memory: 36 to 642KB;  [Multi-chip
NN-Baton [14]|Simulator + Optimizer (iii) Different mapping strategies; (iv) Routing topology: Ring (package level)
Moand [9] Optimizer (}) No. of accelerator f:hlplets; (i1) mapping & tiling; (iii) packaging; Multi-chip
(iv) network topology; (v) placement (package level)
Multi-chip

(package level)

Chiplet-gym
(This work)

Performance, power, area and

cost Optimizer (details in Table I)

(1) No. of Al accelerator chiplets, no. & location of HBM chiplets;
(ii) package architecture: 2.5D, 3D; (iii) Interconnect types & configuration

Multi-chip
(package level)

as mentioned in Section V-A. We also assume that the HBM3e
chiplets have their integrated memory controller and NoC router
that can be used as a node in the mesh topology. The anal-
ysis of the cost of additional chips with the NoC+memory
interface, exploring other routing topology such as p2p with
photonic interconnects, H tree, bus, ring etc., exploring more
heterogeneous architectures, multi-tier 3D-stacks, placement
of host CPU chiplets and exploring their different layouts are
future works.

VIII. CONCLUSION

This paper proposes Chiplet-Gym to explore the design space
of chiplet-based Al accelerators to optimize for Power, Perfor-
mance, Area, and Cost (PPAC). To evaluate the design points,
we analytically model the PPAC for chiplet-based Al acceler-
ator. With reinforcement learning and simulated annealing, the
optimizer is robust and efficient in locating the global or near-
global optima of the design space for PPAC. The results show
that the optimizer finds the design point that achieves 1.52x
throughput, 0.27x energy, and 0.89x cost of its monolithic
counterpart in iso-area.
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