L))

Check for
updates

Forum of Mathematics, Sigma (2025), Vol. 13:e31 1-51
doi:10.1017/fms.2024.117 CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Complete positivity order and relative entropy decay

Li Gao" !, Marius Jungez, Nicholas LaRacuente? and Haojian Li*

1School of Mathematics and Statistics Wuhan University, Wuhan, Hubei 430072, P.R. China; E-mail: gao.li@whu.edu.cn
(corresponding author).

2Department of Mathematics University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; E-mail: mjunge @illinois.edu.
3Department of Computer Science Indiana University, Bloomington, IN 47408, USA; E-mail: nick.laracuente @ gmail.com.
4Zentrum Mathematik Technische Universitit Miinchen, Garching, 85748, Germany; E-mail: lihaojianmath @ gmail.com.

Received: 19 February 2024; Revised: 11 July 2024; Accepted: 3 October 2024
2020 Mathematical Subject Classification: Primary — 47D07; Secondary — 46N50, 81P17, 39B62

Abstract

We prove that for a GNS-symmetric quantum Markov semigroup, the complete modified logarithmic Sobolev
constant is bounded by the inverse of its complete positivity mixing time. For classical Markov semigroups, this
gives a short proof that every sub-Laplacian of a Hormander system on a compact manifold satisfies a modified
log-Sobolev inequality uniformly for scalar and matrix-valued functions. For quantum Markov semigroups, we
show that the complete modified logarithmic Sobolev constant is comparable to the spectral gap up to the logarithm
of the dimension. Such estimates are asymptotically tight for a quantum birth-death process. Our results, along
with the consequence of concentration inequalities, are applicable to GNS-symmetric semigroups on general von
Neumann algebras.
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1. Introduction

The time evolution of dynamical systems is a central topic in ergodic theory, probability theory, geometry
and analysis. Similarly, decay properties of dissipative quantum systems also naturally arise in quantum
many-body systems, quantum information theory and high energy physics. The aim of this article is to
provide a new framework of decay estimates that applies for both classical and quantum systems in the
non-ergodic setting. Here, ergodicity means the system admits a unique equilibrium state, also termed
primitive in mathematical physics literature, whereas non-ergodic systems admit multiple equilibrium
states.

Logarithmic Sobolev inequality (LSI) is a powerful functional inequality in deriving the mixing time
of Markovian evolution. LSI was first introduced in the seminal works of Gross [35, 34] as an equivalent
reformulation of Nelson’s Hypercontractivity (HC) [58, 59]. It has been widely studied on manifolds
and graphs for the deep connections to geometry and concentration phenomenon. However, attempts to
translate the notion of hypercontractivity to the matrix-valued setting or the non-ergodic setting failed
miserably [7], due to the lack of uniform convexity of certain noncommutative spaces [42]. This results
in a roadblock for the standard argument connecting hypercontractivity, entropy decay and mixing time,
as well as the lack of tensorization property used in many-body systems.

We propose a new, direct approach to entropy decay that also applies to fully noncommutative, non-
ergodic setting. Let 7; = e~ be a quantum Markov semigroup on a finite von Neumann algebra M
with generator L (i.e., a semigroup of completely positive trace-preserving maps). We aim to establish
the exponential entropy decay,

D(T;(p)IE(p) < €M D(plE(p)) (1.D

or equivalently 2a1D(p)||E(p)) < T(L(p) (Inp — lnE(p))),

where D(p|lo) = 7(pInp—plno) is the quantum relative entropy for two density operators p, o~ and
7 can be any normal faithful trace on M. The equilibrium state E(p) associated to any initial density

1 t
p is given by the ergodic mean E(p) = tlim n / Ts(p)ds. It turns out that the simple properties of
—00 0

relative entropy enable us to prove a direct link between positivity order and entropy decay. Indeed, let
us for simplicity assume that the semigroup is trace symmetric

(T (x)y) = t(xT;(y)) for x,y € M,1>0.
Under this assumption, we discover the following entropy difference lemma:
D(plTx(c)) < Dr,(p) +D(pllo), where Do(p):= t(plnp)—7(®(p) In®@(p)). (1.2)

The new quantity Dg(p) is the loss of von Neumann entropy under a channel map ®. Our second
ingredient is a stability estimate inspired by the positivity order condition by Gao and Rouzé [31] (see
also [46]) that

https://doi.org/10.1017/fms.2024.117 Published online by Cambridge University Press



Forum of Mathematics, Sigma 3

(1-8)E(x) < Ti(x) < (1+8)E(x), Yx20= D(pllE(p)) < C:D(plT;(p)) 1.3)

for some constant C. only depending on £ and the index of the ergodic mean projection E. Now, suppose
the condition (1.3) holds for time #(&) and find

D(pllE(p)) < CeD(plTi(£)(p)) < Ce| D1y () + D(PlIT v ()| < nCeDr,,, (P,

2n n

where we apply (1.2) iteratively to the term D (p||T n-1:(=) (p)). Taking the limit n — co, we derive the
inequality "

DplEP) < et wipymp).

which is the differential version of (1.1) with a1 = CF+(8), called the modified logarithmic Sobolev
inequality (in short, MLSI). The largest possible constant @ in (1.1) is called the MLSI constant.

1.1. MLSI for GNS-symmetric semigroups

Many dynamics in quantum information processing are not trace symmetric. One major application of
open systems is state preparation by simulating time evolution governed by a Lindbladian

L(x) = i[h,x]+2; Za;xaj —aj*.ajx—xaj.aj. (1.4)
A natural one is the Davies semigroup, which converges to the thermal Gibbs state ¢ = %. For

any finite inverse temperature 8 > 0, the Davies semigroup is never trace symmetric but satisfies the
following detailed balance condition

¢(Ti(x)y) = ¢(xT;(y), V x,y

with respect to the Gibbs state ¢, which we call GNS-symmetry. In this context, a breakthrough result
of MLSI constant @; was made by Gao and Rouzé [31] that

A(L)

> — 1.5
RS (1.5)
for every GNS symmetric semigroups in finite dimensions. Here, A(L) is the spectral gap of the
semigroup generator L, and C(E) = inf{u | x < uE(x), forall x > 0} is the Pimsner-Popa index for
the condition expectation E = tlim T;. An important consequence of Gao and Rouzé’s estimate (1.5) is

the positivity of the complete MLSI constant @ (L) = inf, @ (L ® idy,) (in short, CMLSI constant),

A

> -
Qe > Con(E) > 0, (1.6)
because the complete Pimsner-Popa index C,;(E) = sup,, C(E ® idy,,) is finite in finite dimensions.
The CMLSI constant is of particular interest because it satisfies the tensorization property a.(7; ® S;) =
min{a.(T;), a.(S;)}, while the MLSI constant a; does not.

Our ‘positivity order implies entropy decay’ argument above gives an exponential improvement to
(1.6) in terms of the dimension constant C.;, (E).
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Theorem 1.1 (cf. Theorem 3.2 and 4.10). Let T; : M — M be a quantum Markov semigroup GNS-
symmetric to a faithful normal state ¢. Then the optimal CMLSI constant satisfies

1
25 (0.1)

Qe > where tcp(€) ==inf{t >0| (1 -&)E <¢p Ty <¢p (1 +€)E}.

Here, ¥ <., ® means ¥ — @ is a completely positive map. Moreover, in finite dimensions,

A
a1 = Qe >

~ 2In(10C.»(E))" (1.7)

The quantity #.,, called CB return time, is the mixing time in terms of complete positivity order.
Similar terms of complete positivity have been also considered in the quantum setting for the study of
approximate unitary 7-design ([12]). In the fully non-ergodic noncommutative setting, ¢.;, was originally
introduced in [29] via completely bounded (CB) L; — Lo norm, whose connection to complete
positivity order and spectral gap relies heavily on operator space theory (see Section 3.2).

The proof to GNS-symmetric cases uses the ideas of Haagerup reduction [36], a method to derive
results for type III von Neumann algebras by reducing them to cases of tracial von Neumann algebras.
Thanks to this machinery, our estimate in trace-symmetric settings can be salvaged to a GNS-symmetric
semigroup on general o-finite von Neumann algebras, including both classical systems and quantum
systems. A particular interesting example is a matrix version of the classical n-level death-birth process
which admits an invariant state p, (e’[”k)kzo,“,n and a Lindbladian given by nearest neighbor
interactions. In this example, we show that both the spectral gap is are uniformly controlled, and

1
A~001), a1 ~ac~ =, tep ~In(Cep(E)) ~ n.
n

Hence, both estimates in our Theorem 1.1 are asymptotically tight for this GNS-symmetric example.

1.2. MLSI for matrix-valued functions

Besides the quantum setting, our results also provide interesting MLSI and concentration inequalities
for random matrices of arbitrary size. For a classical Markov semigroup P; : Lo (L, ) — Loo(Q, 1) on
some probability space (L, i), the notion of CMLSI is basically a uniform MLSI for positive matrix-
valued random variables g : Q — M, of all dimensions n > 1,

1
potr(glng —E,(g)InE,(g)) < PPl tr((Lg)Ing). (1.8)

Here, u(f) = f fdu is the scalar valued mean, E,(g) = f gdu € M, is the matrix valued mean, and tr
is the standard matrix trace. In this setting, the CB return time ¢, is simply the L.-mixing time

1p(8) ={t > Ol |[T; — Ey - L1(Q) = Lo(Q)|I< &},

which is accessible by kernel estimates derived from harmonic analysis. As a consequence of Theo-
rem 1.1, we obtain CMLSI for all sub-Laplacians of Hormander system.

Theorem 1.2. Let (M, g) be a compact connected Riemannian manifold without boundary, and wd vol
be a probability measure with a smooth density w with respect to the volume form d vol. Suppose
H= {X,-}l(‘=1 C TM is a family of vectors fields satisfying the Hormander’s condition that at every point
xXEM,

TyM = span{[X;,, [ X; X X, T <yt oin <k n > 1

SRR
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Then the horizontal heat semigroup P; = e”®H' generated by the sub-Laplacian

Ay = Z X:X; = - Z X2 + (div,(X;) + Xi(Inw)) X,
i i

has CMLSI constant a.(Ay) > 0. Here, X[ is the adjoint operator with respect to Ly(M, wd vol).

For scalar-valued functions, the positivity of @ (A i) was proved by Lugiewicz and Zegarlinski [53],
using a hypercontractive argument similar from [23]. Nevertheless, both [23] and [53] rely on the Rothaus
Lemma [68, 3], a crucial step which does not apply for matrix-valued functions (see Section 3.6).

In this setting, our Theorem 1.1 gives a short proof of

‘Heat kernel estimate‘+ Spectral gap | = | LSI/MLSI (1.9

for scalar-valued function, and also extends to matrix-valued setting by replacing LSI with CMLSI. A
particular interesting example, also covered in [28], is the Lie group M = SU(2) with the canonical
sub-Laplacian Ay = —X? — Y2, where the Lie algebra su(2) is spanned by the Pauli matrices X, Y and
Z= %[X ,Y]. The CMLSI of heat semigroups (standard Laplacians) was obtained in [49, 14] using the
Ricci curvature lower bound as a crucial tool. Nevertheless, in the sub-elliptic case the Ricci curvature in
the degenerate direction of the vector field H = {Xl-}{‘=1 can be interpreted as —co. In [28], the curvature
condition were substituted by a gradient estimate that was first introduced by Driver and Melcher [24]
for Heisenberg group, later obtained for nilpotent Lie groups [54] and SU(2) [8]. Our Theorem 1.2
obtains CMLSI for all sub-Laplacian of Hérmander systems, without using any curvature condition. It
implies the following uniform CMLSI constant for trace symmetric Lindbladians as ‘representation’ of
Hormander system on Lie groups.

Corollary 1.3. Let G be a compact Lie group and H = {Xy,--- , Xy} be a generating set of its Lie
algebra g. There exists a constant a.(Ag) > 0 such that for all unitary representation u, the induced
quantum Markov semigroup generated by

k
Li(p) == Y [du(X), [du(X,), p1]
i=1
satisfies a.(Ly) > a.(Ay) > 0. Here, d,, is the Lie algebra homomorphism induced by u.

1.3. Concentration inequalities

An important application of MLSI is to derive concentration inequalities. This was first discovered by
Otto and Villani [61], later extended to the discrete case by Erbar and Maas [26], and more recently to
the noncommutative setting in [69, 29, 16]. As an application of our MLSI estimate for GNS-symmetric
semigroups, we derive concentration inequalities for a general faithful invariant state ¢. Recall that the
Lipschitz semi-norm

1 SN
llxllLip = = max{[| T (x, x) 12, [[TL(x", x) (]2}
The Lipschitz semi-norm is defined through the gradient form (or Carré du Champ operator)
1
Fe(ey) = 5(LEY+x°LG) = L(xY). Vx.y € dom(L).
Theorem 1.4. Let M be a o-finite von Neumann algebra and let T, = e™'* be a GNS-¢-symmetric
quantum Markov semigroup with positive MLSI constant a1 (L) > 0. Then there exists a universal

constant c such that for2 < p < oo,

allx = EM)lz, me) < VP IxllLip -
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Moreover, for any t > 0, there exists a projection e such that

a’t?
le(x — E(x))ello <t and ¢(1 —e) <2exp|l—————|.
16ec? ||x||zl.17

As a special case, we obtain the following matrix concentration inequalities which can be compared
to the work of Tropp [75].

Corollary 1.5. Let Sy,---,S,, be an independent sequence of random d X d-matrices such that ||
S; —ESille< M , a.e. Then, we have the matrix Bernstein inequality that for the sum Z = 3} _, Sk,

E||Z -EZ||w< 206_1/2\/(\1(2) +M?2)logd (1.10)

and the matrix Chernoff bound

2

6dec?(v(Z) + M?) )’

P(Z-EZ|>1) < Zdexp(—

where
v(Z) = max{||E((Z - EZ)(Z - E2)) || , [E((Z - EZ)"(Z - EZ)) ||}

In particular, the inequality (1.10) improves the term M log d in Tropp’s result [75] to M+/log d. For
more details, see Example 5.18.

After the acceptance of this paper, we get to know the sub-Gaussian type estimate (1.10) of matrix
concentration was obtained by Huang and Tropp [38, 39] via matrix-valued Poincare inequality and
matrix-valued Bakry-Emery curvature condition. Actually, in the introduction of [39] they raise the
question whether the sub-gaussian estimate can be obtained by matrix-valued Log-Sobolev inequality.
Our result answers this question.

1.4. Outline of the paper

We organize our paper as follows to make it accessible for readers from different backgrounds. In
Section 2, we provide a brief review of quantum information basics in the setting of tracial von
Neumann algebras. We prove our key entropy difference lemma (Lemma 2.1) and an improved data
processing inequality (Theorem 2.5). Building upon these results, we discuss the functional inequalities
of symmetric quantum Markov semigroups in Section 3. We prove our main Theorem 1.1 in the trace
symmetric case and its consequence Theorem 1.2 for classical Markov semigroups. We also illustrate
the failure of the matrix-valued logarithmic Sobolev ineuqality in Proposition 3.15. The discussion up to
this point does not involve much technicality beyond the basic concepts of finite von Neumann algebras.
Readers from quantum information and classical analysis are welcome to consider examples such as the
matrix algebra M}, and matrix-valued functions L., (€, M,,).

In Section 4, we dive into the GNS-symmetric cases. Here, we discuss the Haagerup reduction for
channels and entropic quantities, deriving Theorem 1.1 (Theorem 4.10 and Corollary 4.13) in its full
generality. Section 5 collects applications of our general results Theorem 1.4 and Corollary 1.5. We
conclude the paper in Section 6 with some discussions on remaining open questions.

Notations. We use calligraphic letters M, N for von Neumann algebras and denote M,, as the algebra
of n X n as complex matrices. We use 7 as the trace on von Neumann algebra, and tr as the standard
matrix trace. The identity operator is denoted by 1, and the identity map between spaces is denoted as
id, sometimes specified with subscript like 14 and idy,. We write a* as the adjoint element of a and
@, for a pre-adjoint map of ®.
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2. Entropy contraction of symmetric Markov maps
2.1. States, channels and entropies

We briefly review some basic information-theoretic concepts in the noncommutative setting. Recall that
a von Neumann algebra M is a unital *-subalgebra of B(H) closed under weak*-topology. A linear
functional ¢ : M — C is called a state if it is positive, meaning ¢(x*x) > O for any x € M, and
additionally, ¢(1) = 1. We say ¢ is normal if ¢ is weak”-continuous. Throughout the paper, we will only
consider normal states and denote S(M) as the normal state space of M. We write s(¢) as the support
projection of a state ¢, which is the minimal projection e such that ¢(x) = ¢(exe) ,V x € M. A normal
state ¢ is faithful if s(¢) = 1. For two normal states p and o, the relative entropy is defined as
Do) - {<§p|logA<p/a>|§p>, if 5(p) < 5(0) o
+00, otherwise.
where &, is a vector implementing the state p, and A(p/o) is the relative modular operator. This form
of definition (2.1) was introduced by Araki [2] for general von Neumann algebras.

In this section, we will focus on the case that M is a finite von Neumann algebra. Namely, M
is equipped with a normal faithful tracial state 7. The tracial noncommutative L ,-space L (M, )
is defined as the completion of M with respect to the p-norm || a ||,= 7(lal?)'/P. We identify
Lo (M) = M, and also L; (M) = M., via the trace duality

d¢ € L](M) — ¢ € M., ¢(.X) = T(d¢.x).

We say p € Li(M) is a density operator if p > 0 and 7(p) = 1, which corresponds to a normal
state in the above identification. We will often identify normal states with their density operators if no
ambiguity. Via this identification, relative entropy reduces to the original definition of Umegaki [76],

D(pllo) =(plogp — plogo),
provided this trace is well defined. For example, for p and o in the bounded state space
Sg(M)={p e SIM) | u11 < p < up1 for some ui, uy > 0},

the Umegaki’s formula is always well defined and finite. For this reason, we will mostly work with
bounded states from Sg(M) and derive results for general case S(M) by approximation. When the
second state o~ = 1, this gives the entropy functional

H(p) := D(p||1) =7(plogp).

Note that the standard convention of von Neumann entropy in quantum information literature is often
with an additional negative sign .

We say a linear map 7' : M — M is a quantum Markov map if T is normal, unital and completely
positive. Recall that T is unital if 7(1) = 1. The pre-adjoint map T : M, — M., is called a quantum
channel, which sends normal states to normal states. In the tracial setting, 7, : L{(M) — L;(M)
given by

(T.(p)y) = 7(pT(y)), Yy € M,p € Li(M),

is completely positive and trace-preserving (in short, CPTP). A fundamental inequality about quantum
channel is the data processing inequality (also called monotonicity of relative entropy)

D(pllo) = D(T.(p)||T.(0)), Yp,o € S(M). 2.2
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8 L. Gao et al.

The data processing inequality states that two quantum states cannot become more distinguishable under
a quantum channel. The data processing inequality remains valid for T being positive but not necessarily
completely positive; see [56, 27]. The main technical result of this work is an improved data processing
inequality for quantum channels under symmetric conditions (Theorem 2.5).

2.2. Entropy contraction for unital quantum channels

We start our discussion on entropy contraction of unital quantum channels. The restriction of ® on M
is bounded and normal; thus, ® can be viewed as the L;-norm extension of its restriction ® : M — M.
By duality, its adjoint ®* : M — M is a trace-preserving quantum Markov map and hence also extends
to a unital quantum channel.

For a state p with H(p) < oo, we define the entropy difference of @,

Do(p) := H(p) — H(®(p)).

Non-negativity of the entropy difference D (o) > O follows from data processing inequality (2.2) and
(1) =1,

H(p) = D(pl|l) 2 D(®(p)||®(1)) = H(P(p)).
We start with the key lemma in our argument.

Lemma 2.1 (Entropy difference lemma). Let ® : L1 (M) — L{(M) be a unital quantum channel and
®* be its adjoint. Then for two bounded states p, w € Sg(M),

D(p||@*®@(w)) < Do(p) + D(pllw) < 7((id -D*®@)(p) Inp) + D(pllw).
Proof. By duality, ®* is also completely positive unital. Then,

D(p||®*®(w)) =1(pInp — pln®*D(w))
=7(plnp — ®(p)log@(p)) + 7(P(p) log ®(p) — p In d*D(w))
= Do(p) +7(®(p) log®(p) - pIn O*®(w))

< Dalp) +7((p) log 0(p) - p& (In0(w)))
= Da(p) +7(®(p) log &(p) -~ B(p) In D (w))
= Dolp) + D@()I|()

< Dalp) + D(pllw),

where (2) follows from the monotonicity of relative entropy. The inequality (1) uses the operator
concavity [ 18] of logarithm function ¢ +— In¢ that for any positive operator x > 0,

®*(Inx) < In®*(x).
This proves the first inequality. For the second part, it suffices to notice that
Do(p) =t(plogp — @(p) log®(p)) < 7(plogp — @(p)®(logp)) = 7(plogp — ®*®(p) log p),

where we use the operator concavity ®(Inx) < In ®(x) again. O

We iterate the above lemma as follows:

D(pl|(@*®)"(p)) < Do(p) +D(pl|l(®*®)" ' (p)) < nDa(p) +D(pllp) = nDo(p).
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Then a relevant question is what would be the limit of (©*®)"(p) as n — oo. This leads to the
multiplicative domain of ®. Recall that the multiplicative domain of a unital completely positive map
D is

No = {x e M| ®(»)P(x) = @(yx), P(x)P(y) = P(xy),¥y € M}.

When @ is normal, No C M is a von Neumann subalgebra ([52, Theorem 1]). A linear map
E : M — M is called a conditional expectation if E is a unital completely positive map and idempo-
tent E o E = E. When M is a finite von Neumann algebra, for any subalgebra N' C M, there always
exists a (unique) trace-preserving conditional expectation E onto N such that

T(xy) =1(xE(y)), x e N,y € M. (2.3)

Such E is a unital quantum channel.

Proposition 2.2. Let ® : L (M) — L1(M) be a unital quantum channel, and let E : M — N be the
trace-preserving conditional expectation onto the multiplicative domain N := Ng. Then

i) : N — ®N) is a x-isomorphism with inverse ®* : ®(N) — N. Moreover, ®(N) is the
multiplicative domain for ®*, and

(P'O)oE=Eo(®'®)=FE, Ego®=PoE, 2.4)

where Eg : M — ®(N) is the trace-preserving conditional expectation onto ®(N).
ii) ® is an isometry on Ly(N). If, in addition, || ®(id—E) : Ly(M) — Ly(M) |a< 1, then

E = lim, (®*®)" as a map from Ly(M) to Ly(M) .
Proof. Itis clear that @ is a *-homomorphism on . For any x, y € Ly(N) € Ly(M),

T(Y(@" 0 ®)(x)) = T(P(y)P(x)) = 7(P(xy)) = T(xy).

Thus, ®* o ®@| = idys is the identity map. This verifies (®*®) o E = E. Since E* = E, E o (O*®) = E
follows from taking the adjoint. Thus, ® : A" — ®(N) is a *-isomorphism with inverse ®*. Denoting
Ny as the multiplicative domain for @*, we have ®(N') c Aj. Conversely, we also have ®*(Ng) ¢ N

by switching the role of ® = (®*),. Then ®(N') = N since @ is bijective on N. For ii), we note that
by (2.4),

(id-E)®*®(id—E) = (id-E)(O*"®-E)=®O'®-E, (P"®-E)" = (®*'D)" - E.
Therefore,

[®*® — E : Ly(M) — Ly(M) [|=]|@(d-E) [3< 1,
[(@*®)" = E : Ly(M) — Ly(M) [|=|(@°® = E)" : Ly(M) — Ly(M) ||=]| @(id -E) [)3",

which goes to 0 as n — co. O
In order to estimate entropic quantities, we will use the approximation in terms of complete positivity.

Recall that for a density operator o € S(M) with full support, the Bogoliubov-Kubo-Mori (BKM)
metric for X € M is defined by

vo(X) = /OOOT(X*(0'+S)_1X(0'+s)_l)ds.
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The BKM metric is a Riemannian metric on the space of states with full support that is monotone under
any quantum channel WV,

Yo(o) (P(X)) < yo (X),¥X € M.

It connects to the relative entropy as follows ([31, Lemma 2.2]):

1 s 1
D@Wﬂ=£.A7@@—®m$=l(%ﬂmﬂﬁku @5)

where p; =tp+ (1 —1)o fort € [0, 1]. It is proved in [31, Lemma 2.1 & 2.2] that if p < co,

Yp(X) <74 (X), VX € M
k(c)yo(p—0) < D(pllo) <yolp=0), (2.6)

where k(c) = % The above discussion remains valid if s(p) < s(o) and X € s(0) Ms(o). For

two positive maps ¥ and @, we write ® < ¥ if ¥ — @ is positive.

Lemma 2.3. Let E be a conditional expectation (not necessarily trace-preserving) and ¥ be a quantum
Markov map such that

(1-e)E <Y < (1+¢)E.
Assume that E o ¥ = E. Then for any p € S(M),

1-¢ &

l+e  (1-8)k(2)

D(plI¥.(p)) 2 ( )D(IIE. (p)).

. _ 1
In particular, for e = 3,

D(pl[¥.(p)) = %D(pIIE*(p))-

Proof. By assumption, ¥, = (1 — ¢)E. + €¥y for some unital positive map ¥y < 2E.. We denote
o = E.(p),0 = O.(p) and w = Py(p). Then & = (1 — €)0 + ew. Note that for any bounded state
o € Sp(M), X > +/y,(X) is a Hilbert space norm. Then by the triangle inequality,

Vy(p—) =\y(p— (1 -€)o — ew)
=Vy((p-0) +&(0 - w))
> \y(p - o) - e\y(o - w),

where y can be 4 for any bounded state ¢ € Sg(M). Then

Y(p-7) 2 y(p—0) =2e\y(p — O)INy(o - w) + 2y (0 - w)
>y(p—0) = 2e\y(p—0)\y(o - w)
2y(p-o)—ey(p-0o)-¢ey(c - w)
=(1-¢e)y(p-0)-ey(oc-w).
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Now take p; = tp+ (1 —t)oand g; =tp + (1 —1)7,
1
DGl = [ (1= 073,00 = )t

1 1
2(1—8)/0 (l—t)yﬁ,(p—O')dt—E/O (1 -1)yp, (0 —w)dt.

For the first term, because g, < (1 + €)py,

1 1
[ =mato=rde= ey [ =0y, 0= c)drds = 1+ Diplior.

For the second term, consider that g; > (1 —&)(1 —t)o,

1 1 1
/Or(l—t)yﬁt(o—w)dts (1—5)/0 Yo(w —o)dt
1

=m7(r(w—0')

(1) 1

= T=ak

- Pl € ————D(pllo)
(I—e)k(2) ¥ = U —e)k(2) P1o):

Here, the inequality (1) above uses w < 20 and (2.6). The inequality (2) above follows from the

monotonicity of relative entropy and the fact ¥.(0") = o~. Combining the estimated above, we obtained

ED(pllor) - ek(2) ' D(pl|or) =

D o) >
(Pll) 2 7

l1-¢ &
(1+8 - (1 —s)k(Z))D(pHO—)’

where k(2) = 2In2 — 1. The above inequality is nontrivial for & such that

1-¢ &

Tve d-ok@ "

Taking € = 0.1, the above expression is approximately 0.53 > % O

Remark 2.4. This lemma is related to [47, Corollary 2.15] and is a variant of [31, Theorem 5.3], which
proves for GNS symmetric @,

D(pll(®.)*(p)) = (1= &°k(2)")D(pl|E.(p))- 2.7

Compared with [47, Corollary 2.15], the above Lemma assumes a simpler condition and may achieve a
stronger constant in certain regimes of interest. The above Lemma improves (2.7) from two points: 1)
does not need any symmetric assumption; 2) remove the square in ®2. When ¥, = ®2 is a square, (2.7)
could yield better bound that for € = 0.4,

1 1 1-042 0.4%
_-> = > — .
2747 14042 (1-0.42)k(2)

(1-(0.4)%k12)7" >

Putting the above lemma together, we obtain the following entropy contraction of unital quantum
channels.
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Theorem 2.5. Let ® be a unital quantum channel and let E : M — N be the trace-preserving
conditional expectation onto the multiplicative domain N of ®. Define the CB return time

kep(®) = inf{k € N* | 0.9E <., (®*®)* <., 1.1E} . (2.8)

Then for any state p € S(M),

D(@(p)l[ o E(p)) < (1 )DGIIEP) - 2.9)

1
N 2kcb (q))

Furthermore, for any finite von Neumann algebra Q and state p € S(M®Q),

D(®®id(p)||(® o E) ® id(p)) < (1 )D(p||E ®id(p)). (2.10)

1
" 2kep(®)

Proof. 1t suffices to consider a bounded state p € Sg(M). Note that by the conditional expectation
property (2.3),

D(pl|E(p)) =7(plogp — plog E(p)) = 7(plogp) — T(E(p)log E(p)) = H(p) — H(E(p)),
D(®(p)||® o E(p)) =D(®(p)||Eg o D(p))=H(P(p)) — H(Eo o P(p)) =H(®(p)) —H(P o E(p)),

where we used the property @ o E = E( o @ from Proposition 2.2. Moreover, H(E(p)) = H(® o E(p))
as @ is a trace-preserving *-isomorphism on A/. Thus, we have

Do(p) = H(p) = H(®(p)) = D(p||E(p)) = D(P(p)||P o E(p)).

Iterating the entropy difference Lemma 2.1, we have

D(p[|(®*®)*(p)) < Do(p)+ D (pll(@*®)*"(p))
< kDao(p) + D(pllp)
= k(D(pllE(p)) = D(®(p)||® o E(p)).

Now using Lemma 2.3, for k = k. (®),

D(pllE(p)) < 2D(pll(®*®)*p)) < 2k(D(pl|E(p)) = D(P(p)||® o E(p))).

Rearranging the terms gives the assertion. The general case p € S(M) can be obtained via approximation
pe=(1-€)p+el as[14, Lemma A.2]. The same argument applies to idg ®®, because the CB return
time kcp(idg @P) = kcp (D) is same as of @ by the definition. O

The above theorem is an improved data processing inequality for the relative entropy between a state
p and its conditional expectation E(p). Here, NV is the ‘decoherence free’ subalgebra. Indeed, for any
two states o, 0 € N,

D(ailloz) 2 D(@(0)[|®(02)) 2 D(P*®(01)[|@*P(02)) = D(a1]|02)

does not decay. Outside the ‘decoherence free’ subalgebra N, the relative entropy from a state p to its
projection E(p) on N is strictly contractive under every use of the channel ®.

For @ being a symmetric quantum Markov map, we have ® = ®,. Moreover, Proposition 2.2
reduces to

®oE=Eo®, ®?oE=Eoc®*=E.
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Then
D(®*(p)IIE(p)) = D(D*(p)||®* 0 E(p)) = D(P*(p)||® 0 E 0 D(p))

<@ )D(®(P)|IE 0 @(p)) = (1 - )D(®(p)[|® o E(p))

1 1
" 2kep (@) ke, (D)

<@ 2D (pllE(p))-

1
- chb(q))

We can iterate the entropy contraction above and obtain the discrete time entropy decay,

D(®™(p)IIE(p)) < (1 - )" D(plIE(p))-

2kep ((I))
3. Complete modified log-Sobolev inequality for symmetric Markov semigroups
3.1. Functional inequalities

In this section, we discuss a continuous time relative entropy decay for symmetric quantum Markov
semigroups. We first review some basics of quantum Markov semigroups. A quantum Markov semigroup
(Tt)e0 : M — M is a family of maps satisfying

i) for each ¢ > 0, T; is a quantum Markov map (i.e., normal, completely positive and unital)
ii) To =idaq and T5 o T; = Ts4, for any s,¢ > 0.
iii) forx € M, t — T,(x) is weak*-continuous.

The generator of the semigroup is defined as
o 1
Lx =w"-lim —(x — T; (x))
t—0 1

on the domain of L that the limit exists. In this section, we still consider M as a finite von Neumann
algebra equipped with a normal faithful tracial state 7. Given (T;);»0 is symmetric (or more specifically,
trace-symmetric), that is,

(T (y) = 7(Ti(x)"y) , ¥x,y € M,1 20,

the generator L is a positive, symmetric operator, densely defined on L, (M). Its kernel is the fixed-point
subspace N :=ker(L) = {x € M | T,(x) = x,Vt > 0}, which coincides with the common multiplicative
domain of all 7; — hence a von Neumann subalgebra. Moreover, each T, is an A/-bimodule map

T,(axb) = aT;(x)b, Y a,b € N',x € M.
In particular, we have
T,oE=EoT, =E,

where E : M — N is the trace-preserving conditional expectation onto the fixpoint algebra A/. We say
(Ty) is ergodic if N' = Cl1 is trivial. Note that in the mathematical physics literature, it is common to
use primitive instead of ergodic. In this case, the semigroup admits a unique invariant state — namely,
the trace 7 up to normalization. We will consider symmetric quantum Markov semigroups that are not
necessarily ergodic.

Recall that a semigroup is equivalently determined by its Dirichlet form

E:Ly(M) = [0,00], E(x,x) = T(x*Lx).
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We write dom(L) for the domain of L and dom(&) for the domain of £. The Dirichlet subalgebra is
defined as Ag := dom(&) N M. It was proved [21] that Ag¢ is a dense *-subalgebra of M and a core of
L', We denote by

S(Ag) =S(M) N Ag, Sp(Ag) =Sp(M)n Ag

the set of bounded density operators from .4¢. We now introduce the formal definitions of functional
inequalities for quantum Markov semigroups.

Definition 3.1. Let7; = e : M — M be a symmetric quantum Markov semigroup and E : M — N
be the trace-preserving conditional expectation onto its fixed point space. We say T; satisfies

i) the Poincaré inequality (PI) for 4 > 0 if
Alx—E® |3 <E(x,x), Vx € Ag, (3.1)
ii) the log-Sobolev inequality (LSI) for @ > 0 if
at(x[*In |x?| = E(]x*)) In E(|x*])) < 2&(x,x), Vx € Ag, (3.2)
iii) the modified log-Sobolev inequality (MLSI) for @ > 0 if
2aD(pllE(p)) < E(p.Inp), Yp € Sp(As), (3.3)

iv) the complete modified log-Sobolev inequality (CMLSI) for @ > 0 if idgo ®T; satisfies a-MLSI
inequality for any finite von Neumann algebra Q.

The optimal (largest possible) constants for PI, LSI, MLSI and CMLSI will be denoted respectively as
A(L), a3(L),a1(L) and @, (L) (or 4, az, @ and a. in short if the generator is clear).

The Poincaré inequality (3.1) is equivalent to the spectral gap of L as a positive operator. LSI (3.2)
is equivalent to hypercontractivity [60]

T, : Ly(M) — L,(M)|| <1 if p <1+, (3.4)

MLSI (3.3) is known to be equivalent to the exponential decay of relative entropy ([5, Theorem 3.2] and
[14, Proposition A.3]) that

D(T;(p)|IE(p)) < e>* D(plIE(p)), Vp € S(M). (3.5)

The equivalence of (3.3) and (3.5) is obtained by differentiating the relative entropy for 7; at 0, which
leads to the entropy production on the R.H.S of MLSI

d
I.(p) :=E(p,Inp) = —E|Z:OD(TZ(P)||E(,0)) =7(L(p)Inp).
It is well known that
ay < ap <A

The main motivation to consider CMLSI over MLSI and LSI is the tensorization property

a.(Ly ®id+id®L;) = min{a.(L1), a.(L2)}, 3.6)
which in the quantum cases fails for a; [14, Section 4.4], and is only known to hold for a, for limited
examples in small dimensions. The main result of this section is Theorem 1.1, which asserts a lower
bound
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1
a.(L) >
B 20
by the inverse of CB return time
tep(L) =inf{t >0 | (1 =0.1)E <, T; <cp (1+0.1)E}. 3.7

Here, we set € = 0.1 for the notation 7.5 (&) in Theorem 1.1 because of Lemma 2.3.

Theorem 3.2. Let T, = e~ : M — M be a symmetric quantum Markov semigroup and E : M — N
be the trace-preserving conditional expectation onto the fixed point subalgebra N. Define the CB return

time as
tep(L) = mf{t >0 0.9E <cp Ty <ep 1. 1E}
Then
L cal) < a0
2tcb(L) e o '

Proof. Letty, = tcp(L)/2m for some m € N,. Since T; is symmetric, T, T,,, = 11, T,, = Ta,,. Hence,
T;,, has discrete return time k5 (7}, ) = m. By the Lemma 2.1, for any p € Sp(M),

1
DT, (DIE(p)) <(1 = =)D (pl[E(p))-
Write t.p = t.p(L). Now assume further p € U;»0T; (M) C dom(L). We have by Theorem 2.5,

D(pllE(p)) — D(Ti ()| |E(p))

I(p) =1 ;
D(pl|E(p)) - D(T}l (O)E(p))
= lim = i
m-—oo z(_m
1
> Agw = iD(pIIE(p))-

2m

The entropy decay for general p € S(M) can be obtained by approximation as in the Appendix [14,

Appendix]). This proves @ (L) > m The same argument applies to idg ®L yields the assertion

G,’C(L) > m [m}

Remark 3.3. a) For LSI constant a5, the Q( ) lower bounds were obtained for ergodic semigroups in
both classical [23] and quantum setting [74] “These bounds as well as our bound for a, are asymptotic
tight (See Example 5.6 and Section 5. 3)

b) In [14], a similar estimate a, Q( ) was obtained for semigroups that admits non-negative
entropic Ricci curvature lower bound The entropy Ricci curvature lower bound for quantum Markov
semigroup was introduced by Carlen and Mass [15] using A-displacement convexity of entropy func-
tionals H w.r.t to certain noncommutative Wasserstein distance, inspired from Lott and Villani [51],
and Sturm’s [71] work on metric measure spaces. For heat semigroups on Riemmannian manifold, the
entropy Ricci curvature lower bound follows from a lower bound of the Ricci curvature tensor. Never-
theless, in the noncommutative case, these entropy Ricci curvature lower bounds for quantum Markov
semigroup are in general hard to verify. So far, most examples rely on certain interwining relation
VT, = e~ YT,V between the semigroup T; and a gradient operator V (see [15, 13, 81]).

¢) Our Theorem 1.1 here does not rely on any curvature conditions, which uses only information
theoretic tools such as entropic quantities and inequalities. To the best of our knowledge, this direct proof
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is even novel in the classical setting. It is worth pointing out that the definition of relative entropy as well
as its exponential decay of relative entropy is independent of the choice of the trace, which also shows
the naturalness of our approach and the extension to non-tracial von Neumann algebras in Section 4.

3.2. CB return time

We now consider a common scenario where the CB return time 7., is finite. The original motivation for
the notion, despite defining using CP (completely positive) order (3.7), is the following characterization
using CB (completely bounded) norm. Recall that a linear map ¥ : M — M is called a N'-bimodule
map if

Y(axb) = a¥(x)b, Va,b € N,x € M.

Proposition 3.4. Let N' ¢ M be a subalgebra and E : M — N be the trace-preserving conditional
expectation. Let ¥ : M — M be an N -bimodule *-preserving map. For any & > 0, the following two
conditions are equivalent:

D) (1-6)E <cp¥<cp (1+8)E;
ii) |[W=-E:LLIN cM)—> Lo(M)||cn< &

The condition ii) above is the completely bounded norm from the space L (N c M) to M.
Ll (N c M) is called a conditional L., space, defined as the completion of M with respect to the
norm

Xl ey = sup laxb |1,
a,beN , |lalh=[bl2=1

where the supremum takes over all a, b € L,(N) with ||a|l = ||b]l> = 1. The operator space structure
of LI (N ¢ M) is given by the identification

My (LN € M)) = Ly (M (N) € My (M)

(see [42] and [30, Appendix]). Proposition 3.4 is relatively self-evident in the ergodic case N' = Cl,
LL(N c M) = L;(M), which we illustrate below.

Example 3.5 (Classical case). Let (£, 1) be a probability space. Let P : Lo, () — L (Q) be a linear
map with kernel P(f)(x) = fQ k(x,y)f(y)du(y).Itis clear that P is =-preserving (i.e., P(f) = P(f) if
k is real); P is a positive map if and only if the kernel function £ > 0. Recall the expectation map

E,: Lo(Q) —ClL, E(f) = (/Q Fil,

where 1 is the unit constant function. The kernel of E, is the constant function 1 on the product space
Q x Q. The following equivalence is self-evident:

(1-e)E<P<(l+e)E—— cE<P-E<c¢E
= el<k-1<¢l
= k-1l ee0)< &
— ||P-E:Li(Q) > Lo(Q)]I< &. (3.8)
To see the equivalence in terms of complete positivity and completely bounded norm in Proposition 3.4,

it suffices to notice that every positive (resp. bounded) map to L., (L) is automatically completely
positive (resp. completely bounded with same norm [70]).
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Example 3.6 (Quantum case). The above argument also applies to the noncommutative ergodic case
N =C1 c M. The correspondence between the map P and its kernel k generalizes to the isomorphism
between the map T and its Choi operator C7 € M°P@M

T(x) =1t®id(Cr(x® 1)), x € L{(M) = (M°P),,

where M°P is the opposite algebra of M. The isomorphism 7 +— Cr is not only positivity-preserving
by Choi’s Theorem ( T is CP iff Cr > 0), but also isometric by Effros-Ruan Theorem (see [25, 10]),

1T : Li(M) = Lo (M) lleo=lICr | pgormpg -

Then the equivalence in Proposition 3.4 follows as (3.8).

For the general case of a N/-bimodule map T with a nontrivial N\, the above isomorphism holds
with more involved module Choi operator, which we refer to the discussion in Section 4.3 and also [6,
Lemma 5.1] and [29, Lemma 3.15] for the complete proof of Proposition 3.4.

With Proposition 3.4, the CB-return time can be equivalently defined as

tep(L) :=inf{t >0 | | T, —E : LL,(N ¢ M) = Loo(M) |lep< 0.1}. (3.9)
It is known that ¢, is finite whenever T satisfies the Poincaré inequality and one-point ultra-contractive

estimate.

Proposition 3.7. Let T; : M — M be a symmetric quantum Markov semigroup and E : M — N be
the trace-preserving conditional expectation onto the fixed point space. Suppose

i) T; satisfies the Poincaré inequality: A > 0 such that || T, — E : Ly(M) — Ly(M)||< e™¥ , Vt > 0;
ii) There exists ty > 0 such that || Ty, : LLy(N' ¢ M) = Leo(M) |lep< Co.
Thentqp, < % In(10Cy) + to.

Proof. This is now a standard argument similar to [ 14, Proposition 3.8] and [31, Lemma B.1]. O

Remark 3.8. For the special case of typ = 0 and Ty = id : M — M, we consider
lid : LL OV € M) > Lo (M) llep=inf{ > 0| id <¢p pE} 1= Cop (E).

C¢p(E) was introduced in [30] as the complete bounded version of Popa and Pimsner’s subalgebra
index [67],

C(E):=inf{u>0|p < uEp, Yp € M.}, Cep(E) :=supC(E ®idy,).
n

When M is finite dimensional, both the index C(E) and C.j (E) are finite and admit the explicit formula
[67, Theorem 6.1]. In this case, one can take 7y = 0 in above Proposition 3.7 and yields

ty < 1n(10C/lcb(E)).

3.3. Classical Markov semigroups

In the remainder of this section, we focus on applications toward classical Markov map. We postpone the
discussion of truly noncommutative semigroups to Section 4. Let T, = e™1* 1 Loo(Q, tt) — Loo(Q, 1)
be an ergodic Markov semigroup symmetric to the probability measure u. Note that in the ergodic
case L (Cl1 ¢ Lo(Q)) = L1(L, ), and by Smith’s lemma [70], any bounded map T : L(Q, u) —
L (Q, u) is automatic completely bounded

1T Li(Q, 1) = Loo(Q ) =T 2 L1(2, 1) = Loo (1) lletr -
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Then the CB return time 7., reduces to the standard L.,-mixing time
tp(8) =inf{ 1> 0| ||T, = E : L1 (1) — Leo(Q, ) I< &},

Then by a combination of Theorem 1.1 and Proposition 3.7, we obtain the following theorem.

Theorem 3.9. Let T, = e 'L : Loo(Q, 1) — Loo(Q, 1) be an ergodic Markov semigroup symmetric to
the probability measure . Suppose

i) T, satisfies A-Poincaré inequality for some A > 0: for f € dom(L'/?),

wllf = EOP < [ L (3.10
ii) There exists to > 0 such that
1T 2 L1(2, 1) = Lo (2, 1) || < Co. (3.1D)
Then
A

> P — 3.12
M=% = 3o +InCo +2) (3.12)

This result can be compared to the bound of Diaconis and Saloff-Coste [23, Theoem 3.10], which
states’!

A

—_—. A
Aty +1In(Cy) + 1 (3-13)

) > ay >

In particular, a1 > a > for the alternative L.,-mixing time

_2
tb(eiz)
- . 1
(€)= inf{e > 0| (1T, = By s Li(@u ) = La(@ ) 1< 5

By the comparison e < 0.1 < e™2, we have t;,(e72) < 1,(0.1) < %tb(e‘z). Hence, in terms of lower
bound for @, (3.13) and (3.12) are equivalent up to absolute constants. The difference is that (3.13)
lower bounds the LSI constant @, and our estimate (3.12) bounds the CMLSI constant «...

For finite Markov chains with |Q| < oo, we have finite index

Cep(Ey) = C(Ey) =inf(C > 0| f < Cu(f) Vf 20} =l x|,
where u is a strictly positive probability density function. It was proved in [23] that

1 2+1 oo
<1< +log || || i (3.14)

tp(e7?) 2tp(e7?)

-1
1 SQ2S4+loglog Il u IIw.
1p(e7?) 2tp(e72)

(3.15)

Combined with our Theorem 1.1, we obtain the following:
Corollary 3.10. For a finite Markov chain Ty : 1 (Q, u) — [l (Q, ) symmetric to p,

4&2 A
3(4 +loglog [ u~! llw)” 210g(10 || 7" [|eo)

min{ }$aC$a1$/l.
INote that the LSI constant in [23] is defined as half of our a; here.
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Proof. Note that t5(e72) < t¢5(0.1) < 31,(¢72). Then by Theorem 1.1 and (3.15),

1 1 2ap
e > > > .
2t:5(0.1) ~ 3t,(e72) ~ 3(4+loglog || ! |leo)
The other lower bound @, > m follows from Theorem 3.9 by choosing 7y = 0. O

Example 3.11. When Q is not finite, here is a simple example with a. (L) > 0, but the ultra-contractivity
(3.11) is never satisfied for finite 7. Take L = I — E,,. It generates the so-called depolarizing semigroup

T,=e"id+(1—eE,, T,(f)=e'f+(1—eHu(NH,
where 1 is the unit constant function. Then for any ¢ < oo,
1Tt = Ep: Li(Q i) = Loo(Q ) [I=lle ™ id 0 L1(Q, 1) = Loo(Q ) 1= €7 C(Ey),

which is infinite whenever Lo, (L, u) is infinite dimensional. However, it follows from direct calculation
that ac (I - E,) > §.

3.4. Hormander system

We now discuss the application to Markov semigroups on smooth manifolds generated by sub-
Laplacians. Let (M, g) be a d-dimensional compact connected Riemannian manifold without boundary
and let du = wd vol be a probability measure with smooth density w w.r.t the volume form d vol. A
family of vector fields H = {X,-}l{‘:1 C TM with k < d is called a Hormander system if at every point
Xx € M, the tangent space at x can be spanned by the iterated Lie brackets of X;’s

T'M = span{[X;,, [Xi), -, [Xi, - Xi, ]]] | 1 < iy in-- iy < Kk} (Hormander condition)

By compactness, we can assume there is a global constant /iy such that for every point x € M, we need
at most /g th iterated Lie bracket in above expression (also called strong Hormander condition). Denote
V = (X1,---,Xi) and by X the adjoint of X; on L*(M, dy). Under the Hormander condition, the
sub-Laplacian

Apg =V'V = Z XX = - Z X2 + (div, (X;) + Xi (Inw)) X;

is a symmetric operator on L>(M,du) which generates an ergodic Markov semigroup P, = e 2H!,
often called the horizontal heat semigroup. Here, div,(X) is the divergence of X w.r.t to u. When
H = {Xi}fl: | forms an orthonormal frame to the Riemannian metric, Ay = A recovers the (weighted)
Laplace-Beltrami operator and P, = ¢! is the (weighted) heat semigroup on M.

The gradient form (Carré du Champ operator) of Ay is given by

DUf8) = 5 (FA (@) + Au(f)g = Au(F9) = D (XS Xig).

12

It follows from the product rule of derivatives that I' is diffusive (i.e., I'(fg, h) = fT'(g, h) + g (f, h)).
For diffusion semigroups, it is known [4, Theorem 5.2.1] that the MLSI constant a; and the LSI constant
a; coincide (i.e., @ := @) = a2). The positivity

CZ(AH) >0

for any Hormander’s system H = {Xl-}f:l on a compact connected Riemannian manifold without
boundary was proved in [53, Theorem 3.1]. Our Theorem 1.2 improves this to a.(Ag) > 0.
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Proof of Theorem 1.2. Recall the following Sobolev-type inequality (see, for example, [53, Lemma
2.1]):
1/2

Iflly < CHAuF. O+IFI)', (3.16)

where g = 5;5’_’2 > 2 and /y is globoal Lie bracket length needed in the strong Hérmander condition. By
Varopoulos’ Theorem (see [77, Chapter 2]) on the dimension of semigroups, this implies the following

ultra-contractive estimate:

le™ 28" Li(M, 1) = Leo(M, ) ||< C't7™? for 0 < t < 1 and some C’ > 0, (3.17)

where m = dly. Also, it was proved in [53, Theorem 2.3] that Ay satisfies the Poincaré inequality:
A(Ag) > 0. Combining these with our Theorem 3.9 yields the assertion. O

The Sobolev-type inequality (3.16) is also used in [53] by Lugiewicz and Zegarlinski to prove that
az(Ag) > 0. Their proof relies on the Rothaus lemma, and so does the discrete case by Diaconis and
Saloff-Coste [23]. However, we will see in Section 3.6 that this approach is out of scope for showing the
CMLSI constant . (Agy) > 0.

Example 3.12. The special unitary group SU(2) is
SUR)={cl+xX+yY+zZ: c? +xz+yz+z2 =1,x,y,x,c € R},

where X, Y, Z are the skew-Hermitian Pauli unitary

x=[ % o r=[06)2=]4 )

The Lie algebra is su(2) = spang{X, Y, Z} with Lie bracket rules as
[X,Y]=2Z,[Y,Z] =2X ,[Z,X] =2Y. (3.18)

The canonical sub-Riemannian structure is given by H = {X, Y}, which is a generating set of g because
[X,Y] = 2Z. The associated sub-Laplacian is

Ap =—(X*>+Y?). (3.19)

The semigroup P; = e”*#* on SU(2) has been studied as a prototype of horizontal heat semigroups. In

particular, Baudoin and Bonnefont in [8] proved that

(P f, P f) < Ce ™ P.(T(f, f)), (3.20)

for some constant C > 0. In [31], Gao and Gordina based on (3.20) proved the CMLSI constant that

ac(Ag) > (2/ Ce™dn)™ = 2
0 C
The gradient estimate (3.20), as a weaker variant of Bakry-Emery curvature dimension condition,
has been found useful to derive CMLSI in [31]. Nevertheless, this weaker gradient estimate is only
known for only a limited number of examples in the sub-Riemannian setting [24, 54]. Our result avoids
this condition and obtains CMLSI for general Hormander systems.

Example 3.13. Let n > 3. The special unitary group SU(n) is

SU() ={ueM, |u*u=1, det(u) = 1}.
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The Lie algebra su(n) is the space of all the skew-Hermitian matrices, and a natural basis su(n) is given
by {X;x,Yjk,Zk | 1 < j <k < n} where

Xjk=ejk—er;, Yir=ilej +exj), Zx = i(er — exk),
which is n? — 1 dimensional. Let V = {1,--- ,n} be avertex setand E C V X V as an edge set. The set
Hg ={X; x,Yjx | (j, k) € E}

is a generating set if and only if (V, E) is a connected graph. The associated sub-Laplacian

Ap== ), Xj,+Y],
(j,k)eE

is a generalization of (3.19). Theorem (1.2) implies that @.(Ag) > 0 for all connected (V, E), despite
the gradient estimate (3.20) is not known for this type of generator.

3.5. Transference semigroups

Let us discuss an immediate application of @.(Ag) > 0 to symmetric Quantum Markov semigroups.
Let G be a compact Lie group and H = {Xj,---, X} } be a generating set of its Lie algebra g. Then
{X1,---, Xx} satisfies the Hormander condition, and its sub-Laplacian Ay = — Y Xi2 generates a
Markov semigroup P, = e 2#! symmetric to the Haar measure. Let u : G — M, be a finite dimensional
unitary representation and d,, : ¢ — i(M,,);.4. be the corresponding Lie algebra morphism. P, = e Aut
induces a quantum Markov semigroup 7; = e tH#! : M,, — M,, with generator in the Lindbladian
form [50],

k
Lu(p) = = ) [du(X), [du(X), p1].

i=1

T; is called a transference semigroup of P, by the following commuting diagram:

Loo(G,My) 2% 1 (G, M)

nuT nuT (3.2

Mm 4) Mh’h
where the transference map r, is a *-endomorphism given by
T 2 M = Loo(G, M), mu(p)(8) = u(g) pu(g),
which embeds M,,, into L*(G, M,,). Then the quantum semigroup 7; is the restriction of the matrix-
valued extension of classical semigroup P, ® idy;,, on the image of 7(M,,,). Such a transference relation
holds fro any unitary representation. We obtain the following dimension-free estimates both spectral
gap and CMLSI constant (see [29, Section 4]):
ac(An) < ac(Lu), A(Ap) < A(Ln),

which are independent of the choice of the unitary representation. Then Corollary 1.3 follows immedi-
ately from Theorem 1.2.
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3.6. Failure of matrix valued log-Sobolev inequality

As mentioned above, a standard analysis approach to MLSI through hypercontractivity or LSI relies on
the Rothaus Lemma (see, for example, [68, 3])

H(fP) < HUf = E(HP*ILf = E(N) 5 -

Here, we show that the Rothaus Lemma, LSI and hypercontractivity all fail for matrix-valued functions
for any classical Markov semigroups. This is a strong indication that the approach by Diaconis and
Saloff-Coste’s hypercontractive [23] estimate (also used in [53]) cannot be used in proving lower bounds
for the CMLSI constants.

The following lemma calculates the derivatives of the entropy functional H(p) = 7(p log p). Recall
the BKM metric of a operator X € M at a base state p is

yo(X) = /0 (X (p+5) ' X(p+5)7).

Lemma 3.14. Let t — p; € Sp(M),t € (a, b) be a smooth family of bounded density operator. Define
the function F(t) = H(p;) = 7(p; log p;). Then

F'(1) =7(p;(log pr + 1)), F"(1) = 7(p; (log pr + 1)) +p, (p1),

where p; and p;’ are the first and second order derivative of p;.

Proof. The formula for F’ follows from [79, Lemma 5.8]. For the second derivative, recall the noncom-
mutative chain rule

d « 1 _
Gozp) = [ pitprsy s
! 0

By calculating the second derivative, we obtain the second assertion
F"(1) =t(p; (log p + 1)) +/0 T(p;(pr +5)p;(pr +5))ds = T(py’(logpr + 1)) +vp,(p7). O

Proposition 3.15. Let T; = e 'L Loo(Q, ) = Loo(Q, 1) be an ergodic symmetric Markov semigroup.
Let agr,az, ap be the optimal (largest) constant such that the following inequalities hold for any
f € Lo(Q,Mp) N Ag,

ar D(IFPIEL(fP) < D(IFPIEFD)+ 1 712, (Rothaus)

@ D(fHEL () < 28(f, f) (LSI)

T2 f iy oLy @) SN Lo (@) for p(1) = 1+ €24 (Hypercontractivity)
where E,(f) = (f fdu)lq is the expectation map and f = f — E, (f) is the mean zero part of f. Then
AR = @) =ap = 0.

Proof. We write 7(f) = % f tr( f)du for the normalized trace on L. (L, M;). We start with constant
ag in the Rothaus lemma. Without loss of generality, we may assume there is a measurable set X C Q
such that u(X) = r forsome 0 < r < 1. Let g € (0, 1). Then hg = (1 —r)1x — rlxe is a real mean zero
function. Consider the matrix valued function f, = f + £h where

_|1+n O 10 ho
=10 l—r]]l’h_[hoo]’
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where f is a constant matrix valued function. Then E,, f = f, fe =&h and
fP=(f+eh) = fP+e(fh+hf)+e*h? = f2 + 2eh + &*h>.

Then Eﬂ(|f5|2) = 2+ &%h* and Eﬂ(|f5|2) = E,,(hZ)sZ. Using Lemma 3. 14, the Taylor expansion of
the left-hand side of (LSI) is

D(IFPIEL(FP) = DO +28h+ 22121 £ + £h)
= H(f*+2eh+&*h®) — H(f* + €*h?)
=27(hlog f)e + (2t(h*(log f + 1)) +y5 (2h))&* + O (&)
—TE(h*)(log f +1))e? + 0(&%)
=yr (2h)&* + 0 (&%),

where we used the fact 7(hlog f) = 0 and 7(h*log f — E,,(hz) log f) = 0. For the right-hand side of
the Rothaus lemma, we find

D(IfePIEL(1f?) = DUPNEL (B, |l fe 13=NR 115 &.

While both D (h?||E,,(h?)) and || |7 are finite, we have

1

ys (2h) =4/0°°T(h(f+s)—‘h(f+s)-1)ds
0
i 02 1o)duds

0 2
=4/ /tr(
0o Ja (T=n+s) (T+n7+s)

*© 1
:4('/0. (1—n+s)(l+n+s)ds) ”h”22

2 14+7n
==In— |IAll; -
n -n

1

Note that we can choose n — 1 and ZLU In( ]ltZ) — +oo, which implies ag = 0. The same example
applies to LSI by choosing a mean zero function &g such that £(hg, hg) < oo. For the hypercontractivity,

for p > 2 we recall the norms

1 w0z =1 iatmroraca = ( / (" f)dp) 2.

| f Ly 0.1, () = 7 £y s o, 1092))»

inf
x,y€Ma)y, || x lr=Ily llr=1

where the infimum takes over all positive invertible x, y € M, with unit 27-norm for % = % — —=. Since

1
T; is a bimodule map for C1 ® M, C L (Q, My), we can equivalently consider the norm g

I T: 2 La(Ma, La(Q2)) — La(Ma, Ly, () [|=1T7 = La(Ma, La(€2)) — Ly (Mo, L, (Q)) |,
where the asymmetric amalgamated LS (M, L, (£2)) space is equipped with norm

I f e o, (@)= I fa™ L, 0m.Lo @) -

inf
ae(Ma)y, |l a |-=1
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In particular,
2 _ *
s ., ) =L f”Ll(Mz,L%(Q)),

and we have

N1z 0z ) = AP Nl
qg-1 '

D(fPIE(f?) = qli_{rll+
Now define p(r) =2q(t) =1+ e2nt
2 2
G0 =T e @ty 1y ) =N 1Ny 0,2 ) @) -
By assumption G(¢) < 1, we have

G'(0) = =2&(f, f) +an D(IfIPIE(fI*)) <0,

which implies @, < ap = 0. Note, however, that a5, > 0 because T; is always contractive on
L,(M3, L,(Q)). Hence, @;, = 0, and the proof is complete. O

Remark 3.16. Similar to [7, Corollary 5.2], the above proposition implies that for p # 2, neither
L§(Mp, L, (€2)) or Ly (Mp, L, (£2)) are uniformly convex.

4. Entropy contraction for GNS symmetric quantum channels
4.1. State symmetric quantum channels

Let M be a von Neumann algebra and ¢ a normal faithful state. We have the GNS cyclic representation
{n4,Hgp,n4}, whichis a x-isomorphism 4 : M — H, with a cyclic and separating vector 174 such that

¢(x) = (g, 1y (x)19), x € M.
By identifying M = 4 (M), the modular automorphism group af’ for ¢ € R is defined as
al Mo M, al(x) =A"XAT, x e M,
where A is the modular operator of ¢, defined as follows:
A =SS, S(ns(x)ng) = e (x* M.

We consider the following two symmetric conditions with respect to a state ¢.

Definition 4.1. We say a quantum Markov map @ : M — M is GNS-symmetric with respect to ¢ (in
short, GNS-¢-symmetric) if

(P (x)y) = p(x®@(y)), Y x,y € M ;

ii) We say @ is KMS-symmetric with respect to ¢ (in short, KMS-¢-symmetric) if
(A4, ATQ(y)n9) = (ATO(X)ng, AT yng), ¥ x,y € M.

Correspondingly, we call the pre-adjoint @, : M, — M, a GNS- or KMS-¢-symmetric quantum
channel.
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Both definitions are generalizations of the detailed balance condition for classical Markov chains and
imply that ¢ = ¢po® = D, (¢) is an invariant state of . Itis proven in [32, 80] that the GNS-¢-symmetric
quantum Markov map is equivalent to KMS-¢-symmetric plus that @ commutes with the modular group

at‘po(l) = @oaf’,teR.

The commutation to modular group is also called Accardi-Cecchini condition in [32] for a study of
quantum Bayes rule [62, 65, 63, 64].

For simplicity, we will consider a semifinite von Neumann algebra M equipped with a normal
faithful semi-finite trace 7, but our discussion applies to general von Neumann algebras with proper
interpretation of notations. In the tracial setting, we can write ¢(x) = 7(dgx) using the density operator
d g of ¢. Then the modular automorphism group is given by

a;’s(x) = d;txdz, xeM,teR.

Let @, : Li(M) — L;(M) be the pre-adjoint quantum channel via trace duality. The KMS-¢-
symmetry is equivalent to

@ (d) xd)*) = d}*o(0)d)?, Vx e M. @.1)

For 1 < p < oo, the weighted L ,-space L, (M, ¢) is the completion of M under the norm
1/2p 4172
1 llp. o=l dly > xd})*" |l

where ||y ||,= 7(|y|?) I/P is the tracial p-norm. For p = 2, L, (M, ¢) is a Hilbert space with KMS-inner
product || x ||§,¢= (A %xn(p, A %xr]d,). By equation (4.1), @ is also a contraction on L (M, ¢), and hence
a contraction on L, (M, ¢) forall 1 < p < oo by complex interpolation.

The lemma below is an analog of Proposition 2.2.

Proposition 4.2. Let ® : M — M be a GNS-¢-symmetric quantum Markov map for a normal faithful
state ¢. Denote N as the multiplicative domain of ®. Then

i) N is invariant under a,‘/’ . Hence, there exists a ¢-preserving normal conditional expectation
E: M —> N.
ii) ®|nr is an involutive x-automorphism satisfying

®?0E=Eoc®*=E, Ec®=®oE. 4.2)

Moreover, ®* is a N -bimodule map satisfying ®*(axb) = a®*(x)b for any a,b € N and x € M.
iii) @ is an isometry on Lo(N, ¢). If, in addition,

[®3Gd-E) : Ly(M, ¢) = Lr(M, @) [l2< 1,

then E = lim,, ®** as a map from Ly(M, ¢) to L(M, ¢) .

Proof. 1t suffices to explain i). The rest follows similar as Proposition 2.2 (see also [31, Lemma 2.5] for
the finite dimensional case). Indeed, since ® commutes with a/,d’ Jforx e N,

<I>(at¢(x)y) = (D(a/tqj(xaf o af’t(y))) = ozf o <D(xat¢ o aft(y))
= of (P(WP(af 0 a?, () = af 0 D)} 0 @ 0 a?, (y) = (e (x)D().
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Multiplicativity on the other side is similar, implying af’ (x) € N. By Takesaki’s theorem [72], there
exists ¢-preserving conditional expectation satisfying the defining property

p(xy) =p(xE(y) Yx e N,y e M,

from which the GNS-¢-symmetry follows. O

4.2. Haagerup’s reduction

A von Neumann algebra M is called type III if it does not admit a nontrivial semifinite trace. We
briefly review the basics of Haagerup’s construction and refer to [36] for more details. The key idea is
to consider the additive subgroup G = |J,cy27"Z C R of the automorphism group. Let M c B(H)
be a von Neumann algebra and ¢ be a normal faithful state. One can define the crossed product by the
actiona? : G ~ M

M = M><0¢G.

M canbe considered as the von Neumann subalgebra M = {n(M),A(G)}’ c MBB(£:(G)) generated
by the embeddings

T Mo Mxgs G, (@) = ) ag(a) ®1g)el
8
2:G = Mge G, A() (1) ® [0)) = [x) ® [gh) , ¥ |x) € H,|h) € 6-(G). .3)

Basically,  is the transference homomorphism M — £, (G, M), and A is the left regular representation
on £>(G). The set of finite sums {}, agA(g) | ag € M} c M forms a dense w*-subalgebra of M. In

the following, we identify M with 7(M) c M (resp. a with (a)) and view M C M as a subalgebra.
The state ¢ admits a natural extension as a normal faithful state on M

$(>" agd(g)) = ¢(ao).
4

Moreover,
En M- M ) EM(Zag/l(g)) =4ao
g
is the canonical normal conditional expectation such that ¢ o Exq = 6.
The main object in Haagerup’s construction is an increasing family of subalgebras
M, = My, ={xeM]|a/(x)=x, VieR]},

given by the centralizer algebra M% for a suitable family of states ¥, so that | J,, M, is w*-dense in
M. The state ,, is defined via a Radon-Nikodym density w.r.t to ¢

Yn(x) = $le ®x), ap = —i2"Log(A(27")).

Here, Log is the principal branch of the logarithmic function with 0 < Log(z) < 2x. Each subalgebra
M,, contains A(G), and there exists normal conditional expectation E rq, : M — M,,. Indeed, by the
definition of i,,, the modular group ;" is 27" periodic. The explicit form (see [36, Lemma 2.3]) is
given by
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2*”
E/Vln:2n‘/0 a,l//"dt.

The normalized state 7;,, = % is anormalized trace on M,,. The key properties of M,, are summarized
in [36, Theorem 2.1 & Lemma 2.7], which we state below.

Theorem 4.3. With above notations, M, is an increasing family of von Neumann subalgebras satisfying
the following properties

(1) Each (M,,, 1) is a finite von Neumann algebra.
(2) Uns1 My, is weak*-dense in M.
(3) There exists a ¢-preserving normal faithful conditional expectation E M, - M — M, such that

$oEm, =6, af 0Epm, =Enm, o).

Moreover, E p, (x) — x in o -strong topology for any x € M.

We now look at the Haagerup reduction on the states. For a state p € S(M), p = p o Ep is the
canonical extension on M. We denote p,, := p|m, € M, « as the restriction state of p on the subalgebra
M, ¢ M. Note that the predual M,, . can be viewed as a subspace of M, via the embedding

lns ! Mn,* - M, sin(w) =wo Epy,.
Via this identification, p,, = plar, © Eaq, = p 0 Epmp, = Enmq,«(P) € M,. Moreover, by the weak*-

density of the family M,,, p, — p converges in the weak topology. An immediate consequence is the
following approximation of relative entropy.

Lemma 4.4. Let p and o be two normal states of M. Then
D(plle) = D(pll6) = lim D(pnllow).

Proof. Leti : M c M bethe inclusion map. Because p = poE o4 is an extension of p, 1, (9) = Pl = p,
and similarly for . Both ¢t : M — M and Exq : M — M are quantum Markov maps. Then by the
data processing inequality,

D(pllo) = D(t:(P)||ex(6)) < D(PII6) = D(Ep«(P)|E,«(0)) < D(pllor).
Thus, D(p||o) = D(p]|6). As for the limit, we have
D(pllg) < liminf D(ppllom)

= lim”infD(EMH,*(pn)l|E/\/l,,,*(0_n,*))
< D(pll6),

where the equality follows from the lower semi-continuity of relative entropy (see, for example, [37,
Theorem 2.7]). The second inequality is another use the data processing inequality. O

We shall also apply the Haagerup’s reduction on GNS-symmetric maps. Let ® : M — M be a
GNS-¢-symmetric quantum Markov map. Its canonical extension map

b MM, D aga(g) = Y Dag)A(g)
8 8
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is also a GNS-@-symmetric quantum Markov map. Indeed, ® = ® ® idg(e,(G)) | ¢ is the restriction of
® ® idp (4, (G)) on M € M®B(6,(G). Itis clear that @ has the multiplicative domain

N =N, G, (4.4)

where N is the multiplicative domain of ®. In particular, this crossed product is well defined because
at¢ (N) = N. Moreover, the ¢-preserving conditional expectation £ : M — A is nothing but the
canonical extension of E : M — N.

Recall that we write E ¢ and E,, as the normal conditional expectations from M onto M and M,
respectively. The next lemma shows that the extension @ is well compatible with the approximation
family M,,.

Lemmad4.5. Let ® : M — M be a GNS-¢-symmetric quantum Markov map. With the notations above,

i) ® commutes with E s, E and E m,,- In particular, d(M,) c M,,.
ii) The restriction ®, = ®| M, is a normal unital completely positive map symmetric with respect to
the tracial state 7,,.
iii) Let N, € M, be the multiplicative domain for ®,,. Then the restriction map E,, := E|p1, : M, —
N, is the T,-preserving conditional expectation.

Proof. The relation ® o Eq = E g o ® is clear from the definition of ®, and ® o E = £ o ® follows
from Lemma 4.2. Recall that ¢, (x) = ¢(e~%x) with density operator e"* € A(G)” and A(G) is in the
centralizer of (ﬁ [36, Lemma 2.3]. Then

a;p" = u(t)*a;ﬁu(t) = adu(,)a’f7

for the unitary u(z) = e~*» . Note that & commutes with a/t¢ by GNS-¢-symmetry, and also commutes
with ad, ;) because u(t) € A(G)” is in ®’s multiplicative domain. Thus, ® commutes with ;" and

.. . —n 2" . .
hence the conditional expectation E a4, = 27" fo a;” ". This proves i).
For ii), we note that for x, y € M,,

Un(x@u(y)) = dle”xd(y)) = J(D(e™x)y) = f(e™ " D(x)y) = Y (Pr (x)y),

where we use the fact that ® is GNS-@-symmetric and e=* € A(G)” is in the fixed point subspace of
®. Finally, iii) follows from applying i) and ii) to E. O

To summarize the lemma above, we have the following commuting diagrams:

Epm . Em, Enm . Em,
M M M, M M M,
(o) [6) b, E[ [ ) lEn
M En M Ee, M, N Ex N Ex. Ny

Figure 1. Haagerup reduction of quantum Markov map and conditional expectation.

Basically, ®@,, is a family of trace symmetric channels approximating ®, which is in turn a natural
extension of ®. The same picture holds for the conditional expectations E,, E and E.
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4.3. Entropy contraction

We shall now discuss the entropy contraction of GNS-¢-symmetric channels. The first step is to extend
the entropy difference Lemma 2.1. Define the state space that is bounded with respect to ¢,

Sg(M,p) ={peSM)|c'¢<p<ce, forsomec > 0}.

For all p € Sp(M, ¢), D(pl||$) < oo is finite. Such Sp(M, ¢) is a dense subset of S(M) because for
anypand0<e<1,p.=(1-¢)p+e¢ € Sp(M). For p € Sp(M), we define the entropy difference
for a GNS-¢-symmetric quantum channel ®, as

Do, (p) = D(pll¢) - D(@.(p)l|¢).

By data processing inequality and ®@.(¢) = ¢, Do, (p) > 0. In the trace symmetric case, Do, (p) =
D(p||1) = D(®.(p)||1) = H(p) — H(®.(p)) as in Section 2. Let E be the conditional expectation onto
the multiplicative domain of ®. By the chain rule [66, Theorem 2] that for any E invariant state yo E = i,

D(pll¥) = D(pllE«(p)) + D(E.(p)|l¥),

we have the alternative expressions D, (p) = D(p||E«(0)) — D(®.(p)||P.E.(p)), where we used the
property ®.E, = E.®. in Proposition 4.2.

Lemma 4.6. Let ®.. be a GNS-¢-symmetric quantum channel. For any state p, w € Sp (M, ¢),
D(p||®3(w)) < Do, (p)+D(pllw).

Proof. Recall that we use p,, = plam, = Em,,,«(0) and w, = O|am,, = Epm,,,« (D) as the restriction states
on finite von Neumann algebra M,, c M obtained from the Haagerup reduction. By Lemma 4.5, we
know that ®,, = ®|,,, is a quantum Markov map symmetric with respect to the tracial state 7,,. Thus,
by Lemma 2.1 in the tracial case,

D(pal|®}(wn)) < Do, (pn) + D(pallwn),

where we identify ®, = ®,,, by trace symmetry. Here, since ®, = ®|u4, is GNS-symmetric to

On = ¢|Mn,
Dd)n (pn) = D(pn“Tn) - D(ch(pn)“Tn) = D(pn||¢n) - D((Dn(pn)||¢n)

By the definitions of ®@,, and p,,, and the hat “"” notation for states on M,

®u(pn) = Pla, © @ = p o blag, = @.(p)lu, = Pl »
@} (pn) = Pu(@.(p)n) = D3 (P)n-
Then by Lemma 4.4, we can approximate every entropic term
lian(pn”((Dn)z(wn)) =1ing(pnIIq>f(w)n) = D(pl|®}(w)) ,
lim Do, (pn) =lim D (pnll¢n) = D(®p(pn)lI$n)
=lim D (pullgn) = D(@(p)nll¢n) = Do, (p) ,
lim D (pp|lwn) =D (pllw). o

The next lemma shows the CB-return time is also compatible with Haargerup reduction.
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Lemma 4.7. Let ¥ : M — M be a GNS-¢-symmetric quantum Markov map and E be the conditional
expectation on its multiplicative domain. Suppose

(1-8)E <.p ¥ <cp (1+6)E. 4.5)
Then for alln € N,
(1=-86)E, <cp ¥ <cp (1 +6)E,.

Moreover, if 0.9E <., ¥ <., 1.1E and ¥ o E = E, then for any p € Sg(M, ¢),

SD(IIE.(0) < D(pII¥.(p).

Proof. The CP order inequality follows from the fact that both maps E,, and ¥,, are the restriction of
E ® id and ¥ ® id on the subalgebra M,, ¢ M C M®B(£>(G)). Then the entropy inequality can be
obtained by the tracial case Lemma 2.3 and approximation as in Lemma 4.6. O

We then extend the entropy contraction to the GNS-symmetric case.
Theorem 4.8. Let ® : M — M be a GNS-¢-symmetric quantum Markov map and E be the ¢-
preserving conditional expectation onto its multiplicative domain N. Define

kep(®) = inf{k € N* | 0.9E <., ®** <., 1.1E }.

Then, for any o-finite von Neumann algebra Q, state p € S(M®Q),

D(®. ®idg(p)[|(P. 0 E.) ®@ido(p)) < D(pllE. ®ido(p)).

1
)
( 2kep (D)
Proof. For p € Sg(M, ¢), the proof is same as the tracial case Theorem 2.5 by using Lemma 4.6 and
Lemma 4.7 above. The general case p € S(M) can be approximated by p, = (1 — &)p + £¢. m]

Recall that in finite dimensions, the MLSI is defined as the supremum of « such that

2aD(pllE«(p)) < IL(p) = T(L(p)(Inp —In¢)).

The right-hand side I;,(p) is the entropy production, and the equivalence to entropy decay relies on the
de Bruijn identity

1L(p) =~ DATAPIIE. (Dl “6)

In infinite dimensions, the de Bruijn identity (4.6) is less justified even in B(H) with dim(H) = +oo (see
discussions in [40, 44]). To avoid this issue, we define the MLSI on Type III von Neumann algebra as
follows.

Definition 4.9. For a GNS-¢-symmetric quantum Markov semigroup 7; = e~*% : M — M, we define
the modified log-Sobolev (MLSI) constant a; (L) as the largest constant a such that

D(T,«(p)IIE«(p)) < e D(plIE.(p)) , Vp € S(M), 4.7

where E is the ¢-preserving conditional expectation onto the fixed point subalgebra A/. The complete
MLSI constant is then defined as e (L) := supg a(L ® idg), where the supremum is over all o-finite
von Neumann algebra Q.

This definition of MLSI also does not depend on any choice of reference state ¢ (see Lemma 4.16).
With this definition, we obtain the first half of Theorem 1.1, which is restated below.
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Theorem 4.10. Let T; = e~'L : M — M be a GNS-¢-symmetric quantum Markov semigroup. Denote
tep = inf{t >0 0.9E <., T; <¢p 1.1E}. Then

) = Qe = .
¢ 2th

Namely, for any o-finite von Neumann algebra Q and state p € S(M®Q), we have the exponential
decay of relative entropy

D(T,.. ®idg(p)||E. ® ido(p)) < ¢ s D(pl|E. ®idg(p)) . 1 > 0.
Proof. This can be approximated using the tracial case Theorem 2.5 as Lemma 4.6 above. O

Remark 4.11. In the above Haagerup’s reduction, both ® and ®,, are always non-ergodic even given ®
is ergodic. From this point of view, our consideration for non-ergodic cases is essential even for ergodic
@. It also indicates that Haagerup’s reduction does not work for LSI/hypercontractivity.

As we have seen in Proposition 3.7 for the tracial case, a combination of heat kernel estimates
and spectral gap allows us to bound CB return time. The same analysis remains valid in the GNS-¢-
symmetric case. For 1 < p < oo, we define the ¢-weighted conditional LY (N C M, ¢) space as the
completion of M under the norm

Xl wvem.p= suplllaxbllp.g | a.b e N, llaa"|lp¢=b"bllp.s=1}.
For a GNS-symmetric N/-bimodule map ¥ : M — M, the equivalence in Proposition 3.4 also holds,
(1-8)E<p¥<p (1+8)E & |¥Y-E: LLIN c M,¢) = Lo(M)|lep< &. 4.8)

Based on that, we have an analog of Proposition 3.7.

Proposition 4.12. Let T; : M — M be a GNS-¢-symmetric quantum Markov semigroup and E :
M — N be the ¢-preserving conditional expectation onto the fixed point space. Suppose

i) the A-Poincaré inequality that ||T; — E : Lo(M, ¢) — Ly(M, ¢)||< e, Vt > 0;

ii) there exists to such that || Ty, : LL (N € M, ¢) — Leo(M)||cpr< Co.
Thentqp, < %ln(lOCo) + to. In particular, if Cop(E) < 00, tep < %ln(IOCCb(E)).

Proof. The argument is similar to the tracial cases by using the property of L, (N c M, ¢) for general
von Neumann algebra established in [42]. See also [6, Section 5] for the argument in finite dimensional
GNS-symmetric cases. O

4.4. Applications to finite quantum Markov chains

Let T; = e7 %' : My — M, be a quantum Markov semigroup on matrix algebra M. Its generator L
admits the following Lindbladian form ([33, 50]):

L(x) =i[h,x] + ) v (Vi [x, Vi1 + [V, 2]V)),
J

where h,V; € My and h = h* is Hermitian. When T; is GNS-symmetric, one has the following simplified
form [1, 45] that

L(x) = Z E_Wj/z(V; [x, Vj] + [V;,X]VJ'),
J
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where {V;} = {V;}" is an orthogonal set with respect to trace inner product and the eigenvector of
modular group a;” (V;) = e”™i'V; . In finite dimensions, the completely Pimsner-Popa index C.p, (E) is
always finite. Combining Theorem 4.10 and Proposition 4.12, we obtain the second half of Theorem 1.1
restated as below.

Corollary 4.13. For finite dimensional GNS-symmetric quantum Markov semigroups,

al = ae > m. 4.9)
Corollary 4.13 improves the bound @, > m in the previous work of Gao and Rouzé [31].
Remark 4.14. In the ergodic case NV = Cl1, the conditional expectation E 4(x) = ¢(x)1 has index
C(Eg) =14 o » Cen(Eg) <l¢7"IIZ, -
The above bound (4.9) gives
A
M= = 0 A [ s
This can be compared to the bound
2(1 - 501
a > (4.10)

> 0 W e
= (¢ e -1)

proved by Diaconis and Saloff-Coste [23] for symmetric classical Markov semigroups. In the quantum
case, it is only obtained for unital semigroups [43] and d = 2 [9]. For both classical and quantum
depolarizing semigroups L(x) = x — ¢(x)1, this bound is known to be optimal for @;, which lower
bounds «;. Our results gives a general O( m) lower bound for @ for non-ergodic cases and also the
complete constant a,.

Remark 4.15. The Corollary 3.10 shows that the CMLSI constant a. for a classical Markov semigroup
is lower bounded by LSI constant a5 up to a O(loglog || #~! ||l) term. This argument does not work
for Quantum Markov semigroup 7; : My; — My, on matrix algebras, although (3.15) remains valid for
ergodic quantum Markov semigroups. The difference is that for matrix algebra, the bounded return time

(€)= gint(r> 0| 1T, E - Ly(My, ) = Lo (M) 1< 1/6%)
and the CB return time of completely bounded norm
tep =inf{t > 0| |T; = Ey : Li(Ma, ¢) = Loo(Ma) [lep< 1/10 }
are quite different. In the classical setting, we used the fact
1T : L1(2) = Loo(Q) I=IT 2 L1(Q) = Leo () |les -

So the 15 (e72) and . (0.1) are comparable by absolute constants. In the noncommutative setting, we
only have

1T — Ep s Li(Ma, ¢) = LoMa) llep< d | Ty — Ey 0 Li(Ma) = Lo (Ma) || -
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In the trace symmetric case, || 4! |lo= d and #.5,(0.1) < %tb(e‘z) +1Ind,

S 1 > 1 0( (0%)
. > > ~ o~
7 2te(0.1) T 31p(e72) +21nd Ind

)

which is worse than the lower bound in the previous remark as a; < A.

4.5. Independence of invariant state
The next lemma shows that the GNS-symmetry is also independent of the choice of invariant state ¢.

Lemma 4.16. Let T : M — M be a GNS-¢-symmetric quantum Markov map for a normal faithful state
¢. Denote E : M — N as the ¢-preserving conditional expectation onto the multiplicative domain.
Suppose  is an another normal faithful state invariant under E (i.e., y o E = ). Then T : M — M
is also GNS-y-symmetric.

Proof. Without loss of generality, we assume ¢ < C¢ for some C > 0. We first view them as the states
on the subalgebra N by restriction. By [73, Theorem 3.17], there exists & € N such that

W(x) = ¢(h*xh) , Vx e N.
This identity actually also holds for y € M. Indeed, because of p o E = ¢p and y o E =,

U(y) =w(E®Y) = ¢(h"E(y)h) = ¢(E(h"yh)) = ¢(h"yh) , Vy € M.

Moreover, one can replace i by T'(h), because
Y(x) =¢(T(x)) = ¢(K"T(x)h) = ¢ o T(T(h*)xT (h)) = ¢(T(h*)xT (h)),

where we use the fact that T?(h) = h. Thus, the GNS-symmetry with respect to ¢ follows that for
x,yeM,

Y(xT(y)) = ¢(h*xT(y)h) = $(W*xT (yT (h))) = $(T(h*x)yT (h)) = $(T(h*)T (x)yT (h))
=y (T(x)y),
where we used the multiplicative property of T'(axb) = T(a)T (x)T (b) for a, b € N. The general case
can be obtained via ¥, = (1 — &)y + £¢. O

We remark that if one has convergence lim,, ®?" = E in L,-norm, the above E-invariant condition
¢ o E = ¢ can be replaced by ¢ = ®? o ¢.

Note that the left-hand side of (4.8) only relies on complete positivity. Indeed, the L., (N c M, ¢)
norm at the right hand-side is also independent of the choice of the invariant state ¢ = ¢ o E.

Lemma 4.17. Let ¢ be a normal faithful state and E : M — N be a ¢-preserving conditional
expectation. Suppose Y = o E is another normal faithful state preserved by E. Then,

XLz vert, o) =X e ver,p) » ¥ € M.
The identity extends to all x € LE(N c M, ¢).

L L
Proof. Note that if both ¢ and ¢ are E invariant, then d wz” d;" is affiliated to . Indeed, as argued
in Lemma 4.16, if < C¢, then dy = hdsh* for some h € N, and the general case follows from
approximation ¢ < é((l —&)¢ + &¥). Then we have

1

€1 €L N S J .
laa*llg.p=ld} aa*d} |l,=lld, " d} aa*d} d,” |ly.2p -
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IR RIS
Denote a; = dwz” d;”a and b; = bd;” dwz” .Forx e M,

1 1 1 _ 1
1212 ert.o)= sup laxb |l p= sup 1,7 dF axbd d)7 .
llaa* llg.2p=ll b llg.2p=1 laa* lo.p=1 6 llg.p=1
= sup larxbilly,p=11x L2 Arerm,u)»

| ara} lop.y=Il b1} l2p.u=1
where the supremum are for a, b € N. m]

Remark 4.18. For finite M, one particular invariant state of E used in [7, 6] is ¢ = E.(1). This state
is convenient because ¢ | is a trace. Then by Lemma 4.17, we have

IxllLz wvem.o =N Iz (ver. o= supillaxbllp,g, | a.b €N, llallp,g=0bllp,g=1}

where we used the fact L, (\V, ¢y) is a tracial L,,-space. We will use this point to simplify the discussion
in Section 5.4.

5. Applications and examples
5.1. Entropy contraction coefficients

In this section, we discuss the implications of our results on contraction coefficients studied in [23, 22,
57, 31]. These are analogs of functional inequalities for a single quantum channel.

Definition 5.1. Let ® : M — M be a quantum Markov map GNS-¢-symmetric to a normal faithful
state ¢ and E : M — N be the ¢-preserving conditional expectation onto the multiplicative domain of
©. We define

i) the L,-contraction coeflicient:
A®@) :=[|®({d-E) : Lro(M, ¢) = Lr(M, ¢) |l . (5.1

ii) the entropy contraction coefficient:

 D@.(IP. o E.(p)
) =S D llE. (o)

iii) the complete entropy contraction coefficient a.(®) := supg a(idg ®®P) where the supremum is
over all o-finite von Neumann algebras O.

The condition A(®) < 1 can be viewed as a Poincaré inequality for a quantum channel ®, which
implies the exponential convergence in L,

19" (X) = E(X) L, (M, )< AP 1 X = E(X) ||y (m,)— 0.
Similarly, the entropy contraction coefficient gives the convergence in relative entropy
D(®"(p)||@" o E(p)) < a(®)"D(pl|E(p)).

The complete constant a.(®) controls not only the entropy contraction of ® but also idg ®® with
any environment system Q. This leads to the tensorization property of . that for two GNS-symmetric
quantum channels [31],

@ (@) ® ®y) = max{ac(Py), ac(P2)}. (5.2
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For classical Markov maps, the tensorization property (5.2) is known to also hold for the non-complete
constant @. Nevertheless, for the quantum Markov map (channel), this is not the case, and a(®) in
general can be strictly less than a. (®) (see [14, Section 4.4]).

In finite dimensions, the existence of strictly contractive constant a.(®) < 1 was obtained in [31,
Theorem 4.1]. Our results give an explicit estimate for a. ().

Corollary 5.2. Let © be a GNS-symmetric quantum Markov map,

1 —InA(D)
A®) < (@) <ap(®) <(1-— )< [1- — 7 )
2kep (@) In(10Cp (E))
Proof. The estimate follows from Theorem 4.8 and a discrete time analog of Proposition 4.12. m}

Remark 5.3. In the ergodic trace symmetric case N' = C1 and M = My, we have the trace map
E(x) = tr(x)% and the CB-index C.;, (E) = d*. The above estimate implies

—InA(D)

). (5.3)

This can be compared to [57, Theorem 4.2] and [43, Corollary 27],

(1-A®)H*(1-32)
In(d - 1) ’

a(®@) < 1- %az(id —p* D) < 1 - (5.4)

where a; (id —®?) is the LSI constant of id —®? as a generator of quantum Markov semigroup. The two

upper bounds in (5.3) and (5.4) are comparable, as both are asymptotically ©(— hfn’lf)) ). The strength of

our results is that (5.3) also bounds the complete constant @ (®) which has the tensorization property.

Remark 5.4. Our Lemma 2.1 implies
1 — o (id -®?) < a(P),

where a; is MLSI constant of the semigroup generator (id —®*®). For a classical Markov map, it was
proved by Del Moral, Ledoux and Miclo [22] that there exists a universal constant 0 < ¢ < 1 such that

1 —a(id-®*®) < a(®) < 1 - cay(id -0 D). (5.5)

To the best of our knowledge, the above upper bound in (5.5) is open in the quantum case.

5.2. Graph random walks

Let G = (V, E) be a finite undirected graph with |V| = d and the edge set E C V x V. The discrete time
random walk on G is a finite Markov chain given by the stochastic matrix

Ko (uv) = {ﬁ, if (u,v) € E
0, otherwise.
Here, d(u) is the degree of vertex u € V. Then K¢ : [ (V) — [(V) is a Markov map. The K¢ admits a
unique station distribution 7 (u) = dz(:l) , where |E| = m. It is clear that K is symmetric to the measure
7, also called reversible. Hence, K is an ergodic unital channel on Lo, (V, ) as n(Kg(f)) = n(f).
The expectation map is E(f) = n(f)1 whose index is

Cep(Ex) =lln7 loo -
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K is connected and E,; are symmetric operators on L, (V, xr) and
AKG) =llKG —Ex : Lo(V, 1) = Lo(V,m) |I< 1

if K not bipartite (in the bipartite case K has eigenvalue —1). Then our results imply

a(Kg) < a.(Kg) < (1- ;) < —-InA(Kg)

bt Sl S 5.6
ko) = T Wm0 ) 60

Example 5.5 (Cyclic graphs). Let us consider the cyclic graph C; = (V,E) with d > 4 where
V=ALl,---,d}and E = {(j,j+1)|j = 1,---,d}. Here, the addition is understood in the sense of
‘mod d’. Then

1 o .
5, ifli—jl=1
Kc,(i,j) =172
caliJ) {0, otherwise.

As Cy is 2-regular, K¢, is symmetric to the uniform distribution 7 (7) = 1/d. It is known that K¢, has
spectrum

i
/ljzcos(%),ij,---,d—l.

The associated eigenvector is e; = \/Lg(l, wl,w, - w(d‘l)f) where w = exp(%). Whend =2m+1
is odd, r is the unique stationary measure, and E , is the projection onto the vector ey. We have

2m
K& = Ex = (Kg — Ex)* = > A¥le;) ey,

j=1
By triangle inequality, we have
2m m nj
IKE = Ex : Li(V.7) = Leo(V.7) | < ]Zl ;1% = 2j21cos(7)k

d [T d 1
< 2—/ cos¥ (x)dx = 2=Wy < 2Cd+| —,
T Jo T 2km

T

where C > 0 is some absolute constant by fact that the Wallis integrals W = fon/ ? cosk (x)dx ~ /3¢
Thus,

(10Cd)?
/4

kevn(Kc,) < ~O(d%),

and (5.6) implies
@(Kc,) > ac(Kc,) = 1-0(d™).
By Miclo’s result (5.5), this is asymptotically tight because the MLSI constant a (I — Ké) ~O(d™?)

(see Example 5.6 below for detials). The similar asymptotic estimate also holds for even circle d = 2m.

For the continuous time random walk, we consider w : E — (0, 00) to be a positive weighted function
on the edge set E. The (weighted) graph Laplacian is given by the matrix

Ze:(u’u/) cE Wes ifu=v
Lo (u,v) =9-we, if (u,v) € E
0, otherwise.
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L generates the continuous time random walk 7; = e~£6’ as a Markov semigroup and is symmetric

with to the uniform distribution 7 on V. T; is ergodic if and only if G = (V,E) is connected. The
expectation map E (f) = ()1 has index C¢p(E ;) = d. Then Corollary 4.13,

A(Lg)
2nd+n10) = ac(Lg) < a(Lg) < A(Lg)- (5.7)

This lower bound of @, (L) has better dependence on the dimension d than [49, Lemma 5.2].

Example 5.6 (Cyclic graphs). Let us again consider the cyclic graph C; with d vertices. For the
uniformly weighted case w, = 1, L¢, is a circulant matrix

2, ifi=j
Lc,(i,j)=1-1, ifli—j]=1
0, otherwise.

Thus, Lc, = 2(I — K¢,) where K¢, is the random walk kernel in Example 5.5, and L, has spectrum
A; =2(1~-cos %). As discussed in [23, Example 3.6],

4t
T, —E:Li(V,m) = Lo(V,7)|I< 2€Xp(—ﬁ)(\/1 +d?/41).
Choosing g = d?, we have

1
T, —E : Li(V,7) > Loo(V, 1) ||< 2¢7*/5/4 < o

Thus, by Theorem 1.1,

2n 82 1
<ac(Lc,) <ai(Lc,) <2(1—cos—) = —+ O(E

d d? )

242

This shows that for this example, our inverse of 7., bound for a, is tight up to absolute constant. Note
that the LSI constant (L, ) is also of G)(#).

We refer to [23, 11] more examples on spectral gap A, Log-Sobolev constants @;,a, and L, mixing
time #;, of finite Markov chains.

5.3. A noncommutative Birth-Death process
Letus illustrate our estimate with a noncommutative birth-death process. This example is a generalization
of graph Laplacians on matrix algebras (see [49, 41] for similar constructions). To fix the notation, let
G = (V, E) be an undirected graph with n = |V| vertices and edge set E. For each edge (r,s) € E, we
introduce the edge Lindbladian on M,,,
Lrs(x) = &P PLe, (1) + P Le,, (1)
= eﬁrS/z(essx +xess — 2esrxe,g) + e_BrS/z(errx +Xxepr —2er5Xesr) ,

where e, € M, is the matrix unit with 1 at the (r, s) position. The total Lindbladian is a weighted sum
over the edge set E,
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L = Z w(r,s)L,s

(r,s)eE
=2 Z Z w(r, s)e'g“'/2 (essx +xe55) — 4 Z w(r, s)eﬁ’“/zesrxe,s,
seV\(r,s)eE (r,s)eE
where we assume 8,5 = —S, and w(r,s) = w(s,r) > 0 for the GNS-symmetry condition. Note that

for j # k,

Liej) =2( Y, w(r,)eP 4 3" w(r, jefri)e;

(r.k)eE (r.j)€E
L(ejj) =4 Z W(r»j)(eﬁr"f/Zejj - e_B”"/zerr).
(r,j)eE

Let us collect some relevant facts of such a Lindbladian L as noncommutative extension of graph
Laplacian.

i) Denote £ (V) C M, as the diagonal subalgebra. L({w(V)) C fw(V), and L|s (v) is a weighted
graph Laplacian;
ii) For r # s, the matrix unit e, is an eigenvector of L

L(ers) = Yrs€rs,

where Yrs = 2(2 - jyex W(r, )P+ 3 g ep wik, s)ePrsl?),

iii) ker(L) C €x(V), and ker(L) = C1 if G = (V, E) is connected.

iv) Letu = (ug) € € (V) be adensity operator in the diagonal subalgebra. Then L is GNS-u-symmetric
if efrs = g /u, forany s # r.

Assume L = }(s e Lsr is an ergodic graph Lindbladian satisfying GNS-u-symmetric condition for a
diagonal density operator . Denote E4 as the projection onto diagonal subalgebra. We can decompose
the semigroup 7; = e~'% on the diagonal part and off diagonal part.

T, = T,Eq +T,(id—Eg) == T8 + T/ . (5.8)

It is clear from i) and ii) that T; E; is a classical graph random walk and T; (id —E ;) is a Schur multiplier
on M,,. Using this decomposition, we consider the CB-return time of the semigroup

tep(e) ==inf{t > 0| | T, = Ey : L1 (M, p) = My lcp < €}

satisfying
ten(2) < 199 (&) +1%] 7 (o),
where tf}i“g and t:’]{ 1" are the CB-return time for the diagonal part 7, E; and off diagonal part 7, (id —E ),

respectively, where

1998 () = inf{t > O | |T,Eq — Eyi s Li(v, 1) = Loos(V)llew < €}

1277 (e) =t inf{t > O | 1Ty id ~Eq) = Ly (M, ) = Miallep < &}
For the diagonal part, tfgag (€) is a classical Lo, mixing time, i.e. the smallest ¢ such that

ITiEq —Ey: Li(V,u) = Lo(V) |I< &.
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For the off-diagonal term, we deduce from the Effros-Ruan isomorphism that a Schur multiplier map

. -1/2 — -1/2
1T, (id—Eq) : Lt (M, 1) = My llep= 1| ) 1 2es0 i
r#£s

-1/2 — -1/2
S e P

r#s

ers ® ers |loo

Note that for each ¢,

-1/2 —y,.t —1/2
A =Zﬂr / e y”t:us / Crs

r#s

is a symmetric matrix with positive entry. A standard application of Schur’s lemma for matrices with
positive entries implies

Al sup ( 3 2e v 2),
r s

which gives us an estimate for the off diagonal term tgg 4 (e).

Now we consider the birth-death process on a finite state space V = {1, - - - , n}, which we denote as
LBP  The corresponding edge E set consists of only successive vertices E = {(j, j+1)|]1 < j <n—1}.
The simplest case chooses the uniform weight w(r,s) = 1 for (r,s) € E and allows only one Bohr
frequency e # = H”—f and the resulting stationary measure is the well-studied thermal state

j+1 ’
/’l = Z[;] (eiﬁj);lzlv

where Zg = 3", e~AJ is the normalization constant. In this case, y,s = 8(cosh 3)t, and the off diagonal
CB norm can be estimated by

n
Il At |loo< sup (Z eﬁr/Zeﬁs/Z)Zﬁe—S(coshﬁ)z
" s=1

1—e"P2 1 — B
1—ePl2 1-eh

Se'BnT_z e—8(cosh,6’)t.

Thus, tgg f (&) < C1(B)n for some constant C; () depending on . For the classic part, we refer to [55]
and [17] for the fact that the spectral gap is of order O(1); that is,

c(B) < ALY“%) < Cy(B)

for all n € N. For the commutative system on the diagonal part, this implies (see also [23])

1198 (g) < 2¢(B)7' 2+ |logpal) < C2(B)n,

(fore = e72, but here, the actual value of & does not change the asymptotic estimate). However, we have
based on [55] that

t19(0.1) = a1 (L) = c(B)n.

Combining the diagonal and off diagonal part, we know t.,(LBP) ~ n. It turns out CMLSI constant
has asymptotic a..(LEP) ~ %, which indicates our estimate o, > ﬁ is asymptotically tight for this
example.
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Theorem 5.7. For 8 > 0, there exist constants ¢(B),C(B) > 0 such that the CMLSI constant of
noncommutative birth-death process LEP satisfies

@ < aC(L,lfD)Sal(LffD) < @
n n

The same @(%) asymptotic holds for t., (LBP)~1.
Proof. Tt suffices to show that
C
ac(LEP) < o (LBP) < %ﬂ

For this, we consider the function in the commutative system on the diagonal

£k = 2B % ng Zf(k) (k) = szf) e

so that p := fu represents a probability density. The relative entropy term satisfies

d n+1
D(pllp) =D(fullp) = —Inn) = InZ(B)-Inn+p——.
Z Z(pB) 2
Our density is p = (1), and the reference density is p(k) = ?(l;;)

Denote ay = |k){k + 1|. On the diagonal, we have
—L (f) = Z PP (aray f - aj fa) + e PP aparf - axfay)
= Z PP e f(K) = f(K)exs) + e PP (f(k+ Dewn = f(k+1)er)

(P (eg — en) + PP (en — e0)).

Z(ﬁ)
We have
4(ePl2—eP2),  if k=1
LE?(f)(k) = 10, if k=2n-1;
4(e P2 — P12, if k=n.
Note that

Inp-Inpg = Inf = (Bk—In(Z(B)n));_,.

Then we have the entropy production

Lo (p) =T(LE2(f)In f) ~ c(B)

for some constant ¢(8) only depending on 3. This holds for n > ng large enough. O

Remark 5.8. When 8 > 0, 37, ek = 0(1) is a geometric series. In the case that 8 = 0, the above
birth-death process reduces to a ‘broken’ version of the cyclic graph (linear graph) as in Example 5.6
with a¢(Ly) ~ 1/n?.
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5.4. Noncommutative concentration inequality

In this section, we show that CMLSI of a GNS-¢-symmetric semigroup implies concentration inequal-
ities for the state ¢. The key quantity in the discussion is the Lipschitz semi-norm

Xl = max{|ITLex) [, ITLGS x93,
where the gradient form (or Carré du Champ operator) is
1
I'L(x,y) = E(L(x*)y +x"L(y) — L(x*y)) , Vx,y € dom(L).

Note that || - ||Ljp is a semi-norm (satisfying triangle inequality) because I'; is completely positive
bilinear form. Our first lemma is to show that ||x||Lip can be approximated by Haagerup reduction.

Lemma 5.9. Let x € M. Then for all n € N,
NE A, )iy < NxlLip-

Proof. Recall the conditional expectation E 4, : M = M, is given by

2—VL
Ep, (x) =2" /0 a (x)dt.

Note that a,lp " is an inner automorphism on M », 27"Z = L, (T, M). We note that for a modular
automorphism «, such that La; = oL,

Ie(e(x), 0 () = ai(T'L(x,y)),

which implies || x [|Lip=I| @ (x) ||Lip- Here, both af’ and ;" commute with L = idr ®L by the GNS-
symmetricness of L. Then by triangle inequality,

Il Ent, () llip =

2n on
2 [ atroar <2 [T i dr <ol o

Lemma 5.10. Let My, N' ¢ M be two subalgebras and ¢ be a normal faithful state. Suppose Ey :
M — Myand E : M — N are ¢-preserving conditional expectations onto My and N, respectively.
Suppose E o Eg = E o E satisfy the commuting square condition

Ey

My

E kE
N T No
where Ny € N is a subalgebra. Then for any p € [1, 0] and any x € M,
1 Eo(X) 122wy cro, ) =N B0 22 arenn, ) SNX 22 (Arcan,g) -

Inotherwords, LE,(Ny € Mo, ¢) € LE. (N c M, ¢) as a 1-complemented subspace with projection Ej.
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Proof. We can assume ¢ = ¢ in the Remark 4.18. Using commuting square assumption, we know
Eo(a) € Ny for a € N. By definition,

I Eo() 2 nyermo, 0= Sup  llaEo(x)bllg,p< sup || Eo(axb)llg,p
a,be Ny a,be Ny

< sup laxbllg,p<IlxllL2 (nert )
a,be Ny

where the supremum is for all a, b in the corresponding subalgebra with || a || ,=|| b [|4,p= 1. Now it
suffices to show the other direction

Ilx ||L§,(N0c/v10,¢) >||x ||L£,(NcM,¢)’

for x € M. For that, we revoke that for % + cl] =1, L{’/(J\/ c M) c LE(N c M,¢)* is as a
weak”-dense subspace [42, Proposition 4.5]. Here, for x € M,

I¥lls arean= inf lallzp.sllyllg.olloll2p.0,
y=azb

where the infimum is over all factorization y = azb with a, b € N, z € M. The duality pairing is given
by the KMS inner product,

1/2

() =1(x"dyyd %) = (x.y)g.

Indeed, it was proved in [42, Corollary 3.13] that
Eo: LI(N ¢ M) = LT(Ny € My)

is a contraction by the commuting square condition. Therefore, for x € N, by the KMS-¢-symmetry
of E() ,

Ixlle (vea,¢)= sup (X, ¥)¢
y”L?QVCAUZI

= sup x, Eo(¥))e

Iy ”L;I(J\/’CM)zl

< sup <‘x? Z>¢ :“'x”Lopo(N()CM(),(ﬁ) . O
Il z ”L?(fq)cAAU)zl

Lemma 5.11. For x € M, limy, [[Ea,, ()22 (v, c M) = 1K L2 (A crn, -
Proof. Recall the commuting square condition Ex, o E = E o Eq,. By Lemma 4.17 & 5.10,
1 Er, ) L2 v cm i) = WEM ) 22 (a, e mtn, ) = EM () iz (e, dy SIX L (v e a6y -

The other direction follows from the weak*-convergence E 4, (x) — x. Fix é + % = 1. For any € > 0,
there exists ag, bg € N and Yo € M such that
* * ~r 71/2 1/2
laa* 11, 4=l15"0 11,5211y l5.4= 1. #(daxbd }’y) 2I1x g e gy 5

By the weak*-density, we can choose ny, ny, n3 and nqy > max{ni, ny, n3} inductively such that

1/2 1/2 1/2 1/2
1(dyEpm, (@) Em,, () Ep,, (b)d) E, (v) > 7(d>axbd*y) = & >\ x|lp (e pr.d) —2-
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Since E pq, (./\7 ) = N, (see the commuting diagram after Lemma 4.5), we have

IEm,, (@Em,, (@)l , <N En,, (@aa)llg ,<llaa”ll,,= 1
Il Em,, (D) E,, (D) 115 ,<I1D7blg ,= 1.
lEM,, D) lg,q=yllg 4= 1

by the KMS-¢-symmetry of E rq,. Then, for n > ng = max{ny, ny, n3, ns},

N Er, ) 122 (7 c X6y 2 NEMu, O 122 (7, c 1,0, )
1/2 1/2
> 7(d Em,, (@ Ep,, () Epm,, (0)d ) Ea,, ()
>||x ||L£(NCM,¢3) —2e.
This proves
Hm 1B, (O lle o, e M) = Nz (et )+

Finally, the assertion follows from
Ixlze ke xré) = XLz (v e, )
as a consequence of Eg o £ = E o Ey by Lemma 5.10. O

Now we restate and prove Theorem 1.4.

Theorem 5.12. Let M be a o-finite von Neumann algebra and T; = e 't be a GNS-¢-symmetric
quantum Markov semigroup. Suppose T, satisfies MLSI with parameter a > 0. There exists an universal
constant c such that for2 < p < oo,

allx = EOIL, m.g) S @llx = E@)lzvem.g) S VP 11Xy -
Proof. We first show that if 7; satisfies @-MLSI, so does the approximation semigroup.
Tn,t = Ttl/\/t" : Mn - Mn

Indeed, as we see in the discussion above, M, Cc M x af 27"Z = Lo(T, M), and the extension

T, = T, ®idt has a-MLSI (because Lo, (T) is acommutative space) Note that since M,, € Mx ¢2 "Z C
M > ? G, the restriction E g, : M > a? 27"Z — M,, is also a conditional expectation. Then for any
p,0 € S(M,,) we have

D(Em, +PllEm, ) < D(pllo) = D(p|m, l|oa,) < D(Em,, «PlEr, «0).

Using the commutation relation 7, ; © Exq, = Epmq,, © T, and Epm, o E=E,o E a4, we have for
p € S(My)

D(T; n«p||En,p) = D(EM,I,*Tt,n,*m|E.M,,,*En,*p) = D(Tt,*EMn,*p“E*EMH,*P)
< e_sz(EMn,*p”E*EMn,*P)
= ¢ D(Em, Pl Erty s Ensp) = € 2*' D(p|Ep..p).
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Thus, 7, ; has @-MLSI on M,,. Note that 7}, ; is both GNS-qg-symmetric for the extension state ¢§ and
also symmetric for the trace i,,. Now, we may use the tracial version of the concentration inequality
[29, Theorem 6.10] that for x € M,,,

@ | Enty (9) = EnEaty 0 22 xc, cpty < CVP 11 Eaty () llip

Now by the approximation of Lemma 5.11 and independence of L%, (N, ¢ M,,) on the reference state,
forx € M,

X = E) llzz(verm,g) = Hm [ Exg, (¥ = EC)) 22 (a7, c M)
= 1irIlIl | Em, (X) = EnEpm, () |12 (N ey i)
< CVP 1Em, (0) lLip< Cvp [IxlLip -
The other inequality
Iy lle (avrerm, o) Z IV L, (M, 0)

is clear from definition of L (N c M, ¢). O

For Gaussian type concentration property, we introduce the following definition.

Definition 5.13. For an operator O, we say that
Proby (|0 >1) < €
if there exists a projection e such that
[[eOel|lo <t and ¢(1 —e) < e&.

The next lemma is a Chebyshev inequality for ¢-weighted L, norm.
Lemma 5.14. Let x € L,(M, ¢) and 1 < p < co. Then

r\~P
Proby (x| > 1) < Z(Z) 2,

Proof. We start with a positive element x = y> and assume ||x|| p.¢ = M. Then we have
1/2p  1/2 1/2
M= |xllp.e = Il xd)* NI, = Ilyd)/*"113,.
Recall the asymmetric Kosaki L ,-space
1/2
13 llg, (vgr:= vy llzps
and the complex interpolation relation [42]
LS, (M. $) = [M, L5 (M, &)1/,
and the relation between real and complex interpolation

L3, (M, ¢) = [M, L3 (M, $)]1/p € [M, Ly (M, $)]1/p,co-
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By the definition of real interpolation space, for every s > 0, we have a decomposition y = yj + y;
such that

Iyilleo + 5 11y2llLs(AM,9) < sUP M2,

Then by Chebychev’s inequality for the spectral projection e = e[ 41(y5y2), we have
ap(l—e) < ¢(y3y2) < s*P72M and |lyzelZ = lleyiyaells < a.
Choose a = s*/P M and deduce that
lexello = llyells, < (yiello + lIy2elle0)* < (P M2 + 5P M'2)? = 4.
Then for ¢t = 4a and
_ t r _
p(1-e) < a's¥P2M = 572 = () "= ()M,
For an arbitrary x, we may write x = x1x; such that
Idy* x1lp = lx2dy* llap = lIxllp.0= M.
Then for each s > 0, we have decomposition

X1 = X11 X512, X2 =X21 +X22

with
I lleo + 5 X121l (M, 0) < SYPMYZ | lxat oo + 5 %22 [ls (M, ) < sUP 2,

We then use the Chebychev inequality for e = e¢ 4] (x*l‘leg + xzzng),

ap(1 - e) < p(x,x12 +X5x) < 25°P77M.
Take a = s*/P M,

llexelleo = lle(xix2)ello = [le(xi1 +x12) (x21 +x22)€leo

< lxnxlleo + llexinxanlleo + [IX11x22€]lo0 + llexizxze]loo

< 45%P Y.
Thus, for ¢ = 4s*/P M, by Chebychev’s inequality for e,

¢(l—e) < %qﬁ(x’flez +X5,X22) < a'2s¥P2y = 2572 = 2(#)_1]. O

Corollary 5.15. Let T, = e~ be a GNS-¢-symmetric quantum Markov semigroup. Suppose Ty satisfies
a-MLSI. Then for any x € M andt > 0,

Prob (| Efix(x)|>1) <2 ( 2( o )2)
1o X — ir (X < ex _——_— s
P B GNPy P

where ¢ is a universal constant as in Theorem 5.12.
Proof. By Lemma 5.14 and Theorem 5.12, we have
de || xluip VP

Proby (v = E()| > 1) < 2t/4)7 x = E@ 1y )< 2(——

).

https://doi.org/10.1017/fms.2024.117 Published online by Cambridge University Press



46 L. Gao et al.

Minimizing over p gives p = 1( i ﬁ;ﬂb )2, which implies
ip

e

@22

Probg(|x — E(x)| > t) < 2exp(- ). O

16ec? ||x||fip

Remark 5.16. In the ergodic case, the above results can be compared to [69, Theorem 8], which states
that for self-adjoint x = x*,

at?

12 1/2 12 )
Blld, "xdy "I,

d(ex—E(x)|>1)) < exp ( -

with a different Lipschitz norm || - ||i~ip. Our Corollary 5.15 here uses a more natural definition of the
Lipschitz norm and applies to non-ergodic cases. Nevertheless, the projection we have for

Proby(|x — E(x)| > 1)

is not necessarily a spectral projection e {|x—g(x)|>¢} and will depend on the state ¢.

Remark 5.17. In the operator valued setting, let Q be any finite von Neumann algebra and 7; ® idg be
the amplification semigroup on Q® M. The conditional expectation for 7; ® idg is E ® idg. Note that
by Lemma 4.17, T; ® idg is GNS-symmetric to the product state ¢ ® o, for any state o € S(Q) and any
invariant state ¢ € E,(S(M)). This means we obtain

Ltz t2

Probgeo(|x — Efix(x)| > 1) < 2e I,

for any product state ¢ ® o of this specific form. The projection of course depends on both ¢ and o.
We illustrate our result with a special case as matrix concentration inequalities.

Example 5.18 (Matrix concentration inequality). Let Sy, - - - , S, be an independent sequence of random
d X d-matrices Sy, - - , S, such that

[|S; —ES; |l M, a.e.

Tropp in [75, Corollary 6.1.2] proved the following matrix Bernstein inequality that for the sum
Z = ZZ:I Sk7

1
E||Z -EZ||x< v2v(Z)log(2d) + ngog(Zd)

and the matrix Chernoff bound
2

P(lZ—EZ|>t)S2dCXp(—m
3

),

where
v(Z) = max{||E((Z - EZ)(Z - E2)) || , |E((Z - EZ)"(Z - EZ)) |}

Now to apply our results, we recall that the depolarizing semigroup with generator L(f) :=
(I - E,)(f) = f — u(f)1g on any probability space (£, ) has @, > % (a simple fact by convexity of

relative entropy). For a random matrix f : Q — My, the Lipschitz norm is
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1 M P R P % P P
IfIEy = 5 Max{|l S+ Eu(f P lloo s 1FS7+ Eu(f 1) lleo}

1
< SUFIG+v (), (5.9)

where f = f — E, (f) is the mean zero part.
Now we consider for each k = 1,--- ,n, Sx : Qr — My as a random matrix on (Qg, uy). Then on
the product space (Q, u) = (Q1, u1) X - -+ X (Qy, 4n), we have by Theorem 5.12 for Z = ¥, Si

1 I/p
E|Z-BZ|lws (GBNZ-EZI} ) " <d"” | Z~BZllL.ot, @< 264" VB 1 Z L.

where || ||, is the p-norm for the normalized trace (tr(1) = 1). Applying (5.9) and optimizing p gives

B [|Z - BZ |l 2ce™ 2/ (v(2) + M?) log d.

For the matrix Chernoff bound, we use Corollary 5.15

t2

64ec?(v(Z) + M?) )

P(1Z~EZ| > 1) < dProb,qs (1Z ~ BZ| > 1) < 2d exp ( -

6. Final discussion

1. Positivity and complete positivity. The central quantity in this work is the CB return time #.; and
k¢p defined via complete positivity. Alternatively, one can consider positive maps and positivite mixing
time. Indeed, the entropy difference Lemma 2.1

D(p||®"®(w)) < Do(p) + D(pllw)
holds for a positive unital trace-preserving map ®. This is because the operator concavity
O(Inx) <Ind(x), Vx>0

of the logarithmic function holds for any unital positive map ® [18], and the monotonicity of relative
entropy

D(pllor) = D(®(p)||P(c))

was proved for any positive trace-preserving map @ in [56] (see also [27]). Thus, both inequalities used
in the proof of Lemma 2.1 hold for positive maps. Also, the conditions in Lemma 2.3 also only require
positivity order

(1-e)E <Y < (1+¢&)E, 6.1)

where @ > ¥ means @ — ¥ is a positive map but not necessarily completely positive. Combining these
two relaxed lemmas for positive maps, we have an analog of Theorem 1.1.

Theorem 6.1. i) For a positive unital trace-preserving map ® : M — M,

a(®) <1 where k(®) :=inf{k € N* | 0.9E < ®*f < 1.1E}.

1
 2k(D)

ii) For a trace symmetric positive unital semigroup T, = e : M — M,3

a(l) > where t(L) :=inf{t e N* | 0.9E < T, < 1.1E}.

2t(L)
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Applying the above theorem to @ ® idg and 7; ® idg for any finite von Neumann algebra Q actually
yields our main Theorem 1.1 for trace symmetric cases. It remains open whether this observation holds
for GNS-symmetric cases.

Problem 6.2. Does Theorem 6.1 with positivity conditions hold for GNS-symmetric cases?

The obstruction is that in the Haagerup reduction, we need the complete positivity and CB return
time k., (@) of ® to imply positivity and positivity mixing time k(®) of the extension ®, similar for
the semigroup 7;. One possible approach is to avoid using Haagerup reduction, and prove Lemma 4.6
directly.

The comparison between positivity and complete positivity has a deep root in the entanglement
theory of quantum physics (see [20]). From the mathematical point of view, although the positivity
looks a more flexible condition, it lacks connection to CB norms as Proposition 3.4. Indeed, there is no
non-complete analog of Choi’s theorem [19]

Cr e M@MP), e T(x)=1®id(Cr(x®1)) is CP.

Therefore, despite that the estimate of a;(L) only requires #(L), our kernel estimate Proposition 3.7
only applies to 7.5 (L).

2. GNS and KMS symmetry. Both GNS-symmetry and KMS-symmetry are noncommutative
generalizations for the detailed balance condition of classical Markov chains. As observed in [15],
GNS-symmetry is the strongest generalization of detail balance condition, and KMS is the weakest,
which means the assumption of GNS-symmetry is the most restrictive. It is natural to ask whether our
main results (c.f. Theorem 4.10 & 4.8) can be obtained for KMS-symmetric channels or semigroups.

Problem 6.3. Do entropy decay results Theorem 4.10 and 4.8 or the entropy difference Lemma 4.6 hold
for KMS-symmetric maps?

The key property of a GNS-symmetric map @ is the commutation with modular group ® o a,‘p =
a,‘ZS o @. This has been used to ensure the compatibility of Haagerup reduction with channel and
semigroups (see Lemma 4.5). One can ask whether the same commuting diagram Figure | can be
obtained for KMS Markov maps. That will allow us to use Haagerup reduction to obtain the entropy
difference Lemma (4.6) for KMS-symmetric channels. Another approach is, again, to avoid using
Haagerup reduction and prove the KMS-case directly. At the moment of writing, this is not unclear to
us even on finite dimensional matrix algebras.

From a mathematical physics perspective, it is also interesting to explore the relative entropy decay
beyond GNS symmetry. For instance, one has a Lindbladian of the form x + i[A, x] + L(x) such that L
is GNS-symmetric and the adjoint action ad(e*"*) commutes with L. Then the associated semigroup is
e~ e=tL ()M which has the same entropy decay as e~*L. Such Lindbladians are considered in [48].
Indeed, there is also numerical and theoretical evidence that adding an nonzero Hamiltonian part can
destroy the exponential entropy decay. We refer to [48] for more discussion on entropy decay beyond
symmetry conditions.

3. MLSI and CMLSI constant. By the results of this work and also previous works [49, 14, 28],
we now know the positivity of CMLSI constant @, > 0 for many cases of classical Markov semigroups
with the (non-complete) MLSI constant @ > 0. That is, @ > a. > 0 for

i) finite Markov chains [49, 28];

ii) heat semigroups on manifold with curvature lower bound [14];
iii) sub-Laplacians of Hormander system on a compact Riemannian manifold.
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It remains open whether MLSI constant @ and CMLSI constant @, coincide for classical semigroups.
This would be in the similar spirit that the bounded norm (resp. positivity) and the complete bounded
norm (resp. complete positivity) coincide for a classical map on L (Q, u).

Problem 6.4. Does a = a, for a classical symmetric Markov semigroup 7y : Lo (Q, i) — Loo(Q, 1)?

For a quantum Markov semigroup, a counterexample is the qubit depolarizing semigroup

1
T, :My = My, Ti(p)=e'p+ (1~ e")z,
which has % < a.(T;) < a(Ty) = 1 because of entangled states [14, Section 4.3]. It is natural to ask
whether @ < @ also holds for classical depolarizing channel.
Another interesting example is the heat semigroup on the unit torus T = {7 € C | |z| = 1},

P, : Loo(T) = Loo(T) , P (2") = e 17"

It was proved by [78] that @(P;) = A(P;) = 1. The best known bound for CMLSI is a.(P;) > %. Itis
open whether the gap can be closed.

Problem 6.5. Does the heat semigroup P, on the torus T have a.(P;) = a(P;) = 1?
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