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Abstract

We prove that for a GNS-symmetric quantum Markov semigroup, the complete modiûed logarithmic Sobolev
constant is bounded by the inverse of its complete positivity mixing time. For classical Markov semigroups, this
gives a short proof that every sub-Laplacian of a Hörmander system on a compact manifold satisûes a modiûed
log-Sobolev inequality uniformly for scalar and matrix-valued functions. For quantum Markov semigroups, we
show that the complete modiûed logarithmic Sobolev constant is comparable to the spectral gap up to the logarithm
of the dimension. Such estimates are asymptotically tight for a quantum birth-death process. Our results, along
with the consequence of concentration inequalities, are applicable to GNS-symmetric semigroups on general von
Neumann algebras.
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1. Introduction

The time evolution of dynamical systems is a central topic in ergodic theory, probability theory, geometry
and analysis. Similarly, decay properties of dissipative quantum systems also naturally arise in quantum
many-body systems, quantum information theory and high energy physics. The aim of this article is to
provide a new framework of decay estimates that applies for both classical and quantum systems in the
non-ergodic setting. Here, ergodicity means the system admits a unique equilibrium state, also termed
primitive in mathematical physics literature, whereas non-ergodic systems admit multiple equilibrium
states.

Logarithmic Sobolev inequality (LSI) is a powerful functional inequality in deriving the mixing time
of Markovian evolution. LSI was ûrst introduced in the seminal works of Gross [35, 34] as an equivalent
reformulation of Nelson9s Hypercontractivity (HC) [58, 59]. It has been widely studied on manifolds
and graphs for the deep connections to geometry and concentration phenomenon. However, attempts to
translate the notion of hypercontractivity to the matrix-valued setting or the non-ergodic setting failed
miserably [7], due to the lack of uniform convexity of certain noncommutative spaces [42]. This results
in a roadblock for the standard argument connecting hypercontractivity, entropy decay and mixing time,
as well as the lack of tensorization property used in many-body systems.

We propose a new, direct approach to entropy decay that also applies to fully noncommutative, non-
ergodic setting. Let ÿý = ÿ−ÿý be a quantum Markov semigroup on a ûnite von Neumann algebra M

with generator L (i.e., a semigroup of completely positive trace-preserving maps). We aim to establish
the exponential entropy decay,

ÿ (ÿý (ÿ)‖ý (ÿ)) ≤ ÿ−2ÿ1ýÿ (ÿ‖ý (ÿ)) (1.1)

or equivalently 2ÿ1ÿ (ÿ)‖ý (ÿ)) ≤ ÿ
(
ÿ(ÿ) (ln ÿ − ln ý (ÿ))

)
,

where ÿ (ÿ‖ÿ) = ÿ(ÿ ln ÿ− ÿ lnÿ) is the quantum relative entropy for two density operators ÿ, ÿ and
ÿ can be any normal faithful trace on M. The equilibrium state ý (ÿ) associated to any initial density

ÿ is given by the ergodic mean ý (ÿ) = lim
ý→∞

1

ý

∫ ý

0
ÿý (ÿ)ýý. It turns out that the simple properties of

relative entropy enable us to prove a direct link between positivity order and entropy decay. Indeed, let
us for simplicity assume that the semigroup is trace symmetric

ÿ(ÿý (ý)ÿ) = ÿ(ýÿý (ÿ)) for ý, ÿ ∈ M, ý ≥ 0.

Under this assumption, we discover the following entropy difference lemma:

ÿ (ÿ‖ÿ2ý (ÿ)) ≤ ÿÿý (ÿ) + ÿ (ÿ‖ÿ), where ÿΦ(ÿ) : = ÿ(ÿ ln ÿ) − ÿ(Φ(ÿ) lnΦ(ÿ)). (1.2)

The new quantity ÿΦ(ÿ) is the loss of von Neumann entropy under a channel map Φ. Our second
ingredient is a stability estimate inspired by the positivity order condition by Gao and Rouzé [31] (see
also [46]) that
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(1 − ÿ)ý (ý) ≤ ÿý (ý) ≤ (1 + ÿ)ý (ý), ∀ ý ≥ 0 =⇒ ÿ (ÿ‖ý (ÿ)) ≤ ÿÿÿ (ÿ‖ÿý (ÿ)) (1.3)

for some constantÿÿ only depending on ÿ and the index of the ergodic mean projection E. Now, suppose
the condition (1.3) holds for time ý (ÿ) and ûnd

ÿ (ÿ‖ý (ÿ)) ≤ ÿÿÿ (ÿ‖ÿý (ÿ) (ÿ)) ≤ ÿÿ

(
ÿ ÿý (ÿ)

2ÿ

(ÿ) + ÿ (ÿ‖ÿ (ÿ−1)ý (ÿ)
ÿ

(ÿ))
)

≤ ÿÿÿÿÿý (ÿ)/2ÿ (ÿ),

where we apply (1.2) iteratively to the term ÿ (ÿ‖ÿ (ÿ−1)ý (ÿ)
ÿ

(ÿ)). Taking the limit ÿ→ ∞, we derive the

inequality

ÿ
(
ÿ‖ý (ÿ)

)
≤ ý (ÿ)

2
ÿÿÿ(ÿ(ÿ) ln ÿ),

which is the differential version of (1.1) with ÿ1 = 1
ÿÿ ý (ÿ) , called the modified logarithmic Sobolev

inequality (in short, MLSI). The largest possible constant ÿ1 in (1.1) is called the MLSI constant.

1.1. MLSI for GNS-symmetric semigroups

Many dynamics in quantum information processing are not trace symmetric. One major application of
open systems is state preparation by simulating time evolution governed by a Lindbladian

ÿ(ý) = ÿ[ℎ, ý] +∑
ÿ 2ÿ∗ÿýÿ ÿ − ÿ∗ÿÿ ÿý − ýÿ∗ÿÿ ÿ . (1.4)

A natural one is the Davies semigroup, which converges to the thermal Gibbs state ÿ = ÿ−ÿÿ

tr(ÿ−ÿÿ ) . For
any ûnite inverse temperature ÿ > 0, the Davies semigroup is never trace symmetric but satisûes the
following detailed balance condition

ÿ(ÿý (ý)ÿ) = ÿ(ýÿý (ÿ)), ∀ ý, ÿ

with respect to the Gibbs state ÿ, which we call GNS-symmetry. In this context, a breakthrough result
of MLSI constant ÿ1 was made by Gao and Rouzé [31] that

ÿ1 ≥ ÿ(ÿ)
ÿ (ý) (1.5)

for every GNS symmetric semigroups in ûnite dimensions. Here, ÿ(ÿ) is the spectral gap of the
semigroup generator L, and ÿ (ý) = inf{ÿ | ý ≤ ÿý (ý) , for all ý ≥ 0} is the Pimsner-Popa index for
the condition expectation ý = lim

ý→∞
ÿý . An important consequence of Gao and Rouzé9s estimate (1.5) is

the positivity of the complete MLSI constant ÿý (ÿ) = infÿ ÿ1(ÿ ⊗ idMÿ
) (in short, CMLSI constant),

ÿý ≥ ÿ

ÿýÿ (ý)
> 0, (1.6)

because the complete Pimsner-Popa index ÿýÿ (ý) = supÿ ÿ (ý ⊗ idMÿ
) is ûnite in ûnite dimensions.

The CMLSI constant is of particular interest because it satisûes the tensorization property ÿý (ÿý ⊗ ÿý ) =
min{ÿý (ÿý ), ÿý (ÿý )}, while the MLSI constant ÿ1 does not.

Our 8positivity order implies entropy decay9 argument above gives an exponential improvement to
(1.6) in terms of the dimension constant ÿýÿ (ý).
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Theorem 1.1 (cf. Theorem 3.2 and 4.10). Let ÿý : M → M be a quantum Markov semigroup GNS-

symmetric to a faithful normal state ÿ. Then the optimal CMLSI constant satisfies

ÿý ≥ 1

2ýýÿ (0.1)
, where ýýÿ (ÿ) := inf{ý > 0 | (1 − ÿ)ý ≤ýý ÿý ≤ýý (1 + ÿ)ý}.

Here, Ψ ≤ýý Φ means Ψ −Φ is a completely positive map. Moreover, in finite dimensions,

ÿ1 ≥ ÿý ≥ ÿ

2 ln(10ÿýÿ (ý))
. (1.7)

The quantity ýýÿ , called CB return time, is the mixing time in terms of complete positivity order.
Similar terms of complete positivity have been also considered in the quantum setting for the study of
approximate unitary t-design ([12]). In the fully non-ergodic noncommutative setting, ýýÿ was originally
introduced in [29] via completely bounded (CB) ÿ1 → ÿ∞ norm, whose connection to complete
positivity order and spectral gap relies heavily on operator space theory (see Section 3.2).

The proof to GNS-symmetric cases uses the ideas of Haagerup reduction [36], a method to derive
results for type III von Neumann algebras by reducing them to cases of tracial von Neumann algebras.
Thanks to this machinery, our estimate in trace-symmetric settings can be salvaged to a GNS-symmetric
semigroup on general ÿ-ûnite von Neumann algebras, including both classical systems and quantum
systems. A particular interesting example is a matrix version of the classical n-level death-birth process
which admits an invariant state ÿÿ ∝ (ÿ−ÿý )ý=0,..,ÿ and a Lindbladian given by nearest neighbor
interactions. In this example, we show that both the spectral gap is are uniformly controlled, and

ÿ ∼ Θ(1) , ÿ1 ∼ ÿý ∼ 1

ÿ
, ýýÿ ∼ ln(ÿýÿ (ý)) ∼ ÿ.

Hence, both estimates in our Theorem 1.1 are asymptotically tight for this GNS-symmetric example.

1.2. MLSI for matrix-valued functions

Besides the quantum setting, our results also provide interesting MLSI and concentration inequalities
for random matrices of arbitrary size. For a classical Markov semigroup ÿý : ÿ∞ (Ω, ÿ) → ÿ∞ (Ω, ÿ) on
some probability space (Ω, ÿ), the notion of CMLSI is basically a uniform MLSI for positive matrix-
valued random variables ý : Ω → Mÿ of all dimensions ÿ ≥ 1,

ÿ ◦ tr(ý ln ý − ýÿ (ý) ln ýÿ (ý)) ≤
1

2ÿ
ÿ ◦ tr((ÿý) ln ý). (1.8)

Here, ÿ( ÿ ) =
∫
ÿ ýÿ is the scalar valued mean, ýÿ (ý) =

∫
ýýÿ ∈ Mÿ is the matrix valued mean, and tr

is the standard matrix trace. In this setting, the CB return time ýýÿ is simply the ÿ∞-mixing time

ýÿ (ÿ) = {ý > 0| ‖ÿý − ýÿ : ÿ1 (Ω) → ÿ∞ (Ω) ‖≤ ÿ},

which is accessible by kernel estimates derived from harmonic analysis. As a consequence of Theo-
rem 1.1, we obtain CMLSI for all sub-Laplacians of Hörmander system.

Theorem 1.2. Let (ý, ý) be a compact connected Riemannian manifold without boundary, and ÿý vol
be a probability measure with a smooth density ÿ with respect to the volume form ý vol. Suppose

ÿ = {ÿÿ}ý
ÿ=1 ⊂ ÿý is a family of vectors fields satisfying the Hörmander’s condition that at every point

ý ∈ ý ,

ÿýý = span{[ÿÿ1 , [ÿÿ2 , · · · , [ÿÿÿ−1 , ÿÿÿ ]]] | 1 � ÿ1, ÿ2 · · · ÿÿ � ý, ÿ ≥ 1}.
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Then the horizontal heat semigroup ÿý = ÿ
−Δÿ ý generated by the sub-Laplacian

Δÿ =
∑

ÿ

ÿ∗
ÿ ÿÿ = −

∑
ÿ

ÿ2
ÿ + (divÿ (ÿÿ) + ÿÿ (lnÿ))ÿÿ

has CMLSI constant ÿý (Δÿ ) > 0. Here, ÿ∗
ÿ is the adjoint operator with respect to ÿ2 (ý,ÿý vol).

For scalar-valued functions, the positivity of ÿ1(Δÿ ) was proved by Ługiewicz and Zegarliński [53],
using a hypercontractive argument similar from [23]. Nevertheless, both [23] and [53] rely on the Rothaus
Lemma [68, 3], a crucial step which does not apply for matrix-valued functions (see Section 3.6).

In this setting, our Theorem 1.1 gives a short proof of

Heat kernel estimate + Spectral gap =⇒ LSI/MLSI (1.9)

for scalar-valued function, and also extends to matrix-valued setting by replacing LSI with CMLSI. A
particular interesting example, also covered in [28], is the Lie group ý = ÿý (2) with the canonical
sub-Laplacian Δÿ = −ÿ2 −ý2, where the Lie algebra ýÿ(2) is spanned by the Pauli matrices ÿ,ý and
ý = 1

2 [ÿ,ý ]. The CMLSI of heat semigroups (standard Laplacians) was obtained in [49, 14] using the
Ricci curvature lower bound as a crucial tool. Nevertheless, in the sub-elliptic case the Ricci curvature in
the degenerate direction of the vector ûeld ÿ = {ÿÿ}ý

ÿ=1 can be interpreted as −∞. In [28], the curvature
condition were substituted by a gradient estimate that was ûrst introduced by Driver and Melcher [24]
for Heisenberg group, later obtained for nilpotent Lie groups [54] and ÿý (2) [8]. Our Theorem 1.2
obtains CMLSI for all sub-Laplacian of Hörmander systems, without using any curvature condition. It
implies the following uniform CMLSI constant for trace symmetric Lindbladians as 8representation9 of
Hörmander system on Lie groups.

Corollary 1.3. Let G be a compact Lie group and ÿ = {ÿ1, · · · , ÿý } be a generating set of its Lie

algebra ý. There exists a constant ÿý (Δÿ ) > 0 such that for all unitary representation u, the induced

quantum Markov semigroup generated by

ÿÿ (ÿ) = −
ý∑

ÿ=1

[ýÿ (ÿÿ), [ýÿ (ÿÿ), ÿ]]

satisfies ÿý (ÿÿ ) ≥ ÿý (Δÿ ) > 0. Here, ýÿ is the Lie algebra homomorphism induced by u.

1.3. Concentration inequalities

An important application of MLSI is to derive concentration inequalities. This was ûrst discovered by
Otto and Villani [61], later extended to the discrete case by Erbar and Maas [26], and more recently to
the noncommutative setting in [69, 29, 16]. As an application of our MLSI estimate for GNS-symmetric
semigroups, we derive concentration inequalities for a general faithful invariant state ÿ. Recall that the
Lipschitz semi-norm

‖ý‖Lip = : max{‖ Γÿ (ý, ý) ‖
1
2 , ‖ Γÿ (ý∗, ý∗) ‖

1
2 }.

The Lipschitz semi-norm is deûned through the gradient form (or Carré du Champ operator)

Γÿ (ý, ÿ) =
1

2

(
ÿ(ý∗)ÿ + ý∗ÿ(ÿ) − ÿ(ý∗ÿ)

)
, ∀ý, ÿ ∈ dom(ÿ).

Theorem 1.4. Let M be a ÿ-finite von Neumann algebra and let ÿý = ÿ−ýÿ be a GNS-ÿ-symmetric

quantum Markov semigroup with positive MLSI constant ÿ1 (ÿ) > 0. Then there exists a universal

constant c such that for 2 ≤ ý < ∞,

ÿ‖ý − ý (ý)‖ÿý (M,ÿ) ≤ ý
√
ý ‖ ý ‖Lip .
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Moreover, for any ý > 0, there exists a projection e such that

‖ÿ(ý − ý (ý))ÿ‖∞ ≤ ý and ÿ(1 − ÿ) ≤ 2 exp

(
− ÿ2ý2

16ÿý2 ‖ ý ‖2
Lip

)
.

As a special case, we obtain the following matrix concentration inequalities which can be compared
to the work of Tropp [75].

Corollary 1.5. Let ÿ1, · · · , ÿÿ be an independent sequence of random ý × ý-matrices such that ‖
ÿÿ − Eÿÿ ‖∞≤ ý , ÿ.ÿ. Then, we have the matrix Bernstein inequality that for the sum ý =

∑ÿ
ý=1 ÿý ,

E ‖ ý − Eý ‖∞≤ 2ýÿ−1/2
√
(ÿ(ý) + ý2) log ý (1.10)

and the matrix Chernoff bound

ÿ(|ý − Eý | > ý) ≤ 2ý exp
(
− ý2

64ÿý2 (ÿ(ý) + ý2)

)
,

where

ÿ(ý) = max{‖E((ý − Eý)∗(ý − Eý)) ‖ , ‖E((ý − Eý)∗(ý − Eý)) ‖}.

In particular, the inequality (1.10) improves the term ý log ý in Tropp9s result [75] to ý
√

log ý. For
more details, see Example 5.18.

After the acceptance of this paper, we get to know the sub-Gaussian type estimate (1.10) of matrix
concentration was obtained by Huang and Tropp [38, 39] via matrix-valued Poincare inequality and
matrix-valued Bakry-Émery curvature condition. Actually, in the introduction of [39] they raise the
question whether the sub-gaussian estimate can be obtained by matrix-valued Log-Sobolev inequality.
Our result answers this question.

1.4. Outline of the paper

We organize our paper as follows to make it accessible for readers from different backgrounds. In
Section 2, we provide a brief review of quantum information basics in the setting of tracial von
Neumann algebras. We prove our key entropy difference lemma (Lemma 2.1) and an improved data
processing inequality (Theorem 2.5). Building upon these results, we discuss the functional inequalities
of symmetric quantum Markov semigroups in Section 3. We prove our main Theorem 1.1 in the trace
symmetric case and its consequence Theorem 1.2 for classical Markov semigroups. We also illustrate
the failure of the matrix-valued logarithmic Sobolev ineuqality in Proposition 3.15. The discussion up to
this point does not involve much technicality beyond the basic concepts of ûnite von Neumann algebras.
Readers from quantum information and classical analysis are welcome to consider examples such as the
matrix algebraMÿ and matrix-valued functions ÿ∞ (Ω,Mÿ).

In Section 4, we dive into the GNS-symmetric cases. Here, we discuss the Haagerup reduction for
channels and entropic quantities, deriving Theorem 1.1 (Theorem 4.10 and Corollary 4.13) in its full
generality. Section 5 collects applications of our general results Theorem 1.4 and Corollary 1.5. We
conclude the paper in Section 6 with some discussions on remaining open questions.

Notations. We use calligraphic letters M,N for von Neumann algebras and denoteMÿ as the algebra
of ÿ × ÿ as complex matrices. We use ÿ as the trace on von Neumann algebra, and tr as the standard
matrix trace. The identity operator is denoted by 1, and the identity map between spaces is denoted as
id, sometimes speciûed with subscript like 1M and idMÿ

. We write ÿ∗ as the adjoint element of a and
Φ∗ for a pre-adjoint map of Φ.
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2. Entropy contraction of symmetric Markov maps

2.1. States, channels and entropies

We brieüy review some basic information-theoretic concepts in the noncommutative setting. Recall that
a von Neumann algebra M is a unital ∗-subalgebra of ý(ÿ) closed under weak∗-topology. A linear
functional ÿ : M → C is called a state if it is positive, meaning ÿ(ý∗ý) ≥ 0 for any ý ∈ M, and
additionally, ÿ(1) = 1. We say ÿ is normal if ÿ is weak∗-continuous. Throughout the paper, we will only
consider normal states and denote ÿ(M) as the normal state space of M. We write ý(ÿ) as the support
projection of a state ÿ, which is the minimal projection e such that ÿ(ý) = ÿ(ÿýÿ) ,∀ ý ∈ M. A normal
state ÿ is faithful if ý(ÿ) = 1. For two normal states ÿ and ÿ, the relative entropy is deûned as

ÿ (ÿ | |ÿ) =
{
〈ÿÿ | logΔ (ÿ/ÿ) |ÿÿ〉, if ý(ÿ) ≤ ý(ÿ)
+∞, otherwise.

, (2.1)

where ÿÿ is a vector implementing the state ÿ, and Δ (ÿ/ÿ) is the relative modular operator. This form
of deûnition (2.1) was introduced by Araki [2] for general von Neumann algebras.

In this section, we will focus on the case that M is a ûnite von Neumann algebra. Namely, M
is equipped with a normal faithful tracial state ÿ. The tracial noncommutative ÿý-space ÿý (M, ÿ)
is deûned as the completion of M with respect to the p-norm ‖ ÿ ‖ý= ÿ(|ÿ |ý)1/ý. We identify
ÿ∞ (M) �M, and also ÿ1(M) �M∗ via the trace duality

ýÿ ∈ ÿ1 (M) ←→ ÿ ∈ M∗, ÿ(ý) = ÿ(ýÿý).

We say ÿ ∈ ÿ1 (M) is a density operator if ÿ ≥ 0 and ÿ(ÿ) = 1, which corresponds to a normal
state in the above identiûcation. We will often identify normal states with their density operators if no
ambiguity. Via this identiûcation, relative entropy reduces to the original deûnition of Umegaki [76],

ÿ (ÿ | |ÿ) = ÿ(ÿ log ÿ − ÿ logÿ),

provided this trace is well deûned. For example, for ÿ and ÿ in the bounded state space

ÿý (M) = {ÿ ∈ ÿ(M) | ÿ11 ≤ ÿ ≤ ÿ21 for some ÿ1, ÿ2 > 0},

the Umegaki9s formula is always well deûned and ûnite. For this reason, we will mostly work with
bounded states from ÿý (M) and derive results for general case ÿ(M) by approximation. When the
second state ÿ = 1, this gives the entropy functional

ÿ (ÿ) := ÿ (ÿ | |1) = ÿ(ÿ log ÿ).

Note that the standard convention of von Neumann entropy in quantum information literature is often
with an additional negative sign .

We say a linear map ÿ : M → M is a quantum Markov map if T is normal, unital and completely
positive. Recall that T is unital if ÿ (1) = 1. The pre-adjoint map ÿ∗ : M∗ → M∗ is called a quantum
channel, which sends normal states to normal states. In the tracial setting, ÿ∗ : ÿ1 (M) → ÿ1 (M)
given by

ÿ(ÿ∗ (ÿ)ÿ) = ÿ(ÿÿ (ÿ)), ∀ ÿ ∈ M, ÿ ∈ ÿ1 (M),

is completely positive and trace-preserving (in short, CPTP). A fundamental inequality about quantum
channel is the data processing inequality (also called monotonicity of relative entropy)

ÿ (ÿ | |ÿ) ≥ ÿ (ÿ∗ (ÿ) | |ÿ∗ (ÿ)), ∀ÿ, ÿ ∈ ÿ(M). (2.2)
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The data processing inequality states that two quantum states cannot become more distinguishable under
a quantum channel. The data processing inequality remains valid for T being positive but not necessarily
completely positive; see [56, 27]. The main technical result of this work is an improved data processing
inequality for quantum channels under symmetric conditions (Theorem 2.5).

2.2. Entropy contraction for unital quantum channels

We start our discussion on entropy contraction of unital quantum channels. The restriction of Φ on M

is bounded and normal; thus, Φ can be viewed as the ÿ1-norm extension of its restriction Φ : M → M.
By duality, its adjoint Φ∗ : M → M is a trace-preserving quantum Markov map and hence also extends
to a unital quantum channel.

For a state ÿ with ÿ (ÿ) < ∞, we deûne the entropy difference of Φ,

ÿΦ (ÿ) := ÿ (ÿ) − ÿ (Φ(ÿ)).

Non-negativity of the entropy difference ÿΦ (ÿ) ≥ 0 follows from data processing inequality (2.2) and
Φ(1) = 1,

ÿ (ÿ) = ÿ (ÿ | |1) ≥ ÿ (Φ(ÿ) | |Φ(1)) = ÿ (Φ(ÿ)).

We start with the key lemma in our argument.

Lemma 2.1 (Entropy difference lemma). Let Φ : ÿ1(M) → ÿ1 (M) be a unital quantum channel and

Φ∗ be its adjoint. Then for two bounded states ÿ, ÿ ∈ ÿý (M),

ÿ (ÿ‖Φ∗Φ(ÿ)) ≤ ÿΦ(ÿ) + ÿ (ÿ‖ÿ) ≤ ÿ((id−Φ∗Φ) (ÿ) ln ÿ) + ÿ (ÿ‖ÿ).

Proof. By duality, Φ∗ is also completely positive unital. Then,

ÿ (ÿ‖Φ∗Φ(ÿ)) = ÿ(ÿ ln ÿ − ÿ lnΦ∗Φ(ÿ))
= ÿ(ÿ ln ÿ −Φ(ÿ) logΦ(ÿ)) + ÿ(Φ(ÿ) logΦ(ÿ) − ÿ lnΦ∗Φ(ÿ))
= ÿΦ(ÿ) + ÿ

(
Φ(ÿ) logΦ(ÿ) − ÿ lnΦ∗Φ(ÿ)

)
(1)
≤ ÿΦ(ÿ) + ÿ

(
Φ(ÿ) logΦ(ÿ) − ÿΦ∗ ( lnΦ(ÿ)

) )
= ÿΦ(ÿ) + ÿ

(
Φ(ÿ) logΦ(ÿ) −Φ(ÿ) lnΦ(ÿ)

)
= ÿΦ(ÿ) + ÿ (Φ(ÿ)‖Φ(ÿ))
(2)
≤ ÿΦ(ÿ) + ÿ (ÿ‖ÿ),

where (2) follows from the monotonicity of relative entropy. The inequality (1) uses the operator
concavity [18] of logarithm function ý ↦→ ln ý that for any positive operator ý ≥ 0,

Φ∗(ln ý) ≤ lnΦ∗(ý).

This proves the ûrst inequality. For the second part, it suffices to notice that

ÿΦ (ÿ) =ÿ(ÿ log ÿ −Φ(ÿ) logΦ(ÿ)) ≤ ÿ(ÿ log ÿ −Φ(ÿ)Φ(log ÿ)) = ÿ(ÿ log ÿ −Φ∗Φ(ÿ) log ÿ),

where we use the operator concavity Φ(ln ý) ≤ lnΦ(ý) again. �

We iterate the above lemma as follows:

ÿ (ÿ | | (Φ∗Φ)ÿ (ÿ)) ≤ ÿΦ (ÿ) + ÿ (ÿ | | (Φ∗Φ)ÿ−1(ÿ)) ≤ ÿÿΦ (ÿ) + ÿ (ÿ | |ÿ) = ÿÿΦ (ÿ).
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Then a relevant question is what would be the limit of (Φ∗Φ)ÿ (ÿ) as ÿ → ∞. This leads to the
multiplicative domain of Φ. Recall that the multiplicative domain of a unital completely positive map
Φ is

NΦ = {ý ∈ M | Φ(ÿ)Φ(ý) = Φ(ÿý), Φ(ý)Φ(ÿ) = Φ(ýÿ),∀ÿ ∈ M}.

When Φ is normal, NΦ ⊂ M is a von Neumann subalgebra ([52, Theorem 1]). A linear map
ý : M → M is called a conditional expectation if E is a unital completely positive map and idempo-
tent ý ◦ ý = ý . When M is a ûnite von Neumann algebra, for any subalgebra N ⊂ M, there always
exists a (unique) trace-preserving conditional expectation E onto N such that

ÿ(ýÿ) = ÿ(ýý (ÿ)), ý ∈ N , ÿ ∈ M. (2.3)

Such E is a unital quantum channel.

Proposition 2.2. Let Φ : ÿ1(M) → ÿ1 (M) be a unital quantum channel, and let ý : M → N be the

trace-preserving conditional expectation onto the multiplicative domain N := NΦ. Then

i) Φ : N → Φ(N ) is a ∗-isomorphism with inverse Φ∗ : Φ(N ) → N . Moreover, Φ(N ) is the

multiplicative domain for Φ∗, and

(Φ∗Φ) ◦ ý = ý ◦ (Φ∗Φ) = ý, ý0 ◦Φ = Φ ◦ ý, (2.4)

where ý0 : M → Φ(N ) is the trace-preserving conditional expectation onto Φ(N ).
ii) Φ is an isometry on ÿ2 (N ). If, in addition, ‖ Φ(id−ý) : ÿ2 (M) → ÿ2 (M) ‖2< 1, then

ý = limÿ (Φ∗Φ)ÿ as a map from ÿ2 (M) to ÿ2 (M) .

Proof. It is clear that Φ is a ∗-homomorphism on N . For any ý, ÿ ∈ ÿ2 (N ) ⊂ ÿ2 (M),

ÿ(ÿ(Φ∗ ◦Φ) (ý)) = ÿ(Φ(ÿ)Φ(ý)) = ÿ(Φ(ýÿ)) = ÿ(ýÿ).

Thus, Φ∗ ◦Φ|N = idN is the identity map. This veriûes (Φ∗Φ) ◦ ý = ý . Since ý∗ = ý , ý ◦ (Φ∗Φ) = ý
follows from taking the adjoint. Thus, Φ : N → Φ(N ) is a ∗-isomorphism with inverse Φ∗. Denoting
N0 as the multiplicative domain for Φ∗, we have Φ(N ) ⊂ N0. Conversely, we also have Φ∗(ý0) ⊂ N

by switching the role of Φ = (Φ∗)∗. Then Φ(N ) = N0 since Φ is bijective on N . For ii), we note that
by (2.4),

(id−ý)Φ∗Φ(id−ý) = (id−ý) (Φ∗Φ − ý) = Φ∗Φ − ý, (Φ∗Φ − ý)ÿ = (Φ∗Φ)ÿ − ý.

Therefore,

‖Φ∗Φ − ý : ÿ2 (M) → ÿ2 (M) ‖=‖Φ(id−ý) ‖2
2< 1,

‖ (Φ∗Φ)ÿ − ý : ÿ2 (M) → ÿ2 (M) ‖=‖ (Φ∗Φ − ý)ÿ : ÿ2 (M) → ÿ2 (M) ‖=‖Φ(id−ý) ‖2ÿ
2 ,

which goes to 0 as ÿ→ ∞. �

In order to estimate entropic quantities, we will use the approximation in terms of complete positivity.
Recall that for a density operator ÿ ∈ ÿ(M) with full support, the Bogoliubov-Kubo-Mori (BKM)
metric for ÿ ∈ M is deûned by

ÿÿ (ÿ) :=

∫ ∞

0
ÿ(ÿ∗(ÿ + ý)−1ÿ (ÿ + ý)−1)ýý.
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The BKM metric is a Riemannian metric on the space of states with full support that is monotone under
any quantum channel Ψ,

ÿΨ(ÿ) (Ψ(ÿ)) ≤ ÿÿ (ÿ),∀ÿ ∈ M.

It connects to the relative entropy as follows ([31, Lemma 2.2]):

ÿ (ÿ | |ÿ) =
∫ 1

0

∫ ý

0
ÿÿý

(ÿ − ÿ)ýýýý =
∫ 1

0
(1 − ý)ÿÿý

(ÿ − ÿ)ýý, (2.5)

where ÿý = ýÿ + (1 − ý)ÿ for ý ∈ [0, 1]. It is proved in [31, Lemma 2.1 & 2.2] that if ÿ ≤ ýÿ,

ýÿÿ (ÿ) ≤ ÿÿ (ÿ), ∀ÿ ∈ M

ý (ý)ÿÿ (ÿ − ÿ) ≤ ÿ (ÿ | |ÿ) ≤ ÿÿ (ÿ − ÿ), (2.6)

where ý (ý) = ý ln ý−ý+1
(ý−1)2 . The above discussion remains valid if ý(ÿ) ≤ ý(ÿ) and ÿ ∈ ý(ÿ)Mý(ÿ). For

two positive maps Ψ and Φ, we write Φ ≤ Ψ if Ψ −Φ is positive.

Lemma 2.3. Let E be a conditional expectation (not necessarily trace-preserving) and Ψ be a quantum

Markov map such that

(1 − ÿ)ý ≤ Ψ ≤ (1 + ÿ)ý.

Assume that ý ◦ Ψ = ý . Then for any ÿ ∈ ÿ(M),

ÿ (ÿ | |Ψ∗ (ÿ)) ≥
(1 − ÿ
1 + ÿ − ÿ

(1 − ÿ)ý (2)
)
ÿ (ÿ | |ý∗ (ÿ)).

In particular, for ÿ = 1
10 ,

ÿ (ÿ | |Ψ∗ (ÿ)) ≥
1

2
ÿ (ÿ | |ý∗ (ÿ)).

Proof. By assumption, Ψ∗ = (1 − ÿ)ý∗ + ÿΨ0 for some unital positive map Ψ0 ≤ 2ý∗. We denote
ÿ = ý∗(ÿ), ÿ̃ = Φ∗(ÿ) and ÿ = Ψ0(ÿ). Then ÿ̃ = (1 − ÿ)ÿ + ÿÿ. Note that for any bounded state
ÿ ∈ ÿý (M), ÿ ↦→

√
ÿÿ (ÿ) is a Hilbert space norm. Then by the triangle inequality,

√
ÿ(ÿ − ÿ̃) =

√
ÿ(ÿ − (1 − ÿ)ÿ − ÿÿ)

=
√
ÿ((ÿ − ÿ) + ÿ(ÿ − ÿ))

≥
√
ÿ(ÿ − ÿ) − ÿ

√
ÿ(ÿ − ÿ),

where ÿ can be ÿÿ for any bounded state ÿ ∈ ÿý (M). Then

ÿ(ÿ − ÿ̃) ≥ ÿ(ÿ − ÿ) − 2ÿ
√
ÿ(ÿ − ÿ)

√
ÿ(ÿ − ÿ) + ÿ2ÿ(ÿ − ÿ)

≥ ÿ(ÿ − ÿ) − 2ÿ
√
ÿ(ÿ − ÿ)

√
ÿ(ÿ − ÿ)

≥ ÿ(ÿ − ÿ) − ÿÿ(ÿ − ÿ) − ÿÿ(ÿ − ÿ)
= (1 − ÿ)ÿ(ÿ − ÿ) − ÿÿ(ÿ − ÿ).
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Now take ÿý = ýÿ + (1 − ý)ÿ and ÿ̃ý = ýÿ + (1 − ý)ÿ̃,

ÿ (ÿ | |ÿ̃) =
∫ 1

0
(1 − ý)ÿÿ̃ý

(ÿ − ÿ̃)ýý

≥ (1 − ÿ)
∫ 1

0
(1 − ý)ÿÿ̃ý

(ÿ − ÿ)ýý − ÿ
∫ 1

0
(1 − ý)ÿÿ̃ý

(ÿ − ÿ)ýý.

For the ûrst term, because ÿ̃ý ≤ (1 + ÿ)ÿý ,

∫ 1

0
(1 − ý)ÿÿ̃ý

(ÿ − ÿ)ýý ≥ (1 + ÿ)−1
∫ 1

0
(1 − ý)ÿÿý

(ÿ − ÿ)ýýýý = (1 + ÿ)−1ÿ (ÿ | |ÿ).

For the second term, consider that ÿ̃ý ≥ (1 − ÿ) (1 − ý)ÿ,

∫ 1

0
(1 − ý)ÿÿ̃ý

(ÿ − ÿ)ýý ≤ 1

(1 − ÿ)

∫ 1

0
ÿÿ (ÿ − ÿ)ýý

=
1

(1 − ÿ) ÿÿ (ÿ − ÿ)

(1)
≤ 1

(1 − ÿ)ý (2)ÿ (ÿ| |ÿ)

=
1

(1 − ÿ)ý (2)ÿ (Ψ∗(ÿ) | |ÿ)
(2)
≤ 1

(1 − ÿ)ý (2)ÿ (ÿ | |ÿ).

Here, the inequality (1) above uses ÿ ≤ 2ÿ and (2.6). The inequality (2) above follows from the
monotonicity of relative entropy and the fact Ψ∗(ÿ) = ÿ. Combining the estimated above, we obtained

ÿ (ÿ | |ÿ̃) ≥ 1 − ÿ
1 + ÿ ÿ (ÿ | |ÿ) − ÿý (2)−1ÿ (ÿ | |ÿ) =

(1 − ÿ
1 + ÿ − ÿ

(1 − ÿ)ý (2)
)
ÿ (ÿ | |ÿ),

where ý (2) = 2 ln 2 − 1. The above inequality is nontrivial for ÿ such that

1 − ÿ
1 + ÿ − ÿ

(1 − ÿ)ý (2) > 0.

Taking ÿ = 0.1, the above expression is approximately 0.53 > 1
2 . �

Remark 2.4. This lemma is related to [47, Corollary 2.15] and is a variant of [31, Theorem 5.3], which
proves for GNS symmetric Φ,

ÿ (ÿ | | (Φ∗)2(ÿ)) ≥ (1 − ÿ2ý (2)−1)ÿ (ÿ | |ý∗ (ÿ)). (2.7)

Compared with [47, Corollary 2.15], the above Lemma assumes a simpler condition and may achieve a
stronger constant in certain regimes of interest. The above Lemma improves (2.7) from two points: 1)
does not need any symmetric assumption; 2) remove the square in Φ2

∗. When Ψ∗ = Φ2
∗ is a square, (2.7)

could yield better bound that for ÿ = 0.4,

(1 − (0.4)2ý (2)−1) > 1

2
>

1

4
>

1 − 0.42

1 + 0.42
− 0.42

(1 − 0.42)ý (2)
.

Putting the above lemma together, we obtain the following entropy contraction of unital quantum
channels.
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Theorem 2.5. Let Φ be a unital quantum channel and let ý : M → N be the trace-preserving

conditional expectation onto the multiplicative domain N of Φ. Define the CB return time

ýýÿ (Φ) := inf{ý ∈ N+ | 0.9ý ≤ýý (Φ∗Φ)ý ≤ýý 1.1ý} . (2.8)

Then for any state ÿ ∈ ÿ(M),

ÿ (Φ(ÿ) | |Φ ◦ ý (ÿ)) ≤
(
1 − 1

2ýýÿ (Φ)
)
ÿ (ÿ | |ý (ÿ)) . (2.9)

Furthermore, for any finite von Neumann algebra Q and state ÿ ∈ ÿ(M⊗Q),

ÿ (Φ ⊗ id(ÿ) | | (Φ ◦ ý) ⊗ id(ÿ)) ≤
(
1 − 1

2ýýÿ (Φ)
)
ÿ (ÿ | |ý ⊗ id(ÿ)). (2.10)

Proof. It suffices to consider a bounded state ÿ ∈ ÿý (M). Note that by the conditional expectation
property (2.3),

ÿ (ÿ | |ý (ÿ)) = ÿ(ÿ log ÿ − ÿ log ý (ÿ)) = ÿ(ÿ log ÿ) − ÿ(ý (ÿ) log ý (ÿ)) = ÿ (ÿ) − ÿ (ý (ÿ)),
ÿ (Φ(ÿ) | |Φ ◦ ý (ÿ)) =ÿ (Φ(ÿ) | |ý0 ◦Φ(ÿ)) =ÿ (Φ(ÿ)) −ÿ (ý0 ◦Φ(ÿ)) =ÿ (Φ(ÿ)) −ÿ (Φ ◦ ý (ÿ)),

where we used the property Φ ◦ ý = ý0 ◦Φ from Proposition 2.2. Moreover, ÿ (ý (ÿ)) = ÿ (Φ ◦ ý (ÿ))
as Φ is a trace-preserving ∗-isomorphism on N . Thus, we have

ÿΦ(ÿ) = ÿ (ÿ) − ÿ (Φ(ÿ)) = ÿ (ÿ | |ý (ÿ)) − ÿ (Φ(ÿ) | |Φ ◦ ý (ÿ)).

Iterating the entropy difference Lemma 2.1, we have

ÿ (ÿ‖(Φ∗Φ)ý (ÿ)) ≤ ÿΦ (ÿ) + ÿ (ÿ‖(Φ∗Φ)ý−1(ÿ))
≤ ýÿΦ (ÿ) + ÿ (ÿ‖ÿ)
= ý (ÿ (ÿ | |ý (ÿ)) − ÿ (Φ(ÿ) | |Φ ◦ ý (ÿ)).

Now using Lemma 2.3, for ý = ýýÿ (Φ),

ÿ (ÿ | |ý (ÿ)) ≤ 2ÿ (ÿ‖(Φ∗Φ)ý ÿ)) ≤ 2ý
(
ÿ (ÿ | |ý (ÿ)) − ÿ (Φ(ÿ) | |Φ ◦ ý (ÿ))

)
.

Rearranging the terms gives the assertion. The general case ÿ ∈ ÿ(M) can be obtained via approximation
ÿÿ = (1− ÿ)ÿ + ÿ1 as [14, Lemma A.2]. The same argument applies to idQ ⊗Φ, because the CB return
time ýýÿ (idQ ⊗Φ) = ýýÿ (Φ) is same as of Φ by the deûnition. �

The above theorem is an improved data processing inequality for the relative entropy between a state
ÿ and its conditional expectation ý (ÿ). Here, N is the 8decoherence free9 subalgebra. Indeed, for any
two states ÿ1, ÿ2 ∈ N ,

ÿ (ÿ1 | |ÿ2) ≥ ÿ (Φ(ÿ1) | |Φ(ÿ2)) ≥ ÿ (Φ∗Φ(ÿ1) | |Φ∗Φ(ÿ2)) = ÿ (ÿ1 | |ÿ2)

does not decay. Outside the 8decoherence free9 subalgebra N , the relative entropy from a state ÿ to its
projection ý (ÿ) on N is strictly contractive under every use of the channel Φ.

For Φ being a symmetric quantum Markov map, we have Φ = Φ∗. Moreover, Proposition 2.2
reduces to

Φ ◦ ý = ý ◦Φ , Φ2 ◦ ý = ý ◦Φ2 = ý.
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Then

ÿ (Φ2 (ÿ)‖ý (ÿ)) = ÿ (Φ2 (ÿ)‖Φ2 ◦ ý (ÿ)) = ÿ (Φ2 (ÿ)‖Φ ◦ ý ◦Φ(ÿ))

≤ (1 − 1

2ýýÿ (Φ) )ÿ (Φ(ÿ)‖ý ◦Φ(ÿ)) = (1 − 1

2ýýÿ (Φ) )ÿ (Φ(ÿ)‖Φ ◦ ý (ÿ))

≤ (1 − 1

2ýýÿ (Φ) )
2ÿ (ÿ‖ý (ÿ)).

We can iterate the entropy contraction above and obtain the discrete time entropy decay,

ÿ (Φ2ÿ (ÿ) | |ý (ÿ)) ≤ (1 − 1

2ýýÿ (Φ) )
2ÿÿ (ÿ | |ý (ÿ)).

3. Complete modified log-Sobolev inequality for symmetric Markov semigroups

3.1. Functional inequalities

In this section, we discuss a continuous time relative entropy decay for symmetric quantum Markov
semigroups. We ûrst review some basics of quantum Markov semigroups. A quantum Markov semigroup
(ÿý )ý≥0 : M → M is a family of maps satisfying

i) for each ý ≥ 0, ÿý is a quantum Markov map (i.e., normal, completely positive and unital)
ii) ÿ0 = idM and ÿý ◦ ÿý = ÿý+ý for any ý, ý ≥ 0.
iii) for ý ∈ M, ý ↦→ ÿý (ý) is weak∗-continuous.

The generator of the semigroup is deûned as

ÿý = ý∗- lim
ý→0

1

ý
(ý − ÿý (ý))

on the domain of L that the limit exists. In this section, we still consider M as a ûnite von Neumann
algebra equipped with a normal faithful tracial state ÿ. Given (ÿý )ý≥0 is symmetric (or more speciûcally,
trace-symmetric), that is,

ÿ(ý∗ÿý (ÿ)) = ÿ(ÿý (ý)∗ÿ) , ∀ý, ÿ ∈ M, ý ≥ 0,

the generator L is a positive, symmetric operator, densely deûned on ÿ2 (M). Its kernel is the ûxed-point
subspaceN := ker(ÿ) = {ý ∈ M | ÿý (ý) = ý,∀ý ≥ 0}, which coincides with the common multiplicative
domain of all ÿý – hence a von Neumann subalgebra. Moreover, each ÿý is an N -bimodule map

ÿý (ÿýÿ) = ÿÿý (ý)ÿ, ∀ ÿ, ÿ ∈ N , ý ∈ M.

In particular, we have

ÿý ◦ ý = ý ◦ ÿý = ý,

where ý : M → N is the trace-preserving conditional expectation onto the ûxpoint algebra N . We say
(ÿý ) is ergodic if N = C1 is trivial. Note that in the mathematical physics literature, it is common to
use primitive instead of ergodic. In this case, the semigroup admits a unique invariant state – namely,
the trace ÿ up to normalization. We will consider symmetric quantum Markov semigroups that are not
necessarily ergodic.

Recall that a semigroup is equivalently determined by its Dirichlet form

E : ÿ2 (M) → [0,∞] , E (ý, ý) = ÿ(ý∗ÿý).
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We write dom(ÿ) for the domain of L and dom(E) for the domain of E . The Dirichlet subalgebra is
deûned as AE := dom(E) +M. It was proved [21] that AE is a dense ∗-subalgebra of M and a core of
ÿ1/2. We denote by

ÿ(AE ) = ÿ(M) +AE , ÿý (AE ) = ÿý (M) +AE

the set of bounded density operators from AE . We now introduce the formal deûnitions of functional
inequalities for quantum Markov semigroups.

Definition 3.1. Letÿý = ÿ
−ÿý : M → M be a symmetric quantum Markov semigroup and ý : M → N

be the trace-preserving conditional expectation onto its ûxed point space. We say ÿý satisûes

i) the Poincaré inequality (PI) for ÿ > 0 if

ÿ ‖ ý − ý (ý) ‖2
2 ≤ E (ý, ý), ∀ý ∈ AE , (3.1)

ii) the log-Sobolev inequality (LSI) for ÿ > 0 if

ÿÿ
(
|ý |2 ln |ý2 | − ý (|ý2 |) ln ý (|ý2 |)

)
≤ 2E (ý, ý), ∀ý ∈ AE , (3.2)

iii) the modiûed log-Sobolev inequality (MLSI) for ÿ > 0 if

2ÿÿ (ÿ | |ý (ÿ)) ≤ E (ÿ, ln ÿ), ∀ÿ ∈ ÿý (AE ), (3.3)

iv) the complete modiûed log-Sobolev inequality (CMLSI) for ÿ > 0 if idQ ⊗ÿý satisûes ÿ-MLSI
inequality for any ûnite von Neumann algebra Q.

The optimal (largest possible) constants for PI, LSI, MLSI and CMLSI will be denoted respectively as
ÿ(ÿ), ÿ2 (ÿ), ÿ1 (ÿ) and ÿý (ÿ) (or ÿ, ÿ2, ÿ1 and ÿý in short if the generator is clear).

The Poincaré inequality (3.1) is equivalent to the spectral gap of L as a positive operator. LSI (3.2)
is equivalent to hypercontractivity [60]

‖ÿý : ÿ2 (M) → ÿý (M) ‖ ≤ 1 if ý ≤ 1 + ÿ2ÿý . (3.4)

MLSI (3.3) is known to be equivalent to the exponential decay of relative entropy ([5, Theorem 3.2] and
[14, Proposition A.3]) that

ÿ (ÿý (ÿ) | |ý (ÿ)) ≤ ÿ−2ÿýÿ (ÿ | |ý (ÿ)), ∀ÿ ∈ ÿ(M). (3.5)

The equivalence of (3.3) and (3.5) is obtained by differentiating the relative entropy for ÿý at 0, which
leads to the entropy production on the R.H.S of MLSI

ýÿ (ÿ) := E (ÿ, ln ÿ) = − ý
ýý

|ý=0ÿ (ÿý (ÿ) | |ý (ÿ)) = ÿ(ÿ(ÿ) ln ÿ).

It is well known that

ÿ2 ≤ ÿ1 ≤ ÿ.

The main motivation to consider CMLSI over MLSI and LSI is the tensorization property

ÿý (ÿ1 ⊗ id+ id ⊗ÿ2) = min{ÿý (ÿ1), ÿý (ÿ2)}, (3.6)

which in the quantum cases fails for ÿ1 [14, Section 4.4], and is only known to hold for ÿ2 for limited
examples in small dimensions. The main result of this section is Theorem 1.1, which asserts a lower
bound

https://doi.org/10.1017/fms.2024.117 Published online by Cambridge University Press



Forum of Mathematics, Sigma 15

ÿý (ÿ) ≥
1

2ýýÿ (ÿ)

by the inverse of CB return time

ýýÿ (ÿ) = inf{ý > 0 | (1 − 0.1)ý ≤ýý ÿý ≤ýý (1 + 0.1)ý}. (3.7)

Here, we set ÿ = 0.1 for the notation ýýÿ (ÿ) in Theorem 1.1 because of Lemma 2.3.

Theorem 3.2. Let ÿý = ÿ
−ÿý : M → M be a symmetric quantum Markov semigroup and ý : M → N

be the trace-preserving conditional expectation onto the fixed point subalgebra N . Define the CB return

time as

ýýÿ (ÿ) = inf
{
ý > 0 | 0.9ý ≤ýý ÿý ≤ýý 1.1ý

}
.

Then

1

2ýýÿ (ÿ)
≤ ÿý (ÿ) ≤ ÿ1 (ÿ).

Proof. Let ýÿ = ýýÿ (ÿ)/2ÿ for some ÿ ∈ N+. Since ÿý is symmetric, ÿ∗
ýÿ
ÿýÿ = ÿýÿÿýÿ = ÿ2ýÿ . Hence,

ÿýÿ has discrete return time ýýÿ (ÿýÿ ) = ÿ. By the Lemma 2.1, for any ÿ ∈ ÿý (M),

ÿ (ÿýÿ (ÿ) | |ý (ÿ)) ≤(1 − 1

2ÿ
)ÿ (ÿ | |ý (ÿ)).

Write ýýÿ = ýýÿ (ÿ). Now assume further ÿ ∈ ,ý>0ÿý (M) ⊂ dom(ÿ). We have by Theorem 2.5,

ý (ÿ) = lim
ý→0

ÿ (ÿ | |ý (ÿ)) − ÿ (ÿý (ÿ) | |ý (ÿ))
ý

= lim
ÿ→∞

ÿ (ÿ | |ý (ÿ)) − ÿ (ÿ ýýÿ
2ÿ

(ÿ) | |ý (ÿ))
ýýÿ
2ÿ

≥ lim
ÿ→∞

1
2ÿ
ÿ (ÿ | |ý (ÿ))

ýýÿ
2ÿ

=
1

ýýÿ

ÿ (ÿ | |ý (ÿ)).

The entropy decay for general ÿ ∈ ÿ(M) can be obtained by approximation as in the Appendix [14,
Appendix]). This proves ÿ1(ÿ) ≥ 1

2ýýÿ (ÿ) . The same argument applies to idQ ⊗ÿ yields the assertion

ÿý (ÿ) ≥ 1
2ýýÿ (ÿ) . �

Remark 3.3. a) For LSI constant ÿ2, the Ω( 1
ýýÿ

) lower bounds were obtained for ergodic semigroups in
both classical [23] and quantum setting [74]. These bounds as well as our bound for ÿý are asymptotic
tight (See Example 5.6 and Section 5.3).

b) In [14], a similar estimate ÿý ≥ Ω( 1
ýýÿ

) was obtained for semigroups that admits non-negative
entropic Ricci curvature lower bound. The entropy Ricci curvature lower bound for quantum Markov
semigroup was introduced by Carlen and Mass [15] using ÿ-displacement convexity of entropy func-
tionals H w.r.t to certain noncommutative Wasserstein distance, inspired from Lott and Villani [51],
and Sturm9s [71] work on metric measure spaces. For heat semigroups on Riemmannian manifold, the
entropy Ricci curvature lower bound follows from a lower bound of the Ricci curvature tensor. Never-
theless, in the noncommutative case, these entropy Ricci curvature lower bounds for quantum Markov
semigroup are in general hard to verify. So far, most examples rely on certain interwining relation
∇ÿý = ÿ

−ÿýÿ̃ý∇ between the semigroup ÿý and a gradient operator ∇ (see [15, 13, 81]).
c) Our Theorem 1.1 here does not rely on any curvature conditions, which uses only information

theoretic tools such as entropic quantities and inequalities. To the best of our knowledge, this direct proof
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is even novel in the classical setting. It is worth pointing out that the deûnition of relative entropy as well
as its exponential decay of relative entropy is independent of the choice of the trace, which also shows
the naturalness of our approach and the extension to non-tracial von Neumann algebras in Section 4.

3.2. CB return time

We now consider a common scenario where the CB return time ýýÿ is ûnite. The original motivation for
the notion, despite deûning using CP (completely positive) order (3.7), is the following characterization
using CB (completely bounded) norm. Recall that a linear map Ψ : M → M is called a N -bimodule
map if

Ψ(ÿýÿ) = ÿΨ(ý)ÿ, ∀ ÿ, ÿ ∈ N , ý ∈ M.

Proposition 3.4. Let N ⊂ M be a subalgebra and ý : M → N be the trace-preserving conditional

expectation. Let Ψ : M → M be an N -bimodule ∗-preserving map. For any ÿ > 0, the following two

conditions are equivalent:

i) (1 − ÿ)ý ≤ýý Ψ ≤ýý (1 + ÿ)ý ;

ii) ‖Ψ − ý : ÿ1
∞ (N ⊂ M) → ÿ∞ (M) ‖ýÿ≤ ÿ.

The condition ii) above is the completely bounded norm from the space ÿ1
∞ (N ⊂ M) to M.

ÿ1
∞ (N ⊂ M) is called a conditional ÿ∞ space, deûned as the completion of M with respect to the

norm

‖ ý ‖ÿ1
∞ (N ⊂M)= sup

ÿ,ÿ∈N , ‖ÿ ‖2=‖ÿ ‖2=1
‖ ÿýÿ ‖1,

where the supremum takes over all ÿ, ÿ ∈ ÿ2 (N ) with ‖ÿ‖2 = ‖ÿ‖2 = 1. The operator space structure
of ÿ1

∞ (N ⊂ M) is given by the identiûcation

Mÿ (ÿ1
∞ (N ⊂ M)) = ÿ1

∞ (Mÿ (N ) ⊂ Mÿ (M))

(see [42] and [30, Appendix]). Proposition 3.4 is relatively self-evident in the ergodic case N = C1,
ÿ1
∞ (N ⊂ M) � ÿ1 (M), which we illustrate below.

Example 3.5 (Classical case). Let (Ω, ÿ) be a probability space. Let ÿ : ÿ∞ (Ω) → ÿ∞ (Ω) be a linear
map with kernel ÿ( ÿ ) (ý) =

∫
Ω
ý (ý, ÿ) ÿ (ÿ)ýÿ(ÿ). It is clear that P is ∗-preserving (i.e., ÿ( ÿ̄ ) = ÿ( ÿ ) if

k is real); P is a positive map if and only if the kernel function ý ≥ 0. Recall the expectation map

ýÿ : ÿ∞ (Ω) → C1 , ý ( ÿ ) = (
∫
Ω

ÿ ÿ)1,

where 1 is the unit constant function. The kernel of ýÿ is the constant function 1 on the product space
Ω ×Ω. The following equivalence is self-evident:

(1 − ÿ)ý ≤ ÿ ≤ (1 + ÿ)ý ⇐⇒ ÿý ≤ ÿ − ý ≤ ÿý
⇐⇒ ÿ1 ≤ ý − 1 ≤ ÿ1
⇐⇒ ‖ ý − 1 ‖ÿ∞ (Ω⊗Ω)≤ ÿ
⇐⇒ ‖ ÿ − ý : ÿ1 (Ω) → ÿ∞ (Ω) ‖≤ ÿ. (3.8)

To see the equivalence in terms of complete positivity and completely bounded norm in Proposition 3.4,
it suffices to notice that every positive (resp. bounded) map to ÿ∞ (Ω) is automatically completely
positive (resp. completely bounded with same norm [70]).
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Example 3.6 (Quantum case). The above argument also applies to the noncommutative ergodic case
N = C1 ⊂ M. The correspondence between the map P and its kernel k generalizes to the isomorphism
between the map T and its Choi operator ÿÿ ∈ Mýý⊗M

ÿ (ý) = ÿ ⊗ id(ÿÿ (ý ⊗ 1)), ý ∈ ÿ1 (M) � (Mýý)∗,

where Mýý is the opposite algebra of M. The isomorphism ÿ ↦→ ÿÿ is not only positivity-preserving
by Choi9s Theorem ( T is CP iff ÿÿ ≥ 0), but also isometric by Effros-Ruan Theorem (see [25, 10]),

‖ÿ : ÿ1 (M) → ÿ∞ (M) ‖ýÿ=‖ÿÿ ‖Mýý⊗M .

Then the equivalence in Proposition 3.4 follows as (3.8).

For the general case of a N -bimodule map T with a nontrivial N , the above isomorphism holds
with more involved module Choi operator, which we refer to the discussion in Section 4.3 and also [6,
Lemma 5.1] and [29, Lemma 3.15] for the complete proof of Proposition 3.4.

With Proposition 3.4, the CB-return time can be equivalently deûned as

ýýÿ (ÿ) := inf{ ý > 0 | ‖ÿý − ý : ÿ1
∞ (N ⊂ M) → ÿ∞ (M) ‖ýÿ≤ 0.1}. (3.9)

It is known that ýýÿ is ûnite whenever ÿý satisûes the Poincaré inequality and one-point ultra-contractive
estimate.

Proposition 3.7. Let ÿý : M → M be a symmetric quantum Markov semigroup and ý : M → N be

the trace-preserving conditional expectation onto the fixed point space. Suppose

i) ÿý satisfies the Poincaré inequality: ÿ > 0 such that ‖ÿý − ý : ÿ2 (M) → ÿ2 (M) ‖≤ ÿ−ÿý , ∀ý ≥ 0;

ii) There exists ý0 ≥ 0 such that ‖ÿý0 : ÿ1
∞ (N ⊂ M) → ÿ∞ (M) ‖ýÿ≤ ÿ0.

Then ýýÿ ≤ 1
ÿ

ln(10ÿ0) + ý0.

Proof. This is now a standard argument similar to [14, Proposition 3.8] and [31, Lemma B.1]. �

Remark 3.8. For the special case of ý0 = 0 and ÿ0 = id : M → M, we consider

‖ id : ÿ1
∞ (N ⊂ M) → ÿ∞ (M) ‖ýÿ= inf{ ÿ > 0 | id ≤ýý ÿý} := ÿýÿ (ý).

ÿýÿ (ý) was introduced in [30] as the complete bounded version of Popa and Pimsner9s subalgebra
index [67],

ÿ (ý) := inf{ÿ > 0 | ÿ ≤ ÿýÿ, ∀ÿ ∈ M+}, ÿýÿ (ý) := sup
ÿ

ÿ (ý ⊗ idMÿ
).

WhenM is ûnite dimensional, both the indexÿ (ý) andÿýÿ (ý) are ûnite and admit the explicit formula
[67, Theorem 6.1]. In this case, one can take ý0 = 0 in above Proposition 3.7 and yields

ýýÿ ≤ ln(10ÿýÿ (ý))
ÿ

.

3.3. Classical Markov semigroups

In the remainder of this section, we focus on applications toward classical Markov map. We postpone the
discussion of truly noncommutative semigroups to Section 4. Let ÿý = ÿ

−ÿý : ÿ∞ (Ω, ÿ) → ÿ∞ (Ω, ÿ)
be an ergodic Markov semigroup symmetric to the probability measure ÿ. Note that in the ergodic
case ÿ1

∞ (C1 ⊂ ÿ∞ (Ω)) = ÿ1 (Ω, ÿ), and by Smith9s lemma [70], any bounded map ÿ : ÿ1 (Ω, ÿ) →
ÿ∞ (Ω, ÿ) is automatic completely bounded

‖ÿ : ÿ1 (Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖=‖ÿ : ÿ1(Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖ýÿ .
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Then the CB return time ýýÿ reduces to the standard ÿ∞-mixing time

ýÿ (ÿ) = inf{ ý > 0 | ‖ÿý − ý : ÿ1 (Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖≤ ÿ}.

Then by a combination of Theorem 1.1 and Proposition 3.7, we obtain the following theorem.

Theorem 3.9. Let ÿý = ÿ
−ýÿ : ÿ∞ (Ω, ÿ) → ÿ∞ (Ω, ÿ) be an ergodic Markov semigroup symmetric to

the probability measure ÿ. Suppose

i) ÿý satisfies ÿ-Poincaré inequality for some ÿ > 0: for ÿ ∈ dom(ÿ1/2),

ÿÿ(| ÿ − ýÿ ( ÿ ) |2) ≤
∫

ÿ (ÿ ÿ )ýÿ. (3.10)

ii) There exists ý0 > 0 such that

‖ÿý0 : ÿ1 (Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖≤ ÿ0. (3.11)

Then

ÿ1 ≥ ÿý ≥ ÿ

2(ÿý0 + lnÿ0 + 2) . (3.12)

This result can be compared to the bound of Diaconis and Saloff-Coste [23, Theoem 3.10], which
states1

ÿ1 ≥ ÿ2 ≥ ÿ

ÿý0 + ln(ÿ0) + 1
. (3.13)

In particular, ÿ1 ≥ ÿ2 ≥ 2
ýÿ (ÿ−2) for the alternative ÿ∞-mixing time

ýÿ (ÿ−2) = inf{ý > 0 | ‖ÿý − ýÿ : ÿ1 (Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖≤ 1

ÿ2
}.

By the comparison ÿ−3 < 0.1 < ÿ−2, we have ýÿ (ÿ−2) ≤ ýÿ (0.1) ≤ 3
2 ýÿ (ÿ−2). Hence, in terms of lower

bound for ÿ1, (3.13) and (3.12) are equivalent up to absolute constants. The difference is that (3.13)
lower bounds the LSI constant ÿ2 and our estimate (3.12) bounds the CMLSI constant ÿý .

For ûnite Markov chains with |Ω| < ∞, we have ûnite index

ÿýÿ (ýÿ) = ÿ (ýÿ) = inf{ÿ > 0 | ÿ ≤ ÿÿ( ÿ ) ∀ ÿ ≥ 0} =‖ ÿ−1 ‖∞,

where ÿ is a strictly positive probability density function. It was proved in [23] that

1

ýÿ (ÿ−2)
≤ ÿ ≤ 2 + log ‖ ÿ−1 ‖∞

2ýÿ (ÿ−2)
, (3.14)

1

ýÿ (ÿ−2)
≤ ÿ2 ≤ 4 + log log ‖ ÿ−1 ‖∞

2ýÿ (ÿ−2)
. (3.15)

Combined with our Theorem 1.1, we obtain the following:

Corollary 3.10. For a finite Markov chain ÿý : ý∞ (Ω, ÿ) → ý∞ (Ω, ÿ) symmetric to ÿ,

min
{ 4ÿ2

3(4 + log log ‖ ÿ−1 ‖∞)
,

ÿ

2 log(10 ‖ ÿ−1 ‖∞)

}
≤ ÿý ≤ ÿ1 ≤ ÿ.

1Note that the LSI constant in [23] is deûned as half of our ÿ2 here.
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Proof. Note that ýÿ (ÿ−2) ≤ ýýÿ (0.1) ≤ 3
2 ýÿ (ÿ−2). Then by Theorem 1.1 and (3.15),

ÿý ≥ 1

2ýýÿ (0.1)
≥ 1

3ýÿ (ÿ−2)
≥ 2ÿ2

3(4 + log log ‖ ÿ−1 ‖∞)
.

The other lower bound ÿý ≥ ÿ
2 log(10‖ÿ−1‖∞) follows from Theorem 3.9 by choosing ý0 = 0. �

Example 3.11. WhenΩ is not ûnite, here is a simple example with ÿý (ÿ) > 0, but the ultra-contractivity
(3.11) is never satisûed for ûnite ý0. Take ÿ = ý − ýÿ. It generates the so-called depolarizing semigroup

ÿý = ÿ
−ý id+(1 − ÿ−ý )ýÿ, ÿý ( ÿ ) = ÿ−ý ÿ + (1 − ÿ−ý )ÿ( ÿ )1,

where 1 is the unit constant function. Then for any ý < ∞,

‖ÿý − ýÿ : ÿ1 (Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖=‖ ÿ−ý id : ÿ1 (Ω, ÿ) → ÿ∞ (Ω, ÿ) ‖= ÿ−ýÿ (ýÿ),

which is inûnite whenever ÿ∞ (Ω, ÿ) is inûnite dimensional. However, it follows from direct calculation
that ÿý (ý − ýÿ) ≥ 1

2 .

3.4. Hörmander system

We now discuss the application to Markov semigroups on smooth manifolds generated by sub-
Laplacians. Let (ý, ý) be a d-dimensional compact connected Riemannian manifold without boundary
and let ýÿ = ÿý vol be a probability measure with smooth density ÿ w.r.t the volume form ý vol. A
family of vector ûelds ÿ = {ÿÿ}ý

ÿ=1 ⊂ ÿý with ý � ý is called a Hörmander system if at every point
ý ∈ ý , the tangent space at x can be spanned by the iterated Lie brackets of ÿÿ9s

ÿýý = span{[ÿÿ1 , [ÿÿ2 , · · · , [ÿÿÿ−1 , ÿÿÿ ]]] | 1 � ÿ1, ÿ2 · · · ÿÿ � ý}. (Hörmander condition)

By compactness, we can assume there is a global constant ýÿ such that for every point ý ∈ ý , we need
at most ýÿ th iterated Lie bracket in above expression (also called strong Hörmander condition). Denote
∇ = (ÿ1, · · · , ÿý ) and by ÿ∗

ÿ the adjoint of ÿÿ on ÿ2 (ý, ýÿ). Under the Hörmander condition, the
sub-Laplacian

Δÿ = ∇∗∇ =
∑

ÿ

ÿ∗
ÿ ÿÿ = −

∑
ÿ

ÿ2
ÿ + (divÿ (ÿÿ) + ÿÿ (lnÿ))ÿÿ

is a symmetric operator on ÿ2 (ý, ýÿ) which generates an ergodic Markov semigroup ÿý = ÿ−Δÿ ý ,
often called the horizontal heat semigroup. Here, divÿ (ÿ) is the divergence of X w.r.t to ÿ. When
ÿ = {ÿÿ}ý

ÿ=1 forms an orthonormal frame to the Riemannian metric, Δÿ = Δ recovers the (weighted)
Laplace-Beltrami operator and ÿý = ÿ

−Δý is the (weighted) heat semigroup on M.
The gradient form (Carré du Champ operator) of Δÿ is given by

Γ( ÿ , ý) :=
1

2
( ÿΔÿ (ý) + Δÿ ( ÿ )ý − Δÿ ( ÿ ý)) =

∑
ÿ

〈ÿÿ ÿ , ÿÿý〉.

It follows from the product rule of derivatives that Γ is diffusive (i.e., Γ( ÿ ý, ℎ) = ÿ Γ(ý, ℎ) + ýΓ( ÿ , ℎ)).
For diffusion semigroups, it is known [4, Theorem 5.2.1] that the MLSI constant ÿ1 and the LSI constant
ÿ2 coincide (i.e., ÿ := ÿ1 = ÿ2). The positivity

ÿ(Δÿ ) > 0

for any Hörmander9s system ÿ = {ÿÿ}ý
ÿ=1 on a compact connected Riemannian manifold without

boundary was proved in [53, Theorem 3.1]. Our Theorem 1.2 improves this to ÿý (Δÿ ) > 0.
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Proof of Theorem 1.2. Recall the following Sobolev-type inequality (see, for example, [53, Lemma
2.1]):

‖ ÿ ‖ÿ ≤ ÿ
(
〈Δÿ ÿ , ÿ 〉+ ‖ ÿ ‖2

2

)1/2
, (3.16)

where ÿ =
2ýýÿ
ýýÿ−2 > 2 and ýÿ is globoal Lie bracket length needed in the strong Hörmander condition. By

Varopoulos9 Theorem (see [77, Chapter 2]) on the dimension of semigroups, this implies the following
ultra-contractive estimate:

‖ ÿ−Δÿ ý : ÿ1 (ý, ÿ) → ÿ∞ (ý, ÿ) ‖� ÿ ′ý−ÿ/2 for 0 ≤ ý ≤ 1 and some ÿ ′ > 0, (3.17)

where ÿ = ýýÿ . Also, it was proved in [53, Theorem 2.3] that Δÿ satisûes the Poincaré inequality:
ÿ(Δÿ ) > 0. Combining these with our Theorem 3.9 yields the assertion. �

The Sobolev-type inequality (3.16) is also used in [53] by Lugiewicz and Zegarlínski to prove that
ÿ2 (Δÿ ) > 0. Their proof relies on the Rothaus lemma, and so does the discrete case by Diaconis and
Saloff-Coste [23]. However, we will see in Section 3.6 that this approach is out of scope for showing the
CMLSI constant ÿý (Δÿ ) > 0.

Example 3.12. The special unitary group SU(2) is

SU (2) = {ýý + ýÿ + ÿý + ÿý : ý2 + ý2 + ÿ2 + ÿ2 = 1, ý, ÿ, ý, ý ∈ R},

where ÿ,ý, ý are the skew-Hermitian Pauli unitary

ÿ =

[
0 1
−1 0

]
, ý =

[
0 ÿ

ÿ 0

]
, ý =

[
ÿ 0
0 −ÿ

]
.

The Lie algebra is ýÿ(2) = spanR{ÿ,ý, ý} with Lie bracket rules as

[ÿ,ý ] = 2ý , [ý, ý] = 2ÿ , [ý, ÿ] = 2ý . (3.18)

The canonical sub-Riemannian structure is given by ÿ = {ÿ,ý }, which is a generating set of ý because
[ÿ,ý ] = 2ý . The associated sub-Laplacian is

Δÿ = −(ÿ2 + ý2). (3.19)

The semigroup ÿý = ÿ
−Δÿ ý on SU(2) has been studied as a prototype of horizontal heat semigroups. In

particular, Baudoin and Bonnefont in [8] proved that

Γ(ÿý ÿ , ÿý ÿ ) � ÿÿ−4ýÿý (Γ( ÿ , ÿ )), (3.20)

for some constant ÿ > 0. In [31], Gao and Gordina based on (3.20) proved the CMLSI constant that

ÿý (Δÿ ) ≥ (2
∫ ∞

0
ÿÿ−4ýýý)−1 =

2

ÿ
.

The gradient estimate (3.20), as a weaker variant of Bakry-Emery curvature dimension condition,
has been found useful to derive CMLSI in [31]. Nevertheless, this weaker gradient estimate is only
known for only a limited number of examples in the sub-Riemannian setting [24, 54]. Our result avoids
this condition and obtains CMLSI for general Hörmander systems.

Example 3.13. Let ÿ ≥ 3. The special unitary group SU(ÿ) is

SU(ÿ) = {ÿ ∈ Mÿ | ÿ∗ÿ = 1, det(ÿ) = 1}.
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The Lie algebra ýÿ(ÿ) is the space of all the skew-Hermitian matrices, and a natural basis ýÿ(ÿ) is given
by {ÿ ÿ ,ý , ý ÿ ,ý , ýý | 1 ≤ ÿ < ý ≤ ÿ} where

ÿ ÿ ,ý = ÿ ÿý − ÿý ÿ , ý ÿ ,ý = ÿ(ÿ ÿý + ÿý ÿ ) , ýý = ÿ(ÿ11 − ÿýý ),

which is ÿ2 − 1 dimensional. Let ý = {1, · · · , ÿ} be a vertex set and ý ⊂ ý ×ý as an edge set. The set

ÿý = {ÿ ÿ ,ý , ý ÿ ,ý | ( ÿ , ý) ∈ ý}

is a generating set if and only if (ý, ý) is a connected graph. The associated sub-Laplacian

Δý = −
∑

( ÿ ,ý) ∈ý

ÿ2
ÿ ,ý + ý2

ÿ ,ý

is a generalization of (3.19). Theorem (1.2) implies that ÿý (Δý ) > 0 for all connected (ý, ý), despite
the gradient estimate (3.20) is not known for this type of generator.

3.5. Transference semigroups

Let us discuss an immediate application of ÿý (Δÿ ) > 0 to symmetric Quantum Markov semigroups.
Let G be a compact Lie group and ÿ = {ÿ1, · · · , ÿý } be a generating set of its Lie algebra ý. Then
{ÿ1, · · · , ÿý } satisûes the Hörmander condition, and its sub-Laplacian Δÿ = −∑

ý ÿ
2
ÿ generates a

Markov semigroup ÿý = ÿ
−Δÿ ý symmetric to the Haar measure. Let ÿ : ÿ → Mÿ be a ûnite dimensional

unitary representation and ýÿ : ý → ÿ(Mÿ)ý.ÿ. be the corresponding Lie algebra morphism. ÿý = ÿ
−Δÿ ý

induces a quantum Markov semigroup ÿý = ÿ−ÿÿ ý : Mÿ → Mÿ with generator in the Lindbladian
form [50],

ÿÿ (ÿ) = −
ý∑

ÿ=1

[ýÿ (ÿÿ), [ýÿ (ÿÿ), ÿ]] .

ÿý is called a transference semigroup of ÿý by the following commuting diagram:

ÿ∞ (ÿ,Mÿ) ÿ∞ (ÿ,Mÿ)

Mÿ Mÿ,

ÿý ⊗idMÿ

ÿÿ

ÿý

ÿÿ
(3.21)

where the transference map ÿÿ is a ∗-endomorphism given by

ÿÿ : Mÿ → ÿ∞ (ÿ,Mÿ), ÿÿ (ÿ) (ý) = ÿ(ý)∗ÿÿ(ý),

which embeds Mÿ into ÿ∞ (ÿ,Mÿ). Then the quantum semigroup ÿý is the restriction of the matrix-
valued extension of classical semigroup ÿý ⊗ idMÿ

on the image of ÿ(Mÿ). Such a transference relation
holds fro any unitary representation. We obtain the following dimension-free estimates both spectral
gap and CMLSI constant (see [29, Section 4]):

ÿý (Δÿ ) ≤ ÿý (ÿÿ ), ÿ(Δÿ ) ≤ ÿ(ÿÿ ),

which are independent of the choice of the unitary representation. Then Corollary 1.3 follows immedi-
ately from Theorem 1.2.
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3.6. Failure of matrix valued log-Sobolev inequality

As mentioned above, a standard analysis approach to MLSI through hypercontractivity or LSI relies on
the Rothaus Lemma (see, for example, [68, 3])

ÿ (| ÿ |2) ≤ ÿ (| ÿ − ýÿ ( ÿ ) |2)+ ‖ ÿ − ýÿ ( ÿ ) ‖2
2 .

Here, we show that the Rothaus Lemma, LSI and hypercontractivity all fail for matrix-valued functions
for any classical Markov semigroups. This is a strong indication that the approach by Diaconis and
Saloff-Coste9s hypercontractive [23] estimate (also used in [53]) cannot be used in proving lower bounds
for the CMLSI constants.

The following lemma calculates the derivatives of the entropy functional ÿ (ÿ) = ÿ(ÿ log ÿ). Recall
the BKM metric of a operator ÿ ∈ M at a base state ÿ is

ÿÿ (ÿ) =
∫ ∞

0
ÿ(ÿ∗ (ÿ + ý)−1ÿ (ÿ + ý)−1).

Lemma 3.14. Let ý ↦→ ÿý ∈ ÿý (M), ý ∈ (ÿ, ÿ) be a smooth family of bounded density operator. Define

the function ý (ý) = ÿ (ÿý ) = ÿ(ÿý log ÿý ). Then

ý ′(ý) = ÿ(ÿ′ý (log ÿý + 1)), ý ′′(ý) = ÿ(ÿ′′ý (log ÿý + 1)) + ÿÿý
(ÿ′ý ),

where ÿ′ý and ÿ′′ý are the first and second order derivative of ÿý .

Proof. The formula for ý ′ follows from [79, Lemma 5.8]. For the second derivative, recall the noncom-
mutative chain rule

ý

ýý
(log ÿý ) =

∫ ∞

0
(ÿý + ý)−1ÿ′ý (ÿý + ý)−1ýý.

By calculating the second derivative, we obtain the second assertion

ý ′′(ý) =ÿ(ÿ′′ý (log ÿý + 1)) +
∫ ∞

0
ÿ(ÿ′ý (ÿý + ý)ÿ′ý (ÿý + ý))ýý = ÿ(ÿ′′ý (log ÿý + 1)) + ÿÿý

(ÿ′ý ). �

Proposition 3.15. Let ÿý = ÿ
−ýÿ : ÿ∞ (Ω, ÿ) → ÿ∞ (Ω, ÿ) be an ergodic symmetric Markov semigroup.

Let ÿý, ÿ2, ÿℎ be the optimal (largest) constant such that the following inequalities hold for any

ÿ ∈ ÿ∞ (Ω,M2) +AE ,

ÿý ÿ
(
| ÿ |2 | |ýÿ (| ÿ |2)

)
≤ ÿ

(
| ÿ̂ |2 | |ýÿ (| ÿ̂ |2)

)
+ ‖ ÿ̂ ‖2

2 , (Rothaus)

ÿ2 ÿ ( ÿ 2 | |ýÿ ( ÿ 2)) ≤ 2E ( ÿ , ÿ ) (LSI)

‖ÿý ÿ ‖ÿ2 (M2 ,ÿý (ý ) (Ω))≤‖ ÿ ‖ÿ2 (M2 ,ÿ2 (Ω)) for ý(ý) = 1 + ÿ2ÿℎ ý (Hypercontractivity)

where ýÿ ( ÿ ) = (
∫
ÿ ýÿ)1Ω is the expectation map and ÿ̂ = ÿ − ýÿ ( ÿ ) is the mean zero part of f. Then

ÿý = ÿ2 = ÿℎ = 0.

Proof. We write ÿ( ÿ ) = 1
2

∫
tr( ÿ )ýÿ for the normalized trace on ÿ∞ (Ω,M2). We start with constant

ÿý in the Rothaus lemma. Without loss of generality, we may assume there is a measurable set ÿ ⊂ Ω

such that ÿ(ÿ) = ÿ for some 0 < ÿ < 1. Let ÿ ∈ (0, 1). Then ℎ0 = (1 − ÿ)1ÿ − ÿ1ÿý is a real mean zero
function. Consider the matrix valued function ÿÿ = ÿ + ÿℎ where

ÿ =

[
1 + ÿ 0

0 1 − ÿ

]
1, ℎ =

[
0 ℎ0

ℎ0 0

]
,
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where f is a constant matrix valued function. Then ýÿ ÿÿ = ÿ , ÿ̂ÿ = ÿℎ and

ÿ 2
ÿ = ( ÿ + ÿℎ)2 = ÿ 2 + ÿ( ÿ ℎ + ℎ ÿ ) + ÿ2ℎ2 = ÿ 2 + 2ÿℎ + ÿ2ℎ2.

Then ýÿ (| ÿÿ |2) = ÿ 2 + ÿ2ℎ2 and ýÿ (| ÿ̂ÿ |2) = ýÿ (ℎ2)ÿ2. Using Lemma 3.14, the Taylor expansion of
the left-hand side of (LSI) is

ÿ
(
| ÿ |2 | |ýÿ (| ÿ |2)

)
= ÿ ( ÿ 2 + 2ÿℎ + ÿ2ℎ2 | | ÿ 2 + ÿ2ℎ2)

= ÿ ( ÿ 2 + 2ÿℎ + ÿ2ℎ2) − ÿ ( ÿ 2 + ÿ2ℎ2)
= 2ÿ(ℎ log ÿ )ÿ +

(
2ÿ(ℎ2 (log ÿ + 1)) + ÿ ÿ (2ℎ)

)
ÿ2 +ÿ (ÿ3)

− ÿ(2ý (ℎ2) (log ÿ + 1))ÿ2 +ÿ (ÿ3)
= ÿ ÿ (2ℎ)ÿ2 +ÿ (ÿ3),

where we used the fact ÿ(ℎ log ÿ ) = 0 and ÿ(ℎ2 log ÿ − ýÿ (ℎ2) log ÿ ) = 0. For the right-hand side of
the Rothaus lemma, we ûnd

ÿ (| ÿ̂ÿ |2 | |ýÿ (| ÿ̂ÿ |2)) = ÿ (ℎ2 | |ýÿ (ℎ2))ÿ2, ‖ ÿ̂ÿ ‖2
2=‖ ℎ ‖2

2 ÿ
2.

While both ÿ (ℎ2 | |ýÿ (ℎ2)) and ‖ ℎ ‖2
2 are ûnite, we have

ÿ ÿ (2ℎ) = 4

∫ ∞

0
ÿ(ℎ( ÿ + ý)−1ℎ( ÿ + ý)−1)ýý

= 4

∫ ∞

0

∫
Ω

tr(
[

1
(1−ÿ+ý) (1+ÿ+ý) ℎ

2 0

0 1
(1−ÿ+ý) (1+ÿ+ý) ℎ

2

]
1Ω)ýÿýý

= 4
( ∫ ∞

0

1

(1 − ÿ + ý) (1 + ÿ + ý) ýý
)
‖ ℎ ‖2

2

=
2

ÿ
ln

1 + ÿ
1 − ÿ ‖ ℎ ‖2

2 .

Note that we can choose ÿ → 1 and 1
2ÿ

ln( 1+ÿ

1−ÿ
) → +∞, which implies ÿý = 0. The same example

applies to LSI by choosing a mean zero function ℎ0 such that E (ℎ0, ℎ0) < ∞. For the hypercontractivity,
for ý ≥ 2 we recall the norms

‖ ÿ ‖ÿ2 (M2 ,ÿ2 (Ω)) =‖ ÿ ‖ÿ2 (M2) ⊗ÿ2 (Ω)= (
∫

tr( ÿ ∗ ÿ )ýÿ)1/2.

‖ ÿ ‖ÿ2 (M2 ,ÿý (Ω)) = inf
ý,ÿ∈(M2)+ , ‖ ý ‖2ÿ=‖ ÿ ‖2ÿ=1

‖ ý−1 ÿ ÿ−1 ‖ÿ2 (M2 ,ÿ2 (Ω)) ,

where the inûmum takes over all positive invertible ý, ÿ ∈ M2 with unit 2ÿ-norm for 1
ÿ
= 1

2 − 1
ý

. Since
ÿý is a bimodule map for C1 ⊗M2 ⊂ ÿ∞ (Ω,M2), we can equivalently consider the norm

‖ÿý : ÿ2 (M2, ÿ2 (Ω)) → ÿ2 (M2, ÿý (Ω)) ‖=‖ÿý : ÿ2 (M2, ÿ2 (Ω)) → ÿÿ
2 (M2, ÿý (Ω)) ‖,

where the asymmetric amalgamated ÿÿ
2 (M2, ÿý (Ω)) space is equipped with norm

‖ ÿ ‖ÿÿ
2 (M2 ,ÿý (Ω))= inf

ÿ∈(M2)+ , ‖ ÿ ‖ÿ=1
‖ ÿ ÿ−1 ‖ÿ2 (M2 ,ÿ2 (Ω)) .
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In particular,

‖ ÿ ‖2
ÿÿ

2 (M2 ,ÿý (Ω))=‖ ÿ
∗ ÿ ‖ÿ1 (M2 ,ÿ ý

2
(Ω)) ,

and we have

ÿ (| ÿ |2 | |ý (| ÿ |2)) = lim
ÿ→1+

‖ | ÿ |2 ‖ÿ1 (M2 ,ÿÿ (Ω)) − ‖ | ÿ |2 ‖1

ÿ − 1
.

Now deûne ý(ý) = 2ÿ(ý) = 1 + ÿ2ÿℎ ý

ÿ (ý) =‖ÿý ÿ ‖2
ÿÿ

2 (M2 ,ÿý (ý) (Ω))=‖ |ÿý ÿ |2 ‖ÿ1 (M2 ,ÿÿ (ý ) (Ω)) .

By assumption ÿ (ý) ≤ 1, we have

ÿ ′(0) = −2E ( ÿ , ÿ ) + ÿℎÿ (| ÿ |2 | |ý (| ÿ |2)) ≤ 0,

which implies ÿℎ ≤ ÿ2 = 0. Note, however, that ÿℎ ≥ 0 because ÿý is always contractive on
ÿ2 (M2, ÿ2 (Ω)). Hence, ÿℎ = 0, and the proof is complete. �

Remark 3.16. Similar to [7, Corollary 5.2], the above proposition implies that for ý ≠ 2, neither
ÿÿ

2 (M2, ÿý (Ω)) or ÿ2 (M2, ÿý (Ω)) are uniformly convex.

4. Entropy contraction for GNS symmetric quantum channels

4.1. State symmetric quantum channels

Let M be a von Neumann algebra and ÿ a normal faithful state. We have the GNS cyclic representation
{ÿÿ , ÿÿ , ÿÿ}, which is a ∗-isomorphism ÿÿ : M → ÿÿ with a cyclic and separating vector ÿÿ such that

ÿ(ý) = 〈ÿÿ , ÿÿ (ý)ÿÿ〉, ý ∈ M.

By identifying M � ÿÿ (M), the modular automorphism group ÿÿ
ý for ý ∈ R is deûned as

ÿ
ÿ
ý : M → M , ÿ

ÿ
ý (ý) = Δ ÿýýΔ−ÿý , ý ∈ M,

where Δ is the modular operator of ÿ, deûned as follows:

Δ = ÿ∗ÿ̄, ÿ(ÿÿ (ý)ÿÿ) = ÿÿ (ý∗)ÿÿ .

We consider the following two symmetric conditions with respect to a state ÿ.

Definition 4.1. We say a quantum Markov map Φ : M → M is GNS-symmetric with respect to ÿ (in
short, GNS-ÿ-symmetric) if

ÿ(Φ(ý)ÿ) = ÿ(ýΦ(ÿ)), ∀ ý, ÿ ∈ M ;

ii) We say Φ is KMS-symmetric with respect to ÿ (in short, KMS-ÿ-symmetric) if

〈Δ 1
4 ýÿÿ ,Δ

1
4 Φ(ÿ)ÿÿ〉 = 〈Δ 1

4 Φ(ý)ÿÿ ,Δ
1
4 ÿÿÿ〉, ∀ ý, ÿ ∈ M.

Correspondingly, we call the pre-adjoint Φ∗ : M∗ → M∗ a GNS- or KMS-ÿ-symmetric quantum
channel.
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Both deûnitions are generalizations of the detailed balance condition for classical Markov chains and
imply that ÿ = ÿ◦Φ = Φ∗(ÿ) is an invariant state ofΦ. It is proven in [32, 80] that the GNS-ÿ-symmetric
quantum Markov map is equivalent to KMS-ÿ-symmetric plus thatΦ commutes with the modular group

ÿ
ÿ
ý ◦Φ = Φ ◦ ÿÿ

ý , ý ∈ R.

The commutation to modular group is also called Accardi-Cecchini condition in [32] for a study of
quantum Bayes rule [62, 65, 63, 64].

For simplicity, we will consider a semiûnite von Neumann algebra M equipped with a normal
faithful semi-ûnite trace ÿ, but our discussion applies to general von Neumann algebras with proper
interpretation of notations. In the tracial setting, we can write ÿ(ý) = ÿ(ýÿý) using the density operator
ýÿ of ÿ. Then the modular automorphism group is given by

ÿ
ÿ
ý (ý) = ý−ÿý

ÿ ýýÿý
ÿ , ý ∈ M, ý ∈ R.

Let Φ∗ : ÿ1 (M) → ÿ1 (M) be the pre-adjoint quantum channel via trace duality. The KMS-ÿ-
symmetry is equivalent to

Φ∗(ý1/2
ÿ
ýý

1/2
ÿ

) = ý
1/2
ÿ

Φ(ý)ý1/2
ÿ
, ∀ý ∈ M. (4.1)

For 1 ≤ ý ≤ ∞, the weighted ÿý-space ÿý (M, ÿ) is the completion of M under the norm

‖ ý ‖ý,ÿ=‖ ý1/2ý

ÿ
ýý

1/2ý

ÿ
‖ý ,

where ‖ ÿ ‖ý= ÿ(|ÿ |ý)1/ý is the tracial p-norm. For ý = 2, ÿý (M, ÿ) is a Hilbert space with KMS-inner

product ‖ ý ‖2
2,ÿ

= 〈Δ 1
4 ýÿÿ ,Δ

1
4 ýÿÿ〉. By equation (4.1), Φ is also a contraction on ÿ1 (M, ÿ), and hence

a contraction on ÿý (M, ÿ) for all 1 ≤ ý ≤ ∞ by complex interpolation.
The lemma below is an analog of Proposition 2.2.

Proposition 4.2. Let Φ : M → M be a GNS-ÿ-symmetric quantum Markov map for a normal faithful

state ÿ. Denote N as the multiplicative domain of Φ. Then

i) N is invariant under ÿ
ÿ
ý . Hence, there exists a ÿ-preserving normal conditional expectation

ý : M → N .

ii) Φ|N is an involutive ∗-automorphism satisfying

Φ2 ◦ ý = ý ◦Φ2 = ý, ý ◦Φ = Φ ◦ ý. (4.2)

Moreover, Φ2 is a N -bimodule map satisfying Φ2(ÿýÿ) = ÿΦ2 (ý)ÿ for any ÿ, ÿ ∈ N and ý ∈ M.

iii) Φ is an isometry on ÿ2 (N , ÿ). If, in addition,

‖Φ(id−ý) : ÿ2 (M, ÿ) → ÿ2 (M, ÿ) ‖2< 1,

then ý = limÿ Φ
2ÿ as a map from ÿ2 (M, ÿ) to ÿ2 (M, ÿ) .

Proof. It suffices to explain i). The rest follows similar as Proposition 2.2 (see also [31, Lemma 2.5] for
the ûnite dimensional case). Indeed, since Φ commutes with ÿÿ

ý , for ý ∈ N ,

Φ
(
ÿ

ÿ
ý (ý)ÿ

)
= Φ

(
ÿ

ÿ
ý (ýÿ

ÿ
ý ◦ ÿÿ

−ý (ÿ))
)
= ÿ

ÿ
ý ◦Φ

(
ýÿ

ÿ
ý ◦ ÿÿ

−ý (ÿ)
)

= ÿ
ÿ
ý

(
Φ(ý)Φ(ÿÿ

ý ◦ ÿÿ
−ý (ÿ))

)
= ÿ

ÿ
ý ◦Φ(ý)ÿÿ

ý ◦Φ ◦ ÿÿ
−ý (ÿ) = Φ(ÿÿ

ý (ý))Φ(ÿ).
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Multiplicativity on the other side is similar, implying ÿÿ
ý (ý) ∈ N . By Takesaki9s theorem [72], there

exists ÿ-preserving conditional expectation satisfying the deûning property

ÿ(ýÿ) = ÿ(ýý (ÿ)) ∀ ý ∈ N , ÿ ∈ M,

from which the GNS-ÿ-symmetry follows. �

4.2. Haagerup’s reduction

A von Neumann algebra M is called type III if it does not admit a nontrivial semiûnite trace. We
brieüy review the basics of Haagerup9s construction and refer to [36] for more details. The key idea is
to consider the additive subgroup ÿ =

⋃
ÿ∈N 2−ÿ

Z ⊂ R of the automorphism group. Let M ⊂ ý(ÿ)
be a von Neumann algebra and ÿ be a normal faithful state. One can deûne the crossed product by the
action ÿÿ : ÿ �M

M̂ = M �ÿÿ ÿ.

M̂ can be considered as the von Neumann subalgebraM̂ = {ÿ(M), ÿ(ÿ)}′′ ⊂ M⊗ý(ℓ2(ÿ)) generated
by the embeddings

ÿ : M → M �ÿÿ ÿ, ÿ(ÿ) =
∑
ý

ÿý−1 (ÿ) ⊗ |ý〉〈ý |

ÿ : ÿ → M �ÿÿ ÿ, ÿ(ý) (|ý〉 ⊗ |ℎ〉) = |ý〉 ⊗ |ýℎ〉 , ∀ |ý〉 ∈ ÿ, |ℎ〉 ∈ ℓ2(ÿ). (4.3)

Basically, ÿ is the transference homomorphismM → ℓ∞(ÿ,M), and ÿ is the left regular representation
on ℓ2(ÿ). The set of ûnite sums {∑ý ÿýÿ(ý) | ÿý ∈ M} ⊂ M̂ forms a dense ý∗-subalgebra of M̂. In

the following, we identify M with ÿ(M) ⊂ ý̂ (resp. a with ÿ(ÿ)) and view M ⊂ M̂ as a subalgebra.
The state ÿ admits a natural extension as a normal faithful state on M̂

ÿ̂(
∑
ý

ÿýÿ(ý)) = ÿ(ÿ0).

Moreover,

ýM : M̂ → M , ýM (
∑
ý

ÿýÿ(ý)) = ÿ0

is the canonical normal conditional expectation such that ÿ ◦ ýM = ÿ̂.
The main object in Haagerup9s construction is an increasing family of subalgebras

Mÿ = M̂ÿÿ
:= {ý ∈ M̂ | ÿÿÿ

ý (ý) = ý , ∀ ý ∈ R},

given by the centralizer algebra M̂ÿÿ
for a suitable family of states ÿÿ so that

⋃
ÿ Mÿ is ý∗-dense in

M̂. The state ÿÿ is deûned via a Radon-Nikodym density w.r.t to ÿ̂

ÿÿ (ý) = ÿ̂(ÿ−ÿÿý) , ÿÿ = −ÿ2ÿLog(ÿ(2−ÿ)).

Here, Log is the principal branch of the logarithmic function with 0 ≤ Log(ÿ) < 2ÿ. Each subalgebra
Mÿ contains ÿ(ÿ), and there exists normal conditional expectation ýMÿ

: M̂ → Mÿ. Indeed, by the
deûnition of ÿÿ, the modular group ÿÿÿ

ý is 2−ÿ periodic. The explicit form (see [36, Lemma 2.3]) is
given by
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ýMÿ
= 2ÿ

∫ 2−ÿ

0
ÿ

ÿÿ

ý ýý.

The normalized state ÿÿ =
ÿÿ

ÿÿ (1) is a normalized trace onMÿ. The key properties ofMÿ are summarized
in [36, Theorem 2.1 & Lemma 2.7], which we state below.

Theorem 4.3. With above notations,Mÿ is an increasing family of von Neumann subalgebras satisfying

the following properties

(1) Each (Mÿ, ÿÿ) is a finite von Neumann algebra.

(2)
⋃

ÿ≥1 Mÿ is weak∗-dense in M̂.

(3) There exists a ÿ̂-preserving normal faithful conditional expectation ýMÿ
: M̂ → Mÿ such that

ÿ̂ ◦ ýMÿ
= ÿ̂ , ÿ

ÿ̂
ý ◦ ýMÿ

= ýMÿ
◦ ÿ ÿ̂

ý .

Moreover, ýMÿ
(ý) → ý in ÿ-strong topology for any ý ∈ M̂.

We now look at the Haagerup reduction on the states. For a state ÿ ∈ ÿ(M), ÿ̂ = ÿ ◦ ýM is the
canonical extension on M̂. We denote ÿÿ := ÿ̂ |Mÿ

∈ Mÿ,∗ as the restriction state of ÿ̂ on the subalgebra
Mÿ ⊂ M̂. Note that the predual Mÿ,∗ can be viewed as a subspace of M̂∗ via the embedding

ÿÿ,∗ : M̂ÿ,∗ → M̂∗ , ÿÿ,∗ (ÿ) = ÿ ◦ ýMÿ
.

Via this identiûcation, ÿÿ = ÿ̂ |Mÿ
◦ ýMÿ

= ÿ̂ ◦ ýMÿ
= ýMÿ ,∗ ( ÿ̂) ∈ M̂∗. Moreover, by the weak∗-

density of the family Mÿ, ÿÿ → ÿ̂ converges in the weak topology. An immediate consequence is the
following approximation of relative entropy.

Lemma 4.4. Let ÿ and ÿ be two normal states of M. Then

ÿ (ÿ | |ÿ) = ÿ ( ÿ̂ | |ÿ̂) = lim
ÿ→∞

ÿ (ÿÿ | |ÿÿ).

Proof. Let ÿ : M ⊂ M̂ be the inclusion map. Because ÿ̂ = ÿ◦ýM is an extension of ÿ, ÿ∗ ( ÿ̂) = ÿ̂ |M = ÿ,
and similarly for ÿ. Both ÿ : M → M̂ and ýM : M̂ → M are quantum Markov maps. Then by the
data processing inequality,

ÿ (ÿ | |ÿ) = ÿ (ÿ∗ ( ÿ̂) | |ÿ∗ (ÿ̂)) ≤ ÿ ( ÿ̂ | |ÿ̂) = ÿ (ýM,∗ (ÿ) | |ýM,∗ (ÿ)) ≤ ÿ (ÿ | |ÿ).

Thus, ÿ (ÿ | |ÿ) = ÿ ( ÿ̂ | |ÿ̂). As for the limit, we have

ÿ ( ÿ̂‖ÿ̂) ≤ lim inf
ÿ

ÿ (ÿÿ‖ÿÿ)

= lim inf
ÿ

ÿ (ýMÿ ,∗(ÿÿ) | |ýMÿ ,∗(ÿÿ,∗))

≤ ÿ ( ÿ̂ | |ÿ̂),

where the equality follows from the lower semi-continuity of relative entropy (see, for example, [37,
Theorem 2.7]). The second inequality is another use the data processing inequality. �

We shall also apply the Haagerup9s reduction on GNS-symmetric maps. Let Φ : M → M be a
GNS-ÿ-symmetric quantum Markov map. Its canonical extension map

Φ̂ : M̂ → M̂ , Φ̂(
∑
ý

ÿýÿ(ý)) =
∑
ý

Φ(ÿý)ÿ(ý)
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is also a GNS-ÿ̂-symmetric quantum Markov map. Indeed, Φ̂ = Φ ⊗ idý (ℓ2 (ÿ)) |M̂ is the restriction of
Φ ⊗ idý (ℓ2 (ÿ)) on M̂ ⊂ M⊗ý(ℓ2(ÿ). It is clear that Φ̂ has the multiplicative domain

N̂ := N �ÿÿ ÿ, (4.4)

where N is the multiplicative domain of Φ. In particular, this crossed product is well deûned because
ÿ

ÿ
ý (N ) = N . Moreover, the ÿ̂-preserving conditional expectation ý̂ : M̂ → N̂ is nothing but the

canonical extension of ý : M → N .
Recall that we write ýM and ýÿ as the normal conditional expectations from M̂ onto M and Mÿ,

respectively. The next lemma shows that the extension Φ̂ is well compatible with the approximation
family Mÿ.

Lemma 4.5. Let Φ : M → M be a GNS-ÿ-symmetric quantum Markov map. With the notations above,

i) Φ̂ commutes with ýM, ý̂ and ýMÿ
. In particular, Φ̂(Mÿ) ⊂ Mÿ.

ii) The restriction Φÿ = Φ̂|Mÿ
is a normal unital completely positive map symmetric with respect to

the tracial state ÿÿ.

iii) Let Nÿ ⊂ Mÿ be the multiplicative domain for Φÿ. Then the restriction map ýÿ := ý̂ |Mÿ
: Mÿ →

Nÿ is the ÿÿ-preserving conditional expectation.

Proof. The relation Φ̂ ◦ ýM = ýM ◦ Φ̂ is clear from the deûnition of Φ̂, and Φ̂ ◦ ý̂ = ý̂ ◦ Φ̂ follows
from Lemma 4.2. Recall that ÿÿ (ý) = ÿ̂(ÿ−ÿÿý) with density operator ÿ−ÿÿ ∈ ÿ(ÿ) ′′ and ÿ(ÿ) is in the
centralizer of ÿ̂ [36, Lemma 2.3]. Then

ÿ
ÿÿ

ý = ÿ(ý)∗ÿ ÿ̂
ý ÿ(ý) = adÿ (ý)ÿ

ÿ̂
ý

for the unitary ÿ(ý) = ÿ−ÿýÿÿ . Note that Φ̂ commutes with ÿ ÿ̂
ý by GNS-ÿ̂-symmetry, and also commutes

with adÿ (ý) because ÿ(ý) ∈ ÿ(ÿ) ′′ is in Φ̂9s multiplicative domain. Thus, Φ̂ commutes with ÿÿÿ

ý and

hence the conditional expectation ýMÿ
= 2−ÿ

∫ 2−ÿ

0
ÿ

ÿÿ

ý . This proves i).
For ii), we note that for ý, ÿ ∈ Mÿ,

ÿÿ (ýΦÿ (ÿ)) = ÿ̂(ÿ−ÿÿýΦ̂(ÿ)) = ÿ̂(Φ̂(ÿ−ÿÿý)ÿ) = ÿ̂(ÿ−ÿÿΦ̂(ý)ÿ) = ÿÿ (Φÿ (ý)ÿ),

where we use the fact that Φ̂ is GNS-ÿ̂-symmetric and ÿ−ÿÿ ∈ ÿ(ÿ) ′′ is in the ûxed point subspace of
Φ̂. Finally, iii) follows from applying i) and ii) to ý̂ . �

To summarize the lemma above, we have the following commuting diagrams:

ý̂M M̂ Mÿ ý̂

ý̂M M̂ Mÿ ý̂

Φ

ýM

Φ̂

ýMÿ

Φÿ

ýM ýMÿ

ý̂M M̂ Mÿ ý̂

ý̂N N̂ Nÿ ý̂

ý

ýM

ý̂

ýMÿ

ýÿ

ýN ýNÿ

Figure 1. Haagerup reduction of quantum Markov map and conditional expectation.

Basically, Φÿ is a family of trace symmetric channels approximating Φ̂, which is in turn a natural
extension of Φ. The same picture holds for the conditional expectations ýÿ, ý̂ and E.
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4.3. Entropy contraction

We shall now discuss the entropy contraction of GNS-ÿ-symmetric channels. The ûrst step is to extend
the entropy difference Lemma 2.1. Deûne the state space that is bounded with respect to ÿ,

ÿý (M, ÿ) = {ÿ ∈ ÿ(M) | ý−1ÿ ≤ ÿ ≤ ýÿ , for some ý > 0}.

For all ÿ ∈ ÿý (M, ÿ), ÿ (ÿ | |ÿ) < ∞ is ûnite. Such ÿý (M, ÿ) is a dense subset of ÿ(M) because for
any ÿ and 0 < ÿ < 1, ÿÿ = (1 − ÿ)ÿ + ÿÿ ∈ ÿý (M). For ÿ ∈ ÿý (M), we deûne the entropy difference
for a GNS-ÿ-symmetric quantum channel Φ∗ as

ÿΦ∗ (ÿ) := ÿ (ÿ | |ÿ) − ÿ (Φ∗(ÿ) | |ÿ).

By data processing inequality and Φ∗(ÿ) = ÿ, ÿΦ∗ (ÿ) ≥ 0. In the trace symmetric case, ÿΦ∗ (ÿ) =

ÿ (ÿ | |1) − ÿ (Φ∗(ÿ) | |1) = ÿ (ÿ) −ÿ (Φ∗(ÿ)) as in Section 2. Let E be the conditional expectation onto
the multiplicative domain ofΦ. By the chain rule [66, Theorem 2] that for any E invariant stateÿ◦ý = ÿ,

ÿ (ÿ | |ÿ) = ÿ (ÿ | |ý∗ (ÿ)) + ÿ (ý∗ (ÿ) | |ÿ),

we have the alternative expressions ÿΦ∗ (ÿ) = ÿ (ÿ | |ý∗ (ÿ)) − ÿ (Φ∗(ÿ) | |Φ∗ý∗(ÿ)), where we used the
property Φ∗ý∗ = ý∗Φ∗ in Proposition 4.2.

Lemma 4.6. Let Φ∗ be a GNS-ÿ-symmetric quantum channel. For any state ÿ, ÿ ∈ ÿÿ (M, ÿ),

ÿ (ÿ | |Φ2
∗ (ÿ)) ≤ ÿΦ∗ (ÿ) + ÿ (ÿ | |ÿ).

Proof. Recall that we use ÿÿ = ÿ̂ |Mÿ
= ýMÿ ,∗( ÿ̂) andÿÿ = ÿ̂|Mÿ

= ýMÿ ,∗(ÿ̂) as the restriction states
on ûnite von Neumann algebra Mÿ ⊂ M̂ obtained from the Haagerup reduction. By Lemma 4.5, we
know that Φÿ = Φ̂|Mÿ

is a quantum Markov map symmetric with respect to the tracial state ÿÿ. Thus,
by Lemma 2.1 in the tracial case,

ÿ (ÿÿ | |Φ2
ÿ (ÿÿ)) ≤ ÿΦÿ

(ÿÿ) + ÿ (ÿÿ | |ÿÿ),

where we identify Φÿ = Φÿ,∗ by trace symmetry. Here, since Φÿ = Φ|Mÿ
is GNS-symmetric to

ÿÿ = ÿ|Mÿ
,

ÿΦÿ
(ÿÿ) = ÿ (ÿÿ | |ÿÿ) − ÿ (Φÿ (ÿÿ) | |ÿÿ) = ÿ (ÿÿ | |ÿÿ) − ÿ (Φÿ (ÿÿ) | |ÿÿ).

By the deûnitions of Φÿ and ÿÿ, and the hat <ˆ= notation for states on M̂,

Φÿ (ÿÿ) = ÿ̂ |Mÿ
◦Φÿ = ÿ̂ ◦ Φ̂|Mÿ

= �Φ∗(ÿ) |Mÿ
= Φ∗(ÿ)ÿ ,

Φ2
ÿ (ÿÿ) = Φÿ (Φ∗(ÿ)ÿ) = Φ2

∗ (ÿ)ÿ.

Then by Lemma 4.4, we can approximate every entropic term

lim
ÿ
ÿ (ÿÿ | | (Φÿ)2(ÿÿ)) = lim

ÿ
ÿ (ÿÿ | |Φ2

∗ (ÿ)ÿ) = ÿ (ÿ | |Φ2
∗ (ÿ)) ,

lim
ÿ
ÿΦÿ

(ÿÿ) = lim
ÿ
ÿ (ÿÿ | |ÿÿ) − ÿ (Φÿ (ÿÿ) | |ÿÿ)

= lim
ÿ
ÿ (ÿÿ | |ÿÿ) − ÿ (Φ∗(ÿ)ÿ | |ÿÿ) = ÿΦ∗ (ÿ) ,

lim
ÿ
ÿ (ÿÿ | |ÿÿ) =ÿ (ÿ | |ÿ). �

The next lemma shows the CB-return time is also compatible with Haargerup reduction.
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Lemma 4.7. Let Ψ : M → M be a GNS-ÿ-symmetric quantum Markov map and E be the conditional

expectation on its multiplicative domain. Suppose

(1 − ÿ)ý ≤ýý Ψ ≤ýý (1 + ÿ)ý. (4.5)

Then for all ÿ ∈ N,

(1 − ÿ)ýÿ ≤ýý Ψÿ ≤ýý (1 + ÿ)ýÿ.

Moreover, if 0.9ý ≤ýý Ψ ≤ýý 1.1ý and Ψ ◦ ý = ý , then for any ÿ ∈ ÿý (M, ÿ),

1

2
ÿ (ÿ | |ý∗ (ÿ)) ≤ ÿ (ÿ | |Ψ∗ (ÿ)).

Proof. The CP order inequality follows from the fact that both maps ýÿ and Ψÿ are the restriction of
ý ⊗ id and Ψ ⊗ id on the subalgebra Mÿ ⊂ M̂ ⊂ M⊗ý(ℓ2(ÿ)). Then the entropy inequality can be
obtained by the tracial case Lemma 2.3 and approximation as in Lemma 4.6. �

We then extend the entropy contraction to the GNS-symmetric case.

Theorem 4.8. Let Φ : M → M be a GNS-ÿ-symmetric quantum Markov map and E be the ÿ-

preserving conditional expectation onto its multiplicative domain N . Define

ýýÿ (Φ) = inf{ý ∈ N+ | 0.9ý ≤ýý Φ2ý ≤ýý 1.1ý }.

Then, for any ÿ-finite von Neumann algebra Q, state ÿ ∈ ÿ(M⊗Q),

ÿ (Φ∗ ⊗ idQ (ÿ) | | (Φ∗ ◦ ý∗) ⊗ idQ (ÿ)) ≤
(
1 − 1

2ýýÿ (Φ)
)
ÿ (ÿ | |ý∗ ⊗ idQ (ÿ)).

Proof. For ÿ ∈ ÿý (M, ÿ), the proof is same as the tracial case Theorem 2.5 by using Lemma 4.6 and
Lemma 4.7 above. The general case ÿ ∈ ÿ(M) can be approximated by ÿÿ = (1 − ÿ)ÿ + ÿÿ. �

Recall that in ûnite dimensions, the MLSI is deûned as the supremum of ÿ such that

2ÿÿ (ÿ | |ý∗ (ÿ)) ≤ ýÿ (ÿ) := ÿ(ÿ∗ (ÿ) (ln ÿ − ln ÿ)).

The right-hand side ýÿ (ÿ) is the entropy production, and the equivalence to entropy decay relies on the
de Bruijn identity

ýÿ (ÿ) = − ý
ýý
ÿ (ÿ∗ (ÿ) | |ý∗ (ÿ)) |ý=0. (4.6)

In inûnite dimensions, the de Bruijn identity (4.6) is less justiûed even in ý(ÿ) with dim(ÿ) = +∞ (see
discussions in [40, 44]). To avoid this issue, we deûne the MLSI on Type III von Neumann algebra as
follows.

Definition 4.9. For a GNS-ÿ-symmetric quantum Markov semigroup ÿý = ÿ
−ýÿ : M → M, we deûne

the modiûed log-Sobolev (MLSI) constant ÿ1 (ÿ) as the largest constant ÿ such that

ÿ (ÿý ,∗ (ÿ) | |ý∗ (ÿ)) ≤ ÿ−2ÿýÿ (ÿ | |ý∗ (ÿ)) , ∀ÿ ∈ ÿ(M), (4.7)

where E is the ÿ-preserving conditional expectation onto the ûxed point subalgebra N . The complete
MLSI constant is then deûned as ÿý (ÿ) := supQ ÿ(ÿ ⊗ idQ), where the supremum is over all ÿ-ûnite
von Neumann algebra Q.

This deûnition of MLSI also does not depend on any choice of reference state ÿ (see Lemma 4.16).
With this deûnition, we obtain the ûrst half of Theorem 1.1, which is restated below.

https://doi.org/10.1017/fms.2024.117 Published online by Cambridge University Press



Forum of Mathematics, Sigma 31

Theorem 4.10. Let ÿý = ÿ
−ýÿ : M → M be a GNS-ÿ-symmetric quantum Markov semigroup. Denote

ýýÿ = inf{ý > 0 | 0.9ý ≤ýý ÿý ≤ýý 1.1ý}. Then

ÿ1 ≥ ÿý ≥ 1

2ýýÿ

.

Namely, for any ÿ-finite von Neumann algebra Q and state ÿ ∈ ÿ(M⊗Q), we have the exponential

decay of relative entropy

ÿ (ÿý ,∗ ⊗ idQ (ÿ) | |ý∗ ⊗ idQ(ÿ)) ≤ ÿ
− ý

ýýÿ ÿ (ÿ | |ý∗ ⊗ idQ (ÿ)) , ý ≥ 0.

Proof. This can be approximated using the tracial case Theorem 2.5 as Lemma 4.6 above. �

Remark 4.11. In the above Haagerup9s reduction, both Φ̂ and Φÿ are always non-ergodic even given Φ

is ergodic. From this point of view, our consideration for non-ergodic cases is essential even for ergodic
Φ. It also indicates that Haagerup9s reduction does not work for LSI/hypercontractivity.

As we have seen in Proposition 3.7 for the tracial case, a combination of heat kernel estimates
and spectral gap allows us to bound CB return time. The same analysis remains valid in the GNS-ÿ-
symmetric case. For 1 ≤ ý ≤ ∞, we deûne the ÿ-weighted conditional ÿý

∞ (N ⊂ M, ÿ) space as the
completion of M under the norm

‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ)= sup{‖ ÿýÿ ‖ý,ÿ | ÿ, ÿ ∈ N , ‖ ÿÿ∗ ‖ý,ÿ=‖ ÿ∗ÿ ‖ý,ÿ= 1 }.

For a GNS-symmetric N -bimodule map Ψ : M → M, the equivalence in Proposition 3.4 also holds,

(1 − ÿ)ý ≤ýý Ψ ≤ýý (1 + ÿ)ý ⇐⇒ ‖Ψ − ý : ÿ1
∞ (N ⊂ M, ÿ) → ÿ∞ (M) ‖ýÿ≤ ÿ. (4.8)

Based on that, we have an analog of Proposition 3.7.

Proposition 4.12. Let ÿý : M → M be a GNS-ÿ-symmetric quantum Markov semigroup and ý :
M → N be the ÿ-preserving conditional expectation onto the fixed point space. Suppose

i) the ÿ-Poincaré inequality that ‖ÿý − ý : ÿ2 (M, ÿ) → ÿ2 (M, ÿ) ‖≤ ÿ−ÿý , ∀ý ≥ 0;

ii) there exists ý0 such that ‖ÿý0 : ÿ1
∞ (N ⊂ M, ÿ) → ÿ∞ (M) ‖ýÿ≤ ÿ0.

Then ýýÿ ≤ 1
ÿ

ln(10ÿ0) + ý0. In particular, if ÿýÿ (ý) < ∞, ýýÿ ≤ 1
ÿ

ln(10ÿýÿ (ý)).

Proof. The argument is similar to the tracial cases by using the property of ÿý
∞ (N ⊂ M, ÿ) for general

von Neumann algebra established in [42]. See also [6, Section 5] for the argument in ûnite dimensional
GNS-symmetric cases. �

4.4. Applications to finite quantum Markov chains

Let ÿý = ÿ−ÿý : Mý → Mý be a quantum Markov semigroup on matrix algebra Mý . Its generator L

admits the following Lindbladian form ([33, 50]):

ÿ(ý) = ÿ[ℎ, ý] +
∑

ÿ

ÿ ÿ (ý∗
ÿ [ý,ý ÿ ] + [ý∗

ÿ , ý]ý ÿ ),

where ℎ,ý ÿ ∈ Mý and ℎ = ℎ∗ is Hermitian. Whenÿý is GNS-symmetric, one has the following simpliûed
form [1, 45] that

ÿ(ý) =
∑

ÿ

ÿ−ýÿ/2
(
ý∗

ÿ [ý,ý ÿ ] + [ý∗
ÿ , ý]ý ÿ

)
,
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where {ý ÿ } = {ý ÿ }∗ is an orthogonal set with respect to trace inner product and the eigenvector of

modular group ÿÿ
ý (ý ÿ ) = ÿ−ÿýÿ ýý ÿ . In ûnite dimensions, the completely Pimsner-Popa indexÿýÿ (ý) is

always ûnite. Combining Theorem 4.10 and Proposition 4.12, we obtain the second half of Theorem 1.1
restated as below.

Corollary 4.13. For finite dimensional GNS-symmetric quantum Markov semigroups,

ÿ1 ≥ ÿý ≥ ÿ

2 ln(10ÿýÿ (ý))
. (4.9)

Corollary 4.13 improves the bound ÿý ≥ ÿ
2ÿýÿ (ý) in the previous work of Gao and Rouzé [31].

Remark 4.14. In the ergodic case N = C1, the conditional expectation ýÿ (ý) = ÿ(ý)1 has index

ÿ (ýÿ) =‖ ÿ−1 ‖∞ , ÿýÿ (ýÿ) ≤‖ ÿ−1 ‖2
∞ .

The above bound (4.9) gives

ÿ1 ≥ ÿý ≥ ÿ

2 ln 10 + 4 ln ‖ ÿ−1 ‖∞
.

This can be compared to the bound

ÿ1 ≥ ÿ2 ≥
2(1 − 2

‖ÿ−1‖∞ )ÿ
ln(‖ ÿ−1 ‖∞ −1)

(4.10)

proved by Diaconis and Saloff-Coste [23] for symmetric classical Markov semigroups. In the quantum
case, it is only obtained for unital semigroups [43] and ý = 2 [9]. For both classical and quantum
depolarizing semigroups ÿ(ý) = ý − ÿ(ý)1, this bound is known to be optimal for ÿ2, which lower
bounds ÿ1. Our results gives a general O( ÿ

‖ÿ−1‖∞ ) lower bound for ÿ1 for non-ergodic cases and also the

complete constant ÿý .

Remark 4.15. The Corollary 3.10 shows that the CMLSI constant ÿý for a classical Markov semigroup
is lower bounded by LSI constant ÿ2 up to a ÿ (log log ‖ ÿ−1 ‖∞) term. This argument does not work
for Quantum Markov semigroup ÿý : Mý → Mý on matrix algebras, although (3.15) remains valid for
ergodic quantum Markov semigroups. The difference is that for matrix algebra, the bounded return time

ýÿ (ÿ−2) :=
1

2
inf{ý > 0 | ‖ÿý − ý : ÿ1 (Mý , ÿ) → ÿ∞ (Mý) ‖< 1/ÿ2}

and the CB return time of completely bounded norm

ýýÿ = inf{ý > 0 | ‖ÿý − ýÿ : ÿ1 (Mý , ÿ) → ÿ∞ (Mý) ‖ýÿ< 1/10 }

are quite different. In the classical setting, we used the fact

‖ÿ : ÿ1(Ω) → ÿ∞ (Ω) ‖=‖ÿ : ÿ1 (Ω) → ÿ∞ (Ω) ‖ýÿ .

So the ýÿ (ÿ−2) and ýýÿ (0.1) are comparable by absolute constants. In the noncommutative setting, we
only have

‖ÿý − ýÿ : ÿ1 (Mý , ÿ) → ÿ∞ (Mý) ‖ýÿ≤ ý ‖ÿý − ýÿ : ÿ1 (Mý) → ÿ∞ (Mý) ‖ .
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In the trace symmetric case, ‖ ÿ−1 ‖∞= ý and ýýÿ (0.1) ≤ 3
2 ýÿ (ÿ−2) + ln ý,

ÿý ≥ 1

2ýýÿ (0.1)
≥ 1

3ýÿ (ÿ−2) + 2 ln ý
∼ ÿ ( ÿ2

ln ý
),

which is worse than the lower bound in the previous remark as ÿ2 ≤ ÿ.

4.5. Independence of invariant state

The next lemma shows that the GNS-symmetry is also independent of the choice of invariant state ÿ.

Lemma 4.16. Letÿ : M → M be a GNS-ÿ-symmetric quantum Markov map for a normal faithful state

ÿ. Denote ý : M → N as the ÿ-preserving conditional expectation onto the multiplicative domain.

Suppose ÿ is an another normal faithful state invariant under E (i.e., ÿ ◦ ý = ÿ). Then ÿ : M → M

is also GNS-ÿ-symmetric.

Proof. Without loss of generality, we assume ÿ ≤ ÿÿ for some ÿ > 0. We ûrst view them as the states
on the subalgebra N by restriction. By [73, Theorem 3.17], there exists ℎ ∈ N such that

ÿ(ý) = ÿ(ℎ∗ýℎ) , ∀ý ∈ N .

This identity actually also holds for ÿ ∈ M. Indeed, because of ÿ ◦ ý = ÿ and ÿ ◦ ý = ÿ,

ÿ(ÿ) = ÿ(ý (ÿ)) = ÿ(ℎ∗ý (ÿ)ℎ) = ÿ(ý (ℎ∗ÿℎ)) = ÿ(ℎ∗ÿℎ) , ∀ÿ ∈ M.

Moreover, one can replace h by ÿ (ℎ), because

ÿ(ý) = ÿ(ÿ (ý)) = ÿ(ℎ∗ÿ (ý)ℎ) = ÿ ◦ ÿ (ÿ (ℎ∗)ýÿ (ℎ)) = ÿ(ÿ (ℎ∗)ýÿ (ℎ)),

where we use the fact that ÿ2 (ℎ) = ℎ. Thus, the GNS-symmetry with respect to ÿ follows that for
ý, ÿ ∈ M,

ÿ(ýÿ (ÿ)) = ÿ(ℎ∗ýÿ (ÿ)ℎ) = ÿ(ℎ∗ýÿ (ÿÿ (ℎ))) = ÿ(ÿ (ℎ∗ý)ÿÿ (ℎ)) = ÿ(ÿ (ℎ∗)ÿ (ý)ÿÿ (ℎ))
= ÿ(ÿ (ý)ÿ),

where we used the multiplicative property of ÿ (ÿýÿ) = ÿ (ÿ)ÿ (ý)ÿ (ÿ) for ÿ, ÿ ∈ N . The general case
can be obtained via ÿÿ = (1 − ÿ)ÿ + ÿÿ. �

We remark that if one has convergence limÿ Φ
2ÿ = ý in ÿ2-norm, the above E-invariant condition

ÿ ◦ ý = ÿ can be replaced by ÿ = Φ2 ◦ ÿ.
Note that the left-hand side of (4.8) only relies on complete positivity. Indeed, the ÿ1

∞ (N ⊂ M, ÿ)
norm at the right hand-side is also independent of the choice of the invariant state ÿ = ÿ ◦ ý .

Lemma 4.17. Let ÿ be a normal faithful state and ý : M → N be a ÿ-preserving conditional

expectation. Suppose ÿ = ÿ ◦ ý is another normal faithful state preserved by E. Then,

‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ)=‖ ý ‖ÿ

ý
∞ (N ⊂M,ÿ) , ∀ý ∈ M.

The identity extends to all ý ∈ ÿý
∞ (N ⊂ M, ÿ).

Proof. Note that if both ÿ and ÿ are E invariant, then ý
− 1

2ý

ÿ
ý

1
2ý

ÿ
is affiliated to N . Indeed, as argued

in Lemma 4.16, if ÿ ≤ ÿÿ, then ýÿ = ℎýÿℎ
∗ for some ℎ ∈ N , and the general case follows from

approximation ÿ ≤ 1
ÿ
((1 − ÿ)ÿ + ÿÿ). Then we have

‖ ÿÿ∗ ‖ÿ,ý=‖ ý
1

2ý

ÿ
ÿÿ∗ý

1
2ý

ÿ
‖ý=‖ ý

− 1
2ý

ÿ
ý

1
2ý

ÿ
ÿÿ∗ý

1
2ý

ÿ
ý
− 1

2ý

ÿ
‖ÿ,2ý .
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Denote ÿ1 = ý
− 1

2ý

ÿ
ý

1
2ý

ÿ
ÿ and ÿ1 = ÿý

1
2ý

ÿ
ý
− 1

2ý

ÿ
. For ý ∈ M,

‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ)= sup

‖ ÿÿ∗ ‖ÿ,2ý=‖ ÿ∗ÿ ‖ÿ,2ý=1
‖ ÿýÿ ‖ÿ,ý= sup

‖ ÿÿ∗ ‖ÿ,ý=‖ ÿ∗ÿ ‖ÿ,ý=1
‖ ý−

1
2ý

ÿ
ý

1
2ý

ÿ
ÿýÿý

1
2ý

ÿ
ý
− 1

2ý

ÿ
‖ÿ,ý

= sup
‖ ÿ1ÿ∗

1 ‖2ý,ÿ=‖ ÿ1ÿ∗
1 ‖2ý,ÿ=1

‖ ÿ1ýÿ1 ‖ÿ,ý=‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ) ,

where the supremum are for ÿ, ÿ ∈ N . �

Remark 4.18. For ûnite M, one particular invariant state of E used in [7, 6] is ÿtr = ý∗ (1). This state
is convenient because ÿtr |N is a trace. Then by Lemma 4.17, we have

‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ)=‖ ý ‖ÿ

ý
∞ (N ⊂M,ÿtr)= sup{‖ ÿýÿ ‖ý,ÿtr | ÿ, ÿ ∈ N , ‖ ÿ ‖ý,ÿtr=‖ ÿ ‖ý,ÿtr= 1 },

where we used the fact ÿý (N , ÿtr) is a tracial ÿý-space. We will use this point to simplify the discussion
in Section 5.4.

5. Applications and examples

5.1. Entropy contraction coefficients

In this section, we discuss the implications of our results on contraction coefficients studied in [23, 22,
57, 31]. These are analogs of functional inequalities for a single quantum channel.

Definition 5.1. Let Φ : M → M be a quantum Markov map GNS-ÿ-symmetric to a normal faithful
state ÿ and ý : M → N be the ÿ-preserving conditional expectation onto the multiplicative domain of
Φ. We deûne

i) the ÿ2-contraction coefficient:

ÿ(Φ) :=‖Φ(id−ý) : ÿ2 (M, ÿ) → ÿ2 (M, ÿ) ‖ . (5.1)

ii) the entropy contraction coefficient:

ÿ(Φ) := sup
ÿ

ÿ (Φ∗ (ÿ) | |Φ∗ ◦ ý∗(ÿ))
ÿ (ÿ | |ý∗ (ÿ))

.

iii) the complete entropy contraction coefficient ÿý (Φ) := supQ ÿ(idQ ⊗Φ) where the supremum is
over all ÿ-ûnite von Neumann algebras Q.

The condition ÿ(Φ) < 1 can be viewed as a Poincaré inequality for a quantum channel Φ, which
implies the exponential convergence in ÿ2,

‖Φÿ (ÿ) − ý (ÿ) ‖ÿ2 (M,ÿ)≤ ÿ(Φ)ÿ ‖ ÿ − ý (ÿ) ‖ÿ2 (M,ÿ)→ 0.

Similarly, the entropy contraction coefficient gives the convergence in relative entropy

ÿ (Φÿ (ÿ) | |Φÿ ◦ ý (ÿ)) ≤ ÿ(Φ)ÿÿ (ÿ | |ý (ÿ)).

The complete constant ÿý (Φ) controls not only the entropy contraction of Φ but also idQ ⊗Φ with
any environment system Q. This leads to the tensorization property of ÿý that for two GNS-symmetric
quantum channels [31],

ÿý (Φ1 ⊗ Φ2) = max{ÿý (Φ1), ÿý (Φ2)}. (5.2)
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For classical Markov maps, the tensorization property (5.2) is known to also hold for the non-complete
constant ÿ. Nevertheless, for the quantum Markov map (channel), this is not the case, and ÿ(Φ) in
general can be strictly less than ÿý (Φ) (see [14, Section 4.4]).

In ûnite dimensions, the existence of strictly contractive constant ÿý (Φ) < 1 was obtained in [31,
Theorem 4.1]. Our results give an explicit estimate for ÿý (Φ).

Corollary 5.2. Let Φ be a GNS-symmetric quantum Markov map,

ÿ(Φ) ≤ ÿ(Φ) ≤ ÿý (Φ) ≤ (1 − 1

2ýýÿ (Φ) ) ≤
(
1 − − lnÿ(Φ)

ln(10ÿýÿ (ý))

)
.

Proof. The estimate follows from Theorem 4.8 and a discrete time analog of Proposition 4.12. �

Remark 5.3. In the ergodic trace symmetric case N = C1 and M = Mý , we have the trace map
ý (ý) = tr(ý) 1

ý
and the CB-index ÿýÿ (ý) = ý2. The above estimate implies

ÿ(Φ) ≤ ÿ(Φ) ≤ ÿý (Φ) ≤ (1 − − lnÿ(Φ)
ln(10ý2)

). (5.3)

This can be compared to [57, Theorem 4.2] and [43, Corollary 27],

ÿ(Φ) ≤ 1 − 1

2
ÿ2 (id−Φ∗Φ) ≤ 1 −

(1 − ÿ(Φ)2)2(1 − 2
ý
)

ln(ý − 1) , (5.4)

where ÿ2 (id−Φ2) is the LSI constant of id−Φ2 as a generator of quantum Markov semigroup. The two
upper bounds in (5.3) and (5.4) are comparable, as both are asymptotically Θ( − ln ÿ(Φ)

ln ý
). The strength of

our results is that (5.3) also bounds the complete constant ÿý (Φ) which has the tensorization property.

Remark 5.4. Our Lemma 2.1 implies

1 − ÿ1(id−Φ2) ≤ ÿ(Φ),

where ÿ1 is MLSI constant of the semigroup generator (id−Φ∗Φ). For a classical Markov map, it was
proved by Del Moral, Ledoux and Miclo [22] that there exists a universal constant 0 < ý < 1 such that

1 − ÿ1(id−Φ∗Φ) ≤ ÿ(Φ) ≤ 1 − ýÿ1 (id−Φ∗Φ). (5.5)

To the best of our knowledge, the above upper bound in (5.5) is open in the quantum case.

5.2. Graph random walks

Let ÿ = (ý, ý) be a ûnite undirected graph with |ý | = ý and the edge set ý ⊂ ý ×ý . The discrete time
random walk on G is a ûnite Markov chain given by the stochastic matrix

ÿÿ (ÿ, ÿ) =
{

1
ý (ÿ) , if (ÿ, ÿ) ∈ ý
0, otherwise.

Here, ý (ÿ) is the degree of vertex ÿ ∈ ý . Then ÿÿ : ý∞ (ý) → ý∞ (ý) is a Markov map. The ÿÿ admits a
unique station distribution ÿ(ÿ) = ý (ÿ)

2ÿ
, where |ý | = ÿ. It is clear that ÿÿ is symmetric to the measure

ÿ, also called reversible. Hence, ÿÿ is an ergodic unital channel on ÿ∞ (ý, ÿ) as ÿ(ÿÿ ( ÿ )) = ÿ( ÿ ).
The expectation map is ýÿ ( ÿ ) = ÿ( ÿ )1 whose index is

ÿýÿ (ýÿ) =‖ ÿ−1 ‖∞ .
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ÿÿ is connected and ýÿ are symmetric operators on ÿ2 (ý, ÿ) and

ÿ(ÿÿ) =‖ÿÿ − ýÿ : ÿ2 (ý, ÿ) → ÿ2 (ý, ÿ) ‖< 1

if ÿÿ not bipartite (in the bipartite case ÿÿ has eigenvalue −1). Then our results imply

ÿ(ÿÿ) ≤ ÿý (ÿÿ) ≤ (1 − 1

2ýýÿ (ÿÿ) ) ≤ (1 − − lnÿ(ÿÿ)
ln(10 ‖ ÿ−1 ‖∞)

). (5.6)

Example 5.5 (Cyclic graphs). Let us consider the cyclic graph ÿý = (ý, ý) with ý ≥ 4 where
ý = {1, · · · , ý} and ý = {( ÿ , ÿ + 1) | ÿ = 1, · · · , ý}. Here, the addition is understood in the sense of
8mod d9. Then

ÿÿý
(ÿ, ÿ) =

{
1
2 , if |ÿ − ÿ | = 1

0, otherwise.

As ÿý is 2-regular, ÿÿý
is symmetric to the uniform distribution ÿ(ÿ) = 1/ý. It is known that ÿÿý

has
spectrum

ÿ ÿ = cos( 2ÿ ÿ

ý
) , ÿ = 0, · · · , ý − 1.

The associated eigenvector is ÿ ÿ =
1√
ý
(1, ÿ ÿ , ÿ2 ÿ , · · · , ÿ (ý−1) ÿ ) whereÿ = exp( 2ÿÿ

ý
). When ý = 2ÿ+1

is odd, ÿ is the unique stationary measure, and ýÿ is the projection onto the vector ÿ0. We have

ÿ ý
ÿ − ýÿ = (ÿÿ − ýÿ)ý =

2ÿ∑
ÿ=1

ÿý
ÿ |ÿ ÿ〉〈ÿ ÿ |.

By triangle inequality, we have

‖ÿý
ÿ − ýÿ : ÿ1 (ý, ÿ) → ÿ∞ (ý, ÿ) ‖ ≤

2ÿ∑
ÿ=1

|ÿ ÿ |ý = 2
ÿ∑
ÿ=1

cos( ÿ ÿ
ý
)ý

≤ 2
ý

ÿ

∫ ÿ/2

0
cosý (ý)ýý = 2

ý

ÿ
ÿý ≤ 2ÿý

√
1

2ýÿ
,

where ÿ > 0 is some absolute constant by fact that the Wallis integralsÿý =
∫ ÿ/2
0

cosý (ý)ýý ∼
√

ÿ
2ý

.
Thus,

ýýÿ (ÿÿý
) ≤ (10ÿý)2

ÿ
∼ O(ý2),

and (5.6) implies

ÿ(ÿÿý
) ≥ ÿý (ÿÿý

) ≥ 1 −O(ý−2).

By Miclo9s result (5.5), this is asymptotically tight because the MLSI constant ÿ1(ý − ÿ2
ÿ
) ∼ O(ý−2)

(see Example 5.6 below for detials). The similar asymptotic estimate also holds for even circle ý = 2ÿ.

For the continuous time random walk, we considerý : ý → (0,∞) to be a positive weighted function
on the edge set E. The (weighted) graph Laplacian is given by the matrix

ÿÿ (ÿ, ÿ) =
⎧⎪⎪⎪«
⎪⎪⎪¬

∑
ÿ=(ÿ,ÿ′) ∈ý ýÿ, if ÿ = ÿ

−ýÿ, if (ÿ, ÿ) ∈ ý
0, otherwise.
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ÿÿ generates the continuous time random walk ÿý = ÿ
−ÿÿ ý as a Markov semigroup and is symmetric

with to the uniform distribution ÿ on V. ÿý is ergodic if and only if ÿ = (ý, ý) is connected. The
expectation map ýÿ ( ÿ ) = ÿ( ÿ )1 has index ÿýÿ (ýÿ) = ý. Then Corollary 4.13,

ÿ(ÿÿ)
2(ln ý + ln 10) ≤ ÿý (ÿÿ) ≤ ÿ(ÿÿ) ≤ ÿ(ÿÿ). (5.7)

This lower bound of ÿý (ÿÿ) has better dependence on the dimension d than [49, Lemma 5.2].

Example 5.6 (Cyclic graphs). Let us again consider the cyclic graph ÿý with d vertices. For the
uniformly weighted case ýÿ ≡ 1, ÿÿý

is a circulant matrix

ÿÿý
(ÿ, ÿ) =

⎧⎪⎪⎪«
⎪⎪⎪¬

2, if ÿ = ÿ

−1, if |ÿ − ÿ | = 1

0, otherwise.

Thus, ÿÿý
= 2(ý − ÿÿý

) where ÿÿý
is the random walk kernel in Example 5.5, and ÿÿý

has spectrum

ÿ ÿ = 2(1 − cos 2ÿ ÿ

ý
). As discussed in [23, Example 3.6],

‖ÿý − ý : ÿ1 (ý, ÿ) → ÿ∞ (ý, ÿ) ‖≤ 2 exp(− 4ý

ý2
) (
√

1 + ý2/4ý).

Choosing ý0 = ý2, we have

‖ÿý − ý : ÿ1 (ý, ÿ) → ÿ∞ (ý, ÿ) ‖≤ 2ÿ−4
√

5/4 < 1

10
.

Thus, by Theorem 1.1,

1

2ý2
≤ ÿý (ÿÿý

) ≤ ÿ1 (ÿÿý
) ≤ 2(1 − cos

2ÿ

ý
) = 8ÿ2

ý2
+O( 1

ý4
).

This shows that for this example, our inverse of ýýÿ bound for ÿý is tight up to absolute constant. Note
that the LSI constant ÿ2(ÿÿý

) is also of Θ( 1
ý2 ).

We refer to [23, 11] more examples on spectral gap ÿ, Log-Sobolev constants ÿ2,ÿ1, and ÿ∞ mixing
time ýÿ of ûnite Markov chains.

5.3. A noncommutative Birth-Death process

Let us illustrate our estimate with a noncommutative birth-death process. This example is a generalization
of graph Laplacians on matrix algebras (see [49, 41] for similar constructions). To ûx the notation, let
ÿ = (ý, ý) be an undirected graph with ÿ = |ý | vertices and edge set E. For each edge (ÿ, ý) ∈ ý , we
introduce the edge Lindbladian onMÿ,

ÿÿý (ý) = ÿÿÿý/2ÿÿÿý (ý) + ÿ−ÿÿýÿÿýÿ (ý)
= ÿÿÿý/2(ÿýýý + ýÿýý − 2ÿýÿýÿÿý) + ÿ−ÿÿý/2(ÿÿÿý + ýÿÿÿ − 2ÿÿýýÿýÿ ) ,

where ÿÿý ∈ Mÿ is the matrix unit with 1 at the (ÿ, ý) position. The total Lindbladian is a weighted sum
over the edge set E,
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ÿ =
∑

(ÿ ,ý) ∈ý

ý(ÿ, ý)ÿÿý

= 2
∑
ý∈ý

�� 
∑

(ÿ ,ý) ∈ý

ý(ÿ, ý)ÿÿÿý/2!"#
(ÿýýý + ýÿýý) − 4

∑
(ÿ ,ý) ∈ý

ý(ÿ, ý)ÿÿÿý/2ÿýÿýÿÿý ,

where we assume ÿÿý = −ÿýÿ and ý(ÿ, ý) = ý(ý, ÿ) > 0 for the GNS-symmetry condition. Note that
for ÿ ≠ ý ,

ÿ(ÿ ÿý ) = 2(
∑

(ÿ ,ý) ∈ý

ý(ÿ, ý)ÿÿÿý/2 +
∑

(ÿ , ÿ) ∈ý

ý(ÿ, ÿ)ÿÿÿ, ÿ/2)ÿ ÿý ,

ÿ(ÿ ÿ ÿ ) = 4
∑

(ÿ , ÿ) ∈ý

ý(ÿ, ÿ) (ÿÿÿ, ÿ/2ÿ ÿ ÿ − ÿ−ÿÿ, ÿ/2ÿÿÿ ).

Let us collect some relevant facts of such a Lindbladian L as noncommutative extension of graph
Laplacian.

i) Denote ℓ∞(ý) ⊂ Mÿ as the diagonal subalgebra. ÿ(ℓ∞ (ý)) ⊂ ℓ∞(ý), and ÿ |ℓ∞ (ý ) is a weighted
graph Laplacian;

ii) For ÿ ≠ ý, the matrix unit ÿÿý is an eigenvector of L

ÿ(ÿÿý) = ÿÿýÿÿý,

where ÿÿý = 2(∑(ÿ , ÿ) ∈ý ý(ÿ, ÿ)ÿÿÿ ÿ/2 +∑
(ý,ý) ∈ý ý(ý, ý)ÿ−ÿýý/2).

iii) ker(ÿ) ⊂ ℓ∞(ý), and ker(ÿ) = C1 if G = (ý, ý) is connected.
iv) Let ÿ = (ÿý ) ∈ ℓ∞(ý) be a density operator in the diagonal subalgebra. Then L is GNS-ÿ-symmetric

if ÿÿÿý = ÿý/ÿÿ for any ý ≠ ÿ .

Assume ÿ =
∑

(ý,ÿ ) ∈ý ÿýÿ is an ergodic graph Lindbladian satisfying GNS-ÿ-symmetric condition for a
diagonal density operator ÿ. Denote ýý as the projection onto diagonal subalgebra. We can decompose
the semigroup ÿý = ÿ

−ýÿ on the diagonal part and off diagonal part.

ÿý = ÿýýý + ÿý (id−ýý) := ÿýÿÿý
ý + ÿý ÿ ÿ

ý . (5.8)

It is clear from i) and ii) that ÿýýý is a classical graph random walk and ÿý (id−ýý) is a Schur multiplier
onMÿ. Using this decomposition, we consider the CB-return time of the semigroup

ýýÿ (ÿ) := inf{ý > 0 | ‖ÿý − ýÿ : ÿ1 (Mÿ, ÿ) → Mÿ ‖ýÿ≤ ÿ}

satisfying

ýýÿ (2ÿ) ≤ ýýÿÿý

ýÿ
(ÿ) + ýý ÿ ÿ

ýÿ
(ÿ),

where ýýÿÿý

ýÿ
and ýý ÿ ÿ

ýÿ
are the CB-return time for the diagonal partÿýýý and off diagonal partÿý (id−ýý),

respectively, where

ý
ýÿÿý

ýÿ
(ÿ) =: inf{ý > 0 | ‖ÿýýý − ýÿ : ÿ1 (ÿ, ÿ) → ÿ∞ (ý)‖ýÿ ≤ ÿ}

ý
ý ÿ ÿ

ýÿ
(ÿ) =: inf{ý > 0 | ‖ÿý (id−ýý) : ÿ1 (Mÿ, ÿ) → Mÿ‖ýÿ ≤ ÿ}.

For the diagonal part, ýýÿÿý

ýÿ
(ÿ) is a classical ÿ∞ mixing time, i.e. the smallest t such that

‖ÿýýý − ýÿ : ÿ1 (ý, ÿ) → ÿ∞ (ý) ‖≤ ÿ.
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For the off-diagonal term, we deduce from the Effros-Ruan isomorphism that a Schur multiplier map

‖ÿý (id−ýý) : ÿ1 (Mÿ, ÿ) → Mÿ ‖ýÿ= ‖
∑
ÿ≠ý

ÿ
−1/2
ÿ ÿ−ÿÿý ýÿ

−1/2
ý ÿÿý ⊗ ÿÿý ‖∞

= ‖
∑
ÿ≠ý

ÿ
−1/2
ÿ ÿ−ÿÿý ýÿ

−1/2
ý ÿÿý ‖∞ .

Note that for each t,

ýý =
∑
ÿ≠ý

ÿ
−1/2
ÿ ÿ−ÿÿý ýÿ

−1/2
ý ÿÿý

is a symmetric matrix with positive entry. A standard application of Schur9s lemma for matrices with
positive entries implies

‖ ýý ‖∞≤ sup
ÿ

(∑
ý

ÿ
−1/2
ÿ ÿ−ÿÿý ýÿ

−1/2
ý

)
,

which gives us an estimate for the off diagonal term ý
ý ÿ ÿ

ýÿ
(ÿ).

Now we consider the birth-death process on a ûnite state space ý = {1, · · · , ÿ}, which we denote as
ÿýÿ

ÿ . The corresponding edge E set consists of only successive vertices ý = {( ÿ , ÿ + 1) |1 ≤ ÿ ≤ ÿ− 1}.
The simplest case chooses the uniform weight ý(ÿ, ý) = 1 for (ÿ, ý) ∈ ý and allows only one Bohr
frequency ÿ−ÿ =

ÿ ÿ

ÿ ÿ+1
, and the resulting stationary measure is the well-studied thermal state

ÿ = ý−1
ÿ (ÿ−ÿ ÿ )ÿÿ=1,

where ýÿ =
∑ÿ

ÿ=1 ÿ
−ÿ ÿ is the normalization constant. In this case, ÿÿý = 8(cosh ÿ)ý, and the off diagonal

CB norm can be estimated by

‖ ýý ‖∞≤ sup
ÿ

( ÿ∑
ý=1

ÿÿÿ/2ÿÿý/2
)
ýÿÿ

−8(cosh ÿ)ý

≤ÿÿ ÿ−2
2

1 − ÿÿÿ/2

1 − ÿÿ/2
1 − ÿ−ÿÿ

1 − ÿ−ÿ
ÿ−8(cosh ÿ)ý .

Thus, ýý ÿ ÿ

ýÿ
(ÿ) ≤ ÿ1 (ÿ)ÿ for some constant ÿ1 (ÿ) depending on ÿ. For the classic part, we refer to [55]

and [17] for the fact that the spectral gap is of order ÿ (1); that is,

ý(ÿ) ≤ ÿ(ÿýÿÿý
ÿ ) ≤ ÿ2 (ÿ)

for all ÿ ∈ N. For the commutative system on the diagonal part, this implies (see also [23])

ý
ýÿÿý

ýÿ
(ÿ) ≤ 2ý(ÿ)−1 (2 + | log ÿÿ |) ≤ ÿ2 (ÿ)ÿ,

(for ÿ = ÿ−2, but here, the actual value of ÿ does not change the asymptotic estimate). However, we have
based on [55] that

ý
ýÿÿý

ýÿ
(0.1) ≥ ÿ1 (ÿýÿÿý

ÿ )−1 ≥ ý(ÿ)ÿ.

Combining the diagonal and off diagonal part, we know ýýÿ (ÿýÿ
ÿ ) ∼ ÿ. It turns out CMLSI constant

has asymptotic ÿý (ÿýÿ
ÿ ) ∼ 1

ÿ
, which indicates our estimate ÿý ≥ 1

2ýýÿ
is asymptotically tight for this

example.
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Theorem 5.7. For ÿ > 0, there exist constants ý(ÿ), ÿ (ÿ) > 0 such that the CMLSI constant of

noncommutative birth-death process ÿýÿ
ÿ satisfies

ý(ÿ)
ÿ

≤ ÿý (ÿýÿ
ÿ ) ≤ ÿ1(ÿýÿ

ÿ ) ≤ ÿ (ÿ)
ÿ
.

The same Θ( 1
ÿ
) asymptotic holds for ýýÿ (ÿýÿ

ÿ )−1.

Proof. It suffices to show that

ÿý (ÿýÿ
ÿ ) ≤ ÿ1(ÿýÿ

ÿ ) ≤ ÿ (ÿ)
ÿ
.

For this, we consider the function in the commutative system on the diagonal

ÿ (ý) = ý (ÿ)
ÿ
ÿÿý and

ÿ∑
ý=1

ÿ (ý)ÿ(ý) =
ÿ∑

ý=1

ý (ÿ)
ÿ
ÿÿý 1

ý (ÿ) ÿ
−ÿý = 1

so that ÿ := ÿ ÿ represents a probability density. The relative entropy term satisûes

ÿ (ÿ | |ÿ) = ÿ ( ÿ ÿ | |ÿ) =
∑

ý

ÿ−ÿý

ý (ÿ) ÿ (ý) (ÿý + ln ý (ÿ) − ln ÿ) = ln ý (ÿ) − ln ÿ + ÿÿ + 1

2
.

Our density is ÿ ≡ ( 1
ÿ
), and the reference density is ÿ(ý) = ÿ−ÿý

ý (ÿ) .
Denote ÿý = |ý〉〈ý + 1|. On the diagonal, we have

1

2
ÿ∗( ÿ ) =

∑
ý

ÿÿ/2(ÿýÿ
∗
ý ÿ − ÿ∗ý ÿ ÿý ) + ÿ−ÿ/2(ÿ∗ýÿý ÿ − ÿý ÿ ÿ

∗
ý )

=
∑

ý

ÿÿ/2(ÿý ÿ (ý) − ÿ (ý)ÿý+1) + ÿ−ÿ/2( ÿ (ý + 1)ÿý+1 − ÿ (ý + 1)ÿý )

=
1

ý (ÿ)ÿ (ÿ
ÿ/2(ÿ0 − ÿÿ) + ÿ−ÿ/2(ÿÿ − ÿ0)).

We have

ÿýÿ
ÿ,∗ ( ÿ ) (ý) =

⎧⎪⎪⎪«
⎪⎪⎪¬

4(ÿÿ/2 − ÿ−ÿ/2), if ý = 1;

0, if ý = 2, ÿ − 1;

4(ÿ−ÿ/2 − ÿÿ/2), if ý = ÿ.

Note that

ln ÿ − ln ÿ = ln ÿ =
(
ÿý − ln(ý (ÿ)ÿ)

)ÿ
ý=1.

Then we have the entropy production

ýÿýÿ
ÿ

(ÿ) = ÿ(ÿýÿ
ÿ,∗ ( ÿ ) ln ÿ ) ∼ ý(ÿ)

for some constant ý(ÿ) only depending on ÿ. This holds for ÿ ≥ ÿ0 large enough. �

Remark 5.8. When ÿ > 0,
∑ÿ

ý=1 ÿ
−ÿý = ÿ (1) is a geometric series. In the case that ÿ = 0, the above

birth-death process reduces to a 8broken9 version of the cyclic graph (linear graph) as in Example 5.6
with ÿý (ÿÿ) ∼ 1/ÿ2.
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5.4. Noncommutative concentration inequality

In this section, we show that CMLSI of a GNS-ÿ-symmetric semigroup implies concentration inequal-
ities for the state ÿ. The key quantity in the discussion is the Lipschitz semi-norm

‖ý‖2
Lip = max{‖ Γÿ (ý, ý) ‖ , ‖ Γÿ (ý∗, ý∗) ‖},

where the gradient form (or Carré du Champ operator) is

Γÿ (ý, ÿ) =
1

2

(
ÿ(ý∗)ÿ + ý∗ÿ(ÿ) − ÿ(ý∗ÿ)

)
, ∀ý, ÿ ∈ dom(ÿ).

Note that ‖ · ‖Lip is a semi-norm (satisfying triangle inequality) because Γÿ is completely positive
bilinear form. Our ûrst lemma is to show that ‖ý‖Lip can be approximated by Haagerup reduction.

Lemma 5.9. Let ý ∈ M. Then for all ÿ ∈ N,

‖ýMÿ
(ý)‖Lip ≤ ‖ý‖Lip.

Proof. Recall the conditional expectation ýMÿ
: M̂ → Mÿ is given by

ýMÿ
(ý) = 2ÿ

∫ 2−ÿ

0
ÿ

ÿÿ

ý (ý)ýý.

Note that ÿÿÿ

ý is an inner automorphism on M �ÿ 2−ÿ
Z � ÿ∞ (T,M). We note that for a modular

automorphism ÿý such that ÿÿý = ÿýÿ,

Γÿ (ÿý (ý), ÿý (ÿ)) = ÿý (Γÿ (ý, ÿ)),

which implies ‖ ý ‖Lip=‖ ÿý (ý) ‖Lip. Here, both ÿ ÿ̂
ý and ÿÿÿ

ý commute with ÿ̂ = idT ⊗ÿ by the GNS-
symmetricness of ÿ̂. Then by triangle inequality,

‖ ýMÿ
(ý) ‖Lip =

$$$2ÿ

∫ 2−ÿ

0
ÿ

ÿÿ

ý (ý)ýý
$$$

Lip
≤ 2ÿ

∫ 2−ÿ

0
‖ ý ‖Lip ýý =‖ ý ‖Lip . �

Lemma 5.10. Let M0,N ⊂ M be two subalgebras and ÿ be a normal faithful state. Suppose ý0 :
M → M0 and ý : M → N are ÿ-preserving conditional expectations onto M0 and N , respectively.

Suppose ý ◦ ý0 = ý0 ◦ ý satisfy the commuting square condition

M M0

N N0 ,

ý

ý0

ý0

ý

where N0 ⊂ N is a subalgebra. Then for any ý ∈ [1,∞] and any ý ∈ M,

‖ ý0 (ý) ‖ÿ
ý
∞ (N0⊂M0 ,ÿ)=‖ ý0 (ý) ‖ÿ

ý
∞ (N ⊂M,ÿ)≤‖ ý ‖ÿ

ý
∞ (N ⊂M,ÿ) .

In other words, ÿ
ý
∞ (N0 ⊂ M0, ÿ) ⊂ ÿ ý

∞ (N ⊂ M, ÿ) as a 1-complemented subspace with projectioný0.
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Proof. We can assume ÿ = ÿtr in the Remark 4.18. Using commuting square assumption, we know
ý0 (ÿ) ∈ N0 for ÿ ∈ N . By deûnition,

‖ ý0 (ý) ‖ÿ
ý
∞ (N0⊂M0 ,ÿ)= sup

ÿ,ÿ∈ N0

‖ ÿý0 (ý)ÿ ‖ÿ,ý≤ sup
ÿ,ÿ∈ N0

‖ ý0 (ÿýÿ) ‖ÿ,ý

≤ sup
ÿ,ÿ∈ N0

‖ ÿýÿ ‖ÿ,ý≤‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ) ,

where the supremum is for all ÿ, ÿ in the corresponding subalgebra with ‖ ÿ ‖ÿ,ý=‖ ÿ ‖ÿ,ý= 1. Now it
suffices to show the other direction

‖ ý ‖ÿ
ý
∞ (N0⊂M0 ,ÿ)≥‖ ý ‖ÿ

ý
∞ (N ⊂M,ÿ) ,

for ý ∈ M0. For that, we revoke that for 1
ý
+ 1

ÿ
= 1, ÿ ý′

1 (N ⊂ M) ⊂ ÿ
ý
∞ (N ⊂ M, ÿ)∗ is as a

weak∗-dense subspace [42, Proposition 4.5]. Here, for ý ∈ M,

‖ ÿ ‖ÿ
ÿ

1 (N ⊂M)= inf
ÿ=ÿÿÿ

‖ ÿ ‖2ý,ÿ ‖ ÿ ‖ÿ,ÿ ‖ ÿ ‖2ý,ÿ ,

where the inûmum is over all factorization ÿ = ÿÿÿ with ÿ, ÿ ∈ N , ÿ ∈ M. The duality pairing is given
by the KMS inner product,

〈ý, ÿ〉 = ÿ(ý∗ý1/2
ÿ
ÿý

1/2
ÿ

) = 〈ý, ÿ〉ÿ .

Indeed, it was proved in [42, Corollary 3.13] that

ý0 : ÿÿ

1 (N ⊂ M) → ÿ
ÿ

1 (N0 ⊂ M0)

is a contraction by the commuting square condition. Therefore, for ý ∈ N0, by the KMS-ÿ-symmetry
of ý0,

‖ ý ‖ÿ
ý
∞ (N ⊂M,ÿ)= sup

‖ ÿ ‖
ÿ
ÿ
1
(N⊂M)=1

〈ý, ÿ〉ÿ

= sup
‖ ÿ ‖

ÿ
ÿ
1
(N⊂M)=1

〈ý, ý0(ÿ)〉ÿ

≤ sup
‖ ÿ ‖

ÿ
ÿ
1
(N0⊂M0 )

=1
〈ý, ÿ〉ÿ =‖ ý ‖ÿ

ý
∞ (N0⊂M0 ,ÿ) . �

Lemma 5.11. For ý ∈ M, limÿ ‖ýMÿ
(ý)‖ÿ

ý
∞ (Nÿ⊂Mÿ ,ÿÿ) = ‖ý‖ÿ

ý
∞ (N ⊂M,ÿ) .

Proof. Recall the commuting square condition ýMÿ
◦ ý̂ = ý̂ ◦ ýMÿ

. By Lemma 4.17 & 5.10,

‖ ýMÿ
(ý) ‖ÿ

ý
∞ (Nÿ⊂Mÿ ,ÿÿ)= ‖ ýMÿ

(ý) ‖ÿ
ý
∞ (Nÿ⊂Mÿ , ÿ̂)=‖ ýMÿ

(ý) ‖ÿ
ý
∞ (N ⊂M, ÿ̂)≤‖ ý ‖ÿ

ý
∞ (N ⊂M, ÿ̂) .

The other direction follows from the weak∗-convergence ýMÿ
(ý) → ý. Fix 1

ÿ
+ 1

ý
= 1. For any ÿ > 0,

there exists ÿ0, ÿ0 ∈ N̂ and ÿ0 ∈ M̂ such that

‖ ÿÿ∗ ‖ý, ÿ̂=‖ ÿ∗ÿ ‖ý, ÿ̂=‖ ÿ ‖ÿ̂,ÿ= 1 , ÿ̂(ý1/2
ÿ̂
ÿýÿý

1/2
ÿ̂
ÿ) ≥‖ ý ‖ÿ

ý
∞ (N̂ ⊂M̂, ÿ̂) −ÿ.

By the weak∗-density, we can choose ÿ1, ÿ2, ÿ3 and ÿ4 ≥ max{ÿ1, ÿ2, ÿ3} inductively such that

ÿ(ý1/2
ÿ
ýMÿ1

(ÿ)ýMÿ4
(ý)ýMÿ2

(ÿ)ý1/2
ÿ
ýMÿ3

(ÿ)) > ÿ(ý1/2
ÿ
ÿýÿý

1/2
ÿ
ÿ) − ÿ >‖ ý ‖ÿ

ý
∞ (N̂ ⊂M̂, ÿ̂) −2ÿ.
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Since ýMÿ
(N̂ ) = Nÿ (see the commuting diagram after Lemma 4.5), we have

‖ ýMÿ1
(ÿ)ýMÿ1

(ÿ)∗ ‖ÿ̂, ý≤‖ ýMÿ1
(ÿÿ∗) ‖ÿ̂, ý≤‖ ÿÿ∗ ‖ÿ̂, ý= 1

‖ ýMÿ3
(ÿ∗)ýMÿ3

(ÿ) ‖ÿ̂, ý≤‖ ÿ∗ÿ ‖ÿ̂, ý= 1 ,

‖ ýMÿ4
(ÿ) ‖ÿ̂,ÿ≤‖ ÿ ‖ÿ̂,ÿ= 1

by the KMS-ÿ̂-symmetry of ýMÿ
. Then, for ÿ ≥ ÿ4 = max{ÿ1, ÿ2, ÿ3, ÿ4},

‖ ýMÿ
(ý) ‖ÿ

ý
∞ (N̂ÿ⊂M̂ÿ , ÿ̂) ≥ ‖ ýMÿ4

(ý) ‖ÿ
ý
∞ (N̂ÿ⊂M̂ÿ , ÿ̂)

≥ ÿ(ý1/2
ÿ̂
ýMÿ1

(ÿ)ýMÿ4
(ý)ýMÿ2

(ÿ)ý1/2
ÿ̂
ýMÿ3

(ÿ))

≥ ‖ ý ‖ÿ
ý
∞ (N̂ ⊂M̂, ÿ̂) −2ÿ.

This proves

lim
ÿ

‖ýMÿ
(ý)‖ÿ

ý
∞ (Nÿ⊂Mÿ ,ÿÿ) = ‖ý‖ÿ

ý
∞ (N̂ ⊂M̂, ÿ̂) .

Finally, the assertion follows from

‖ý‖ÿ
ý
∞ (N̂ ⊂M̂, ÿ̂) = ‖ý‖ÿ

ý
∞ (N ⊂M,ÿ) ,

as a consequence of ý0 ◦ ý̂ = ý̂ ◦ ý0 by Lemma 5.10. �

Now we restate and prove Theorem 1.4.

Theorem 5.12. Let M be a ÿ-finite von Neumann algebra and ÿý = ÿ−ýÿ be a GNS-ÿ-symmetric

quantum Markov semigroup. Suppose ÿý satisfies MLSI with parameter ÿ > 0. There exists an universal

constant c such that for 2 ≤ ý < ∞,

ÿ‖ý − ý (ý)‖ÿý (M,ÿ) ≤ ÿ‖ý − ý (ý)‖ÿ
ý
∞ (N ⊂M,ÿ) ≤ ý

√
ý ‖ ý ‖Lip .

Proof. We ûrst show that if ÿý satisûes ÿ-MLSI, so does the approximation semigroup.

ÿÿ,ý = ÿ̂ý |Mÿ
: Mÿ → Mÿ.

Indeed, as we see in the discussion above, Mÿ ⊂ M �
ÿ
ÿ
ý

2−ÿ
Z � ÿ∞ (T,M), and the extension

ÿ̂ý = ÿý⊗idT hasÿ-MLSI (because ÿ∞ (T) is a commutative space). Note that sinceMÿ ⊂ M�
ÿ
ÿ
ý

2−ÿ
Z ⊂

M �
ÿ
ÿ
ý
ÿ, the restriction ýMÿ

: M �
ÿ
ÿ
ý

2−ÿ
Z→ Mÿ is also a conditional expectation. Then for any

ÿ, ÿ ∈ ÿ(Mÿ), we have

ÿ (ýMÿ ,∗ÿ | |ýMÿ ,∗ÿ) ≤ ÿ (ÿ | |ÿ) = ÿ (ÿ |Mÿ
| |ÿ |Mÿ

) ≤ ÿ (ýMÿ ,∗ÿ | |ýMÿ ,∗ÿ).

Using the commutation relation ÿÿ,ý ◦ ýMÿ
= ýMÿ

◦ ÿ̂ý and ýMÿ
◦ ý̂ = ýÿ ◦ ýMÿ

, we have for
ÿ ∈ ÿ(Mÿ)

ÿ (ÿý ,ÿ,∗ÿ | |ýÿ,∗ÿ) = ÿ (ýMÿ ,∗ÿý ,ÿ,∗ÿ | |ýMÿ ,∗ýÿ,∗ÿ) = ÿ (ÿ̂ý ,∗ýMÿ ,∗ÿ | |ý̂∗ýMÿ ,∗ÿ)
≤ ÿ−2ÿýÿ (ýMÿ ,∗ÿ | |ý̂∗ýMÿ ,∗ÿ)
= ÿ−2ÿýÿ (ýMÿ ,∗ÿ | |ýMÿ ,∗ýÿ,∗ÿ) = ÿ−2ÿýÿ (ÿ | |ýÿ,∗ÿ).
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Thus, ÿÿ,ý has ÿ-MLSI on Mÿ. Note that ÿÿ,ý is both GNS-ÿ̂-symmetric for the extension state ÿ̂ and
also symmetric for the trace ÿÿ. Now, we may use the tracial version of the concentration inequality
[29, Theorem 6.10] that for ý ∈ Mÿ,

ÿ ‖ ýMÿ
(ý) − ýÿýMÿ

(ý) ‖ÿ
ý
∞ (Nÿ⊂Mÿ)≤ ÿ

√
ý ‖ ýMÿ

(ý) ‖Lip .

Now by the approximation of Lemma 5.11 and independence of ÿý
∞ (Nÿ ⊂ Mÿ) on the reference state,

for ý ∈ M,

‖ ý − ý (ý) ‖ÿ
ý
∞ (N ⊂M,ÿ) = lim

ÿ
‖ ýMÿ

(ý − ý (ý)) ‖ÿ
ý
∞ (Nÿ⊂Mÿ ,ÿÿ)

= lim
ÿ

‖ ýMÿ
(ý) − ýÿýMÿ

(ý) ‖ÿ
ý
∞ (Nÿ⊂Mÿ ,ÿÿ)

≤ ÿ√ý ‖ ýMÿ
(ý) ‖Lip≤ ÿ

√
ý ‖ ý ‖Lip .

The other inequality

‖ ÿ ‖ÿ
ý
∞ (N ⊂M,ÿ)≥‖ ÿ ‖ÿý (M,ÿ)

is clear from deûnition of ÿ ý
∞ (N ⊂ M, ÿ). �

For Gaussian type concentration property, we introduce the following deûnition.

Definition 5.13. For an operator O, we say that

Probÿ (|ÿ | > ý) ≤ ÿ

if there exists a projection e such that

‖ÿÿÿ‖∞ ≤ ý and ÿ(1 − ÿ) ≤ ÿ.

The next lemma is a Chebyshev inequality for ÿ-weighted ÿý norm.

Lemma 5.14. Let ý ∈ ÿý (M, ÿ) and 1 < ý < ∞. Then

Probÿ (|ý | > ý) ≤ 2
( ý
4

)−ý

‖ý‖ ý

ý,ÿ
.

Proof. We start with a positive element ý = ÿ2 and assume ‖ý‖ý,ÿ = ý . Then we have

ý = ‖ý‖ý,ÿ = ‖ý1/2ý

ÿ
ýý

1/2ý

ÿ
‖ý = ‖ÿý1/2ý

ÿ
‖2
2ý .

Recall the asymmetric Kosaki ÿý-space

‖ ÿ ‖ÿý
2ý (M,ÿ) := ‖ÿý1/2ý

ÿ
‖2ý ,

and the complex interpolation relation [42]

ÿý
2ý (M, ÿ) = [M, ÿý

2 (M, ÿ)]1/ý,

and the relation between real and complex interpolation

ÿý
2ý (M, ÿ) = [M, ÿý

2 (M, ÿ)]1/ý ⊂ [M, ÿý
2 (M, ÿ)]1/ý,∞.
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By the deûnition of real interpolation space, for every ý > 0, we have a decomposition ÿ = ÿ1 + ÿ2

such that

‖ÿ1‖∞ + ý ‖ ÿ2 ‖ÿý
2 (M,ÿ) ≤ ý1/ýý1/2.

Then by Chebychev9s inequality for the spectral projection ÿ = ÿ [0,ÿ] (ÿ∗2ÿ2), we have

ÿÿ(1 − ÿ) ≤ ÿ(ÿ∗2ÿ2) ≤ ý2/ý−2ý and ‖ÿ2ÿ‖2
∞ = ‖ÿÿ∗2ÿ2ÿ‖∞ ≤ ÿ.

Choose ÿ = ý2/ýý and deduce that

‖ÿýÿ‖∞ = ‖ÿÿ‖2
∞ ≤ (‖ÿ1ÿ‖∞ + ‖ÿ2ÿ‖∞)2 ≤ (ý1/ýý1/2 + ý1/ýý1/2)2 = 4ÿ.

Then for ý = 4ÿ and

ÿ(1 − ÿ) ≤ ÿ−1ý2/ý−2ý = ý−2 = ( ý

4ý
)−ý = ( ý

4
)−ýý ý .

For an arbitrary x, we may write ý = ý1ý2 such that

‖ý1/2ý

ÿ
ý1‖2ý = ‖ý2ý

1/2ý

ÿ
‖2ý = ‖ ý ‖ý,ÿ= ý.

Then for each ý > 0, we have decomposition

ý1 = ý11 + ý12 , ý2 = ý21 + ý22

with

‖ý11‖∞ + ý ‖ ý12 ‖ÿý
2 (M,ÿ) ≤ ý1/ýý1/2 , ‖ý21‖∞ + ý ‖ ý22 ‖ÿý

2 (M,ÿ) ≤ ý1/ýý1/2.

We then use the Chebychev inequality for ÿ = ÿ [0,ÿ] (ý∗12ý12 + ý∗22ý22),

ÿÿ(1 − ÿ) ≤ ÿ(ý∗12ý12 + ý∗22ý22) ≤ 2ý2/ý−2ý.

Take ÿ = ý2/ýý ,

‖ÿýÿ‖∞ = ‖ÿ(ý1ý2)ÿ‖∞ = ‖ÿ(ý11 + ý12) (ý21 + ý22)ÿ‖∞
≤ ‖ý11ý22‖∞ + ‖ÿý12ý21‖∞ + ‖ý11ý22ÿ‖∞ + ‖ÿý12ý22ÿ‖∞
≤ 4ý2/ýý.

Thus, for ý = 4ý2/ýý , by Chebychev9s inequality for e,

ÿ(1 − ÿ) ≤ 1

ÿ
ÿ(ý∗12ý12 + ý∗22ý22) ≤ ÿ−12ý2/ý−2ý = 2ý−2 = 2( ý

4ý
)−ý . �

Corollary 5.15. Let ÿý = ÿ
−ýÿ be a GNS-ÿ-symmetric quantum Markov semigroup. Suppose ÿý satisfies

ÿ-MLSI. Then for any ý ∈ M and ý > 0,

Probÿ (|ý − ý ÿ ÿý (ý) | > ý) ≤ 2 exp
(
− 2

ÿ

( ÿý

4ý ‖ ý ‖Lip

)2)
,

where c is a universal constant as in Theorem 5.12.

Proof. By Lemma 5.14 and Theorem 5.12, we have

Probÿ (|ý − ý (ý) | > ý) ≤ 2(ý/4)−ý ‖ ý − ý (ý) ‖ ý

ÿý (M,ÿ)≤ 2
(4ý ‖ ý ‖Lip

√
ý

ÿý

) ý
.
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Minimizing over p gives ý = 1
ÿ
( ÿý

4ý ‖ý‖Lip
)2, which implies

Probÿ (|ý − ý (ý) | > ý) ≤ 2 exp(− ÿ2ý2

16ÿý2 ‖ ý ‖2
Lip

). �

Remark 5.16. In the ergodic case, the above results can be compared to [69, Theorem 8], which states
that for self-adjoint ý = ý∗,

ÿ(ÿ { |ý−ý (ý) |>ý }) ≤ exp
(
− ÿý2

8 ‖ ý−1/2
ÿ

ýý
1/2
ÿ

‖2
˜Lip

)

with a different Lipschitz norm ‖ · ‖2
˜Lip

. Our Corollary 5.15 here uses a more natural deûnition of the

Lipschitz norm and applies to non-ergodic cases. Nevertheless, the projection we have for

Probÿ (|ý − ý (ý) | > ý)

is not necessarily a spectral projection ÿ { |ý−ý (ý) |>ý } and will depend on the state ÿ.

Remark 5.17. In the operator valued setting, let Q be any ûnite von Neumann algebra and ÿý ⊗ idQ be
the ampliûcation semigroup on Q⊗M. The conditional expectation for ÿý ⊗ idQ is ý ⊗ idQ. Note that
by Lemma 4.17, ÿý ⊗ idQ is GNS-symmetric to the product state ÿ ⊗ ÿ, for any state ÿ ∈ ÿ(Q) and any
invariant state ÿ ∈ ý∗(ÿ(M)). This means we obtain

Probÿ⊗ÿ (|ý − ý ÿ ÿý (ý) | > ý) ≤ 2ÿ
− ÿ2ý2

ÿ‖ý‖2
Lip

for any product state ÿ ⊗ ÿ of this speciûc form. The projection of course depends on both ÿ and ÿ.

We illustrate our result with a special case as matrix concentration inequalities.

Example 5.18 (Matrix concentration inequality). Let ÿ1, · · · , ÿÿ be an independent sequence of random
ý × ý-matrices ÿ1, · · · , ÿÿ such that

‖ ÿÿ − Eÿÿ ‖∞≤ ý , ÿ.ÿ.

Tropp in [75, Corollary 6.1.2] proved the following matrix Bernstein inequality that for the sum
ý =

∑ÿ
ý=1 ÿý ,

E ‖ ý − Eý ‖∞≤
√

2ÿ(ý) log(2ý) + 1

3
ý log(2ý)

and the matrix Chernoff bound

ÿ(|ý − Eý | > ý) ≤ 2ý exp
(
− ý2

ÿ(ý) + ý
3ý

)
,

where

ÿ(ý) = max{‖E((ý − Eý)∗(ý − Eý)) ‖ , ‖E((ý − Eý)∗(ý − Eý)) ‖}.

Now to apply our results, we recall that the depolarizing semigroup with generator ÿ( ÿ ) :=
(ý − ýÿ) ( ÿ ) = ÿ − ÿ( ÿ )1Ω on any probability space (Ω, ÿ) has ÿý ≥ 1

2 (a simple fact by convexity of
relative entropy). For a random matrix ÿ : Ω → Mý , the Lipschitz norm is
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‖ ÿ ‖2
Lip =

1

2
max{‖ ÿ̂ ∗ ÿ̂ + ýÿ ( ÿ̂ ∗ ÿ̂ ) ‖∞ , ‖ ÿ̂ ÿ̂ ∗ + ýÿ ( ÿ̂ ÿ̂ ∗) ‖∞}

≤ 1

2
(‖ ÿ ‖2

∞ +ÿ( ÿ )), (5.9)

where ÿ̂ = ÿ − ýÿ ( ÿ ) is the mean zero part.
Now we consider for each ý = 1, · · · , ÿ, ÿý : Ωý → ýý as a random matrix on (Ωý , ÿý ). Then on

the product space (Ω, ÿ) = (Ω1, ÿ1) × · · · × (Ωÿ, ÿÿ), we have by Theorem 5.12 for ý =
∑

ý ÿý

E ‖ ý − Eý ‖∞≤
( 1

ý
E ‖ ý − Eý ‖ ý

ý

)1/ý

≤ ý1/ý ‖ ý − Eý ‖ÿ∞ (ýý ,ÿý (Ω))≤ 2ýý1/ý√ý ‖ ý ‖Lip,

where ‖ · ‖ý is the p-norm for the normalized trace (tr(1) = 1). Applying (5.9) and optimizing p gives

E ‖ ý − Eý ‖∞≤ 2ýÿ−1/2
√
(ÿ(ý) + ý2) log ý.

For the matrix Chernoff bound, we use Corollary 5.15

ÿ(|ý − Eý | > ý) ≤ ýProbÿ⊗ tr
ý
(|ý − Eý | > ý) ≤ 2ý exp

(
− ý2

64ÿý2 (ÿ(ý) + ý2)

)
.

6. Final discussion

1. Positivity and complete positivity. The central quantity in this work is the CB return time ýýÿ and
ýýÿ deûned via complete positivity. Alternatively, one can consider positive maps and positivite mixing
time. Indeed, the entropy difference Lemma 2.1

ÿ (ÿ‖Φ∗Φ(ÿ)) ≤ ÿΦ(ÿ) + ÿ (ÿ‖ÿ)

holds for a positive unital trace-preserving map Φ. This is because the operator concavity

Φ(ln ý) ≤ lnΦ(ý), ∀ý ≥ 0

of the logarithmic function holds for any unital positive map Φ [18], and the monotonicity of relative
entropy

ÿ (ÿ‖ÿ) ≥ ÿ (Φ(ÿ)‖Φ(ÿ))

was proved for any positive trace-preserving map Φ in [56] (see also [27]). Thus, both inequalities used
in the proof of Lemma 2.1 hold for positive maps. Also, the conditions in Lemma 2.3 also only require
positivity order

(1 − ÿ)ý ≤ Ψ ≤ (1 + ÿ)ý, (6.1)

where Φ ≥ Ψ means Φ −Ψ is a positive map but not necessarily completely positive. Combining these
two relaxed lemmas for positive maps, we have an analog of Theorem 1.1.

Theorem 6.1. i) For a positive unital trace-preserving map Φ : M → M,

ÿ(Φ) ≤ 1 − 1

2ý (Φ) where ý (Φ) := inf{ý ∈ N+ | 0.9ý ≤ Φ2ý ≤ 1.1ý}.

ii) For a trace symmetric positive unital semigroup ÿý = ÿ
−ýÿ : M → M,3

ÿ(ÿ) ≥ 1

2ý (ÿ) where ý (ÿ) := inf{ý ∈ N+ | 0.9ý ≤ ÿý ≤ 1.1ý}.
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Applying the above theorem to Φ ⊗ idQ and ÿý ⊗ idQ for any ûnite von Neumann algebra Q actually
yields our main Theorem 1.1 for trace symmetric cases. It remains open whether this observation holds
for GNS-symmetric cases.

Problem 6.2. Does Theorem 6.1 with positivity conditions hold for GNS-symmetric cases?

The obstruction is that in the Haagerup reduction, we need the complete positivity and CB return
time ýýÿ (Φ) of Φ to imply positivity and positivity mixing time ý (Φ) of the extension Φ̂, similar for
the semigroup ÿý . One possible approach is to avoid using Haagerup reduction, and prove Lemma 4.6
directly.

The comparison between positivity and complete positivity has a deep root in the entanglement
theory of quantum physics (see [20]). From the mathematical point of view, although the positivity
looks a more üexible condition, it lacks connection to CB norms as Proposition 3.4. Indeed, there is no
non-complete analog of Choi9s theorem [19]

ÿÿ ∈ (M ⊗ Mýý)+ ⇐⇒ ÿ (ý) = ÿ ⊗ id(ÿÿ (ý ⊗ 1)) is ÿÿ.

Therefore, despite that the estimate of ÿ1(ÿ) only requires ý (ÿ), our kernel estimate Proposition 3.7
only applies to ýýÿ (ÿ).

2. GNS and KMS symmetry. Both GNS-symmetry and KMS-symmetry are noncommutative
generalizations for the detailed balance condition of classical Markov chains. As observed in [15],
GNS-symmetry is the strongest generalization of detail balance condition, and KMS is the weakest,
which means the assumption of GNS-symmetry is the most restrictive. It is natural to ask whether our
main results (c.f. Theorem 4.10 & 4.8) can be obtained for KMS-symmetric channels or semigroups.

Problem 6.3. Do entropy decay results Theorem 4.10 and 4.8 or the entropy difference Lemma 4.6 hold
for KMS-symmetric maps?

The key property of a GNS-symmetric map Φ is the commutation with modular group Φ ◦ ÿÿ
ý =

ÿ
ÿ
ý ◦ Φ. This has been used to ensure the compatibility of Haagerup reduction with channel and

semigroups (see Lemma 4.5). One can ask whether the same commuting diagram Figure 1 can be
obtained for KMS Markov maps. That will allow us to use Haagerup reduction to obtain the entropy
difference Lemma (4.6) for KMS-symmetric channels. Another approach is, again, to avoid using
Haagerup reduction and prove the KMS-case directly. At the moment of writing, this is not unclear to
us even on ûnite dimensional matrix algebras.

From a mathematical physics perspective, it is also interesting to explore the relative entropy decay
beyond GNS symmetry. For instance, one has a Lindbladian of the form ý ↦→ ÿ[ℎ, ý] + ÿ(ý) such that L

is GNS-symmetric and the adjoint action ad(ÿ−ÿℎý ) commutes with L. Then the associated semigroup is
ÿ−ÿℎýÿ−ýÿ (·)ÿÿℎý , which has the same entropy decay as ÿ−ýÿ . Such Lindbladians are considered in [48].
Indeed, there is also numerical and theoretical evidence that adding an nonzero Hamiltonian part can
destroy the exponential entropy decay. We refer to [48] for more discussion on entropy decay beyond
symmetry conditions.

3. MLSI and CMLSI constant. By the results of this work and also previous works [49, 14, 28],
we now know the positivity of CMLSI constant ÿý > 0 for many cases of classical Markov semigroups
with the (non-complete) MLSI constant ÿ > 0. That is, ÿ ≥ ÿý > 0 for

i) ûnite Markov chains [49, 28];
ii) heat semigroups on manifold with curvature lower bound [14];
iii) sub-Laplacians of Hörmander system on a compact Riemannian manifold.
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It remains open whether MLSI constant ÿ and CMLSI constant ÿý coincide for classical semigroups.
This would be in the similar spirit that the bounded norm (resp. positivity) and the complete bounded
norm (resp. complete positivity) coincide for a classical map on ÿ∞ (Ω, ÿ).

Problem 6.4. Does ÿ = ÿý for a classical symmetric Markov semigroup ÿý : ÿ∞ (Ω, ÿ) → ÿ∞ (Ω, ÿ)?

For a quantum Markov semigroup, a counterexample is the qubit depolarizing semigroup

ÿý : M2 → M2 , ÿý (ÿ) = ÿ−ý ÿ + (1 − ÿ−ý ) 1

2
,

which has 1
2 ≤ ÿý (ÿý ) < ÿ(ÿý ) = 1 because of entangled states [14, Section 4.3]. It is natural to ask

whether ÿý < ÿ also holds for classical depolarizing channel.
Another interesting example is the heat semigroup on the unit torus T = {ÿ ∈ C | |ÿ | = 1},

ÿý : ÿ∞ (T) → ÿ∞ (T) , ÿý (ÿÿ) = ÿ−ÿ2ý ÿÿ.

It was proved by [78] that ÿ(ÿý ) = ÿ(ÿý ) = 1. The best known bound for CMLSI is ÿý (ÿý ) ≥ 1
6 . It is

open whether the gap can be closed.

Problem 6.5. Does the heat semigroup ÿý on the torus T have ÿý (ÿý ) = ÿ(ÿý ) = 1?
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