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Abstract
Human uses mental models when interacting with systems.
Misalignment between a mental model and the system de-
sign, known as mode confusions, can lead to automation
surprises. To better handle the vagueness of mental mod-
els through formalization, Fuzzy Mental Model Finite State
Machines (FMMs), incorporating fuzzy logic, have been intro-
duced. This work explores the potential of FMMs in formal
analyses of human-machine interactions, proposing a set of
formal behavior patterns of mode confusions and a tool for
identifying mode confusions and unsafe interactions.
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1 Introduction
Human factors researchers have long argued that human
use mental models to track the system’s state and predict
its behaviors [8]. Maintaining an accurate mental model is
crucial for safe and e!ective human-machine interaction as
misalignment between the model and the system, known as
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mode confusions, can result in automation surprises, where
the system fails to act as expected [9]. Thus, avoiding mode
confusions has become vital in the design of safety-critical
systems and human-centered applications [4, 5, 7, 12, 14].
The executable nature of mental models has prompted

some researchers to view them as rudimentary programs that
can be represented by state machines [1, 10]. However, state
machines with a deterministic execution semantics fall short
of accurately modeling mental models because they do not
capture the vagueness of human reasoning [8]. To overcome
this limitation, researchers have introduced Fuzzy Mental
Model Finite State Machines (FMMs) [2], a new formalism
designed to precisely capture the vagueness and imprecision
of human mental models. It builds upon state machines but
incorporate fuzzy logic to handle vagueness. Fuzzy logic
[15], developed to re#ect the inherent imprecision of human
thinking and language, allows for categories to have degrees
of membership from 0 (not at all) to 1 (completely) rather
than falling into discrete categories like true or false.
This work investigates the potential of FMMs in formal

analyses to facilitate the veri"cation of safe and robust human-
machine interactions, explicitly accounting for the vagueness
inherent in mental models. Contributions include:

1. A catalog of patterns of mode confusions.
2. A novel tool for analyzing human-machine interac-

tions, identifying potentially unsafe behaviors and
problematic vagueness within mental models.

3. A case study of applying the FMMAnalysis Tool to user
interfaces of contemporary mono-stable gearshifts.

2 Motivating Example

Figure 1. Gearshift
system model.

I examine a contemporary mono-
stable gearshift system (Figure 1)
designed to switch between four
vehicle modes: parking (P), reverse
(R), neutral (N), and drive (D).

Introduced in mid-2010s Fiat
Chrysler vehicles, this design led
to numerous accidents due tomode
confusion, prompting a recall of
over 1.1 million vehicles [6]. Unlike
traditional gearshifts that remain in positions corresponding
to speci"c gears, the mono-stable gearshift returns to its cen-
tral position after each action. The design of this gearshift
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can confuse driver due to the subtle feedback associated
with each shift action and the absence of a "xed gear po-
sition. Speci"cally, the relatively indistinct feedback from
each shift motion can fail to clearly indicate the number of
shifts performed.
One type of accident that could occur in this scenario

is when the driver is in neutral (N) and intends to reach
parking (P) by shifting up once (up1). The driver mistakenly
believe that by shifting up once the car should transits to
parking (P), while the car is actually in reverse (R). This could
cause unexpected backward movement, potentially leading
to collisions, pedestrian danger, or loss of control.

3 FMM Analysis Tool
The analysis tool1 takes two di!erent models as inputs: (1) an
FMM and (2) a labelled transition system (LTS) for the system
model. It simulates state transitions of these two machines
in parallel and identi"es possible mode confusions.

3.1 Mental Model and System Speci!cation
An LTS-based system model is a 4-tuple 𝐿2 = (ω,𝑀,𝑁0,𝑂),
and an FMM is an 8-tuple: 𝐿1 = (ω,𝑀, 𝑃 ,𝑄, ↑𝑅0,𝑆,𝑇, 𝑈) [2]. ω
denotes a "nite set of input events that can cause a change
in the system state, and𝑀 represents a "nite set of states the
system could be in.
The user speci"es the initial state 𝑁0 ↓ 𝑀 and the state

transition function 𝑂 : 𝑀 ↔ ω → 𝑀 for the system model.
Additionally, the user speci"es the following for FMM:
• ↑𝑅0 ↓ 𝑄 : a vector of initial state fuzzy set memberships.
• 𝑇 : 𝑀 ↔ ω → 𝑄 : a function that describes the fuzzi"cation
of state transitions by mapping current states 𝑀 and input
events ω to a vector of membership values for next states𝑄 .
• 𝑆 : ω → 𝑃 : a function that describes how inputs are fuzzi-
"ed by mapping crisp input events from ω to a vector of
input fuzzy set memberships from 𝑃 .

For themotivating example, ω = {𝑉𝑊1,𝑉𝑊2,𝑉𝑊3, ...,𝑋𝑌𝑍𝑎3}
and 𝑀 = {𝑏,𝑂,𝑐 ,𝑑}. The driver’s belief about the modes
that the vehicle could be in is represented by tuple ↑𝑅 =
(𝑅𝐿 ,𝑅𝑀,𝑅𝑁 ,𝑅𝑂 ) ↓ 𝑄 . It is assumed that initially, the dri-
ver is relatively certain that the vehicle is in the parkingmode
(i.e. ↑𝑅0 = (1.0, 0.01, 0.2, 0.01)). As mentioned in Section 2,
vagueness in the driver’s mental model could come from
confusion between the number of push-up motions, such
vagueness can be represented in𝑆 . For example, when the dri-
ver pushes the shift up once (up1), they might confuse their
motion as having done it twice (up2); this vagueness can be
represented in 𝑆 , where 𝑆 (𝑉𝑊1) = (0.9, 0.2, 0.0, 0.2, 0.0, 0.0).

3.2 Analysis
To "nd mode confusion errors, the tool randomly generates
traces of a user-de"ned length, simulating the system’s state
transitions and the FMM’ degrees of state membership.

1https://github.com/cmu-soda/FMMAnalysisTool

Table 1. An incomplete list of mode confusions.

Mode Confusion Condition Over State Pair
(𝑁, ↑𝑅)

Dominant Error State 𝑊𝑒𝑌 𝑓𝑃 ( ↑𝑅) = {𝑁↗} ↘ 𝑁 ω 𝑁↗

Nondeterministic Confusion #𝑊𝑒𝑌 𝑓𝑃 ( ↑𝑅) ≃ 1
Vacuous Confusion #𝑊𝑒𝑌 𝑓𝑄 ( ↑𝑅) = 0

For input event 𝑔1 ↓ ω, the tool calculates the degree of
membership of the FMM as 𝑈 ( ↑𝑅, 𝑔1) = ↑𝑅↗, where
⇐𝑅↗

𝑅 ↓𝑅↗ :𝑅↗
𝑅 = ⇒𝑆𝐿 ↓ ↑𝑆,𝑇𝑀2↓𝑈 (𝑉1) (𝑅𝑊 ↘ 𝑕𝑉2 ↘ 𝑇 (𝑖, 𝑔2)𝑅 ) (1)

where fuzzy AND is de"ned as ↘𝑋
𝑌=1𝑗 𝑌 =

∏𝑋
𝑌=1 𝑗 𝑌 and fuzzy

OR is de"ned as ⇒𝑋
𝑌=1𝑗 𝑌 = 1 ⇑∏𝑋

𝑌=1 (1 ⇑ 𝑗 𝑌 ) [2, 13].
For example, given up1 as 𝑔1,𝑅↗

𝐿 equals the OR (⇒) of all
possibleAND (↘) of current membership𝑅𝑊 ↓ ↑𝑅 where ↑𝑅 =
(𝑅𝐿 ,𝑅𝑀,𝑅𝑁 ,𝑅𝑂 ), 𝑕𝑉2 ↓ 𝑆 (𝑉𝑊1)where𝑆 (𝑉𝑊1) = (0.9, 0.2, 0.0,
0.2, 0.0, 0.0), and 𝑇 (𝑖, 𝑔2)𝐿 given the 𝑖, 𝑔2 from𝑅𝑊 , 𝑕𝑉2. That
is, given an input event up1, the degree of membership of
state P in the next step𝑅↗

𝐿 ↓ ↑𝑅↗ can be calculated as above.
Given a pair of simulated states (𝑁, ↑𝑅), where 𝑁 ↓ 𝑀 is

the current system state and ↑𝑅 ↓ 𝑄 , the tool then analyzes
these pairs of states for mode confusions as de"ned in Table 1,
with 𝑊𝑒𝑌 𝑓𝑄 ( ↑𝑅) de"ned as mapping ↑𝑅 to a set of states whose
membership value is greater or equal to 𝑘 , and 𝑊𝑒𝑌 𝑓𝑃 ( ↑𝑅) as
mapping ↑𝑅 to the state(s) with the highest membership. One
type of mode confusion focused in this paper’s discussion,
Dominant Error State, refers to the scenario when the state
that the human believes the system to be most possibly in
does not match the system’s actual state.

In the gear shifter example, the analysis tool identi"es "N,
up1 → P" as a common Dominant Error State error. This
type of error occurs when drivers apply less force to shift
gears than they realize or mistakenly believe they have al-
ready performed an action, leading to under-shifting [3, 11].
Similar errors are observed in all other Dominant Error State
checks identi"ed by the tool. The analysis tool detects the
errors above with 1,000 simulations with a trace length of
10, requiring 25 seconds to complete. Similar errors can be
identi"ed by running fewer simulations or shorter traces,
which signi"cantly reduces the tool’s execution time.

4 Conclusion and Future Work
I have presented a tool for analyzing human-machine inter-
action through FMMs, formal de"nitions of mode confusions,
and a case study of gearshift system. Due to space limitations,
additional contributions such as extended FMMs formalism,
additional mode confusions and case studies are not included.
Future work includes developing elicitation techniques

to construct FMMs from human-subject studies, creating a
model checker for FMMs, exploring mental models in do-
mains like aviation and medical devices, and identifying new
design principles and automated repair methods using the
FMM Analysis Tool.
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