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Figure 1: We provide unprecedented equitable access to massive data via our novel data fabric abstraction enabled by dashboards
on commodity desktop computers with a simple weblink for everyone from top NASA scientists to students in disadvantaged
communities to the general public. The two example dashboards for petascale climate data shown with multiple variables and
10,000-time steps: the Gulf Stream region dashboard on the left and the Kuroshio region dashboard on the right.

ABSTRACT

Scientists generate petabytes of data daily to help uncover envi-
ronmental trends or behaviors that are hard to predict. For exam-
ple, understanding climate simulations based on the long-term av-
erage of temperature, precipitation, and other environmental vari-
ables is essential to predicting and establishing root causes of fu-
ture undesirable scenarios and assessing possible mitigation strate-
gies. While supercomputer centers provide a powerful infrastruc-
ture for generating petabytes of simulation output, accessing and
analyzing these datasets interactively remains challenging on mul-
tiple fronts. This paper presents an approach to managing, visualiz-
ing, and analyzing petabytes of data within a browser on equip-
ment ranging from the top NASA supercomputer to commodity
hardware like a laptop. Our novel data fabric abstraction layer
allows user-friendly querying of scientific information while hid-
ing the complexities of dealing with file systems or cloud services.
We also optimize network utilization while streaming from petas-
cale repositories through state-of-the-art progressive compression
algorithms. Based on this abstraction, we provide customizable
dashboards that can be accessed from any device with any inter-
net connection, enabling interactive visual analysis of vast amounts
of data to a wide range of users - from top scientists with access
to leadership-class computing environments to undergraduate stu-
dents of disadvantaged backgrounds from minority-serving institu-
tions. We focus on NASA’s use of petascale climate datasets as an
example of particular societal impact and, therefore, a case where
achieving equity in science participation is critical. We validate our
approach by improving the ability of climate scientists to visually
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explore their data via two fully interactive dashboards. We further
validate our approach by deploying the dashboards and simplified
training materials in the classroom at a minority-serving institution.
These dashboards, released in simplified form to the general public,
contribute significantly to a broader push to democratize the access
and use of climate data.

Index Terms: Data visualization, Petascale analytics, Data acces-
sibility, Equity in science, Cloud computing, Petabytes.

1 INTRODUCTION

Despite the daily generation of massive petabyte-scale datasets, ef-
fective analysis and visualization remain critical for extracting valu-
able insights. Scientific institutions like NASA are at the forefront
of generating such data. While significant resources are poured
into making it accessible (e.g. NASA’s DYAMOND and ECCO
data [43, 42]), inherent challenges persist. However, these datasets
present unique challenges: difficulty accessing the data, limitations
in computational power, and the need for real-time processing ca-
pabilities. Downloading petascale data locally is problematic due to
limitations of local memory or disk size and insufficient bandwidth
for remote disks [13]. Our work focuses on collaboration with these
institutions to improve data accessibility, empowering researchers
to unlock the hidden knowledge within these vast datasets.

Researchers and scientists often want to ask conceptually simple
questions, such as viewing time-series data and slices of volumes.
Petascale data visualization can require up to hundreds of GPU and
CPU core hours, which can take hours of waiting in a queue at a
busy center. Researchers also may need to interactively visualize
large datasets, which is difficult with traditional static visualization
methods that limit the ability to ask real-time questions and per-
form on-the-fly analysis. Other technical challenges for big data in
domains like climate science include migrating code, analytic prod-
ucts, and large repositories within the growing network of storage
and computational resources [16].

Commonly, static visualizations are generated for a selected time
range, scalar, region, and resolution, limiting the ability to interac-



tively view and analyze the data. Our collaboration with domain
scientist and visualization experts has helped to create a novel in-
teractive visualization dashboard for petabytes of data with progres-
sive loading and decoupling of the storage infrastructure in order to
increase data democratization. Our specific contributions include:

• A novel data fabric abstraction layer that allows users to re-
quest information based on their scientific needs without dealing
with the low-level specification of file formats or network speed.
Our FAIR Digital Objects (FDOs) layer responds to user requests
within the specified quality/resource bounds or notifies that the
request may need to be revised (e.g., reducing quality or increas-
ing resources). Our approach allows undergraduate students in
a minority-serving institution to use in their exercises the same
petascale dataset as NASA scientists on their largest supercom-
puter, seeking to advance data access equity in science.
• Efficient Data Reorganization, Conversion, Reduc-
tion/Optimization pipeline that allows for efficient storage
and data transfer by utilizing compression strategies for data
and transforms the data into an Analysis-Ready Cloud-Optimized
(ARCO) friendly format to significantly reduce the computational
load and storage requirements.
• Scalable Visualization Dashboards enable progressive visual-
izations of petascale data with advanced analytical tools and a
user-friendly design, encouraging scientific curiosity and discov-
ery.
• Data Democratization via publicly accessible web links to more
than a petabyte of data on the cloud in an optimized format, en-
hancing public access and collaborative opportunities.

We demonstrate our approach through dashboards available on su-
percomputers and servers, both accessing publicly available data
from cloud storage. The phrase in the title, ”Equity as a Tide that
Lifts All Boats,” is a nod to the proverb ”a rising tide lifts all boats”,
which dates back to the early 1900s. The proverb is typically used
in economics and is used here about the benefits of providing data
access equity. We evaluate our dashboards through three use cases:
1) petascale visualization of multiple variables with 1.1 PB data
from the cloud; 2) studying relationships between oceanic and at-
mospheric variables to see how the change in oceanic phenomena
such as sea surface temperature affects the formation of ice, wa-
ter, and clouds in the atmosphere using cloud-served data; and 3)
demonstrating how the ”rising of the tide” to data equity opens the
doors for underserved communities to access data previously out
of reach. We also examine performance, discuss lessons learned,
and review the intellectual merit and societal benefits of our novel
approach for petascale data visualization and analysis.

2 RELATED WORKS

Visualizing large-scale data directly from a web environment pro-
vides unprecedented access to information. The ability to process
and render complex datasets from a web browser offers unique ad-
vantages in efficient analysis, accessibility, and data management.
The shift toward browser-based visualization tools enables users
across various disciplines to access and interact with information
in real-time without the need for specialized hardware or extensive
software installations. As the interest and demand for web-based
visualization grows, researchers and developers have developed a
variety of frameworks, libraries, and methodologies to tackle the
inherent challenges associated with rendering large-scale datasets
in a browser environment.

2.1 Large-Scale Web-based Visualizations

The most popular web-based visualization libraries today include
D3 [11], popular for its ability to directly manipulate and trans-
form the contents within its document object model (DOM). Sev-
eral other libraries leverage WebGL to handle large-scale data vi-
sualizations efficiently and with high performance directly within

a browser. WebGL enables these libraries to provide rich, interac-
tive, and 3D visualizations using the GPU for graphics rendering.
Among these are libraries Deck.gl [71], Luma.gl and Three.js [5].

Visualizing large-scale datasets from a browser has been pre-
viously researched. Usher et al. [66, 64] developed an isosurface
computation algorithm for block-compressed data to visualize a ter-
abyte of scientific data from a browser. We have far exceeded this
by creating a framework that can visualize more than a petabyte
of data from the cloud. Alder et al. [4] developed USGS National
Climate Change Viewer to visualize 17 terabytes of climate pro-
jection data from compressed NetCDF-4 files and preprocessed the
data for statistics instead of computing them on the fly. Walker et
al. [70] worked on 50 megabytes of geospatial data, mentioning a
browser limitation that caused excessive latency. Other tools, such
as ParaviewWeb [28], perform data processing and rendering on the
server side and stream back the results to the client. Mohammad et
al. [52] deployed efficient and affordable scientific visualization as
a microservice, but noted challenges with network inconvenient la-
tency and costly egress costs. However all of these systems have
not been capable to working with petascale datasets.

A framework developed by Lu et al. [37] allows on-the-fly visu-
alization of the multiscale climate datasets but remotely uses cloud
services to provide big data processing ability. Ravindu [51] de-
scribes loading data into memory as one of the key challenges
of visualizing data from a browser. To tackle these challenges,
tools such as Firefly [21] use progressive rendering techniques on
a dataset of size 250GB to visualize from a browser. Other chal-
lenges mentioned by Khadija et al. [8] include scalability and high-
performance requirements for big data analysis and visualization.

2.2 Climate-specific Data Visualization Tool

Some existing tools, such as Ultrascale Visualization Climate Data
Analysis Tools (UV-CDAT) [73], support data gridding and ex-
ploratory data analysis but require users to download sophisticated
packages. A Python-based tool called CCPviz developed by Aizen-
man et al. [3] provides a data processing and visualization module
for climate data. However, the CCPviz architecture is inefficient for
data in petabytes of size as it requires transferring all selected data
between the different layers of their architectures. Sun et al. [62]
developed a web-based visualization framework for climate data us-
ing Google Earth by precomputing all the images at the local server
and mentioned that on-the-fly data access from remote servers is
slow and impractical.

A web analysis platform called ClimateCharts.net developed by
Zepner et al. [78] focuses on the general interactive features of the
data but had issues due to the lack of computational resources and
network latency. Another framework developed by Wong et al. [75]
provided scalar fields and flow visualization but required significant
data downsampling y to make their workflow run on the desktop
computer. Other challenges mentioned by Wong et al. [74] include
being dependent on in-situ analysis of data, lack of interaction, vi-
sualization techniques, and limited community engagement.

Several implementations endeavor to make the NASA Climate
data easier to access [18, 1, 7, 23]. Such methods require users
to access libraries designed to make the data accessible. Still, the
ability to slice vertically or horizontally interactively requires man-
ual installation of complex libraries or additional expertise. Sci-
entists and developers have created libraries like xmitgcm [76, 2]
to handle these issues for petascale NASA datasets, but they still
lack the interactive features that many climate scientists desire.
Other tools developed at NASA, such as Podaac [41] provide near
real-time (NRT) access to some data products but still do not give
users the flexibility to change the range, colormap, and other util-
ities such as slicing the data, helpful in navigating the depths of
the data. Ellsworth et al. [15] developed an environment to visu-
alize these petabytes of data using the hyperwall, a display wall
with 128 displays, and associated computing clusters. Whereas the



Figure 2: Our novel data abstraction framework allows a scientist to express a query for the information needed with additional parameters,
such as the quality required to achieve a trustworthy result and/or the maximum amount of resources available for its execution. Our Data
Fabric Abstraction (left) handles the query and builds the Uniform Resource Identifier (URI). The FAIR Digital Object (FDO) provides the
information necessary for an implementation that optimizes the execution of the query (middle). The low-level execution (right) will use the
available networking and storage resources, including different file formats and storage models (file systems, object storage, or block storage),
as needed.

high-resolution displays and custom software allowed for quickly
viewing large amounts of data, this unique system was restricted to
scientists who could secure an invitation to the facility.

2.3 Data Reorganization using OpenVisus

Many scientists need help dealing with massive datasets due to
hardware limitations, slow data movement, and I/O bottlenecks.
Among other technologies, we use OpenVisus [48, 45], an open-
source out-of-core data management framework to reorganize the
data. The framework employs multiresolution space-filling curves
for data reorganization and interactive exploration [61]. OpenVi-
sus supports fast I/O of petascale simulations [32, 31, 33] as well
as post-hoc querying and visualizing petascale data in various sci-
entific applications [65, 20, 48, 50]. Designed to provide progres-
sive random access for very large datasets, OpenVisus optimally ex-
ploits the existing caching hardware in modern architectures. The
cache-oblivious approach [68, 47, 77] exploits this structure by stor-
ing large data arrays in a cache-optimized manner. A critical aspect
that will be specialized and optimized, especially for use cases pre-
sented in this paper, is the ability to progressively encode spatial
resolution and numerical precision of the data [24, 9], thereby min-
imizing the cost of data movements for any data analysis and visu-
alization workflow [22].

3 A NOVEL DATA FABRIC ABSTRACTION

We introduce a data abstraction layer that concurrently addresses
the user’s need to access information easily while being able to
control the amount of resources used. Via the use cases presented
in this paper, we demonstrate how the data abstraction layer aids
in visualizing, analyzing, and sharing petascale climate simulation
datasets. We show how our framework facilitates using these mas-
sive datasets for world-renowned climate scientists using NASA’s
largest supercomputer and for undergraduate students in a minority-
serving institution, mostly native Americans from the Navajo Na-
tion (typically first-generation college students).

Our data fabric abstraction consists of several modules as shown
in Figure 2 including query, universal resource identifier (URI), fair
digital object (FDO), and plan modules, as well as pipelines for
data caching, transfer, routing, conversion, reduction, and security.
The data fabric abstraction then relies on an API to access either
file, block, or object storage. The storage formats include ZARR,
numpy, NetCDF, HDF5, GeoTIFF, and IDX1/IDX2. By building
this modular abstraction, we can easily add, change, and update

any of these black boxes through a simple API without worrying
about cascading issues.

3.1 Query and URI

To alleviate users from the complexities associated with low-level
storage intricacies, we provide an API to request information at a
high level of abstraction and include a variety of technical require-
ments. Typical primary query elements include spatial extent, time
value or range, and variables of interest (temperature, salinity, ve-
locity, etc.). Queries are specified not with respect to how the data
is stored in a particular file format but in the analysis coordinate
system, similarly to an Xarray API [26]. While Xarray is user-
friendly, Xarray does not address the problem of mapping a request
to an impractically large amount of resources. We, therefore, intro-
duce additional parameters that the scientific community has iden-
tified as needed when dealing with massive data [29, 12, 6]. For
example, for a given query, the user can specify the spatial res-
olution and/or numerical precision needed to satisfy the scientific
needs. Additional constraints include the maximum cost in egress
fees budgeted for data stored in the commercial cloud or the max-
imum delay between query and response. Since it may not always
be possible to satisfy all the requirements, a query may not return
the information requested but indicate that the conditions need to
be relaxed (Figure 2, left).

As users make specific requests within the query abstraction
framework, the back-end uniform resource identifier (URI) abstrac-
tion handles query requests, such as data caching, transfer, routing,
conversion, reduction, and security. Each of these is critical for
maintaining performance and data integrity across different storage
types and formats, whether in block storage, file storage, or object
cloud storage. Flexible data management strategies can optimize
for I/O, cost, speed, or accessibility, depending on the user’s needs.

3.2 FAIR Digital Object

To address the complexities of large data distributed across vari-
ous platforms and the potential use of different file formats, we
introduce the first advanced FAIR Digital Object (FDOs) frame-
work [59] implementation, which democratizes access to data while
following the FAIR (Findable, Accessible, Interoperable, Reusable)
guiding principle [72], illustrated in Figure 2. In particular, an FDO
generalizes the concept of Digital Object Identifier (DOI) with the
inclusion of executable elements such as a bit sequence, operations,
metadata, and an identifier. Practically, the FDO includes all the ac-
tionable information needed to determine if and how a given query
can be resolved (Figure 2, middle).



3.3 Storage and File Formats

The last module of the data fabric abstraction includes the API be-
tween the data and the storage. We capitalize on OpenVisus’s capa-
bilities and improve its use as a cloud or caching data model for fast
data processing. In particular, we tackle the challenge of working
with datasets too large for a system’s memory by utilizing OpenVi-
sus’ out-of-core computations.

We currently have modules for seamlessly exploiting file, block,
object, and distributed storage options. File storage functions as
network-attached storage. Block storage offers high I/O perfor-
mance, strong consistency, and low-latency connectivity. Object
storage guarantees high availability and is durable and infinitely
scalable on the cloud. Distributed storage [27, 14, 30] is tailored
for long-term scientific research and is immutable, verifiable, and
cost-effective through incentive systems, smart contracts, and qual-
ity of service tradeoffs [34, 67, 56] (Figure 2, right).

Our abstraction layers allow transparent data conversion between
many file formats and optimize storage and retrieval without user
intervention. For example, a query for a high-resolution climate
model might be stored in Zarr format in the cloud but could be
automatically converted to a more compact representation for the
user, like GeoTIFF or NetCDF, if that is what they require for their
analysis.

3.4 Transforming HPC Data for Cloud Storage

The workflow illustrated in Figure 3 provides an overview of con-
verting High-Performance Computing (HPC) data to cloud data.
The process begins with a simulation model running on the HPC
system. This model generates raw data at a petascale level that
requires substantial storage and processing power. The first step
converts the generated raw data to Analysis-Ready, Cloud Opti-
mized [2, 57] IDX format. The OpenVisus IDX format enhances
our ability to process large-scale datasets at unprecedented speeds.
Our conversion pipeline achieves remarkable efficiency, convert-
ing data at 1 TB per hour using only 16 cores. This rate suggests
that, with 16,000 cores, it would be possible to reach conversion
speeds of up to 1 PB per hour, depending on the system’s I/O ca-
pacity. The conversion to IDX format is motivated by the need
for a more flexible and performance-optimized approach to handle
large-scale data. Traditional formats often struggle with the de-
mands of petascale datasets, resulting in extended periods of data
preparation and subsequent delays in analysis. In contrast, the opti-
mized IDX format works with devices with minimal resources and
high-performance computing environments. The IDX format en-
ables significantly more efficient operations for reading and writing
data, facilitating faster data manipulation and visualization.

Adding an ARCO-friendly format further streamlines the data,
significantly reducing computational load and storage requirements
and allowing efficient and direct access to data subsets in the cloud.
Afterward, data compression techniques such as ZIP, Zlib, and LZ4
for lossless compression and ZFP for lossy compression reduce the
size of the data, which helps speed up the transfer process and low-
ers storage costs. The compressed IDX dataset is then securely
transferred to the cloud via ’secure copy protocol.’ These efficient
and secure data transfer protocols synchronously move large vol-
umes of data from the HPC environment to cloud storage. In addi-
tion, our frameworks also manage an IDX local cache to optimize
data queries, ensuring faster access and improved performance for
end-users accessing the data from notebooks and dashboards.

In our empirical evaluation, we found a significant influence of
block sizes on the amortization and prediction of network latencies
and the achievement of optimal bandwidth transfers. By examin-
ing various block sizes ranging from 32KB to 16MB, we investi-
gated their impact on the overall workflow execution; altering block
sizes achieves an immediate effect on the total number of generated
objects, which could swiftly escalate to hundreds of millions, po-
tentially leading to operational delays in any network file system.

Figure 3: An example workflow showing data conversion and re-
trieval pipeline for Jupyter notebook and dashboards from a super-
computing environment.

Through practical experimentation, we established that an optimal
block size, identified between 1MB and 8MB, closely aligns with
those utilized by leading commercial entities in their File Sharing
Solutions (e.g., Google Drive, Dropbox, Microsoft One Drive), par-
ticularly when coupled with effective client-side caching.

3.5 Results of DFA: Decoupling Data From Storage

Decoupling data from its storage infrastructure is paramount for
achieving longitudinal data access and sharing capabilities. This
separation is crucial because the lifespan of any physical storage
medium is inherently shorter than that of the data it holds. Given the
rapid evolution of technology and business landscapes, today’s op-
timal storage solutions can swiftly become prohibitively expensive
or outdated. Therefore, data repositories must employ technology-
agnostic abstractions that facilitate hybrid usage and seamless mi-
gration, minimizing costs and disruptions to user access.

Our visualization framework seamlessly supports: 1) Reading
data at varying resolutions within Regions of Interest (ROIs), limit-
ing the result to the available memory or the maximum number of
projected pixels on the screen; 2) Generating summary videos from
temporal data with specific resolution constraints; the total num-
ber of frames is established depending on the network bandwidth
and the existence of pre-cached data; 3) Writing multiple versions
of data, one for archival at low cost and one resolution-capped for
quick sharing purposes.

Furthermore, user requests can be translated to different encod-
ing and compression schemes depending upon several factors, e.g.,
high-but-slow compression for less frequently accessed data and
low-but-fast compression for frequently accessed data. Addition-
ally, our framework facilitates data migration between different
storage tiers (hot, warm, and cold) [49] and enables transparent
rerouting of data requests from local storage to external storage as
needed. To make datasets publicly accessible, we upload petabytes
of data after compression to Seal Storage, an S3-API-compatible
decentralized cloud storage service [55].

3.6 Impact of our Data Fabric Abstraction

Our progressive streaming ability, combined with the cloud-served
data in analysis-ready format, allows user access and visualization
of large datasets without downloading the entire file or region. Our
frameworks enable convenient remote collaboration and data access
with standalone Jupyter notebooks [53] and dashboards via simple
lines of code shown in Figure 4.

4 DASHBOARDS

We have found that whereas generating a simulation for a given
data set and parameters may require hundreds of hours or more on
a supercomputer, viewing that data should no longer require heavy



import OpenVisus as ov

endpoint="https://maritime.sealstorage.io/api/v0/s3"

url= f"{endpoint}/utah/nasa/" \

f"dyamond/mit_output/llc2160_arco/visus.idx"\

f"?access_key=any&secret_key=any" \

f"&endpoint_url={endpoint}&cached=arco"

db=LoadDataset(url)

data=db.read(x=[x_min,x_max],

y=[y_min,y_max],

z=[z_min,z_max])

Figure 4: Simple Python code fragment for accessing a petascale
data stored on the Seal Storage cloud. The result of an input URL
given to the LoadDataset function is assigned to db. The db.read

returns a NumPy array that can easily be used in Python or Jupyter
Notebooks.

computation. To solve this significant gap between the fast reading
and visualization of massive data, we have integrated a Python ver-
sion of OpenVisus [48] called OpenVisusPy [46] with web-based
visualization frameworks such as Bokeh [10] and Panel [25]. These
flexible and interactive widgets support a wide range of visual-
ization techniques, allowing users to dynamically explore, analyze
dynamically, and understand massive datasets with ease. An inte-
grated environment enables users to interact with their data in pre-
viously impractical or too resource-intensive ways, allowing data-
intensive analysis to become more accessible and insightful.

Our dashboard framework, an example shown in Figure 5 and
in the supplemental materials, provides a diverse array of features
designed to accommodate both casual explorers and scientific re-
searchers, including dataset selection, region of interest extraction,
timestep slider, horizontal and vertical slices, color map/palette,
colormap range (user or dynamic), resolution sliders, playback
functionality, and time speed control.

Our dashboard represents a significant advancement in the visu-
alization and analysis of large-scale data, not limited by the size of
the data, disk space, and available memory. It allows multiple inter-
active windows that show streaming progressively loaded slices of
volume data, graphs of pixel values through the volume, or macro
views of the dataset, as shown in Figures 1 and 5. By provid-
ing interactive tools and features, we aim to make complex data
visualizations accessible and insightful for a broad audience, from
researchers and scientists to educators and policymakers.

(a) A close-up of the dashboard sliders.

(b) A snapshot of sea surface temper-

ature for the global region from the

dashboard.

(c) Selecting region of interest after

zooming in from the dashboard

Figure 5: Interactive visualization of sea-surface temperature for
Use Case 1 and inset for selecting the regions of interest (left). The
dashboard provides the ability to directly download the data locally
or to download a Python script that fetches the region from a cloud
(right).

5 EXAMPLES

Although our framework can work for many petascale gridded
datasets, we demonstrate our framework for two large-scale cli-

mate simulation datasets: 1) the NASA 1.8 PB DYAMOND
dataset [58, 39] and 2) the LLC4320 Ocean dataset [38, 18]. The
Coupled Ocean-Atmosphere Simulation (COAS) run at NASA Ad-
vanced Supercomputing (NAS) is part of the international project
called “Dynamics of the Atmospheric general circulation Mod-
eled On Non-hydrostatic Domains” or DYAMOND. The purpose of
COAS is to better understand the oceanic and atmospheric mecha-
nisms that link air-sea interactions with the Earth’s water cycle and
extreme atmospheric events. As illustrated in Figure 1 and shown
in the supplementary videos, our dashboards help solve the chal-
lenge of putting together all the data, providing access to efficient
visualizations in 3D space of multiple atmospheric and oceanic
variables. In this section, we will give an overview of the datasets,
describe the specific details related to converting the data, espe-
cially the data compression gains, and discuss the performance of
reading these data from different locations, such as NAS native file
systems, locally cached cloud storage, and uncached cloud storage.

5.1 Dataset Overview

The first dataset, DYAMOND [58, 39], is the simulation output
from research into coupling two models: a global atmospheric
model and a global ocean model that were originally designed to
be run separately. The atmospheric model is a C1440 configura-
tion of the Goddard Earth Observing System (GEOS) atmospheric
model running on a cubed-sphere grid. The global ocean model is
an LLC2160 configuration of the MITgcm model that uses a lat-
lon-cap grid. Each model was run for over 10000 hourly timesteps
covering over 14 simulation months. The atmospheric model out-
put has 20 3D and over 100 2D scalar fields, and the ocean model
output has 5 3D and 15 2D fields. Both models have 3D fields
such as temperature, north-south velocity, and east-west velocity.
Some example fields from the atmospheric model are humidity, soil
wetness, snow cover, and various cloud state variables. The ocean
model includes fields of salinity, sea ice thickness, and freshwater
flux, with a total size of approximately 1.8 petabytes.

Another ocean dataset called LLC4320 [38, 18] from the project
called ‘Estimating the Circulation and Climate of the Ocean’, also
known as ECCO, is the product of a 14-month simulation of ocean
circulation and dynamics using MITgcm (MIT General Circulation
Model). This simulation is very similar to the ocean portion of the
DYAMOND coupled simulation, but was run with half the horizon-
tal grid spacing (four times the cell count), and with values at the
ocean surface boundary that were derived from observations and
physical models. The model output has 5 3D and 13 2D scalar
fields that include temperature, salinity, the three velocity compo-
nents, sea ice, and radiation. This massive dataset is 2.8 PB in size.

We have built several interactive dashboards to potentially im-
prove our understanding of global ocean circulation and its role in
Earth’s climate system. We provide the ability to integrate the DYA-
MOND and LLC4320 datasets as well as provide the large-scale
simulation datasets stored on the cloud and on the NAS Pleiades
Supercomputer [40], as shown in Figures 1, 5, 6, and 7. The in-
structions to access the existing deployed dashboards or launch a
new one can be accessed from our GitHub repository [54]. We
have worked on several GEOS and MITgcm simulation fields, con-
verting them to IDX format, enabling seamless visualization and
interaction via Jupyter notebooks and dashboards without intensive
computational resources. We also collaborate with several scien-
tists from NASA Jet Propulsion Lab and NASA Ames Research
Center to help facilitate the extraction of their region of interest, es-
pecially the Gulf Stream and Kuroshio regions (Figure 1), and have
built unique dashboards that display coupled outputs from both
GEOS5 and MITgcm configurations of the simulation. Thus, our
dashboards combine multiple petascale datasets into a single inter-
face, allowing unprecedented visualization, interaction, and analy-
sis of the sheer volume of data. This integration facilitates a deeper



 NASA Dataset 
Model/Configuration

Original 
Size

Compression 
Algorithm

Precision Reduced 
Size

Compression 
Factor

ZIP Lossless 65.9 TB 3.79

ZFP 30 bits 152 TB 1.65

ZFP 16 bits 64.8 TB 3.85

 ECCO-MITgcm/LLC4320 400 TB ZFP 16 bits 112 TB 3.57

ZIP Lossless 440 TB 2.49

ZFP 16 bits 138 TB 8

 DYAMOND-GEOS/C1440 250 TB

1.1 PB DYAMOND-MITgcm/LLC2160

Table 1: Lossy and lossless compression algorithms on simulation
dataest with final size and resulting compression factor.

understanding of complex climatic phenomena by enabling scien-
tists to seamlessly navigate and explore data across various scales
and dimensions. Sections 5.3.1 and 5.3.2 will discuss specific use
cases with the DYAMOND and LLC4320 datasets.

5.2 Data Compression Examples

After converting datasets to IDX, and before we upload the data to
the cloud, we apply compression to the datasets to reduce file size
without compromising data. We have extensively evaluated various
compression algorithms on the NASA datasets, using both lossy
(with several precision bits) and lossless compression algorithms.
The results achieved with compression are significant, as shown in
Table 1. Based on initial tests, we found ZIP and ZFP to be the best
compression algorithms for our data. We report on our examina-
tion of the lossless ZIP compression algorithm and the lossy ZFP
algorithm [35] with 16-bit or 30-bit precision on a range of sampled
regions of climate datasets.

A 250TB portion of the atmospheric data was first encoded to the
streaming format and then processed through the lossless default-
level ZIP compression algorithm to reduce its size to around 65.9
TB with a compression factor of 3.79. Table 1 shows compression
rates for the same dataset under ZFP 30-bit and 16-bit compression.

We performed the ZFP compression at the 16-bit precision level
for another 400TB of a compressed version of the LLC4320 dataset
already available in the Pleiades [40] and brought this down to 112
TB with a compression factor of 3.57. Based on our preliminary
tests, we decided to use default-level lossless ZIP compression for
our use cases. For all oceanic fields included in the 1.1 PB dataset,
the final size after compression was 440TB with a compression fac-
tor of 2.59. Although ZFP offered a slightly higher compression
ratio, the data loss was significant for some of our collaborators.

5.3 Application-Specific Dashboards

Collaborating with researchers at NASA Ames Research Center
and NASA Jet Propulsion Lab, we built several application-specific
dashboards to demonstrate our framework. The first two use cases
below describe a brief user study and their feedback. We also pro-
vide a use case with our collaborator at Utah State at Blanding,
Native American Serving Non-Tribal Institutions (NASNTI).

5.3.1 Use Case 1: Multivariate Petascale visualization

To produce useful interactive analysis on massive datasets such as
the NASA DYAMOND or LLC4320 Ocean Dataset, visualization
scientists typically need to use computing resources at the NASA
Advanced Supercomputing (NAS) facility. Although NAS sup-
ports and promotes full and open data access to the public, an-
alyzing the data on the supercomputers requires logging into se-
cure platforms and requesting nodes/cores. This dramatically limits
the people who may be able to use the data in practice. Scientists
and researchers might need to wait hours to days to load the data
and produce a video clip for climate scientists, who then perform
their scientific tasks on these fixed-resolution animations. Because
supercomputing centers often store only full-resolution simulation
data, accessing full-domain, full-resolution simulation data can take
time, making quick turnaround on-the-fly analysis complex or slow.

Figure 6: Case 1: Zoomed-in view of the general water circulation
through the Strait of Gibraltar connecting the Mediterranean with
the Atlantic Ocean.

However, our innovative dashboard and analytical approach signif-
icantly streamline working with massive datasets, such as those of-
ten encountered in climate science. We reduce the need for exten-
sive computing resources, allowing the analysis to be performed on
more accessible platforms without compromising accuracy. Users
can bypass the inconvenient process of logging into secure plat-
forms and waiting for supercomputer access. Instead, they can di-
rectly engage with the data through our user-friendly interface that
offers real-time analysis and visualization capabilities.

One key objective of the dashboard shown in Figure 5 is to en-
able the visualization of multiple oceanic variables over time. Tra-
ditional visualization techniques struggle with the scale and com-
plexity of the datasets involved, particularly when dealing with sim-
ulation outputs spanning 10,000 timesteps across multiple fields.
Our dashboard addresses this challenge by offering progressive vi-
sualization capabilities and allows scientists to explore the data
seamlessly through an intuitive interface. For example, Figure
6 shows the interesting phenomenon of water circulation around
the Mediterranean region. The less saline water from the Atlantic
Ocean passes through the Strait of Gibraltar and starts moving east-
ward. As the water moves east and the evaporation continues,
the salinity tends to increase and starts sinking. Oceanographers
and climate scientists worldwide have studied this interesting phe-
nomenon, but no tool has ever allowed its interactive illustration
on real data to the general public until now. Another example is
around the Agulhas region, as shown in Figure 7, where the warm
water from the Agulhas current flows along the southeast coast of
South Africa and encounters the colder Atlantic Ocean, thus lead-
ing the current to bend back on itself. This process, also known as
”retroflection,” leads to the formation of large swirling masses of
water, creating the Agulhas rings [44]. The dashboard enables any
user to examine and interactively explore any regions of interest, as
well as play the data across time without being restricted to time
waiting for animations to render.

Figure 7: Formation of Agulhas rings at the African southeast coast
demonstrated using the LLC2160 ocean dataset.



5.3.2 Use case 2: Oceanic and atmospheric variables

Our second use case builds on an existing collaboration between vi-
sualization researchers at NASA Ames Research Center and ocean
scientists at JPL/Caltech. The collaboration sought to further in-
vestigate the impact of mesoscale and submesoscale (< 500 km)
sea-surface temperature anomalies on local atmospheric circulation
and vice versa. A frame from the animated version of figures from
the published results of Strobach et al. [60] is shown in Figure 8.

Ocean-atmosphere interactions have long been considered to be
limited to only the atmospheric planetary boundary layer (APBL),
up to 2000 m above the surface) The surface ocean is a mixed layer
(50 to 200 m deep), with the atmosphere forcing the ocean. For
example, strong winds deepen the ocean mixed layer, leading to a
decrease in the sea surface temperature (SST) [19].

Numerical ocean-atmosphere models coupled with increasing
spatial resolutions are challenging previously held theories. It is
now known that the ocean-forced variability in the atmosphere is at
scales smaller than 500 km, similar to the scales of ocean mesoscale
eddies, which constitute up to 80% of the total ocean kinetic en-
ergy [19]. Turbulent heat and humidity fluxes are strongly enhanced
above warm mesoscale eddies where convection develops and is re-
duced over cold eddies, leading to a significant net heating and hu-
midification of the atmosphere. In addition, this impact of ocean
eddies is not confined to the APBL but concerns the whole tro-
posphere, which is up to 12,000 m above sea level. Through these
mechanisms, the heat and humidity fluxes associated with ocean ed-
dies intensify atmospheric storms traveling eastward [17] as shown
in Figure 9. As a result, ocean eddies in the Kuroshio-Extension
region off Japan can increase precipitations over the West Coast of
the U.S.A. by 20% [36]. These results highlight the impact of ocean
eddies on the Earth’s water cycle and extreme atmospheric events.
Recent studies [60] point to the important role of sea surface tem-
perature (SST) fronts (10 km wide) surrounding ocean eddies on
ocean-atmosphere exchanges: SST fronts trigger a secondary cir-
culation, with the same width, in the atmosphere above the APBL
that carries heat and humidity to the upper levels.

Figure 8: Prior preliminary animation by Nina McCurdy at NASA
Ames Research Center created before our collaboration that moti-
vated the creation of the dashboard shown in Figure 1. Image and
video courtesy of Nina McCurdy, Copyright NASA 2023.

Over a 6-week period of intermittent collaboration and iteration
in Spring 2023, the visualization researchers at NASA Ames Re-
search Center and the ocean scientists at JPL/Caltech developed
a preliminary visualization showing coupled vertical and horizon-
tal slices of various fields of interest (ocean temperature, air tem-
perature, northward wind velocity, specific humidity, latent heat

Figure 9: Increasing heat fluxes (two plots and images at the bot-
tom right) and air temperature (image at top middle) create a high-
velocity wind (image at top left) in the atmosphere moving eastward
for the Kuroshio region.

flux, and sensible heat flux). The visualization, shown in Fig-
ure 8, is an animated version of figures from recently published
results [60]. The visualization was highly effective in supporting
the ocean scientists’ investigation, leading to important research in-
sights [69, 63], but it was limited to vertical and horizontal slices at
predefined locations and required design, development, rendering,
and distribution by the visualization researcher. Extracting vertical
slices of high-resolution MITgcm data is computationally and I/O
intensive due to the native layout of the simulation output. Restric-
tions on visualization and analysis prompted NASA visualization
researchers to develop an HPC interactive vertical slicer, leverag-
ing HPC resources (compute nodes, network, storage) at the NASA
Advanced Supercomputing Division (NAS). Although an effective
approach, the HPC vertical slicer requires dedicated compute nodes
and dedicated time from visualization researchers. An interactive
vertical slicer, accessible to and driven directly by ocean scientists,
has been desired without having to be onsite at a supercomputer.

Motivated both by the promising initial results and the limita-
tions of the preliminary animation, the NASA/JPL/Caltech team
began collaborating with a team from the Scientific Computing and
Imaging Institute at the University of Utah to develop an interactive
dashboard version of the preliminary visualization. The collabo-
ration resulted in the dashboard shown in Figure 1 with the goal
of helping study the relationships between different variables of
ocean and atmospheric simulations at different regions of interest,
such as the Gulf Stream region and Kuroshio region. For the Gulf
Stream region, we use 75◦ W to 60◦ W and 30◦ N to 45◦ N. For the
Kuroshio region, we use 117◦ E to 192◦ E and 0◦ N to 45◦ N. The
dashboard leverages high-resolution datasets from the GEOS and
MITgcm simulations to isolate and visualize the interplay between
various climate variables. This region-specific approach allows sci-
entists to observe how atmospheric conditions such as temperature
and pressure gradients influence oceanic currents, salinity levels,
and vertical velocities, and vice versa. Figure 10 shows how an in-
vestigation into an interesting wave pattern observed in the plots of
sensible and latent heat flux (middle) and examination of the asso-
ciated vertical slices led the ocean scientists to find that the wave
pattern was trapped within the atmospheric boundary layer (left)
and did not extend above the boundary layer, as previously thought.

5.3.3 Use Case 3: Data Democratization for Teaching

At Utah State Blanding, a Native American Serving Non-Tribal In-
stitution, GEOG 4780/6780 Spatial Analysis is taught by Profes-
sor Gustavo Ovando-Montejo. This course, designed for upper-
division undergraduates and graduates, has 25 students dedicating
4 to 6 hours weekly to spatial analysis using R. The curriculum em-
phasizes spatial reasoning, coding techniques, and GIScience tasks,
including data manipulation, interpretation, and modeling, with a
focus on spatial statistics like spatial regression.

Students in the course face significant challenges with data ac-



Figure 10: Interesting wave pattern observed in the plots of sensible
and latent heat flux.

quisition, particularly during their final projects, which account for
50% of their grades and involve selecting and analyzing their own
data. To assist with this, we provided instructions for installing
Jupyter Notebooks and accessing the LLC2160 dataset from the
cloud, which includes large fields such as ocean velocities, tem-
perature, and salinity. These datasets are massive, exceeding 1PB
in total. Our Jupyter Notebook guides students through loading
and visualizing these datasets, starting with an example of the
salinity data, and allows them to select specific timesteps and re-
gions for analysis. The first step in the Jupyter Notebook provides
an example of loading the Salinity data field with dimensions of
8640*6480*90, with 10366 timesteps. The next step shows users
how to load the data and select any timestep and region (x,y,z), at
any quality or resolution they want. By Step 4 and within min-
utes of sitting down with the Jupyter Notebook, the students have
a visualization of the NASA data in a plot. Additional steps in
the notebook walk the students through querying the data, includ-
ing calculating the percentage of voxels within the selected salinity
range vs. calculating the percentage of world surface within the
selected salinity range. The dashboard demonstration showed how
students could seamlessly access spatial data stored in the cloud.
Students were initially struck by the realization and excitement that
they could access these global data and variables in full resolution,
akin to methods used by NASA scientists.

Students were excited to focus on specific areas of interest and
visualize them in real-time. The dashboard allowed actual data
analysis without downloading, though they could if desired. A
highlight was a spatial query selecting voxels within a range, which
students identified as basic suitability analysis — a notable achieve-
ment given the data’s size. Overall, the dashboards were invaluable
for hands-on GIScience teaching.

6 DISCUSSION

We report data conversion time and compression algorithm perfor-
mance in terms of the peak signal-noise ratio for the DYAMOND
and LLC4320 Ocean datasets. We also discuss the lessons learned
as well as the impact on and benefits to society of our dashboards
for petascale data democratization.

6.1 Performance for Climate Dashboards

We tested the dashboard objectively in terms of time to read the
data at different locations and provide compression metrics.

Time Comparison for data conversion and compression from
different filesystems. To test the efficiency of data conversion and
compression techniques, we copied 48 timesteps for a 3D field of
the same data, around 1 TB, to different locations, such as a per-
sonal computer and a server. We submitted a job to the Pleiades
requesting one node and 24 cores to convert and compress the data.

It took around 1 hour and 20 minutes to convert and an additional
45 minutes to compress the data losslessly. The waiting queue for
the job to run was around 10 minutes. The personal computer used
for testing was a standard M1 Macbook with 16GB RAM and 8
cores. It took 1 hour 35 minutes to convert the same data and an
additional 1 hour 20 minutes to compress it. The server we tested
on had a 12-core x86-64 architecture Intel Xeon CPU with 64 GB
RAM. Converting and compressing the same data as before took 50
minutes and 1 hour 20 minutes, respectively, on this server. Figure
11 shows these times in the same graph along with the total time
for easier comparison.

Figure 11: Result from an experiment done to estimate the time re-
quired to convert and compress 1 TB of data from different data lo-
cations, such as NASA Filesystem, personal computer, and a server.

Performance Comparison. Figure 12a analyzes data retrieval
times from different storage systems at varying resolutions and lo-
cations. We compare NASA’s filesystem, Pleiades [40], with cloud
storage, both with and without local caching. Locally cached cloud
data consistently provides quicker access than uncached data, with
greater benefits as data resolution increases. This comparison high-
lights the effectiveness of local caching in optimizing access times,
especially for high-resolution datasets, demonstrating significant
advantages for exploring large-scale data.

Data Quality Comparison. After testing different lossy compres-
sion algorithms for the data, we present our use of peak signal-to-
noise ratio (PSNR) as the metric for evaluating the data compres-
sion quality in Figure 12b. The PSNR is a measure used to assess
the data reconstruction quality after lossy compressions. We com-
pressed a sample of data using various precision bits with ZFP com-
pression at varying data resolutions. The graph shows that higher
bit precision, such as 32 and 30 bits, maintains a consistently high
PSNR across all resolutions, indicating a minimal loss in data qual-
ity upon compression. On the other hand, lower precision levels,
such as 24 and 16 bits, exhibit a considerable decrease in PSNR,
suggesting a trade-off between compression level and data fidelity.
The PSNR values remain fairly stable across different resolutions

(a) Data retrieval time from different data

locations at different levels of resolutions.

(b) Peak signal-to-noise ratio for different

bits of precision with ZFP compression al-

gorithm.

Figure 12: Performance Analysis for NAS file systems, cloud un-
cached, and cloud cached (left) as well as the compression algo-
rithms (right).



for each precision level.

6.2 Lessons Learned

After several months of intermittent development and iteration, the
NASA/JPL/Utah team met (half of the group met in person, half of
the group joined remotely) to demonstrate and explore the results.
During the session, the ocean scientists immediately demonstrated
the ability to engage with the data in a way that was not possible
before. Discussing phenomena of interest while interacting with
the dashboard, they were able to develop new questions/hypotheses
and provide preliminary answers about the interaction between the
ocean and the atmosphere with a dramatic reduction of cognitive
load that only interactive visualization can provide and has always
been considered impossible for petascale data without supercom-
puting resources. Investigation into an interesting wave pattern ob-
served in the plots of sensible and latent heat flux and examination
of the associated vertical slices led the ocean scientists to find that
the wave pattern was trapped within the atmospheric boundary layer
and did not extend above the boundary layer, as previously thought.
“This was something quite new for us because we thought it was
much above the boundary layer, but no.” The vertical slices in the
dashboard shown on the left in Figure 1 show how the clouds are
within the atmospheric boundary layer with very high and wavy
latent and sensible heat fluxes.

Our collaboration with oceanic scientists showed the usefulness
of faster visualizations and emphasized the need to be able to ad-
just timesteps and use a play button, which was crucial to seeing the
expected correlation between multiple fields. Because each visual-
ization generated in this interactive environment could take days
to generate using the status quo fixed-frame animation approach,
the domain scientists commented that our on-the-fly and interac-
tive visualization ”was astonishing.” The ocean scientists also noted
that the ability to interactively adjust the vertical slice location al-
lowed them to check for numerical instabilities near vertical cuts,
a capability they previously lacked. Additionally, the interactive
dashboard lowered the barrier to exploration and collaboration by
enabling investigations based on real-time data observations, facil-
itating more dynamic and immediate scientific inquiry.

Future iterations will help the new dashboards better match
the traditional workflow of visualization and domain scientists.
We need to be able to automate outputting animations for high-
resolution data. However, as our use cases show, being able to
set the resolution low for low bandwidth or quick investigations
is something that climate scientists and visualization researchers
could not easily do. The ability to share with college students the
same data NASA and JPL scientists use for their research is cre-
ating an invaluable educational bridge. By enabling this accessi-
bility, we’re not only democratizing access to the latest scientific
data but also inspiring the next generation of scientists and data an-
alysts to explore the climate phenomena with the tools that leading
researchers use.

6.3 Impact and Benefits

Traditional approaches to visualizing petascale simulation data
rely on static animations with predefined variables and resolutions
and/or supercomputing resources that are often combined with vi-
sualization expertise. The movement of massive datasets to the
cloud, along with the progressive streaming capability, enables effi-
cient access from platforms such as Jupyter Notebooks. This break-
through benefits users without high-end computational resources
and has significant practical implications in various fields.

FAIR (Findable, Accessible, Interoperable, Reusable) Our
framework addresses the FAIR principles through the implemen-
tation of a FAIR Digital Object (FDO) framework, which democra-
tizes access to large datasets. Our system ensures findability by in-
cluding comprehensive metadata and identifiers within FDOs, mak-
ing it easy to locate specific datasets. Accessibility is enhanced by

providing an API that abstracts low-level storage intricacies, allow-
ing users to request data without needing detailed knowledge of
storage formats or network configurations. The framework sup-
ports interoperability by integrating multiple storage formats (e.g.,
ZARR, NetCDF, HDF5) and facilitating seamless data conversion,
transfer, and caching across various platforms. Finally, reusabil-
ity is promoted through the use of standardized metadata and ex-
ecutable elements within FDOs, ensuring that data remains useful
and actionable for future research and applications.

Remote Scientific Research and Collaboration. The availabil-
ity of massive datasets in a cloud-based, progressive streaming for-
mat significantly enhances the scope of remote scientific research
and collaboration. Researchers from various parts of the world can
now access complex datasets, such as those from the DYAMOND
and MITgcm simulations, without the constraint of having powerful
local computing resources. Our data fabric abstractions and dash-
boards facilitate a more inclusive and diverse research environment,
enabling scientists to collaborate on global projects in areas such as
climate modeling.

Data Visualization and Analysis. Our project’s success opens up
new possibilities in data visualization and analysis. Researchers
and data analysts can now delve into complex datasets without
worrying about the computational burdens traditionally associated
with just visualizing the data. Broad audience accessibility allows
groundbreaking insights and more effective communication of data-
driven findings.

Education and Training. Educational institutions worldwide can
benefit substantially from access to the NASA datasets. With a so-
lution for the major problems of data storage and accessibility, stu-
dents and educators can utilize these large-scale simulation data for
learning and research purposes, enhancing the educational experi-
ence with massive data in data science and related fields.

7 CONCLUSION

In conclusion, this work seeks to address several critical challenges
inherent to the visual analysis of large-scale climate datasets. By
developing our data fabric abstraction and scalable visualization
dashboards, we provide solutions that manage the computational
demands of petascale datasets and enhance the accessibility and in-
teractivity of data exploration for scientists. By migrating petas-
cale data to the cloud, such as climate simulation data, we have
enabled unprecedented public access to high-quality datasets. As
data generation continues to scale exponentially in the future, our
methodologies and tools provide a foundation for harnessing the
full potential of big data across various scientific disciplines.

A rising tide of data democratization gives the greatest lift to
boats that are normally the most excluded from access to the data.
By providing platform and device-agnostic dashboards for visu-
alization and analysis platforms for streaming petascale data, we
encourage scientific curiosity in data. Thus, a greater diversity of
individuals or groups can access data, which leads to benefits for
Science, such as backing up theories with scientific data or creating
novel scientific theories based on captured data or generated sim-
ulations. Furthermore, driving greater inclusion does not require
focusing on one specific group because any initiative that removes
exclusionary practices can improve matters for all impacted groups.
Our case studies are the boats catching the rising tide of data de-
mocratization, and we expect every boat full of data will rise as the
tide of data equity raises us all up.
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