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Abstract—This experimental work examines data movement
in molecular dynamics (MD) workflows, comparing the Dynamic
and Asynchronous Data Streamliner (DYAD) middleware with
traditional, industry-standard I/O systems such as XFS and
Lustre. DYAD moves MD simulation frames to analytics
processes, providing enhanced flexibility and efficiency for
dynamic data transfers and in situ analytics. At the same
time, traditional I/O storage systems provide durability and
scalability for high-performance computing (HPC) systems. The
study integrates MD workflows with common simulation codes,
facilitating immediate capture and transfer of MD frames to
a staging area. It explores various molecular models, from
simple to complex, assessing data management performance and
scalability. Different producer-consumer pairs, molecular models,
and data transaction frequency enable testing across small to
large-scale HPC scenarios, from single-node configurations to
large, distributed environments. The findings reveal that adaptive
mechanisms for minimizing synchronization, direct network
communication between producer and consumer processes, and
optimizations of both data movement and synchronization are
crucial for performance and scalability in MD workflows.

Index Terms—Producer-Consumer Paradigm, Molecular
Dynamics Workflows, Dynamic Data Management, High-
Performance Computing, In Situ Analytics

I. INTRODUCTION

This experimental work characterizes the data movement
in molecular dynamics (MD) workflows, particularly focusing
on the movement of MD-generated data during runtime. The
study evaluates the use of an advanced software middle-
ware called the Dynamic and Asynchronous Data Streamliner
(DYAD) [1] versus traditional, industry standard I/O systems:
node-local file systems like XFS [2] and parallel file systems
like Lustre [3]. All three data management solutions deal with
the data movement needs within MD workflows from dis-
tinct angles. With its advanced abstractions, DYAD enhances
flexibility and efficiency in handling dynamic data movement
and automated workflow synchronizations. XFS provides the
ability for efficient in situ analytics before data is moved off
node. Lustre’s durability and scalability make it suitable for
high-performance computing (HPC) applications that require
highly parallel data access over a network of nodes. We
focus on the movement of MD-generated data (i.e., moving
frames from the simulations to the analytics) rather than on
the MD process itself (i.e., efficient computation of molecular
interactions, parallelization, or GPU acceleration).

We study MD workflows essential for capturing the be-
havior of molecular models, coupling data movement of MD
simulations with in situ analytics. The workflows seamlessly
integrate with prevalent MD simulation codes [4]-[6], thereby
facilitating the immediate capture of MD frames in memory
during runtime. These frames are then efficiently transferred
to a staging area, leveraging the advantages of both advanced
software middlewares and traditional I/O systems. We exam-
ine a spectrum of molecular models with varying size and
complexity, ranging from JAC [7] (a simple 23,558 atom, 644
KiB molecular model) to STMV [8] (a complex 1,066,628
atom, 28.5 MiB model). By scrutinizing the data handling of
various models, we thoroughly evaluate the performance and
scalability of data management solutions in MD workflows.

We adjust multiple parameters within the MD workflow
to test the data management systems’ capabilities. We vary
the number of producer-consumer pairs, reflecting different
parallelism scales across our experiments. We test four dif-
ferent molecular models with an increasing number of atoms,
thus generating different frame sizes. We manipulate the stride
of data movement, which influences the frequency of data
transactions. Our tests enable us to mimic a range of realistic
scenarios that could be encountered in HPC environments,
from small, single-node operations to large, distributed compu-
tations across multiple nodes. Ultimately, our comprehensive
approach allows us to identify the strengths and limitations of
current technologies and offers a guide for future development
in MD simulation data management.

We identify five main findings from our empirical
study. First, prioritizing a data management system with
adaptive synchronization mechanisms can lead to substantial
overall scalability for MD workflows on a single-node
configuration, even if there is also a small increase in
production time. Second, leveraging network communication
for data movement in small-scale distributed MD workflows
has little effect on performance when communication
occurs directly between two nodes. Third, selecting a data
management system that optimizes both data movement
and synchronization ensures overall performance in a large-
scale, distributed MD workflow. Fourth, leveraging local
resources and efficient communication protocols enables
better scalability as data sizes increase. Finally, minimizing
synchronization is critical when the frequency of data transfer
between producers and consumers decreases.



II. MD WORKFLOWS: SIMULATION AND ANALYTICS

Modern MD workflows are increasingly sophisticated and
involve a combination of simulation and real-time, in situ
analytics. These workflows have producer-consumer patterns.
The MD simulation produces frames (the atom list and their
3-D locations) at a regular number of steps (i.e., strides), and
the in situ analytics consume those frames.

A. MD Simulations

MD simulations have been a cornerstone in computational
science. They are among the most frequent workloads on
exascale machines [9]. These simulations allow scientists
to observe atomistic details of biological processes that
are often elusive to experimental techniques. The complex
interaction of atoms and molecules is at the heart of MD
simulations. Each simulation replicates the behavior of a
molecular model by using a two-step algorithm. The process
begins with calculating interatomic forces using force fields (a
mathematical representation of the energy landscape dictating
atomic interactions). After force calculation, the simulation
updates the positions of atoms by Newton’s equations,
marching forward in time through small increments. Models
comprising hundreds of thousands of atoms require large
computing power executed on GPUs.

A large-scale MD simulation is an ensemble of MD jobs
(as many as hundreds of thousands) that run on different
compute nodes and produce independent trajectories [10];
each job simulates the same molecular model starting from
different initial conditions (e.g., positions, velocities) or
similar models under different conditions (e.g., temperature,
protein mutants, drug variants). Each MD job reproduces the
evolution of the relevant molecular model by computing and
writing to storage the model’s atomic coordinates (frame)
and other relevant properties at regular intervals as the job
evolves in time. The sequence of molecular conformations
(the trajectory) is written to disk.

B. In Situ Analytics

Exascale systems increase the capabilities of MD simula-
tions. The data generated from these simulations are large and
provide an even finer granularity of molecular detail. However,
data management and real-time analytics are challenging for
researchers who study the data as it is generated to steer the
simulation (e.g., terminate or fork a trajectory) and annotate
the events for retrieval and visualization [10].

Run-time, in situ analytics in MD workflows refers to
data analysis as the data is generated during simulations,
without requiring data to be written to disk and analyzed post-
process. This approach is particularly beneficial for large-scale
simulations where the volume of generated data is immense,
making traditional post-processing not only cumbersome but
also time-consuming and resource-intensive [11]. Adaptive
simulations leverage in situ analytics to concentrate resources
on significant phenomena for more effective exploration. Run-
time, in situ analytics techniques include monitoring, data
reduction, advanced visualization, and on-the-fly analysis [12].

Real-time monitoring enables researchers to observe simula-
tion progress and identify phenomena as they occur, aiding in
troubleshooting. Data reduction techniques within in situ ana-
lytics streamline data management by storing only crucial in-
formation to minimize storage needs. Advanced visualization
offers immediate insights into simulations, allowing scientists
to witness interactions dynamically [13]. On-the-fly analytics
process simulation data in real-time for property and metric
calculations, eliminating the need to store entire datasets [14].

III. DATA MANAGEMENT SOLUTIONS

Integration of MD workflows and HPC is essential for
managing computational demands and ensuring efficient data
processing. We explore two distinct approaches for data
transfer: an advanced middleware with abstractions like the
Dynamic and Asynchronous Data Streamliner (DYAD) and
two traditional I/O solutions: node-local file system with XFS
and parallel file system with Lustre. Figure 1 shows the MD
workflow with the three different data management solutions.
The figure shows the MD workflow from simulation to in situ
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Fig. 1: MD Workflow from simulation to in situ analytics
using three different data management solutions (i.e., DYAD,
XFS, and Lustre).

analytics. On the left side of the figure, an MD simulation
(e.g., using GROMACS [4]) is enhanced by Plumed [15] to
capture the MD frames without disrupting the execution. MD
frames are fed into a producer. The producer then transfers
data into one of three possible data management solutions
(i.e., a node-local storage-based middleware with DYAD, a
node-local file system with XFS, or a parallel file system with
Lustre). On the right side of the figure, a consumer extracts
data from the management systems for in situ analytics at
runtime. The figure presents an example of in situ analytics of
three interacting secondary structures (i.e., Helix 1-2 and Helix
1-3) in [12]) with two graphs depicting the largest eigenvalues
of two of the three helices within an MD simulation and
respecting sudden changes in the molecular model.

An important aspect of the data movement illustrated in Fig-
ure 1 is synchronization. Since producers and consumers typ-
ically require significant resources, they are often not located
on the same node, necessitating a deliberate synchronization
barrier to manage the transition from production to consump-
tion. The time associated with this synchronization consists
of two parts. The first part of synchronization time consists
of a delay for the producer to generate a piece of data. The



remaining synchronization time consists of the time needed
for the consumer to discover that the data has been produced.

A. Advanced Middleware: DYAD

DYAD ' provides a sophisticated approach to data
movement and management. It is designed to optimize
data transfer efficiency and enables high-performance data
exchange between producer-consumer tasks within a workflow
without the need for manual synchronization between these
tasks. DYAD enables faster producer-consumer data exchange
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Fig. 2: DYAD enables faster producer-consumer data exchange
by using node-local storage accelerators, multi-protocol au-
tomatic synchronization primitives, global metadata manage-
ment, and RDMA-enabled data transfer.

by using node-local storage accelerators, multi-protocol
automatic synchronization primitives, global metadata
management (MDM), and RDMA-enabled data transfer.
Figure 2 illustrates a producer-consumer workflow utilizing
shared storage, comparing scenarios without and with DYAD
integration. On the left, the diagram shows the traditional
workflow without DYAD, relying on manual synchronization
for data exchange between producers and consumers. This
synchronization usually involves MPI primitives, file system
polling in workflow managers like Pegasus [16], or file
system locks, with the method chosen based on the system’s
architecture, the storage type, and the available data exchange
protocols [1]. The complexity of this synchronization leads
many workflows to adopt a coarse-grained approach, which,
while simplifying the design, extends the overall duration of
the workflow by not overlapping producer and consumer tasks.
On the right, the figure shows a workflow incorporating DYAD
for data exchange, highlighting three key features. First,
DYAD eliminates the requirement for manual synchronization
between tasks. Through DYAD’s automatic synchronization,
producers and consumers can run in a concurrent and pipelined
manner, and the consumer will automatically wait for data
to be made available. This pipelinning reduces the cost of
delay in synchronization. Second, DYAD leverages node-local
accelerators, such as burst buffers, instead of relying solely
on shared storage, significantly enhancing I/O bandwidth and
scalability. Last, the transfer of data between producers and

IThe code is publicly available at https://github.com/flux-framework/dyad.

consumers is conducted through the efficient RDMA protocol,
optimizing both the bandwidth available for consumption and
the scalability of the workflow. DYAD’s features collectively
reduce the total duration of workflow tasks and improve
the efficiency of modern HPC storage architectures without
necessitating changes to the existing workflow structure.

The DYAD middleware supports dynamic data routing,
asynchronous communication, and on-the-fly processing ca-
pabilities. Because of these features, the middleware is partic-
ularly beneficial in scenarios where the data generation rate
varies significantly or when the data requires pre-processing
or filtering before being stored or analyzed. Its dynamic nature
enables an adaptive response to the computational load, net-
work bandwidth, and storage capabilities, thereby minimizing
bottlenecks and ensuring a smoother data flow.

B. Traditional 1/0 Solutions: XFS and Lustre

We examine two prevalent traditional I/O solutions used for
data management in MD workflows: the node-local file system
with XFS and Lustre. The node-local file system, implemented
with XFS, offers a specialized setup where each node within a
network possesses an exclusive file system. This arrangement
enhances direct disk access for each node, markedly reducing
access latency and interference while boosting I/O throughput,
which is crucial for operations demanding quick data access.
XFS enhances this framework by handling large files alongside
journaling features that ensure data integrity, making it a scal-
able, high-performing, and dependable storage option. While it
may lack the intricate abstractions of systems like DYAD, XFS
still provides benefits in terms of performance and reliability.
However, XFS is not capable of moving data between nodes.
As a result, processes that move data through XFS must be col-
located on the same node, which limits workflow scalability.

On the other hand, Lustre presents an easy-to-use solution
for data transfer, renowned for its use in distributed parallel
file systems that facilitate high-throughput access to extensive
datasets across many nodes in HPC settings. Designed
to support vast cluster computing endeavors, Lustre can
manage data on the scale of petabytes and accommodate
tens of thousands of client nodes. Though it does not
feature the advanced abstractions of DYAD, Lustre provides
remarkable scalability, performance, and reliability for large
bulk-synchronous data movement. Its distributed architecture
significantly improves the efficiency of data movement,
allowing numerous clients to access and process data
simultaneously, which makes Lustre an ideal choice for
applications with large bulk-synchronous data movement that
require significant bandwidth and massive data access.

Neither XFS nor Lustre provide any form of automated
synchronization for producer-consumer data transfer. As a
result, users of these file systems must implement synchro-
nization manually. As previously mentioned, the complexity of
this manual synchronization leads to the adoption of coarse-
grained approaches. Although easy to implement, these ap-
proaches result in serialized execution of the producer and con-
sumer, which increases the cost of delay in synchronization.



IV. PERFORMANCE STUDY OF MOLECULAR STRUCTURES

We investigate MD simulations’ performance and data
management challenges across four distinct molecular
structures, highlighting their data transfer performance and
scalability. We collect key insights into the efficiency and
scalability of different data management solutions (DYAD,
XFS, and Lustre) through a detailed performance analysis
in an MD-inspired workflow. The findings emphasize the
importance of fine-grained synchronization and storage setup
in optimizing MD simulations, offering guidance for selecting
appropriate data management solutions based on molecular
structure size and simulation complexity.

A. Molecular Models

Our tests use four distinct molecular models, each selected
for its unique role in biological processes and suitability for
data movement study. These models exemplify the diverse data
volume generated in MD simulations (Figure 3). As the model
size increases in the number of atoms, the MD simulation
performance measured in nanoseconds per day decreases,
requiring supercomputers to simulate larger models. We begin
with JAC [7], a molecular structure comprising 23,558 atoms;
JAC is frequently used as a standard model for probing protein
folding mechanisms and dynamics within MD simulations.
Next, we consider ApoAl [17], consisting of 92,224 atoms,
notable for its vital function in lipid transport and metabolism,
particularly as a critical structural element of high-density
lipoproteins (HDL) in circulatory systems. We then move to
the F1 ATPase molecular structure [18], with 327,506 atoms,
a key component in cellular respiration and ATP synthesis.
Last, we use STMV [8], an extensive molecular structure
with 1,066,628 atoms. STMV is recognized for its size and
role as a satellite tobacco mosaic virus, providing a rich
framework for studying the intricacies of virus assembly and
protein-RNA interactions.
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Fig. 3: Molecular structures with increasing size in atoms and
associated MD frames generated for in situ analytics.

Tables I and II present the detailed setup of the four
molecular structures used in our tests, each with various

attributes relevant to MD workflows. These tables provide
an overview of the molecular characteristics within their
respective  MD simulations. In Table I, the molecular
structures are characterized by the number of atoms in
each molecule, the estimated size of each frame in the MD
simulation, and the computational performance measured in
steps per second. We derive the steps per second values from
ns/day and simulation configurations presented in [19]. For
example, the JAC model has 23,558 atoms, and each frame is
approximately 644.21 KiB in size, with the model achieving
1072.92 steps per second. The models vary in complexity.
The STMV model is the largest; it contains over a million
atoms and generates frames that are 28.48 MiB in size, but it
runs at the slowest steps per second rate. Table II focuses on

TABLE I: Targeted molecular models [7], [8], [17], [18].

Name Num Atoms Frame size | Steps/second
JAC 23,558 | 644.21 KiB 1072.92
ApoAl 92,224 2.46 MiB 358.22
F1 ATPase 327,506 8.75 MiB 115.74
STMV 1,066,628 | 28.48 MiB 34.14

the stride of each molecular structure, a parameter that defines
the sampling or output frequency within the MD simulation.
Together with the steps per second, the table adds the time
in milliseconds taken for each MD step. We derive strides
for each model from [19] and [20] such that the frequency
of data generation is equal for each molecular model.

TABLE II: Stride for each molecular model [7], [8], [17], [18].

Name Steps/second | ms/step | Stride | Frequency (s)
JAC 1072.92 0.93 880 0.82
ApoAl 358.22 2.79 294 0.82
F1 ATPase 115.74 8.64 92 0.82
STMV 34.14 29.29 28 0.82

B. Data Management Solution Configurations

Figure 4 presents three configurations of an MD workflow
studied in this paper, each using a different data management
solution: DYAD, XFS, or Lustre. Each configuration demon-
strates a different approach to managing and transferring data
within an MD workflow, from a single-node, tightly-coupled
system to multi-node, distributed systems, highlighting the
adaptability of MD workflows to various management solu-
tions depending on computational and data requirements. In
the first configuration, the workflow is contained within a
single node that employs either the DYAD client or XFS. We
consider DYAD and XFS as XFS is the fastest local storage
solution we can deploy for such a configuration. The MD
simulation, running on one core, passes frames directly to
the in situ analytics on another core. This local exchange
utilizes Solid-State Drive (SSD) storage, with control mes-
sages facilitating the coordination between the two processes.
The second configuration spans two nodes but uses DYAD
for data management. Here, Node 1 with the MD simulation
and Node 2 with the in situ analytics each include a DYAD
client, interfacing with a DYAD server that manages the data
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Fig. 4: MD workflow management solutions: single-node DYAD/XFS, multi-node DYAD, and multi-node Lustre configurations.

flow. This setup is designed to utilize DYAD’s direct memory
access capabilities, allowing for efficient data transfer and
staging directly between nodes’ local SSD storage, potentially
bypassing some of the overhead associated with traditional
file systems like Lustre. The third configuration spreads the
workflow across two nodes via Lustre. Node 1 runs the MD
simulation, and Node 2 runs the in situ analytics on their
respective cores. Both simulation and analytics interact with
Lustre clients running on Nodes 1 and 2, respectively. These
clients communicate with a centralized Lustre file system that
manages data storage and transfer. This setup allows for dis-
tributed computing where the MD simulation and analytics can
happen on separate hardware, relying on Lustre’s robust dis-
tributed file system to manage data coherence and availability.

C. Testing Platform and Setups

To produce a controlled environment for evaluating DYAD,
XFS, and Lustre, we design and implement a point-to-
point MD-inspired workflow similar to the one shown in
Figures 1 and 4. Our workflow consists of an equal number
of producer processes and consumer processes. We link
individual producer and consumer processes through our data
management solutions to create an ensemble of concurrently
running pairs. Producer processes emulate MD simulation,
while consumer processes emulate MD analytics. Each
producer process runs for a fixed number of steps (i.e., stride)
before producing a snapshot (i.e., frame). For each step, a
producer emulates the computation done by an MD simulation
using a fixed-duration MD sleep. A producer serializes the
generated frame between each stride and writes it to DYAD,
XFS, or Lustre using POSIX APIs. Each frame has a fixed
number of atoms correlating to the molecule shown in Table I.
To simplify the evaluation of these management solutions,
we run every producer in our workflow for a fixed number
of strides; this results in a fixed number of data transfers
per producer-consumer pair. Each consumer runs for a fixed
number of iterations that is equal to the total number of
data transfers per producer-consumer pair. In each iteration,
a consumer first reads a frame from DYAD, XFS, or Lustre

using POSIX APIs. It then deserializes that frame before
running a sleep to emulate the computation performed in
data analytics. We set the duration of this sleep to match the
frequency at which producer processes generate frames.

Our workflow can run either on a single node or across
multiple nodes. All producer and consumer processes are col-
located when running on a single node, using either the DYAD
or XFS configuration shown in Figure 4. When running across
nodes, we place only one process type per node (producers or
consumers). As a result, our total number of nodes is evenly
split between nodes running producer processes and nodes run-
ning consumer processes. This splitting causes our ensemble to
use the multi-node DYAD or Lustre file system configurations
shown in Figure 4. In both single-node and multi-node scenar-
ios, we only place up to 8 processes per node because we only
have 8 GPUs per node; in a real-world MD workflow, each
simulation and analytics process would be tied to one GPU.

To evaluate the performance of DYAD, XFS, and Lustre,
we consider three types of scaling in our workflow. First,
we scale the size of the ensemble in terms of the number of
producer-consumer pairs. Due to our 8-process per node limit,
this scaling also requires us to scale the number of nodes.
As a result, we perform three tests to examine ensemble size
scaling: (1) a single-node test, (2) a two-node test, and (3)
a multi-node test that scales from 2 to 64 nodes. Second, we
scale the size of the molecular model (shown in Table I). When
considering molecular size scaling, we also vary the stride so
that our frequency of data generation is the same regardless
of the molecular structure. The stride values used for each
molecule are shown in Table II. Third, we scale the frequency
of frame generation. We consider 1, 5, 10, and 50 strides
to scale frequency for both the JAC and STMV molecular
models, relying on strides deployed in [12]. For all our tests,
we run each configuration 10 times.

For each run of each configuration, we collect performance
data using Caliper [21]; we analyze that data using
Thicket [22] and its query language [23]. Through these
performance tools, we identify two components of data



production and consumption time: data movement time and
idle time. We define data movement time as the time to write
data to or read data from our management solutions. For
DYAD, we measure data movement time by recording the
time spent in POSIX APIs and then subtracting away the idle
time from lower levels of the software stack using Thicket.
For XFS and Lustre, we measure data movement time by
simply recording the time spent in POSIX APIs. We define
idle time as time spent for synchronization. For DYAD, we
measure idle time by recording the time spent in different
components of DYAD and then isolating the components
associated with synchronization using Thicket. For XFS
and Lustre, we measure idle time by simply recording the
time spent in a MPI_Barrier between each producer and
consumer. We run all of our tests on Lawrence Livermore
National Laboratory’s Corona system [24]. Corona contains
121 compute nodes. Each node has 1 AMD EPYC 7401
CPUs and 8 AMD MIS50 GPUs. Each node also has a 3.5 TB
NVME SSD, which we use for XFS and DYAD in our testing.
Nodes are connected by an InfiniBand QDR interconnect.

D. Ensemble Size Scaling

Through a series of three tests, we evaluate ensemble size
scaling by comparing the performance of DYAD, XFS, and
Lustre as we increase the number of producer-consumer pairs.
We examine the effects of concurrent data movement on the
performance and scalability of our data management solutions.
Our comparison spans various configurations, including using
a single node with local storage, a dual-node setup, and
multiple-node pairs that progressively increase the number
of producers and consumers. For each test, we move frames
from MD simulations to in situ analytics, studying JAC with
a fixed stride of 880 steps. Within each producer-consumer
pair, we run the producer for 112,640 steps to produce 128
frames, and similarly, we run the consumer for 128 iterations
to match the number of JAC frames created. This mimics
MD simulations with a fixed stride of 880 steps, where the
stride defines the frequency at which data is written and read.

In the first of the three ensemble size scaling tests, we
measure the production and consumption times on a single
node when using DYAD and XFS. By using a single node,
DYAD does not use its network components. To produce a
fair comparison, we choose to exclude Lustre from this test
because POSIX-compliant parallel file systems, like Lustre,
must move data across the network to remote storage in this
type of workflow. We scale the size of the ensemble in terms
of the number of producer-consumer pairs from 1 to 4. We
only scale up to 4 pairs because there are only 8 GPUs per
node on Corona, and each pair requires 2 GPUs: one for the
producer and one for the consumer.

Figure 5(a) displays the data production time in microsec-
onds for ensemble sizes of 1, 2, and 4 pairs. The figure depicts
data movement time (red striped bars) and idle time (blue
striped bars) for each ensemble size. We observe that adding
more concurrent ensembles linearly increases the time for
both DYAD and XFS. As the number of ensembles increases,
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Fig. 5: Performance on a single node with JAC shows that (a)
DYAD production time is 1.4 times slower than XFS due to
global namespace management; (b) DYAD consumption time
is 192.9 times faster than XFS due to lower idle time.

DYAD has 1.4 times more data movement cost than XFS
due to DYAD’s requirement to manage additional metadata,
resulting in higher production time than XFS. There is no
significant idle time in either solution.

Figure 5(b) illustrates the data consumption time in mil-
liseconds under the same settings as Figure 5(a). The figure
compares the time for data movement and idle time across
the ensemble sizes of 1, 2, and 4 pairs for both DYAD and
XFS. Similar to data production time, DYAD’s data movement
is 1.4 times slower than that of XFS. Unlike data production
time, idle time affects data consumption time in both DYAD
and XFS. In DYAD, the effect of idle time is limited; in XFS,
the effect of idle time is significant. This difference in the
effect of idle time is due to differences in synchronization
of the producer and consumer. DYAD uses multi-protocol
synchronization. For the first data consumption step, DYAD
uses a loosely coupled synchronization based on a key-value
store (KVS) because the data is not immediately available.
This loosely coupled synchronization causes the consumer to
wait for data availability, but it does not require the producer
to wait on the consumer. As a result, the producer can continue
with its next MD simulation step while the consumer reads the
data. This overlap of the producer and consumer causes data to
be available before every subsequent consumption step. When
data is already available, DYAD automatically switches to a
much less costly file lock-based synchronization. Due to this
multi-protocol synchronization, DYAD will only incur the cost
of its most expensive form of synchronization during the first
consumption step, resulting in lower idle times than XFS. On
the other hand, XFS uses a tightly coupled synchronization,
where the producer waits for the consumer to begin reading
data. This waiting causes the next consumption step to slow.

In summary, while data production with DYAD is 1.4 times
slower than XFS due to the overhead of metadata management,
DYAD significantly outperforms XFS in data consumption
times owing to its lower synchronization costs; DYAD is 192.9
times faster than XFS in overall data consumption. Despite
DYAD’s marginally slower performance in data movement due
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Fig. 6: The JAC molecular model on two nodes demonstrates
a) DYAD is 7.5 times faster than Lustre for data production
due to the use of node-local storage and b) DYAD is faster
than Lustre by 6.9 times for consumer data movement, and,
overall, DYAD is 197.4 times faster than Lustre.

to additional metadata management, its efficiency in handling
idle times, facilitated by finer-grained synchronization, con-
siderably enhances the overall workflow efficiency.

Finding 1: Prioritizing a data management solution with
adaptive synchronization (despite a small increase in
production time) can lead to substantial overall scalability
for MD workflows on single-node configurations.

In the second ensemble size scaling test, we expand our
measurement to a small-scale distributed environment with a
two-node setup, allocating one node to producer processes and
one node to consumer processes while utilizing DYAD and
Lustre. We use Lustre for this test instead of XFS because XFS
cannot run across multiple nodes. In Figure 6, we observe the
times for data movement and idle times for writing JAC frames
across ensemble sizes of 1, 2, 4, and 8 producer-consumer
pairs, mimicking the time in the single-node configurations for
DYAD. Introducing network communication for data move-
ment with a small number of nodes does not negatively
affect the scalability of DYAD. This suggests that the network
overhead introduced by DYAD in a two-node distributed
environment is manageable, and DYAD’s performance remains
consistent even when the data management tasks are spread
across the two nodes. These results mirror observations in [12].
We also see that Lustre on two nodes is slower than XFS on
one node (see test above) due to moving data to the off-node
Lustre file system. DYAD’s data movement in the producer is
7.5 times faster than that of Lustre because DYAD uses faster
node-local storage. Similarly, in the consumer, we observe that
DYAD’s data movement is 6.9 times faster than Lustre.

Finding 2: Leveraging network communication for data
movement in small-scale distributed MD workflows has
little effect on performance when the communication is
direct between nodes.

In the final ensemble size scaling test, we further expand
the scale of our distributed environment, and we measure the
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Fig. 7: The JAC molecular model on multiple nodes shows
(a) DYAD is 5.3 times faster in producer data movement than
Lustre and (b) DYAD is 5.8 times faster in consumer data
movement than Lustre and is 192.0 times faster overall.

time when scaling the number of nodes hosting producers
and consumers up to 64 (up to 256 producer-consumer pairs)
using DYAD and Lustre. Figures 7(a) and 7(b) show the data
production time in microseconds for a producer writing and
the data consumption time in milliseconds for a consumer
reading data to and from either DYAD or Lustre across the
various ensemble sizes (8, 16, 32, 64, 128, and 256 producer-
consumer pairs) for the JAC MD simulation. The 880-step
stride remains the same. In this test, the number of nodes used
varies from 2, 4, 8, 16, 32, and 64 nodes; the number of pairs
scales with the number of nodes, specifically 8 producers
per node (which are 8, 16, 32, 64, 128, and 256 producer-
consumer pairs based on the number of nodes involved). Both
figures compare the data production time between DYAD
and Lustre, with separate bars indicating the time for data
movement (red striped bars) and idle time (blue striped bars).

In Figure 7(a), we observe that the data production time
for both DYAD and Lustre is stable as the ensemble size
increases. The small size of the transferred frame for JAC
significantly helps DYAD as it uses node-local storage, but
the small size of the frame does not allow for maximal I/O
bandwidth from Lustre. Consequently, DYAD is 5.3 times
faster than Lustre. For the 128 and 256 ensembles, producers
experience less variability in performance across runs by
using DYAD. The same configurations exhibit more cost for
Lustre, potentially due to interference from other jobs.

In Figure 7(b), with the data consumption time similar to
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Fig. 8: For scaling molecular models across two nodes a)
DYAD scales from 2.1 to 6.3 times faster than Lustre for
producer data movement and b) DYAD’s consumer data move-
ment scales from 1.6 to 6.0 times faster than Lustre, resulting
in an overall 232.0 times faster performance for DYAD.

the small-scale distributed consumption case, data movement
for DYAD is 5.8 times faster than for Lustre due to node-
local storage. Additionally, the coarse-grained synchronization
again adversely impacts the total Lustre consumption time,
making DYAD 192.0 times faster than Lustre overall.
Additionally, we observe the data movement in both DYAD
and Lustre scales as we increase the ensemble size.

To sum up, using node-local storage in DYAD results in sub-
stantially faster performance by a factor of 5.3 times for data
production and 192.0 times for data consumption. Because
of its better performance in data production and consumption
times, DYAD’s adaptive synchronization mechanisms and use
of node-local data management make it a compelling choice
for large-scale distributed MD workflows.

Finding 3: Selecting a data management solution that
optimizes both data movement and synchronization
ensures overall performance in a large-scale, distributed
MD workflow.

E. Molecular Model Size Scaling

We evaluate molecular model size scaling by comparing the
performance of DYAD and Lustre across a range of molecules
(i.e., JAC, ApoAl, FI ATPase, and STMV) that increase in size
in terms of the number of atoms and consequently in frame
size exchanged between producer and consumer.

Figures 8(a) and 8(b) compare the production and consump-
tion times in the context of JAC, ApoAl, F1 ATPase, and
STMV with incremental frame sizes (Table I) for DYAD and
Lustre. The settings for these tests involve 2 nodes and 16
producer-consumer pairs, with varying strides (granularity or
intervals at which data was processed in the simulation) for
each molecular model (Table II). These strides are selected
so that the MD simulation time for each molecular model
is constant. Figure 8(a) presents the data production time in
milliseconds in terms of data movement (red striped bars) and
idle time (blue striped bars) for both DYAD and Lustre for
the four different molecular models. Increasing the size of
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Fig. 9: Detailed analysis of DYAD using Thicket shows that as
we increase the size of the molecular model, the data move-
ment through dyad_get_data and dyad_cons_store
improve in throughput due to large transfer size. Additionally,
the stress on KVS is reduced due to larger data movement,
as seen by dyad_fetch call, improving the scalability of
DYAD.

the molecular model increases the amount of data exchanged
between the producer and consumer. Therefore, we see that
as we increase size, the data production time increases for
both Lustre and DYAD. If we compare DYAD with Lustre,
we see that the production cost gap between the two solutions
increases; DYAD is 2.1 to 6.3 times faster than Lustre. There
is no substantial idle time for either DYAD or Lustre.

Figure 8(b) depicts the data consumption time in
milliseconds for the same molecular models as in Figure 8(a).
As with the data production times, each model has data
movement (red striped bars) and idle time (blue striped bars)
for both DYAD and Lustre. The performance of DYAD’s data
movement improves relative to Lustre with a larger molecular
model, increasing from 1.6 to 6.0 times faster than Lustre.
This improvement can be attributed to faster node-local
storage and efficient RDMA-based data movement. Again,
similar to previous results, Lustre’s idle time remains higher
than that of DYAD, and the overall consumption time in
Lustre is dominated by idle time. As a result, DYAD is 121.0
to 333.8 times faster than Lustre.

We use Thicket to analyze the call trees of the MD work-
flows and pinpoint specific regions that the workflows spend
time on. Figure 9(a) and 9(b) show DYAD’s performance for
the JAC and STMV molecular models. In these trees, not
ordered by time, the workflow calls dyad_consume which
consists of two data movements: (i) move data from a remote
node shown with dyad_get_data and (ii) store the data
into a local cache with dyad_cons_store. Additionally,
the KVS synchronization is performed using dyad_fetch.
Finally, the reading of data by the consumer is shown with
read_single_buf. In this workflow, DYAD handles larger
frames more efficiently for data movement. Specifically, based
on Table I, we note that we move 45.3 times more data
with STMV than with JAC, but the additional cost of data
movement is only 33.6 times greater. This indicates that
DYAD scales well for larger molecular models. Finally, larger
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Fig. 10: Through detailed analysis of Lustre using Thicket,
we observe that Lustre scales well for the data movement with
FilesystemReader::read_single_buf of larger ensembles due to
the inherent parallelization of Lustre file system. However,
explicit synchronization with explicit_sync, which remains
constant across the two runs, reduces the scalability of Lustre.

data movement time reduces the stress on KVS, making the
synchronization cost 2.1 times better for STMV than JAC
(dyad_fetch in Figure 9(a) vs. dyad_fetch in 9(b)).
Figures 10(a) and 10(b) show Lustre’s performance for
the JAC and STMV molecular models. A detailed visual-
ization of the Thicket call tree demonstrates synchronization
(excplicit_sync in the trees) restricts the scalability for
larger molecular models for Lustre. Here, the data movement
cost is given by FilesystemReader::read_single_buf, and the
synchronization cost is given by explicit_sync. As we can see,
increasing the amount of data by 45.3 times as we go from JAC
to STMV results in a 12.3 times increase in data movement
time. However, the synchronization cost remains roughly the
same, limiting Lustre’s overall scalability for MD workflows.

Finding 4: Leveraging local resources and efficient
communication protocols enables better scalability as
data sizes increase.

FE. Frame Generation Frequency Scaling

We evaluate frame movement frequency scaling by com-
paring the performance of DYAD and Lustre across different
strides (i.e., generate an MD frame in output every 1, 5, 10,
and 50 MD steps), moving data from producers to consumers
for both our smallest molecular model (JAC) and our largest
model (STMV). For both molecular models, the settings for
our tests involve 2 nodes and 16 producer-consumer pairs.

Figures 11(a) and 11(b) compare production and consump-
tion times when using JAC. Figure 11(a) presents the data
production time in microseconds in terms of data movement
(red striped bars) and idle time (blue striped bars) for both
DYAD and Lustre. Across all strides, the data movement
time of DYAD and Lustre remains constant, suggesting that
both data management solutions can handle a high rate of
frame movements. Lustre exhibits some variability in data
movement due to possible contention on the Lustre file system.
Additionally, we observe that DYAD is 4.8 times faster than
Lustre for data production with JAC due to faster node-local
storage. Figure 11(b) presents the data consumption time in
milliseconds in terms of data movement (red striped bars) and
idle time (blue striped bars) for both DYAD and Lustre. We
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Fig. 11: Tests on two nodes with JAC demonstrate that (a)
DYAD’s production time is 4.8 times faster than Lustre, and
(b) DYAD’s consumption time constantly outperforms that of
Lustre, both in data movement and idle time.
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Fig. 12: Tests on two nodes with STMV demonstrates that
(a) DYAD production time is 2.0 times faster than Lustre; (b)
DYAD consumption time is 13.0 to 192.2 times faster than
Lustre due to a widening gap in idle time.

note that the data movement time of DYAD and Lustre remains
constant, and DYAD exhibits less variability than Lustre. We
also observe that DYAD is 4.8 times faster than Lustre for
data movement across the strides. Furthermore, idle times
increase with the stride for both DYAD and Lustre. However,
DYAD’s idle times are much smaller than those of Lustre due
to DYAD’s adaptive synchronization. As the stride increases,
the gap between the overall time of DYAD and Lustre widens.
As a result, DYAD becomes even more efficient than Lustre.

Figures 12(a) and 12(b) compare the production and
consumption times when using STMV for the same stride
range. Figure 12(a) presents the data production time in
milliseconds in terms of data movement (red striped bars) and
idle time (blue striped bars) for both DYAD and Lustre. We
observe that the data movement time of DYAD and Lustre
remains constant across all strides, with Lustre showing
some variability due to file system contention. Overall,
DYAD is 2.0 faster than Lustre due to faster node-local
storage. Figure 12(b) presents the data consumption time in
milliseconds in terms of data movement (red striped bars) and
idle time (blue striped bars) for both DYAD and Lustre. We



observe that Lustre’s data movement time is constant across
strides. On the other hand, we observe that increasing the
stride improves DYAD’s data movement performance by up
to 1.4 times as compared to a stride of 1. This improvement in
performance at higher strides suggests that DYAD experiences
lower network contention as stride increases. As a result of
the different behaviors of Lustre and DYAD, we observe that
DYAD ranges from performing equally as well as Lustre for a
stride of 1 to being 1.56 times faster for a stride of 50. DYAD’s
overall consumption time is 13.0 to 192.2 times faster than
Lustre because of DYAD’s lower idle times. As with JAC,
DYAD’s better overall time is due to adaptive synchronization.

Finding 5: Minimizing synchronization is critical as
the frequency of data transfer between producers and
consumers decreases over a fixed amount of time.

V. CONCLUSIONS

This empirical study of data transfer for molecular struc-
tures in MD workflows across different data management
solutions (i.e., DYAD, XFS, and Lustre) provides insights
into optimizing data management for such workflows. This
study outlines the impact of fine-grained synchronization and
the proper choice of storage setup in optimizing MD work-
flows’ performance and scalability. Despite a slight increase in
data production time due to additional metadata management,
DYAD’s efficient handling of idle times through fine-grained
synchronization mechanisms significantly enhances overall
workflow efficiency, particularly on single-node configura-
tions. Leveraging network communication for data movement
in small-scale distributed MD workflows has minimal effect
on performance when the communication is directly between
nodes. This suggests that management solutions like DYAD,
which utilize direct memory access capabilities for efficient
data transfer, can maintain consistent performance even in
distributed environments, emphasizing the adaptability of MD
workflows to various management solutions. In large-scale dis-
tributed MD workflows, selecting a data management solution
that optimizes data movement and synchronization processes
ensures overall performance and scalability. DYAD’s use of
node-local storage and adaptive synchronization mechanisms
makes it a compelling choice; DYAD significantly outperforms
Lustre in data production and consumption times across a
wide range of ensemble sizes. As molecular model size
increases, leveraging local resources and efficient communi-
cation protocols becomes increasingly important. The study
demonstrates that DYAD scales better for larger molecular
models than Lustre, which is attributed to faster node-local
storage and RDMA-based data movement. This scalability
is crucial for handling the large data volumes generated in
simulations of complex molecular structures. The frequency
of frame generation impacts the synchronization and overall
performance of the data management solutions. The results
suggest that minimizing synchronization overhead is critical,
especially as the frequency of data transfer between producers
and consumers decreases. DYAD consistently outperforms

Lustre in handling higher frequencies of frame generation,
highlighting its efficiency in managing synchronization costs
and maintaining performance across different strides. The find-
ings of this work improve the understanding of MD workflows,
empowering scientists to achieve faster insights in their MD
studies. In future work, we will further evaluate DYAD and
other management solutions across a more diverse set of
workflows, including those which integrate MD simulations.
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