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Abstract—This experimental work examines data movement
in molecular dynamics (MD) workflows, comparing the Dynamic
and Asynchronous Data Streamliner (DYAD) middleware with
traditional, industry-standard I/O systems such as XFS and
Lustre. DYAD moves MD simulation frames to analytics
processes, providing enhanced flexibility and efficiency for
dynamic data transfers and in situ analytics. At the same
time, traditional I/O storage systems provide durability and
scalability for high-performance computing (HPC) systems. The
study integrates MD workflows with common simulation codes,
facilitating immediate capture and transfer of MD frames to
a staging area. It explores various molecular models, from
simple to complex, assessing data management performance and
scalability. Different producer-consumer pairs, molecular models,
and data transaction frequency enable testing across small to
large-scale HPC scenarios, from single-node configurations to
large, distributed environments. The findings reveal that adaptive
mechanisms for minimizing synchronization, direct network
communication between producer and consumer processes, and
optimizations of both data movement and synchronization are
crucial for performance and scalability in MD workflows.

Index Terms—Producer-Consumer Paradigm, Molecular
Dynamics Workflows, Dynamic Data Management, High-
Performance Computing, In Situ Analytics

I. INTRODUCTION

This experimental work characterizes the data movement

in molecular dynamics (MD) workflows, particularly focusing

on the movement of MD-generated data during runtime. The

study evaluates the use of an advanced software middle-

ware called the Dynamic and Asynchronous Data Streamliner

(DYAD) [1] versus traditional, industry standard I/O systems:

node-local file systems like XFS [2] and parallel file systems

like Lustre [3]. All three data management solutions deal with

the data movement needs within MD workflows from dis-

tinct angles. With its advanced abstractions, DYAD enhances

flexibility and efficiency in handling dynamic data movement

and automated workflow synchronizations. XFS provides the

ability for efficient in situ analytics before data is moved off

node. Lustre’s durability and scalability make it suitable for

high-performance computing (HPC) applications that require

highly parallel data access over a network of nodes. We

focus on the movement of MD-generated data (i.e., moving

frames from the simulations to the analytics) rather than on

the MD process itself (i.e., efficient computation of molecular

interactions, parallelization, or GPU acceleration).

We study MD workflows essential for capturing the be-

havior of molecular models, coupling data movement of MD

simulations with in situ analytics. The workflows seamlessly

integrate with prevalent MD simulation codes [4]–[6], thereby

facilitating the immediate capture of MD frames in memory

during runtime. These frames are then efficiently transferred

to a staging area, leveraging the advantages of both advanced

software middlewares and traditional I/O systems. We exam-

ine a spectrum of molecular models with varying size and

complexity, ranging from JAC [7] (a simple 23,558 atom, 644

KiB molecular model) to STMV [8] (a complex 1,066,628

atom, 28.5 MiB model). By scrutinizing the data handling of

various models, we thoroughly evaluate the performance and

scalability of data management solutions in MD workflows.

We adjust multiple parameters within the MD workflow

to test the data management systems’ capabilities. We vary

the number of producer-consumer pairs, reflecting different

parallelism scales across our experiments. We test four dif-

ferent molecular models with an increasing number of atoms,

thus generating different frame sizes. We manipulate the stride

of data movement, which influences the frequency of data

transactions. Our tests enable us to mimic a range of realistic

scenarios that could be encountered in HPC environments,

from small, single-node operations to large, distributed compu-

tations across multiple nodes. Ultimately, our comprehensive

approach allows us to identify the strengths and limitations of

current technologies and offers a guide for future development

in MD simulation data management.

We identify five main findings from our empirical

study. First, prioritizing a data management system with

adaptive synchronization mechanisms can lead to substantial

overall scalability for MD workflows on a single-node

configuration, even if there is also a small increase in

production time. Second, leveraging network communication

for data movement in small-scale distributed MD workflows

has little effect on performance when communication

occurs directly between two nodes. Third, selecting a data

management system that optimizes both data movement

and synchronization ensures overall performance in a large-

scale, distributed MD workflow. Fourth, leveraging local

resources and efficient communication protocols enables

better scalability as data sizes increase. Finally, minimizing

synchronization is critical when the frequency of data transfer

between producers and consumers decreases.



II. MD WORKFLOWS: SIMULATION AND ANALYTICS

Modern MD workflows are increasingly sophisticated and

involve a combination of simulation and real-time, in situ

analytics. These workflows have producer-consumer patterns.

The MD simulation produces frames (the atom list and their

3-D locations) at a regular number of steps (i.e., strides), and

the in situ analytics consume those frames.

A. MD Simulations

MD simulations have been a cornerstone in computational

science. They are among the most frequent workloads on

exascale machines [9]. These simulations allow scientists

to observe atomistic details of biological processes that

are often elusive to experimental techniques. The complex

interaction of atoms and molecules is at the heart of MD

simulations. Each simulation replicates the behavior of a

molecular model by using a two-step algorithm. The process

begins with calculating interatomic forces using force fields (a

mathematical representation of the energy landscape dictating

atomic interactions). After force calculation, the simulation

updates the positions of atoms by Newton’s equations,

marching forward in time through small increments. Models

comprising hundreds of thousands of atoms require large

computing power executed on GPUs.

A large-scale MD simulation is an ensemble of MD jobs

(as many as hundreds of thousands) that run on different

compute nodes and produce independent trajectories [10];

each job simulates the same molecular model starting from

different initial conditions (e.g., positions, velocities) or

similar models under different conditions (e.g., temperature,

protein mutants, drug variants). Each MD job reproduces the

evolution of the relevant molecular model by computing and

writing to storage the model’s atomic coordinates (frame)

and other relevant properties at regular intervals as the job

evolves in time. The sequence of molecular conformations

(the trajectory) is written to disk.

B. In Situ Analytics

Exascale systems increase the capabilities of MD simula-

tions. The data generated from these simulations are large and

provide an even finer granularity of molecular detail. However,

data management and real-time analytics are challenging for

researchers who study the data as it is generated to steer the

simulation (e.g., terminate or fork a trajectory) and annotate

the events for retrieval and visualization [10].

Run-time, in situ analytics in MD workflows refers to

data analysis as the data is generated during simulations,

without requiring data to be written to disk and analyzed post-

process. This approach is particularly beneficial for large-scale

simulations where the volume of generated data is immense,

making traditional post-processing not only cumbersome but

also time-consuming and resource-intensive [11]. Adaptive

simulations leverage in situ analytics to concentrate resources

on significant phenomena for more effective exploration. Run-

time, in situ analytics techniques include monitoring, data

reduction, advanced visualization, and on-the-fly analysis [12].

Real-time monitoring enables researchers to observe simula-

tion progress and identify phenomena as they occur, aiding in

troubleshooting. Data reduction techniques within in situ ana-

lytics streamline data management by storing only crucial in-

formation to minimize storage needs. Advanced visualization

offers immediate insights into simulations, allowing scientists

to witness interactions dynamically [13]. On-the-fly analytics

process simulation data in real-time for property and metric

calculations, eliminating the need to store entire datasets [14].

III. DATA MANAGEMENT SOLUTIONS

Integration of MD workflows and HPC is essential for

managing computational demands and ensuring efficient data

processing. We explore two distinct approaches for data

transfer: an advanced middleware with abstractions like the

Dynamic and Asynchronous Data Streamliner (DYAD) and

two traditional I/O solutions: node-local file system with XFS

and parallel file system with Lustre. Figure 1 shows the MD

workflow with the three different data management solutions.

The figure shows the MD workflow from simulation to in situ

Fig. 1: MD Workflow from simulation to in situ analytics

using three different data management solutions (i.e., DYAD,

XFS, and Lustre).

analytics. On the left side of the figure, an MD simulation

(e.g., using GROMACS [4]) is enhanced by Plumed [15] to

capture the MD frames without disrupting the execution. MD

frames are fed into a producer. The producer then transfers

data into one of three possible data management solutions

(i.e., a node-local storage-based middleware with DYAD, a

node-local file system with XFS, or a parallel file system with

Lustre). On the right side of the figure, a consumer extracts

data from the management systems for in situ analytics at

runtime. The figure presents an example of in situ analytics of

three interacting secondary structures (i.e., Helix 1-2 and Helix

1-3) in [12]) with two graphs depicting the largest eigenvalues

of two of the three helices within an MD simulation and

respecting sudden changes in the molecular model.

An important aspect of the data movement illustrated in Fig-

ure 1 is synchronization. Since producers and consumers typ-

ically require significant resources, they are often not located

on the same node, necessitating a deliberate synchronization

barrier to manage the transition from production to consump-

tion. The time associated with this synchronization consists

of two parts. The first part of synchronization time consists

of a delay for the producer to generate a piece of data. The



remaining synchronization time consists of the time needed

for the consumer to discover that the data has been produced.

A. Advanced Middleware: DYAD

DYAD 1 provides a sophisticated approach to data

movement and management. It is designed to optimize

data transfer efficiency and enables high-performance data

exchange between producer-consumer tasks within a workflow

without the need for manual synchronization between these

tasks. DYAD enables faster producer-consumer data exchange
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Fig. 2: DYAD enables faster producer-consumer data exchange

by using node-local storage accelerators, multi-protocol au-

tomatic synchronization primitives, global metadata manage-

ment, and RDMA-enabled data transfer.

by using node-local storage accelerators, multi-protocol

automatic synchronization primitives, global metadata

management (MDM), and RDMA-enabled data transfer.

Figure 2 illustrates a producer-consumer workflow utilizing

shared storage, comparing scenarios without and with DYAD

integration. On the left, the diagram shows the traditional

workflow without DYAD, relying on manual synchronization

for data exchange between producers and consumers. This

synchronization usually involves MPI primitives, file system

polling in workflow managers like Pegasus [16], or file

system locks, with the method chosen based on the system’s

architecture, the storage type, and the available data exchange

protocols [1]. The complexity of this synchronization leads

many workflows to adopt a coarse-grained approach, which,

while simplifying the design, extends the overall duration of

the workflow by not overlapping producer and consumer tasks.

On the right, the figure shows a workflow incorporating DYAD

for data exchange, highlighting three key features. First,

DYAD eliminates the requirement for manual synchronization

between tasks. Through DYAD’s automatic synchronization,

producers and consumers can run in a concurrent and pipelined

manner, and the consumer will automatically wait for data

to be made available. This pipelinning reduces the cost of

delay in synchronization. Second, DYAD leverages node-local

accelerators, such as burst buffers, instead of relying solely

on shared storage, significantly enhancing I/O bandwidth and

scalability. Last, the transfer of data between producers and

1The code is publicly available at https://github.com/flux-framework/dyad.

consumers is conducted through the efficient RDMA protocol,

optimizing both the bandwidth available for consumption and

the scalability of the workflow. DYAD’s features collectively

reduce the total duration of workflow tasks and improve

the efficiency of modern HPC storage architectures without

necessitating changes to the existing workflow structure.

The DYAD middleware supports dynamic data routing,

asynchronous communication, and on-the-fly processing ca-

pabilities. Because of these features, the middleware is partic-

ularly beneficial in scenarios where the data generation rate

varies significantly or when the data requires pre-processing

or filtering before being stored or analyzed. Its dynamic nature

enables an adaptive response to the computational load, net-

work bandwidth, and storage capabilities, thereby minimizing

bottlenecks and ensuring a smoother data flow.

B. Traditional I/O Solutions: XFS and Lustre

We examine two prevalent traditional I/O solutions used for

data management in MD workflows: the node-local file system

with XFS and Lustre. The node-local file system, implemented

with XFS, offers a specialized setup where each node within a

network possesses an exclusive file system. This arrangement

enhances direct disk access for each node, markedly reducing

access latency and interference while boosting I/O throughput,

which is crucial for operations demanding quick data access.

XFS enhances this framework by handling large files alongside

journaling features that ensure data integrity, making it a scal-

able, high-performing, and dependable storage option. While it

may lack the intricate abstractions of systems like DYAD, XFS

still provides benefits in terms of performance and reliability.

However, XFS is not capable of moving data between nodes.

As a result, processes that move data through XFS must be col-

located on the same node, which limits workflow scalability.

On the other hand, Lustre presents an easy-to-use solution

for data transfer, renowned for its use in distributed parallel

file systems that facilitate high-throughput access to extensive

datasets across many nodes in HPC settings. Designed

to support vast cluster computing endeavors, Lustre can

manage data on the scale of petabytes and accommodate

tens of thousands of client nodes. Though it does not

feature the advanced abstractions of DYAD, Lustre provides

remarkable scalability, performance, and reliability for large

bulk-synchronous data movement. Its distributed architecture

significantly improves the efficiency of data movement,

allowing numerous clients to access and process data

simultaneously, which makes Lustre an ideal choice for

applications with large bulk-synchronous data movement that

require significant bandwidth and massive data access.

Neither XFS nor Lustre provide any form of automated

synchronization for producer-consumer data transfer. As a

result, users of these file systems must implement synchro-

nization manually. As previously mentioned, the complexity of

this manual synchronization leads to the adoption of coarse-

grained approaches. Although easy to implement, these ap-

proaches result in serialized execution of the producer and con-

sumer, which increases the cost of delay in synchronization.



IV. PERFORMANCE STUDY OF MOLECULAR STRUCTURES

We investigate MD simulations’ performance and data

management challenges across four distinct molecular

structures, highlighting their data transfer performance and

scalability. We collect key insights into the efficiency and

scalability of different data management solutions (DYAD,

XFS, and Lustre) through a detailed performance analysis

in an MD-inspired workflow. The findings emphasize the

importance of fine-grained synchronization and storage setup

in optimizing MD simulations, offering guidance for selecting

appropriate data management solutions based on molecular

structure size and simulation complexity.

A. Molecular Models

Our tests use four distinct molecular models, each selected

for its unique role in biological processes and suitability for

data movement study. These models exemplify the diverse data

volume generated in MD simulations (Figure 3). As the model

size increases in the number of atoms, the MD simulation

performance measured in nanoseconds per day decreases,

requiring supercomputers to simulate larger models. We begin

with JAC [7], a molecular structure comprising 23,558 atoms;

JAC is frequently used as a standard model for probing protein

folding mechanisms and dynamics within MD simulations.

Next, we consider ApoA1 [17], consisting of 92,224 atoms,

notable for its vital function in lipid transport and metabolism,

particularly as a critical structural element of high-density

lipoproteins (HDL) in circulatory systems. We then move to

the F1 ATPase molecular structure [18], with 327,506 atoms,

a key component in cellular respiration and ATP synthesis.

Last, we use STMV [8], an extensive molecular structure

with 1,066,628 atoms. STMV is recognized for its size and

role as a satellite tobacco mosaic virus, providing a rich

framework for studying the intricacies of virus assembly and

protein-RNA interactions.

Fig. 3: Molecular structures with increasing size in atoms and

associated MD frames generated for in situ analytics.

Tables I and II present the detailed setup of the four

molecular structures used in our tests, each with various

attributes relevant to MD workflows. These tables provide

an overview of the molecular characteristics within their

respective MD simulations. In Table I, the molecular

structures are characterized by the number of atoms in

each molecule, the estimated size of each frame in the MD

simulation, and the computational performance measured in

steps per second. We derive the steps per second values from

ns/day and simulation configurations presented in [19]. For

example, the JAC model has 23,558 atoms, and each frame is

approximately 644.21 KiB in size, with the model achieving

1072.92 steps per second. The models vary in complexity.

The STMV model is the largest; it contains over a million

atoms and generates frames that are 28.48 MiB in size, but it

runs at the slowest steps per second rate. Table II focuses on

TABLE I: Targeted molecular models [7], [8], [17], [18].

Name Num Atoms Frame size Steps/second

JAC 23,558 644.21 KiB 1072.92
ApoA1 92,224 2.46 MiB 358.22
F1 ATPase 327,506 8.75 MiB 115.74
STMV 1,066,628 28.48 MiB 34.14

the stride of each molecular structure, a parameter that defines

the sampling or output frequency within the MD simulation.

Together with the steps per second, the table adds the time

in milliseconds taken for each MD step. We derive strides

for each model from [19] and [20] such that the frequency

of data generation is equal for each molecular model.

TABLE II: Stride for each molecular model [7], [8], [17], [18].

Name Steps/second ms/step Stride Frequency (s)

JAC 1072.92 0.93 880 0.82
ApoA1 358.22 2.79 294 0.82
F1 ATPase 115.74 8.64 92 0.82
STMV 34.14 29.29 28 0.82

B. Data Management Solution Configurations

Figure 4 presents three configurations of an MD workflow

studied in this paper, each using a different data management

solution: DYAD, XFS, or Lustre. Each configuration demon-

strates a different approach to managing and transferring data

within an MD workflow, from a single-node, tightly-coupled

system to multi-node, distributed systems, highlighting the

adaptability of MD workflows to various management solu-

tions depending on computational and data requirements. In

the first configuration, the workflow is contained within a

single node that employs either the DYAD client or XFS. We

consider DYAD and XFS as XFS is the fastest local storage

solution we can deploy for such a configuration. The MD

simulation, running on one core, passes frames directly to

the in situ analytics on another core. This local exchange

utilizes Solid-State Drive (SSD) storage, with control mes-

sages facilitating the coordination between the two processes.

The second configuration spans two nodes but uses DYAD

for data management. Here, Node 1 with the MD simulation

and Node 2 with the in situ analytics each include a DYAD

client, interfacing with a DYAD server that manages the data



Fig. 4: MD workflow management solutions: single-node DYAD/XFS, multi-node DYAD, and multi-node Lustre configurations.

flow. This setup is designed to utilize DYAD’s direct memory

access capabilities, allowing for efficient data transfer and

staging directly between nodes’ local SSD storage, potentially

bypassing some of the overhead associated with traditional

file systems like Lustre. The third configuration spreads the

workflow across two nodes via Lustre. Node 1 runs the MD

simulation, and Node 2 runs the in situ analytics on their

respective cores. Both simulation and analytics interact with

Lustre clients running on Nodes 1 and 2, respectively. These

clients communicate with a centralized Lustre file system that

manages data storage and transfer. This setup allows for dis-

tributed computing where the MD simulation and analytics can

happen on separate hardware, relying on Lustre’s robust dis-

tributed file system to manage data coherence and availability.

C. Testing Platform and Setups

To produce a controlled environment for evaluating DYAD,

XFS, and Lustre, we design and implement a point-to-

point MD-inspired workflow similar to the one shown in

Figures 1 and 4. Our workflow consists of an equal number

of producer processes and consumer processes. We link

individual producer and consumer processes through our data

management solutions to create an ensemble of concurrently

running pairs. Producer processes emulate MD simulation,

while consumer processes emulate MD analytics. Each

producer process runs for a fixed number of steps (i.e., stride)

before producing a snapshot (i.e., frame). For each step, a

producer emulates the computation done by an MD simulation

using a fixed-duration MD sleep. A producer serializes the

generated frame between each stride and writes it to DYAD,

XFS, or Lustre using POSIX APIs. Each frame has a fixed

number of atoms correlating to the molecule shown in Table I.

To simplify the evaluation of these management solutions,

we run every producer in our workflow for a fixed number

of strides; this results in a fixed number of data transfers

per producer-consumer pair. Each consumer runs for a fixed

number of iterations that is equal to the total number of

data transfers per producer-consumer pair. In each iteration,

a consumer first reads a frame from DYAD, XFS, or Lustre

using POSIX APIs. It then deserializes that frame before

running a sleep to emulate the computation performed in

data analytics. We set the duration of this sleep to match the

frequency at which producer processes generate frames.

Our workflow can run either on a single node or across

multiple nodes. All producer and consumer processes are col-

located when running on a single node, using either the DYAD

or XFS configuration shown in Figure 4. When running across

nodes, we place only one process type per node (producers or

consumers). As a result, our total number of nodes is evenly

split between nodes running producer processes and nodes run-

ning consumer processes. This splitting causes our ensemble to

use the multi-node DYAD or Lustre file system configurations

shown in Figure 4. In both single-node and multi-node scenar-

ios, we only place up to 8 processes per node because we only

have 8 GPUs per node; in a real-world MD workflow, each

simulation and analytics process would be tied to one GPU.

To evaluate the performance of DYAD, XFS, and Lustre,

we consider three types of scaling in our workflow. First,

we scale the size of the ensemble in terms of the number of

producer-consumer pairs. Due to our 8-process per node limit,

this scaling also requires us to scale the number of nodes.

As a result, we perform three tests to examine ensemble size

scaling: (1) a single-node test, (2) a two-node test, and (3)

a multi-node test that scales from 2 to 64 nodes. Second, we

scale the size of the molecular model (shown in Table I). When

considering molecular size scaling, we also vary the stride so

that our frequency of data generation is the same regardless

of the molecular structure. The stride values used for each

molecule are shown in Table II. Third, we scale the frequency

of frame generation. We consider 1, 5, 10, and 50 strides

to scale frequency for both the JAC and STMV molecular

models, relying on strides deployed in [12]. For all our tests,

we run each configuration 10 times.

For each run of each configuration, we collect performance

data using Caliper [21]; we analyze that data using

Thicket [22] and its query language [23]. Through these

performance tools, we identify two components of data



production and consumption time: data movement time and

idle time. We define data movement time as the time to write

data to or read data from our management solutions. For

DYAD, we measure data movement time by recording the

time spent in POSIX APIs and then subtracting away the idle

time from lower levels of the software stack using Thicket.

For XFS and Lustre, we measure data movement time by

simply recording the time spent in POSIX APIs. We define

idle time as time spent for synchronization. For DYAD, we

measure idle time by recording the time spent in different

components of DYAD and then isolating the components

associated with synchronization using Thicket. For XFS

and Lustre, we measure idle time by simply recording the

time spent in a MPI_Barrier between each producer and

consumer. We run all of our tests on Lawrence Livermore

National Laboratory’s Corona system [24]. Corona contains

121 compute nodes. Each node has 1 AMD EPYC 7401

CPUs and 8 AMD MI50 GPUs. Each node also has a 3.5 TB

NVME SSD, which we use for XFS and DYAD in our testing.

Nodes are connected by an InfiniBand QDR interconnect.

D. Ensemble Size Scaling

Through a series of three tests, we evaluate ensemble size

scaling by comparing the performance of DYAD, XFS, and

Lustre as we increase the number of producer-consumer pairs.

We examine the effects of concurrent data movement on the

performance and scalability of our data management solutions.

Our comparison spans various configurations, including using

a single node with local storage, a dual-node setup, and

multiple-node pairs that progressively increase the number

of producers and consumers. For each test, we move frames

from MD simulations to in situ analytics, studying JAC with

a fixed stride of 880 steps. Within each producer-consumer

pair, we run the producer for 112,640 steps to produce 128

frames, and similarly, we run the consumer for 128 iterations

to match the number of JAC frames created. This mimics

MD simulations with a fixed stride of 880 steps, where the

stride defines the frequency at which data is written and read.

In the first of the three ensemble size scaling tests, we

measure the production and consumption times on a single

node when using DYAD and XFS. By using a single node,

DYAD does not use its network components. To produce a

fair comparison, we choose to exclude Lustre from this test

because POSIX-compliant parallel file systems, like Lustre,

must move data across the network to remote storage in this

type of workflow. We scale the size of the ensemble in terms

of the number of producer-consumer pairs from 1 to 4. We

only scale up to 4 pairs because there are only 8 GPUs per

node on Corona, and each pair requires 2 GPUs: one for the

producer and one for the consumer.

Figure 5(a) displays the data production time in microsec-

onds for ensemble sizes of 1, 2, and 4 pairs. The figure depicts

data movement time (red striped bars) and idle time (blue

striped bars) for each ensemble size. We observe that adding

more concurrent ensembles linearly increases the time for

both DYAD and XFS. As the number of ensembles increases,
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Fig. 5: Performance on a single node with JAC shows that (a)

DYAD production time is 1.4 times slower than XFS due to

global namespace management; (b) DYAD consumption time

is 192.9 times faster than XFS due to lower idle time.

DYAD has 1.4 times more data movement cost than XFS

due to DYAD’s requirement to manage additional metadata,

resulting in higher production time than XFS. There is no

significant idle time in either solution.

Figure 5(b) illustrates the data consumption time in mil-

liseconds under the same settings as Figure 5(a). The figure

compares the time for data movement and idle time across

the ensemble sizes of 1, 2, and 4 pairs for both DYAD and

XFS. Similar to data production time, DYAD’s data movement

is 1.4 times slower than that of XFS. Unlike data production

time, idle time affects data consumption time in both DYAD

and XFS. In DYAD, the effect of idle time is limited; in XFS,

the effect of idle time is significant. This difference in the

effect of idle time is due to differences in synchronization

of the producer and consumer. DYAD uses multi-protocol

synchronization. For the first data consumption step, DYAD

uses a loosely coupled synchronization based on a key-value

store (KVS) because the data is not immediately available.

This loosely coupled synchronization causes the consumer to

wait for data availability, but it does not require the producer

to wait on the consumer. As a result, the producer can continue

with its next MD simulation step while the consumer reads the

data. This overlap of the producer and consumer causes data to

be available before every subsequent consumption step. When

data is already available, DYAD automatically switches to a

much less costly file lock-based synchronization. Due to this

multi-protocol synchronization, DYAD will only incur the cost

of its most expensive form of synchronization during the first

consumption step, resulting in lower idle times than XFS. On

the other hand, XFS uses a tightly coupled synchronization,

where the producer waits for the consumer to begin reading

data. This waiting causes the next consumption step to slow.

In summary, while data production with DYAD is 1.4 times

slower than XFS due to the overhead of metadata management,

DYAD significantly outperforms XFS in data consumption

times owing to its lower synchronization costs; DYAD is 192.9

times faster than XFS in overall data consumption. Despite

DYAD’s marginally slower performance in data movement due



0

150

300

450

600

750

900

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

1 2 4 8

P
ro

d
u

ce
r 

T
im

e
 (

µ
s)

Ensemble Size

Data Movement Idle Time

(a) Producer Performance

917 891 887 885

0

1

2

3

4

5

6

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

1 2 4 8

C
o

n
su

m
p

ti
o

n
 T

im
e

 (
m

s)

Ensemble Size

Data Movement Idle Time

(b) Consumer Performance

Fig. 6: The JAC molecular model on two nodes demonstrates

a) DYAD is 7.5 times faster than Lustre for data production

due to the use of node-local storage and b) DYAD is faster

than Lustre by 6.9 times for consumer data movement, and,

overall, DYAD is 197.4 times faster than Lustre.

to additional metadata management, its efficiency in handling

idle times, facilitated by finer-grained synchronization, con-

siderably enhances the overall workflow efficiency.

Finding 1: Prioritizing a data management solution with

adaptive synchronization (despite a small increase in

production time) can lead to substantial overall scalability

for MD workflows on single-node configurations.

In the second ensemble size scaling test, we expand our

measurement to a small-scale distributed environment with a

two-node setup, allocating one node to producer processes and

one node to consumer processes while utilizing DYAD and

Lustre. We use Lustre for this test instead of XFS because XFS

cannot run across multiple nodes. In Figure 6, we observe the

times for data movement and idle times for writing JAC frames

across ensemble sizes of 1, 2, 4, and 8 producer-consumer

pairs, mimicking the time in the single-node configurations for

DYAD. Introducing network communication for data move-

ment with a small number of nodes does not negatively

affect the scalability of DYAD. This suggests that the network

overhead introduced by DYAD in a two-node distributed

environment is manageable, and DYAD’s performance remains

consistent even when the data management tasks are spread

across the two nodes. These results mirror observations in [12].

We also see that Lustre on two nodes is slower than XFS on

one node (see test above) due to moving data to the off-node

Lustre file system. DYAD’s data movement in the producer is

7.5 times faster than that of Lustre because DYAD uses faster

node-local storage. Similarly, in the consumer, we observe that

DYAD’s data movement is 6.9 times faster than Lustre.

Finding 2: Leveraging network communication for data

movement in small-scale distributed MD workflows has

little effect on performance when the communication is

direct between nodes.

In the final ensemble size scaling test, we further expand

the scale of our distributed environment, and we measure the
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Fig. 7: The JAC molecular model on multiple nodes shows

(a) DYAD is 5.3 times faster in producer data movement than

Lustre and (b) DYAD is 5.8 times faster in consumer data

movement than Lustre and is 192.0 times faster overall.

time when scaling the number of nodes hosting producers

and consumers up to 64 (up to 256 producer-consumer pairs)

using DYAD and Lustre. Figures 7(a) and 7(b) show the data

production time in microseconds for a producer writing and

the data consumption time in milliseconds for a consumer

reading data to and from either DYAD or Lustre across the

various ensemble sizes (8, 16, 32, 64, 128, and 256 producer-

consumer pairs) for the JAC MD simulation. The 880-step

stride remains the same. In this test, the number of nodes used

varies from 2, 4, 8, 16, 32, and 64 nodes; the number of pairs

scales with the number of nodes, specifically 8 producers

per node (which are 8, 16, 32, 64, 128, and 256 producer-

consumer pairs based on the number of nodes involved). Both

figures compare the data production time between DYAD

and Lustre, with separate bars indicating the time for data

movement (red striped bars) and idle time (blue striped bars).

In Figure 7(a), we observe that the data production time

for both DYAD and Lustre is stable as the ensemble size

increases. The small size of the transferred frame for JAC

significantly helps DYAD as it uses node-local storage, but

the small size of the frame does not allow for maximal I/O

bandwidth from Lustre. Consequently, DYAD is 5.3 times

faster than Lustre. For the 128 and 256 ensembles, producers

experience less variability in performance across runs by

using DYAD. The same configurations exhibit more cost for

Lustre, potentially due to interference from other jobs.

In Figure 7(b), with the data consumption time similar to



0

1

2

3

4

5

6

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

JAC ApoA1 F1 ATPase STMV

P
ro

d
u

ct
io

n
 T

im
e

 (
m

s)

Molecular System

Data Movement Idle Time

(a) Producer Performance

889 864 866 915

0

2

4

6

8

10

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

Lu
st

re

D
Y

A
D

JAC ApoA1 F1 ATPase STMV

C
o

n
su

m
p

ti
o

n
 T

im
e

 (
m

s)

Molecular System

Data Movement Idle Time

(b) Consumer Performance

Fig. 8: For scaling molecular models across two nodes a)

DYAD scales from 2.1 to 6.3 times faster than Lustre for

producer data movement and b) DYAD’s consumer data move-

ment scales from 1.6 to 6.0 times faster than Lustre, resulting

in an overall 232.0 times faster performance for DYAD.

the small-scale distributed consumption case, data movement

for DYAD is 5.8 times faster than for Lustre due to node-

local storage. Additionally, the coarse-grained synchronization

again adversely impacts the total Lustre consumption time,

making DYAD 192.0 times faster than Lustre overall.

Additionally, we observe the data movement in both DYAD

and Lustre scales as we increase the ensemble size.

To sum up, using node-local storage in DYAD results in sub-

stantially faster performance by a factor of 5.3 times for data

production and 192.0 times for data consumption. Because

of its better performance in data production and consumption

times, DYAD’s adaptive synchronization mechanisms and use

of node-local data management make it a compelling choice

for large-scale distributed MD workflows.

Finding 3: Selecting a data management solution that

optimizes both data movement and synchronization

ensures overall performance in a large-scale, distributed

MD workflow.

E. Molecular Model Size Scaling

We evaluate molecular model size scaling by comparing the

performance of DYAD and Lustre across a range of molecules

(i.e., JAC, ApoAI, FI ATPase, and STMV) that increase in size

in terms of the number of atoms and consequently in frame

size exchanged between producer and consumer.

Figures 8(a) and 8(b) compare the production and consump-

tion times in the context of JAC, ApoA1, F1 ATPase, and

STMV with incremental frame sizes (Table I) for DYAD and

Lustre. The settings for these tests involve 2 nodes and 16

producer-consumer pairs, with varying strides (granularity or

intervals at which data was processed in the simulation) for

each molecular model (Table II). These strides are selected

so that the MD simulation time for each molecular model

is constant. Figure 8(a) presents the data production time in

milliseconds in terms of data movement (red striped bars) and

idle time (blue striped bars) for both DYAD and Lustre for

the four different molecular models. Increasing the size of

(a) JAC (b) STMV

Fig. 9: Detailed analysis of DYAD using Thicket shows that as

we increase the size of the molecular model, the data move-

ment through dyad_get_data and dyad_cons_store

improve in throughput due to large transfer size. Additionally,

the stress on KVS is reduced due to larger data movement,

as seen by dyad_fetch call, improving the scalability of

DYAD.

the molecular model increases the amount of data exchanged

between the producer and consumer. Therefore, we see that

as we increase size, the data production time increases for

both Lustre and DYAD. If we compare DYAD with Lustre,

we see that the production cost gap between the two solutions

increases; DYAD is 2.1 to 6.3 times faster than Lustre. There

is no substantial idle time for either DYAD or Lustre.

Figure 8(b) depicts the data consumption time in

milliseconds for the same molecular models as in Figure 8(a).

As with the data production times, each model has data

movement (red striped bars) and idle time (blue striped bars)

for both DYAD and Lustre. The performance of DYAD’s data

movement improves relative to Lustre with a larger molecular

model, increasing from 1.6 to 6.0 times faster than Lustre.

This improvement can be attributed to faster node-local

storage and efficient RDMA-based data movement. Again,

similar to previous results, Lustre’s idle time remains higher

than that of DYAD, and the overall consumption time in

Lustre is dominated by idle time. As a result, DYAD is 121.0

to 333.8 times faster than Lustre.

We use Thicket to analyze the call trees of the MD work-

flows and pinpoint specific regions that the workflows spend

time on. Figure 9(a) and 9(b) show DYAD’s performance for

the JAC and STMV molecular models. In these trees, not

ordered by time, the workflow calls dyad_consume which

consists of two data movements: (i) move data from a remote

node shown with dyad_get_data and (ii) store the data

into a local cache with dyad_cons_store. Additionally,

the KVS synchronization is performed using dyad_fetch.

Finally, the reading of data by the consumer is shown with

read_single_buf. In this workflow, DYAD handles larger

frames more efficiently for data movement. Specifically, based

on Table I, we note that we move 45.3 times more data

with STMV than with JAC, but the additional cost of data

movement is only 33.6 times greater. This indicates that

DYAD scales well for larger molecular models. Finally, larger



(a) JAC (b) STMV

Fig. 10: Through detailed analysis of Lustre using Thicket,

we observe that Lustre scales well for the data movement with

FilesystemReader::read single buf of larger ensembles due to

the inherent parallelization of Lustre file system. However,

explicit synchronization with explicit sync, which remains

constant across the two runs, reduces the scalability of Lustre.

data movement time reduces the stress on KVS, making the

synchronization cost 2.1 times better for STMV than JAC

(dyad_fetch in Figure 9(a) vs. dyad_fetch in 9(b)).

Figures 10(a) and 10(b) show Lustre’s performance for

the JAC and STMV molecular models. A detailed visual-

ization of the Thicket call tree demonstrates synchronization

(excplicit_sync in the trees) restricts the scalability for

larger molecular models for Lustre. Here, the data movement

cost is given by FilesystemReader::read single buf, and the

synchronization cost is given by explicit sync. As we can see,

increasing the amount of data by 45.3 times as we go from JAC

to STMV results in a 12.3 times increase in data movement

time. However, the synchronization cost remains roughly the

same, limiting Lustre’s overall scalability for MD workflows.

Finding 4: Leveraging local resources and efficient

communication protocols enables better scalability as

data sizes increase.

F. Frame Generation Frequency Scaling

We evaluate frame movement frequency scaling by com-

paring the performance of DYAD and Lustre across different

strides (i.e., generate an MD frame in output every 1, 5, 10,

and 50 MD steps), moving data from producers to consumers

for both our smallest molecular model (JAC) and our largest

model (STMV). For both molecular models, the settings for

our tests involve 2 nodes and 16 producer-consumer pairs.

Figures 11(a) and 11(b) compare production and consump-

tion times when using JAC. Figure 11(a) presents the data

production time in microseconds in terms of data movement

(red striped bars) and idle time (blue striped bars) for both

DYAD and Lustre. Across all strides, the data movement

time of DYAD and Lustre remains constant, suggesting that

both data management solutions can handle a high rate of

frame movements. Lustre exhibits some variability in data

movement due to possible contention on the Lustre file system.

Additionally, we observe that DYAD is 4.8 times faster than

Lustre for data production with JAC due to faster node-local

storage. Figure 11(b) presents the data consumption time in

milliseconds in terms of data movement (red striped bars) and

idle time (blue striped bars) for both DYAD and Lustre. We
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Fig. 11: Tests on two nodes with JAC demonstrate that (a)

DYAD’s production time is 4.8 times faster than Lustre, and

(b) DYAD’s consumption time constantly outperforms that of

Lustre, both in data movement and idle time.
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Fig. 12: Tests on two nodes with STMV demonstrates that

(a) DYAD production time is 2.0 times faster than Lustre; (b)

DYAD consumption time is 13.0 to 192.2 times faster than

Lustre due to a widening gap in idle time.

note that the data movement time of DYAD and Lustre remains

constant, and DYAD exhibits less variability than Lustre. We

also observe that DYAD is 4.8 times faster than Lustre for

data movement across the strides. Furthermore, idle times

increase with the stride for both DYAD and Lustre. However,

DYAD’s idle times are much smaller than those of Lustre due

to DYAD’s adaptive synchronization. As the stride increases,

the gap between the overall time of DYAD and Lustre widens.

As a result, DYAD becomes even more efficient than Lustre.

Figures 12(a) and 12(b) compare the production and

consumption times when using STMV for the same stride

range. Figure 12(a) presents the data production time in

milliseconds in terms of data movement (red striped bars) and

idle time (blue striped bars) for both DYAD and Lustre. We

observe that the data movement time of DYAD and Lustre

remains constant across all strides, with Lustre showing

some variability due to file system contention. Overall,

DYAD is 2.0 faster than Lustre due to faster node-local

storage. Figure 12(b) presents the data consumption time in

milliseconds in terms of data movement (red striped bars) and

idle time (blue striped bars) for both DYAD and Lustre. We



observe that Lustre’s data movement time is constant across

strides. On the other hand, we observe that increasing the

stride improves DYAD’s data movement performance by up

to 1.4 times as compared to a stride of 1. This improvement in

performance at higher strides suggests that DYAD experiences

lower network contention as stride increases. As a result of

the different behaviors of Lustre and DYAD, we observe that

DYAD ranges from performing equally as well as Lustre for a

stride of 1 to being 1.56 times faster for a stride of 50. DYAD’s

overall consumption time is 13.0 to 192.2 times faster than

Lustre because of DYAD’s lower idle times. As with JAC,

DYAD’s better overall time is due to adaptive synchronization.

Finding 5: Minimizing synchronization is critical as

the frequency of data transfer between producers and

consumers decreases over a fixed amount of time.

V. CONCLUSIONS

This empirical study of data transfer for molecular struc-

tures in MD workflows across different data management

solutions (i.e., DYAD, XFS, and Lustre) provides insights

into optimizing data management for such workflows. This

study outlines the impact of fine-grained synchronization and

the proper choice of storage setup in optimizing MD work-

flows’ performance and scalability. Despite a slight increase in

data production time due to additional metadata management,

DYAD’s efficient handling of idle times through fine-grained

synchronization mechanisms significantly enhances overall

workflow efficiency, particularly on single-node configura-

tions. Leveraging network communication for data movement

in small-scale distributed MD workflows has minimal effect

on performance when the communication is directly between

nodes. This suggests that management solutions like DYAD,

which utilize direct memory access capabilities for efficient

data transfer, can maintain consistent performance even in

distributed environments, emphasizing the adaptability of MD

workflows to various management solutions. In large-scale dis-

tributed MD workflows, selecting a data management solution

that optimizes data movement and synchronization processes

ensures overall performance and scalability. DYAD’s use of

node-local storage and adaptive synchronization mechanisms

makes it a compelling choice; DYAD significantly outperforms

Lustre in data production and consumption times across a

wide range of ensemble sizes. As molecular model size

increases, leveraging local resources and efficient communi-

cation protocols becomes increasingly important. The study

demonstrates that DYAD scales better for larger molecular

models than Lustre, which is attributed to faster node-local

storage and RDMA-based data movement. This scalability

is crucial for handling the large data volumes generated in

simulations of complex molecular structures. The frequency

of frame generation impacts the synchronization and overall

performance of the data management solutions. The results

suggest that minimizing synchronization overhead is critical,

especially as the frequency of data transfer between producers

and consumers decreases. DYAD consistently outperforms

Lustre in handling higher frequencies of frame generation,

highlighting its efficiency in managing synchronization costs

and maintaining performance across different strides. The find-

ings of this work improve the understanding of MD workflows,

empowering scientists to achieve faster insights in their MD

studies. In future work, we will further evaluate DYAD and

other management solutions across a more diverse set of

workflows, including those which integrate MD simulations.
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