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Abstract—Adversarial machine learning (ML) attacks are
stealthy attacks designed to mislead the ML model results. This
paper explores adversarial ML attacks that generate adversarial
noisy input data in an ML-based controller in a solar inverter.
Three types of ML models, long short-term memory (LSTM),
gated recurrent unit (GRU)), and bidirectional-LSTM (Bi-
LSTM), are designed to replace proportional-integral (PI)
controller-based vector control for a solar inverter and two white-
box adversarial ML attacks (Basic Iterative Method (BIM) attack
and Fast Sign-Gradient Method (FGSM)) are applied to the ML
controllers. It is observed that the adversary ML attacks designed
in stealthy way do not affect the PI controller, while significantly
degrading performance of the ML-based controllers. Moreover,
the BIM attack is more effective than FGSM and Bi-LSTM-based
controller is relatively robust to the attacks compared to peer.

Keywords—adversarial machine learning attack, machine
learning, cybersecurity, solar inverter

[. INTRODUCTION

Recently, machine learning (ML)-based controllers have
been proposed to replace conventional controllers in power
electronics (PE) by improving the controller performance [1]-
[4]. In [3], ML-based model predictive controls (MPC) are used
for a three-phase inverter with L-C filter to reduce the
computation of the MPC. By adopting ML accelerating
hardware such as Field Programmable Gate Array (FPGA) in
the PE controller board, it is expected that more and more ML-
based controllers will be adopted in PE [4]. Meanwhile, the ML
trustworthiness has been threatened by adversarial ML (AML)
attacks that intentionally mislead the ML model results by
generating adversarial data which are stealthier not to be
detected by a bad data detection or an intrusion detection system
[5]. Furthermore, significant cybersecurity concerns have arisen
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in the networked PE devices due to the extensive information
exchange and firmware updates [6]. It is demonstrated that the
controller input data can be spoofed to degrade the inverter
operation by an adversary through the controller firmware
modification [7]. It is anticipated that an adversary who can
succeed in a malicious controller firmware modification can
generate a stealthy controller input data spoofing attack targeting
the ML-based controller. However, the impact of the AML
attacks targeting ML-based PE controllers has been less studied.

This paper investigates the impact of AML attacks on an
ML-based controller within a solar inverter, serving as a case
study for solar inverters. Specifically, three ML models, 1) Long
Short-Term Memory (LSTM ([8]), 2) Gated Recurrent Unit
(GRU), and 3) Bidirectional LSTM (Bi-LSTM) are tested to
replace the conventional proportional-integral (PI) controller
used in vector control for a solar inverter. Two white-box AML
attacks, namely the Basic Iterative Method (BIM) and the Fast
Gradient Sign Method (FGSM), are employed to evaluate the
vulnerability of these ML-based controllers. The results indicate
that while the stealthily crafted adversarial attacks do not impact
the PI controller, they significantly impair the performance of
the ML-based controllers. Furthermore, the BIM attack proves
to be more effective than the FGSM, and among the ML-based
controllers, the Bi-LSTM model exhibits relatively higher
robustness against these adversarial attacks compared to the
GRU and LSTM models.

II. RELATED WORK: ML-BASED SOLAR INVERTER
CONTROL

A. Single-Phase Solar Inverter Description

Fig. 1 illustrates a single-phase solar inverter using ML-
based current loop vector control. /; and [, currents are
computed from the inverter voltage (V,) and inverter current
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Fig. 1. ML-based decoupled vector current loop controller for a single-phase solar inverter.

(Zinv) through a phase locked loop (PLL) and Park Transform
block. The error signals of /; and 7, derived from their respective
reference signals, are fed into two ML regression-based models,
replacing the conventional decoupled vector PI controllers. The
resulting V; and V, signals are then transformed through an
Inverse Park Transform block, with V, serving as the duty cycle
signal for PWM signal generation.

B. ML Regression-Based Model Candidates

Candidates for the ML regression models include a neural
network-based regression method [4], LSTM, GRU, and Bi-
LSTM which can capture the non-linearity characteristics of the
controller without requiring deep knowledge of the system
dynamics. For example, the LSTM regression model can predict
the PI controller output ¥ based on input data x as follows:

Y = bias, + W, * a(bias, + Wy * he_q + Wy * x;) 1)

where W, is the weight value of the current hidden layer; a is
denoted as the activation function, tanh; and W), and W,
correspond to weight of the previous hidden layer and the weight
of the current input, respectively.

III. PROPOSED ADVERSARIAL ML ATTACK MODELING

The goal of an AML attack targeting the solar inverter is to
mislead the ML regressions by generating stealthy malicious
input data, X,a. X.a can be created by injecting 7 into the Z.q. Fig.
2 shows the potential attack points of the inverter controller and
corresponding tactics to inject 7 into the current-loop vector control
and the negative impact of the X, in the controller. For example,
an adversary ML attack algorithm can be injected in the new
controller firmware [5] and executed to add #. Table I shows two
white-box adversarial ML attack algorithms, FGSM and BIM.

In the FGSM, an adversary can choose the strength of data
perturbations that is defined by €. Ay signifies the mean squared
error (MSE) loss function between the true testing output data
and the model’s predictions. % corresponds to taking the
gradient of the model’s loss. The gradient data is then reshaped
into a format that is accepted for ML testing on unseen data. The
sign of the reshaped gradient data is taken and multiplied by
epsilon which defines the malicious perturbations introduced
into the original data that is now defined as X,s. The BIM
introduces three attack parameters, a, num_iterations and ¢. The
attack is performed at an iterative level depending on the number
of iterations specified by the adversary with the amount of

TABLE I
TWwO ADVERSARIAL ML ATTACK GENERATION ALGORITHMS

Algorithm 1: FGSM adversarial ML attack

Input: Original sensor data X and its Y
Qutput: Perturbed sensor data X4y
Data: attack parameter: €
1 Ayrr = (mean((Yiest — Ypredictea)-*));
2 gradient + (VxApnr(X, f’)),
8 k « reshape(repmat(gradient, [3, 1, 1]),[3, 1. 2500
4 1 4 €- sign(k);
5 Xgdo < X + 15
6 return X,g,;

Algorithm 2: BIM adversarial ML attack

Input: Original sensor data X and its %
Output: Perturbed sensor data X a4,
Data: attack parameters: ¢, o, num_iterations

1 for iter = 1:num_iterations do

2 Aprp = (7718@”((?;631 - YF’red’intﬁd)-Q));

3 gradient <+ (Vx Ay (X, Y));

4 k < reshape(repmat(gradient, [3,1,1]), [3, 1, 2500
5 1+ « - sign(k);

6 Xady — X + 135

7 Xady = min(max(X, X —¢), X +¢);

8 end

9 return X, ,;

perturbation defined by a. In addition, € now serves as a value
chosen that serves to ensure the perturbations stay within a limit
of the original data. This allows stealthier adversarial
perturbations with the tradeoff of increased computational cost
to perform the attack due to the iterative nature.

A. Malicious Firmware Appraoch

In [4], a RNN was successfully deployed onto a Texas
Instrument (TT) Solar Evaluation Kit’s digital signal processor
(DSP) controller (TI TMS320F28335 MCU) by updating the
current loop control portion of the MCU’s programming which
originally contained the 3 pole 3 zero (3p3z) controller and
flashing the DSP’s firmware using TI’s Code Composer Studio
(CCS) and TI’s UniFlash tool. Since it is possible to flash the
DSP to provide firmware updates to the control hardware, it is
realizable that if an attacker gains physical access to the control
hardware, they may create malicious firmware that spoofs

1761

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 26,2025 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.



Adversarial ML attack

@ ) Maticious Code Injection

(Injecting 1)

@ Sensor Data Spoofing |

Sin

Cos | L
PLL L

% _— Iil!\‘

’ T
I
DCAC |

Inverter @

Fig. 2. Attack modeling for adversarial ML attacks.

~J -

{ Ve
F AR
T I

! [
__c ’(‘f Park

Transform

DC-DC
Converter

[
+

LA TI UniFlash

ML Regression
Iﬂﬁq (PI Controller) D'q

Inverse
Park Transform

ML-based Current-loop Vector Control

Serial Port Memory

Attacker flashes DSP with malicious
firmware via TI's UniFlash

Attacker Physical
Access to hardware

2 )

DSP loaded with malicious
Firmware via Serial Port

Current Loop
Control Degraded

2 2

Fig. 3. Proposed Malicious Firmware Pipeline

sensor data inputs such as Iy and I, currents to provide a
malicious signal that will result in degraded current loop control.
It is also realizable that an attacker may instead choose to inject
7 perturbations to disrupt the control defined as a function in the
malicious firmware code. This can be achieved by accessing and
modifying the control hardware’s firmware files, and re-flashing
the hardware using UniFlash to create a malicious executable
that would run on the control hardware.

IV. VALIDATION

In this paper, a single-phase solar inverter was designed in
MATLAB/Simulink and three ML regression-based models
(LSTM, GRU, and Bi-LSTM) for current-loop control are
trained in the MATLAB Simulink environment. Then BIM-
based adversarial ML attack and FGSM-based adversarial ML
attack were applied to the PI controller and deployed ML-based
controllers. Adversarial ML attack parameters: ¢, a, and
iterations were chosen to highlight the critical threshold of the
model’s predictions. FGSM utilized an ¢ of 0.6. BIM used an €
0f 0.8, o of 1.49 and 630 iterations. The impact of the two AML
attacks was compared in terms of prediction accuracy of inverter
terminal voltage in the d axis, V; with performance metrics (root
mean squared error (RMSE), mean squared error (MSE), and
mean absolute error (MAE)). Fig. 4 shows the comparison of
performance of the controllers in normal case (Fig. 4(a)) and under
BIM-based adversarial attack case (Fig. 4(b)). In normal case, all
methods show similar performance, as shown in Fig. 4(a). Fig.
4(b) clearly depicts that adversarial ML attack perturbations has
negligible impact observed on the PI controller while
significantly disrupting ML-based controllers. Table II
highlights the numerical performance among the three ML
models. as well as highlighting the performance under two
attacks. BIM had a stronger impact on the performance at the
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Fig. 4. Comparison of controller performance among a reference PI controller
and ML controllers: (a) normal and (b) BIM attack.
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TABLE I1
PERFORMANCE COMPARISON OF ML MODELS

LSTM GRU Bi-LSTM
Normal AML Attack Normal AML Attack Normal AML Attack
Train Test FGSM BIM Train FGSM BIM Train Test FGSM BIM
RMSE | 0.0769 0.1392 0.3379 0.3897 0.0593 0.1403 0.6836 0.9516 0.0535 0.1038 0.1271 0.1222
MSE 0.0059 0.0194 0.1142 0.1519 0.0035 0.0197 0.4672 0.9056 0.0029 0.0108 0.0162 0.0149
MAE 0.0280 0.0401 0.2645 0.2587 0.0419 0.0752 0.5334 0.7001 0.0161 0.341 0.653 0.0760
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Fig. 5. Comparison of injected AML data perturbations on Id reference
and Id current data: (a) FGSM and (b) BIM.

cost of computation, however the perturbated data introduced is
much stealthier than the FGSM approach. Bi-LSTM regression
performance shows highly accurate control under the adversarial
ML attacks. It is noted that choosing/designing ML-based
controller robust to potential adversarial ML attacks needs to be
considered.

Fig. 5 illustrates the visual comparison of adversarial ML
attack perturbations resulting from FGSM and BIM attacks
respectively. Both AML algorithm’s goal is to inject targeted
malicious input data to each ML model. As we can observe from
Fig. 5 (a) waveform, it introduces perturbations that range from
above and below the original time series data being processed
by the ML models. To be more specific, the input data that is
relevant for each ML model to predict an output voltage in the

FGSM, (d) GRU-BIM, (e) Bi-LSTM-FGSM, and (f) Bi-LSTM-FGSM.

d/q axis suitable for PWM generation consists of a current
reference values defined by the inverter’s software, the real time
current value, as well as the error between the two signals. This
input information is relevant for ML model predictions so that
the model may perform control on the signals. In the simulation,
a reference current is set to 0.5A in the d axis. FGSM introduces
some perturbations above and below this value depending on the
¢ injected by the attacker, while BIM iteratively clips the
perturbations to stay within a window only a bit above the
reference current and real time current to improve stealthiness.

Fig. 6 highlights RMSE loss versus the amount of
perturbation injected between FGSM and BIM for each model.
Note that for every BIM iteration, ¢ is varied from 0 to 1 just as
FGSM, however o was set to a constant 1.49 to highlight the
highest effect on RMSE loss. It should be noted there is a
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balance where the perturbation is strong enough to cause
maximum disruption to the model but not so strong that the
model begins to adapt or mitigate the perturbation. This results
in a peak RMSE loss. For FGSM, this peak occurs because,
beyond a certain point, the perturbations become excessively
large and easily detectable, leading to diminishing returns in
terms of increasing RMSE. For BIM, the peak is reached when
the cumulative effect of iterative small perturbations reaches its
most effective disruption point without becoming overly
noticeable.

V. CONCLUSION

In conclusion, this paper discussed regression based ML
models, while additionally evaluating each model’s robustness
to an AML attack. More HIL experiments will be investigated
using FPGA hardware for real time control and validation.
Utilizing DSP hardware may allow the realization of malicious
firmware approach to observe the effects of control before and
after the attack. Both approaches aim to demonstrate practical
real hardware-based ML control system applications and
highlight cybersecurity importance.
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