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Abstract—The integration of electric vehicles (EVs) into the
smart grid has introduced new challenges and opportunities for
optimizing power and energy management. This paper presents
a simple method using a decision-tree to estimate allocation of
electric  vehicle grid interfaces (EVGIs) for EV
charging/discharging, leveraging the nodal capabilities of a
distribution system. The future distribution system will cater for
vehicle-to-grid (V2G) transactions in addition to grid-to-vehicle
(G2V) transactions, thus EVGIs allowing for bidirectional
(G2V/V2G) power flows need to be deployed. The proposed
decision-tree method is based on nodal power flow ratings and
peak demand at the nodes assuming the nodal voltages are
maintained within their stability envelopes by volt-var
optimization and other voltage control methods. The allocation
of EVGIs in the IEEE 34 test node feeder distribution system
using the decision-tree method is illustrated. The EVGI
allocation using decision-trees is a simple method that can
provide insights of a typical distribution system’s capability to
support EV integration with emerging smart grid technologies.

Keywords—allocation, charging/discharging, distribution

system, EV grid interface, nodal power flows.

[. INTRODUCTION

In the quest for achieving net-zero emissions by 2050, the
global energy sector is witnessing a remarkable surge in
electric vehicle (EV) adoption worldwide. This shift is pivotal
in aligning with the goal of limiting the global temperature
increase to 1.5°C, as recommended by the Intergovernmental
Panel on Climate Change. From 2010 to 2023, the growth
trajectory of EV sales has been staggering. By 2022, over 26
million electric cars were on the roads, marking a remarkable
increase compared to the previous years as stated in [1]. This
trend is set to continue, as depicted in [2].

In recent years, the smart grid concept has emerged [3],
reshaping the role of EVs through the development of
Vehicle-to-Grid  (V2G) technology. V2G facilitates
bidirectional energy exchange between electric vehicles and
the power grid [4], offering a multitude of services to enhance
grid reliability and efficiency [5]. These services include
power grid regulation, spinning reserve, peak load shaving,
load leveling, and reactive power compensation [6]. Given the
complexity of implementing V2G technology, which involves
addressing a multifaceted unit commitment problem with
conflicting objectives and constraints, optimization
techniques become essential.
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As the adoption of EVs continues to surge, it is imperative
that the current distribution systems adapt to accommodate
bidirectional power flow technologies required for Grid-to-
Vehicle (G2V) and V2G transactions. This evolution is
essential to meet the growing demand for EVs and ensure their
seamless integration into the energy ecosystem. Electric
vehicle charging infrastructure, represented by charging
stations, plays a crucial role in recharging EV batteries.
However, the placement of these charging stations cannot be
arbitrary [7]. To mitigate the adverse effects associated with
EVs, it's essential to undertake optimal planning for sizing and
placement. Charging stations can be broadly categorized into
slow charging stations (SCS) and rapid charging stations
(RCS). In determining the ideal placement and size of
charging stations, which hinges on charging demand,
established models from transportation modeling literature are
commonly employed. The literature reviewed can be
categorized into node-based, flow-based, and agent-based
approaches [8]. The objectives of infrastructure location
models discussed in [9] can be categorized into two main
goals: minimizing the cost of charging infrastructure while
maintaining a certain level of service, or maximizing the
service provided within a given budget.

EV  charging station (EVCS) allocation for
charging/discharging (C/D) in a distribution system is
proposed in [11]. Optimal planning of peak shaving, valley
filling and flattening the load curves with EVs is investigated.
A multi-objective particle swarm optimization algorithm and
the Monte Carlo simulation were applied. To enhance the
utilization rates of EV batteries and C/D piles (C/D station), a
vehicle-pile resource allocation method was proposed in [12].
This method is based on a two-stage categorical hierarchical
scheduling framework designed to address the vehicle-pile
assignment problem in near real-time. An optimization model
for the joint deployment of EV charging stations and
distributed generation resources, considering the V2G
function of EVs, is presented in [13].

The contribution of this study is the development of a
simple method for estimating the allocation of EV grid
interfaces (EVGIs) in distribution systems based on a
decision-tree method. The decision-tree method provides the
potential locations and the number of EVGIs for any
distribution system without any infrastructure upgrade. The
EVGI allocation is based on existing capabilities of the
distribution system. As future distribution systems are
expected to accommodate V2G transactions alongside G2V
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Fig. 1. A decision-tree based methodology for estimating the allocation of
EVGIs in a distribution system

transactions, EVGIs capable of bidirectional power flows
need be installed. The proposed method relies on nodal power
flow ratings and peak demand at the nodes, while assuming
that nodal voltages remain within their designated envelopes
with or without volt-var optimization. Furthermore, the
proposed decision-tree method for EVGI allocation that can
be used for any given distribution system, based on the
objectives, which provides a node-based model to minimize
the cost while maximizing the level of service. The G2V
demand can be decided according to the difference between
the peak and the current load demands while, the load is
dynamically changing in a 24 hour window.

The rest of the paper is as follows; Section II describes the
problem formulation for EVGI allocation. Section III
illustrates the decision-tree methodology applied to the IEEE
34 bus feeder system. Section IV presents typical results and
discussions on the allocation of EVGIs. Finally, the
conclusion is given in Section V.

II. PROBLEM FORMULATION

Scaling up the EVGI allocation in a specific distribution
system involves several assumptions. The allocation is based
on the system infrastructure ratings, which includes factors
such as the number of nodes, phases, and types of dynamic
loads connected. In the proposed method aimed at EVGI
allocation estimation, the following basic assumptions are
considered:

e Discharging levels are functionally analogous to charging

levels with bidirectional inverter capabilities.

e Discharge rate is within the safe envelope for the batteries

as in the case of charging.

e Allocation of the grid infrastructure is to maximize the

charging with capabilities for discharging.

,

End

The EVGI allocation is solely depends on the nodal rated
power described by (1), where ¢ represents the phase (1, 2,
3), n denotes the node number and «, b, c indicates the number
of charging station levels L;, where j = 1, 2, 3 respectively,
for the node. L; and L; are types of AC charging and L3 can
accommodate the DC fast charging (DCFC) and extreme fast
charging (XFC). Therefore, the number of L; stations, ¢ can
be divided into two namely Cpcrc and Cxrc representing
number of L3, DCFCs and XFCs [19]-[23]. To ensure system
voltage stability, the maximum power supplied for a phase
must not be surpassed. In this study, the maximum G2V/ V2G
demand per phase in the network is considered fixed
according to the dynamics of the nodal load curve, and the
system node voltages are assumed to operate within a range
of 1.00 £ 5% p.u. The flowchart in Fig. 1 describes the
generalized methodology for the allocation of EVGI based on
(1) with the identification of the load type of any given node
prioritizing the L3 and followed by L, and L; for maximizing
the charging capabilities.

Pn,d),max = a. PLl,max +b. PLz,max +c. PL3,max (1)

For the industrial (IND) and commercial (COM) loads, ¢
is computed using (2), and b and a are calculated according
to (3) and (4), respectively.
P n,d),max)

Lz max

2

¢ = round (
If ¢. Prymax < Pr¢max then

P —C.PL3max
b = round (—"’¢'max EX )
PLz,max

If ¢. Py max + b Prymax < Prgmax, then

3)

“

and ¢. P max + b- P, max + @ Prymax < Pngmax  should
not be violated.
Assuming the domestic (DOM) nodes only accommodate

a = round (Pn,¢,max_C-PLg,max_b-PLz,max)
PLl,max
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L and L;, b and a are computed using (5) and (6),

respectively.

b = round <—P"'¢’max) ®)
Pr,max

If b. P, max < Pngmax- then
n,¢,max—b- max
P &, PLZv ) (6)

PLl,max

a = round (

and  b.P, max + @ P max < Ppgmax should not be
violated.

The estimated G2V/V2G demand for the network will
depend on the maximum hosting capacity per phase in the
network as described by (1). The G2V/V2G transaction for a
given node (n) within the system can be explained by (7)
where, the total G2V/ V2G power at time ¢, denoted as Py, 2
(1), the load at that moment, represented as D,(?), the charging
demand as P,y (?), the surplus power outflow denoted as
Py ow(t) and the drawing power from the grid, P, (?). Fig. 2
depicts a nodal’s power inflows and outflows corresponding
to these scenarios where the P, . is the maximum power
rating in kW of the node and V, ;aeq is the rated voltage in kV
of the n” node.

Puyvac () = D, (t) + Pn,GZV(t) + Py out @®) - Poin ®) (7

Pn,mg._x_ZVn,rated

P n,in(t)
P, n,out(t)

Ppyac(t)
Pncav(t)

Fig. 2. Nodal power ratings, voltage rating and flow representation.

1 Dy (t)

III. MoODIFIED IEEE 34 TEST SYSTEM

The test system for this study is the IEEE 34 test node
feeder system illustrated in Fig. 3, represents an actual feeder
in Arizona has features reflecting the physical world [1]. The
configuration details of the IEEE 34 test node feeder can be
accessed by [10] with overhead line configurations, line
segment data, transformer data, load data; spot loads,
distributed loads, shunt capacitors, regulator data,
impedances, power flow results, voltage profiles, power flow
data. The 24kV test feeder extends over a considerable
distance [5], spanning approximately 36 miles from node 848
to the substation. Despite its length, the feeder experiences
low levels of electrical load.

Additionally, the circuit incorporates two voltage line
regulators, positioned between nodes 814-850 and 852-832,
respectively. Though the published IEEE 34 test node feeder
is discussing a radial distribution system with constant kW and
kVAr (PQ), constant impedance (Z) and, constant current (I)
[9], the teat feeder used in this study has been modified with
dynamic loadings of the nodes without violating their ratings
for the intention of integrating the EV discharging levels.

A. Static Loads into Daily Dynamic Loads

First the 34 test nodes are categorized into three types of
loads: domestic (DOM), industrial (IND) and commercial
(COM) [5]. All the spot loads were assumed to be industrial
loads. If the loads are single phase and relatively small, less
than 5 kW, they are not allocated for the three main categories
and assumed as street light (SL) load profiles in the system.
Other loads were assumed to be DOM or COM. If they are

less than 90 kW (DOM) and higher than 90 kW (COM)
respectively [15]. Table A. I describes the load categorization
where the darker orange colored portion is the IND, the
medium orange colored is the COM and the mild orange
colored is the DOM loads with respect to their phases.

The dynamic load variation of the IEEE 34 test feeder is
modeled based on the daily load data provided in [17], which
presents dynamic load profiles for 24 hours per day of
Southern California Edison. These profiles depict the daily
load variations for different types of loads: Industrial (IND),
Commercial (COM), and Residential (DOM). Weekday and
weekend load profiles exhibit similar shapes with varying
peaks throughout the 24-hour period [17]. To reflect these
profiles, load data from Southern California Edison has been
normalized according to load types (IND, COM, and DOM).

¥¥v - Distributed Loads
’ - Spot Loads

828 854 856

Fig. 3. Types of loads in the radial IEEE 34 test node feeder.

The predefined static nodal load values from guidelines
[10] are utilized as the peak loads for dynamic nodal load
representation. The dynamic load profiles for the test system
are then generated using the normalized load factors for the
three load categories. Fig. 5 illustrates the dynamic load
variation over 24 hours for example IND, COM, and DOM
nodes in the IEEE 34 test feeder as assumed in Table A.IL

B. EV Grid Interface Allocation

In accordance with the assumptions detailed in Section II,
the IEEE 34 test node feeder has been enhanced to include ,
L;, Ly and, L3 C/D stations, with the primary objective being
the reduction of charging times. Grid infrastructure provides
the bidirectional power flow including charging and
discharging. The priority for the allocation of EVGI is given
to Lsand followed by L;and L; .

TABLE L EVGI TYPES AND RATINGS
EVGI Voltage Maximum Power
Type vy | Current@ 1 output (kW)
Level 1 120 12-16 AC/1¢ 1.44
Level 2 208-240 | 12-80 AC/2¢ 6.7-19
Level 3 400-800 350 DC 50-350

L; and L; stations are assumed to support bidirectional
power flow, encompassing both V2G and G2V capabilities. In
contrast, L3 is presumed to be capable solely of G2V at its
ratings due to EV battery safety considerations. Consequently,
the L,, L, stations can operate either as G2V or V2G at any
given time, allowing unoccupied G2V stations to facilitate
V2G operations. The power levels for the specified C/D levels
are considered as 1 kW, 19 kW for L; and L. L3 is charging at
50 kW and discharging and 19 kW rates as described in [19-
23] and Table 1. The L;is assumed to be discharging at the L,

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 26,2025 at 15:22:56 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE PES/IAS PowerAfrica

822
A
Ly
n- = 818’

' 202 808 824 826

Fig. 4. IEEE 34 test node feeder with allocated EVGIs.

rate. The predefined load parameters outlined in [8] have been
adopted as the load constraints for the modified IEEE 34 test
node feeder. It is assumed that DOM loads can only support
L; and L, stations and a maximum of two to three EVs,
whereas COM and IND loads occupy all charging levels.

IV. RESULTS AND DISCUSSIONS

Consequently, the integration of EVGI stations per phase
(¢: 1, 2, 3) for the test system is detailed in Table A.I, IND
loads encompass a total of 129 EVGIs, comprising 104 L;s,
10 Lss, and 15 Lss, while DOM hosts 38 EVGIs consisting of
34 L;s and 4 Ljs. COM incorporates 34 EVGIs in total,
including 71 L1s, 2 L;s, and 4 Lss. Consequently, the modified
IEEE 34 distribution system accommodates a total of 206
EVGls, comprising 175 L;s, 12 Lss, and 19 Lss. The total
EVGI allocation is visualized in the Fig. 4, indicating the
different charging levels according to the C/D rates.

Mlustrated in Fig. 6, which delineates the calculated
possible theoretical load profiles: D,(2), P26 (t), Pnc2v(t), of
node 890 1, according to Table A.I. The C/D capacity for
electric vehicles (EVs) at each station varies owing to the
connected load, as specified in (2). During periods of peak
load, G2V charging is assumed to be inactive, whereas the
highest demand for G2V charging occurs during intervals of
minimum load connected to the node. Therefore, the daily
V2G capability for a specific node will be determined by the
power rating of the node and the G2V demand (load + G2V)
of the node. Fig. 7 describes the practical scenario of the Py»g
for the IND node 890,1 which accommodates 3 EVGIs of
level 3 with a discharging rate of 19 kW.

V. CONCLUSION

The increasing number of electric vehicles and their
integration into distribution systems is becoming a challenge
task. This paper has presented the development of a simple
method based on decision-tree for determining the potential
locations and number of EV grid interfaces in any distribution
system. The decision-tree method can be applied based on
current nodal peak demand and power flow ratings. Typical
results of EVGI allocation have been illustrated for the IEEE
34 node test feeder system. The decision-tree method for the
EVGI allocation does not take into consideration accessibility
factors, and regulatory and financial factors. Further

I 860 836 840
) § M 4 L

o T

27 1 2 862

838

validation and refinement are needed due to the unavailability
of real-world V2G demand data. Future work includes the
estimation and forecasting the V2G demand using intelligent
methods and taking into consideration factors affecting the
EVGI allocation into the decision-tree, such as accessibility,
regulatory and financial/cost, and a methodology for the
operational management of the EVGIs.
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VI. APPENDIX
TABLE A. 1 ALLOCATED OF EVGI FOR THE IEEE 34 TEST NODE
FEEDER
R ( Ll L2 L3
) rated (V) Pmax (kW C/D Rating (kW)| Num. of L1 |C/D Rating (kW)|Num. of L2| C Rating (kW)[Num. of L3 | D Rating (kW)
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T l ; 5 : 0 : D
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IR l l D N ST D
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820-822,1 249 135 1 16 19 1 50 2 19
858-834,2 249 Is 1 15 19 - 50 B 19
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. l : D — D
ERIEED 2 T > > - 5 - 0
846-848.2 249 23 1 2 19 - 50 - 19
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