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the phosphorylation of EGFR in direct response to bound EGF, using a 
model system that lacks downstream signaling cascades that operate 
within the cell [45]. These measurements, which are overviewed below, 
showed that Y1068 and Y1173 in the EGFR kinase tail are differentially 
phosphorylated in response to EGF binding [45]. 

2. The transducer function 

The transducer function is the quantitative link between the response 
and the stimulus which causes it [46]. In the case of RTK signal trans
duction across the plasma membrane, the response is the addition of a 
phosphate group to a tyrosine in the intracellular domain of the RTK, 
while the stimulus is the formation of ligand-bound RTK complexes. 
Both RTK phosphorylation [47,48] and ligand-binding curves [49], as a 
function of ligand concentration, have been measured previously, but in 
very different experimental contexts and have not been compared 
directly. To determine the transducer function, we measure both curves 
simultaneously in the same system so we can plot one versus the other, 
as described below. 

It has long been known that signaling responses depend on the 
concentrations of activated receptors, via a hyperbolic functional 
dependence [50,51]. This hyperbolic relationship was initially deduced 
by Black and Leff based on fundamental principles [46]. It forms the 
basis of their “operational model,” which applies to various receptor 
types including RTKs [52]. In this model, ligand-bound receptors serve 
as a stimulus to activate the response with a characteristic equilibrium 
dissociation constant, Kresp [53,54]. 

response = transducer function(stimulus) =
stimulus*Rmax

stimulus + Kresp
(1) 

We designate the stimulus as the fraction of ligand-bound receptors, 
fbound. We designate the response as the tyrosine phosphorylation per 
EGFR molecule, Rphospo. Rmax is the maximum possible theoretical 
response (phosphorylation) that can be attained in the experiment 
[55,56]. Therefore: 

Rphospho =
fbound*Rmax

fbound + Kresp
(2)  

where Kresp is the ligand-bound receptor fraction that yields 50 % of 
Rmax. Since Rmax depends on experimental details, such as labeling yields 
for antibody batches, we can instead write: 

Rphospho

Rmax
=

fbound

fbound + Kresp
(3) 

The ligand-bound receptor fraction fbound is between 0 and 1. By 
setting fbound = 1, we define: 

phosphorylation efficiency =
Rphospho(fbound = 1)

Rmax
=

1
1 + Kresp

(4) 

This phosphorylation efficiency can be calculated if the transducer 
function is measured experimentally and Rmax and Kresp are found from a 
two-parameter fit using Eq. (2). For this type of measurement, it is 
important that the ligand-bound receptor fraction, fbound, is quantified 
directly. Ligand-binding to RTKs cannot be described by a simple 

binding reaction since ligand-binding and lateral RTK interactions are 
coupled [57]. Indeed, ligand-binding is strongly affected by the RTK 
association state, and RTK dimerization and oligomerization are 
affected by the presence of bound ligand [57]. Furthermore, the oligo
merization state is challenging to measure in the membrane, and may 
vary with ligand concentration [58,59]. All complications in data 
interpretation due to complex RTK behaviors can be avoided through 
direct measurements of fbound, along with phosphorylation measure
ments, Rphosho, in the same membrane, as a function of ligand 
concentration. 

2.1. The RTK transducer functions cannot be measured using western 
blotting 

For many years, the most widely used approach to quantify phos
phorylation has been western blotting [60–62]. In these experiments, a 
large pool of cells expressing an RTK is lysed, after stimulation with the 
ligand. The proteins in the lysates are separated on SDS-PAGE gels, and 
then the phosphorylation of a particular tyrosine is probed using a 
highly specific anti-phosphoY antibody [47,63,64]. Thus, dose-response 
curves for RTK phosphorylation can be acquired if the ligand is varied 
over a broad concentration range, and the phosphorylation is measured 
using western blotting [47,48,65]. However, the transducer function 
measurements require that not only the response but the stimulus is 
known as well. This stimulus is fbound, the fraction of ligand-bound re
ceptors, which cannot be measured quantitatively in western blotting 
experiments. Furthermore, in western blotting experiments, the phos
phorylation over many cells with different expressions of the RTKs is 
averaged, and the RTK expressions in the individual cells are unknown. 

In addition, results in cells are affected by feedback loops, either 
negative or positive, which depend on the concentration of the 
expressed effector proteins [1,44]. These effects are sometimes referred 
to as “system bias” [66]. The concentrations of the cytoplasmic effectors 
vary among cell lines, leading to significant differences in reported re
sults. It is thus important to decouple (i) effects that occur in direct 
response to ligand-binding and (ii) effects due to complex feedback 
mechanisms including receptor downregulation. It is also important to 
know the concentrations of all relevant signaling molecules that impact 
the measured response. Thus, western blotting has significant limita
tions for transducer function measurements. 

2.2. Established model systems cannot be used for RTK transducer 
function measurements 

There has been significant progress towards understanding signal 
transduction by G-protein coupled receptors (GPCRs) [51,67]. GPCRs 
are membrane proteins made of 7 TM helices, involved in the recogni
tion of light, taste, odors, hormones, pain, and neurotransmitters, and 
thus involved in a myriad of biological processes [68–70]. In response to 
ligand-binding on the extracellular side, GPCRs bind to and activate 
heterotrimeric G proteins or arrestins on the cytoplasmic side [71,72]. 
While GPCRs have been reported to dimerize similarly to RTKs, it is now 
established that GPCRs signal predominantly as monomers, with 
dimerization likely fine-tuning their activity [67,73–75]. Researchers 
purify GPCRs and then reconstitute them in model lipidic systems such 

Fig. 1. The transducer function yields a quantitative link between ligand-receptor complex formation and the phosphorylation of critical tyrosines in the intracellular 
(IC) domain of the receptor. Shown is a schematic of a dimeric RTK (EGFR) in the plasma membrane. The binding of ligand (red) to the extracellular (EC) domain of 
the RTK stabilizes an RTK signaling oligomer, usually a dimer. Details about ligand binding to RTKs are known, as there are crystal structures of the isolated RTK 
domains in complex with ligands [2,94]. The bound ligands are believed to position the two kinase domains in the dimer in phosphorylation-competent orientation 
with respect to each other, but the exact mechanism is not understood. There are many high-resolution structures of isolated kinase domains, but details about their 
relative positioning in the dimer are unknown as there are no full-length RTK structures [95]. Each kinase phosphorylates multiple tyrosines in the IC domain of the 
neighboring receptor; in the case of EGFR the phosporylated tyrosines (green) are predominantly in the long unstructured post-kinase tails. Here we aim to quantify 
the transducer function (black arrow), which links the phosphorylation (the response) and the binding of the activating ligand to the receptor (the stimulus). 
Measurements are performed in plasma membrane derived vesicles, which do not retain cytoplasmic signaling molecules such as PLCγ, ERK, GRB2, and AKT. The 
latter can affect RTK phosphorylation via feedback mechanisms but are not present in the experiments. 
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cooperative effects in the phosphorylation of the different EGFR tyro
sines. Noteworthy, there are many tyrosines in the tail of EGFR which 
can be phosphorylated, in addition to Y1068 and Y1173. The transducer 
functions for the different tyrosines can be measured, provided that 

suitable antibodies are raised. Through mutagenesis of selected tyro
sines, we could gain mechanistic insights into the degree of coopera
tivity of tyrosine phosphorylation. 

The phosphorylation of Y1068 and Y1173, assayed here, has pro
found importance for EGFR signaling. Y1068 phosphorylation results in 
Grb2 and Gab1 recruitment and the initiation of AKT and STAT3/5 
signaling pathways [86–88]. Y1173 phosphorylation leads to Shc 
recruitment of and the initiation of the MAPK/ERK signaling cascade 
[86]. Here we find differences in the phosphorylation of these two ty
rosines, manifested in different values of Kresp and the phosphorylation 
efficiencies. Kresp is the ligand-bound receptor fraction that yields 50 % 
of Rmax. A smaller Kresp indicates more efficient phosphorylation. The 
value Kresp → 0 denotes a true full agonist, and corresponds to a phos
phorylation efficiency of → 1. Since the phosphorylation efficiencies of 
Y1068 and Y1173 for EGF are smaller than 1, we conclude that EGF is a 
partial agonist for both responses. 

Kresp for Y1068 phosphorylation was determined to be the smaller of 
the two (0.40 ± 0.03 versus 0.86 ± 0.08), indicating that EGF-mediated 
Y1068 phosphorylation is more efficient than Y1173 phosphorylation. 
This difference will lead to differential activation of the signaling cas
cades originating at these tyrosines. The manifestation of these differ
ences in different cell lines will be likely different, due to differences in 
the identities and abundance of downstream signaling effectors [66]. 
Measurements of transducer functions in plasma membrane derived 
vesicles therefore can help separate effects that occur in the membrane 
in direct response to ligand binding from effects due to signal amplifi
cation and feedback loops in different cellular contexts. This will bring 
more complete understanding of the differential effects of RTK ligands 
and of the effects of RTK pathogenic mutations on discrete signal 
transduction steps [45]. 

It has been shown that different ligand and pathogenic mutations 
alter the preferences for phosphorylation of different tyrosines [45]. The 
transducer function reports directly on such preferences, through the 
values of Kresp. Thus, different EGFR pathogenic mutants can be char
acterized using the technique described here, and their transducer 
functions can be compared. A notable example of high impact studies 
benefiting from transducer function measurements will be the compar
isons of different EGFR mutations causing non-small cell lung carcinoma 
(NSCLC). NSCLC represents over 85 % of all lung cancers and is asso
ciated with high mortality [89,90]. This cancer is due to EGFR mutations 
in approximately 10–15 % of Caucasian patients and in up to 50 % of 
Asian patients. Of the single amino acid mutations, the L834R mutation 
is the most common one, accounting for about 40–45 % of the cases 
where EGFR is mutated. Known uncommon NSCLC EGFR mutations 
include (i) the G893X mutation, where X can be C, A, S, or D, (ii) the 
L837Q mutation, and (iii) the S744I mutation [91–93]. These uncom
mon mutations account for about 10 % of the NSCLC cases with mutated 
EGFR. It is known that patients with these mutations exhibit 30 % lower 
progression-free survival when treated with tyrosine kinase inhibitors 
used in patients with the L834R mutation, implying functional differ
ences. This suggests that the signaling of these EGFR mutants may be 
fundamentally different from the common L834R mutant, and from the 
wild-type. It can be hypothesized that the transducer functions are 
different for the wild-type and for the different mutants. This hypothesis 
can be tested with the methodology described here. Further, the meth
odology can be used to screen for molecules that bind the mutant EGFRs 
and alter the transducer function so it is similar to the transducer 
function of the wild-type. Such novel biased inhibitors will not block 
signaling, just alter it, and will therefore be less likely to induce 
resistance. 
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