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Maximum information 
measurement for qubit states
Árpád Varga 1, Peter Adam  1,2* & János A. Bergou 1,3

We determine the optimal measurement that maximizes the average information gain about the state 
of a qubit system. The qubit is prepared in one of two known states with known prior probabilities. 
To treat the problem analytically we employ the formalism developed for the maximum confidence 
quantum state discrimination strategy and obtain the POVM which optimizes the information gain for 
the entire parameter space of the system. We show that the optimal measurement coincides exactly 
with the minimum-error quantum measurement only for two pure states, or when the two states have 
the same Bloch radius or they are on the same diagonal of the Bloch disk.

In quantum information the carriers of information are quantum systems and information is encoded in their 
states. Extracting this information is a central problem in quantum information processing and it can be done 
by determining the state via measurements1.

In many quantum communication schemes, information is the state itself. In these schemes a sender, Alice, 
prepares an ensemble of quantum systems, each in a state from a set of n known states, {ρj|j = 1, . . . , n} , the 
letter states. The weight of state ρj in this initial ensemble is ηj , called the a priori probability or simply prior. 
Alice then randomly draws a system from this initial ensemble and sends it to the receiver, Bob. The set of pos-
sible states as well as their priors are also known to the receiver whose task is to identify the state of the system 
he received. If the states are mutually orthogonal the task is easy: Bob sets up detectors along these orthogonal 
directions and a click in one of them will perfectly determine the input. However, if the possible states are not 
mutually orthogonal, the problem is highly nontrivial. Bob needs to choose a figure of merit and find a meas-
urement which is optimal with this respect. Accordingly, several strategies have been developed with respect to 
various criteria. Optimization, in general, leads to complex measurement strategies often involving generalized 
measurements. Some of the frequently employed strategies are discrimination with minimum error (ME)2–6, 
unambiguous discrimination (UD)7–12, and maximum confidence (MC)13–16 discrimination.

The ME strategy was first introduced in Refs.2–4 for two states (pure or mixed) with arbitrary priors. In this 
strategy, every time Bob receives a system he has to make a guess about its state based on the outcome of his 
measurement. The price to pay is that errors must be allowed. In the optimal strategy the average probability of 
error is minimized. The ME strategy involving more than two states is known in some special cases only.

The UD strategy was first introduced in Refs.7–9 for two pure states with equal priors and was later generalized 
for arbitrary prior probabilities in Ref.10. In the UD strategy, no errors are allowed. The price to pay is that Bob 
must be allowed to return inconclusive answers. In the optimal strategy the average probability of inconclusive 
answers is minimized. An important result states that UD is possible if the states are linearly independent17, which 
is not a requirement for ME. The UD strategy is successively used in sequential state discrimination, which is a 
strategy for N separate receivers18–22.

We note that each strategy has its own advantages and drawbacks when we try to apply them for a general 
measurement problem. It is difficult to find measurements realizing unambiguous discrimination for mixed 
states, but it is relatively easy to generalize this strategy for more than two states, at least in principle23. The ME 
strategy handles mixed states and pure states on equal footing but is hard to generalize for more than two states, 
except for some special, highly symmetric cases24,25 (although progress has been made recently in this area26,27).

Another independent strategy, called Maximum Confidence (MC), was introduced in Ref.13. The aim of the 
MC strategy is to construct a measurement which maximizes the confidence Cj : the conditional probability that 
detector j clicks provided that the state ρj was prepared. In the case of linearly independent states this strategy 
coincides with the UD strategy. However, when the states to be discriminated are not linearly independent, this 
is an independent strategy28. For further developments in this line of state discrimination studies we refer to 
the recent reviews14–16.
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In quantum communication one can look for a measurement strategy maximizing the mutual information 
between the communicating parties. In this problem the sender sends a sequence of individual quantum systems, 
each taken from a given set of known states E = {ρj|j = 1, . . . , n} , and the receiver measures them one by one, 
possibly by a POVM with the POVM elements �m where m = 1, . . . ,N . Our task is to maximize the Shannon 
mutual information2,3,29,

between the measurement outcomes m and the input states j, where ηj is the a priori probability of the state j, 
and p(m|j) = Tr(�mρj) is the conditional probability of getting the measurement result m, given that the state 
ρj was prepared.

For a given set of states and their a priori probabilities, the problem is to find a measurement which maximizes 
the mutual information. While the mutual information is known to obey the Holevo bound30, it is important to 
determine the accessible information, which is the actual maximum over all possible measurements. This is a 
special problem in state discrimination: we want to maximize the correlation between state preparation and meas-
urement outcomes, i.e., we want to devise a measurement strategy that yields maximum information about which 
state was prepared. We will refer to such a measurement as maximum information (MI) measurement. Solution 
to this problem is known only for a few special cases. Even determining the amount of information which can 
be encoded in a given quantum system is a nontrivial task31–36. We note that the problem we address consists 
in maximizing mutual information between classical random variables linked via a quantum encoding–decod-
ing scheme. Therefore, it is related to the calculation of channel capacities. It is, however, different from that of 
quantum channel capacity concepts maximizing quantum (as opposed to classical) mutual information37–41.

The number of POVM elements needed to maximize the information gain is in general unknown. It is 
known42 that for any ensemble in d dimensions there is an optimal strategy with at most N elements, where 
d ≤ N ≤ d2 . Sasaki et al.43 showed that for the case of real states (that is, states with a real density operator), 
the upper bound is d(d + 1)/2 . They also gave explicit solutions for the case of real and symmetric states in 
two dimensions, and showed that at most three POVM elements are necessary. Levitin44 conjectured that if the 
number of the possible states is N ≤ d , the optimal measurement will always be a von Neumann measurement. 
This conjecture was proven to hold for two pure states in arbitrary dimensions by Levitin. However, Shor45 gave 
a counterexample involving three real pure states in three dimensions (qutrits). Considering qubits only, Keil46 
proved that von Neumann measurements are always optimal for two general states.

Fuchs and Peres47 studied numerically the trade-off between the information gain and the measurement 
induced disturbance. Ban et al.48 gave analytic results for pure binary signal states, and showed the connection 
between the ME measurement and the MI measurement for this special case. Řeháček et al.49 gave an iterative 
algorithm to find the optimal POVM for the accessible information and illustrated the method on an example 
in three dimensions. There are also lower50 and upper51,52 bounds to the accessible information for simple cases, 
which depend explicitly only on the message ensemble.

In this paper we consider the problem of finding the optimal measurement to maximize the mutual informa-
tion for a general qubit system. Our approach makes use of the method developed for the maximum confidence 
strategy and leads to analytical insight. In particular, we determine the POVM in parametric form with a single 
parameter, which maximizes the information gain for the entire parameter space of the system.

Results
Information gain and confidence probabilities: General formalism
We begin with a study of the simplest case of two qubit states in a two-dimensional Hilbert space and present an 
alternative derivation of Eq. (1) for this case. We cast the result to a form that shows the intrinsic connection of 
information gain with the confidence probabilities, introduced in Ref.13.

Recall that we consider a two-party protocol with a sender, Alice, and a receiver, Bob. Alice prepares an 
ensemble of qubit systems where each qubit is either in the state ρ1 or in the state ρ2 . The first state is prepared 
a fraction η1 of the time and the second state is prepared a fraction η2 = 1− η1 of the time. The ensemble is 
described by the density matrix

Alice then randomly draws a quantum system from this ensemble and sends it over to Bob.
A more elaborate but equivalent way of describing state preparation is as follows. Alice initially prepares an 

ensemble of two-qubit states ρab = η1|0�a�0| ⊗ ρ1,b + η2|1�a�1| ⊗ ρ2,b and sends particle b over to Bob. Then she 
performs a measurement in the computational basis on the particle in her possession. If she finds the result |0� 
she knows that Bob’s particle is in the state ρ1 and if she finds the result |1� she knows that Bob’s particle is in the 
state ρ2 . If this is repeated a large number of times, Bob will receive the state ρ1 a fraction η1 of the time and the 
state ρ2 a fraction η2 of the time, on average.

Either way, Bob has no knowledge of the actual state he received, all he knows are the prior probabilities, η1 
and η2 = 1− η1 . The initial information uncertainty is given by

and the initial information is

(1)I
(
m : j

)
=

∑

m,j

p(m|j)ηj ln
p(m|j)

p(m)
,

(2)ρ = η1ρ1 + η2ρ2

(3)Si = −

2∑

j=1

ηj log ηj ,
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The question we are addressing here is: How much information can Bob gain by performing measurement(s) on 
the system he received? To this end we will consider the following general model of quantum measurement. In 
accordance with the results described in the Introduction, we assume that Bob has N detectors described by the 
set of rank-1 operators {�m|m = 1, . . . ,N} with d ≤ N ≤ d2 adding up to the identity operator,

The latter condition ensures that given the measured system in any state, one of the detectors will click. The 
conditional probability that �m clicks, given a system in the state ρj is calculated using Born’s rule:

In order to have positive probabilities we have to require the positivity (non-negativity) of the detection operators,

Equations (5) and (7) define a Positive Operator Valued Measure (POVM), which is simply the decomposition 
of the identity in terms of positive operators, called the elements of the POVM.

Next, we use Bayesian updating, employing Bayes’ theorem, P(m|j)P(j) = P(j|m)P(m) , for conditional 
probabilities. In particular, we apply this formula for the situation when j = ρj and m = �m . Then P(j) = ηj 
is the prior probability of state j, P(m|j) is the detection probability given in Eq. (6), i.e., detector m records an 
event if state j is given, and P(m) = η1Tr(ρ1�m)+ η2Tr(ρ2�m) is the total probability that detector m records 
an event. Using Eq. (2), the last expression can be written as

Thus we find that the conditional probability P(ρj|�m) , the probability that if detector m records an event it is 
due to the state j, can be written as

Cjm is the confidence (or confidence probability) which is the central quantity in the MC state discrimination 
strategy.

Equipped with the confidences we next give the information uncertainty for the case when detector m clicks. 
Clearly, using C2m = 1− C1m,

The average uncertainty is

where P(m) is given by Eq. (8). The information after the measurement is given by If = 1− Sf .
Finally, the information gain from the measurement can be given as

where Si is given by Eq. (3) and Sf  is given by (11). Substituting the explicit expressions for the various quantities 
obtained so far into Eq. (12) it can be shown that this equation is identical to Eq. (1). In this formulation the 
contributions from the prior and posterior information appear clearly separated. Furthermore, Si is constant for 
a given set of priors, so it is independent of the measurement we perform. Therefore, optimizing the information 
gain is equivalent to finding the POVM that minimizes the second term, the information uncertainty Sf  , 
Eq. (11). As noted before, the information gain that is maximized over all possible measurements is also called 
the accessible information. In the next section we develop a fully analytical theory that provides the accessible 
information (optimal solution) in parametric form for all values of the parameters.

Accessible information for qubits
To treat the optimization problem effectively, we employ the formalism developed for the maximum confidence 
strategy in Ref.13. Equations (11) and (12) are expressed in terms of the confidence probabilities, so they provide 
a convenient starting point. The method yields the optimal solution analytically in parametric form, in terms 
of a single parameter.

As the first step we introduce transformed density and measurement operators by the definitions:

(4)Ii = 1− Si = 1+

2∑

j=1

ηj log ηj

(5)
N∑

m=1

�m = 1

(6)P(m|j) = Tr(ρj�m)

(7)�m ≥ 0

(8)P(m) = Tr(�mρ)

(9)P(ρj|�m) ≡ Cjm =
ηjTr(ρj�m)

Tr(�mρ)

(10)Sm = −C1m logC1m − (1− C1m) log (1− C1m)

(11)Sf =

N∑

m=1

P(m)Sm,

(12)�I = If − Ii = Si − Sf ,

(13)ρ̄j =ηjρ
−1/2ρjρ

−1/2,
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and

where ρ is defined in Eq. (2). The transformed states satisfy

It follows from this expression that the transformed states ρ̄1,2 have the same set of eigenvectors. Using the 
transformed operators we can write the confidence Cjm , Eq. (9), in the more compact form,

We wish to maximize the information gain (12) [or the final uncertainty Sf  (11)] due to the measurement. Sf  is 
already in terms of the confidences while the outcome probability becomes

in terms of the transformed operators. Using Eqs. (14) and (15) it is easy to show from Eq. (5) that the transformed 
measurement operators ¯̄�m satisfy the equation:

We note that the transformation �m → ¯̄�m is rank preserving. Thus they become rank 1 projectors, not 
necessarily orthogonal. All we can say is that, as seen from Eq. (19), they correspond to a pure state decomposition 
of ρ , not necessarily in terms of orthogonal pure states. Furthermore, a pair of qubit states are always unitarily 
equivalent to a pair of real states, their Bloch vectors can be chosen to span the x, z plane of the Bloch sphere. 
Therefore, we can assume that ¯̄�m is also real. The general expression of a real rank 1 matrix can be written as

For the calculation that follows it is convenient to use the common eigenvectors of ρ̄1 and ρ̄2 as basis. Let the 
eigenvectors be |1� and |2� , and the eigenvalues of ρ̄1 be �1 and �2 . Eq. (16) immediately gives that the eigenvalues 
of ρ̄2 are 1− �1 and 1− �2 . Substituting (20) first into (17), we obtain

Without loss of generality we can assume �1 ≥ �2 from where �1 ≥ C1m ≥ �2 and 1− �2 ≥ C2m ≥ 1− �1 follow.
Substituting Eq. (20) next into Eq. (19), we find

Here, ρij are the matrix elements of ρ in the basis formed by the eigenstates of ρ̄1.
Up to this point our consideration is general as we have not imposed any restriction on the number N 

of POVM elements. However, it has been proven that for a pair of qubit states the optimal measurement 
is projective44,46, that is, N = 2 . Then �m = Pm , where {Pm|m = 1, 2} are rank  1 orthogonal projectors, 
PmPm′ = Pmδmm′ ( m,m′ = 1, 2 ). Therefore, from now on, we deal with the case of two orthogonal detectors 
and use the notation

since in this case we want to identify a click in detector m = j with ρj . Hence Cj is the probability of “good” events 
for the corresponding detector.

Using this notation in (21) and then the resulting expression in (22) and (23), some lengthy but straightforward 
algebra yields

(14)�̄m =ρ1/2�mρ
1/2,

(15)¯̄�m =
�̄m

Tr(�̄m)
,

(16)ρ̄1 + ρ̄2 = 1

(17)Cjm = Tr( ¯̄�mρ̄j)

(18)P(m) = Tr(�̄m)

(19)
∑

m

P(m) ¯̄�m = ρ

(20)¯̄�m =

(
cos2 αm cosαm sin αm

sin αm cosαm sin2 αm

)

(21)cos2 αm =
C1m − �2

�1 − �2

(22)
∑

m

P(m) cos2 αm =ρ11,

(23)
∑

m

P(m) sin2 αm =ρ22,

(24)
∑

m

P(m) cosαm sin αm =ρ12

(25)P(j = 1|m = 1) ≡ C1,

(26)P(j = 2|m = 2) ≡ C2,
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Substituting (27) into Eq. (11) and then using the resulting expression in (12) we obtain

which is one of our central results. It expresses the information gain �I entirely in terms of the confidences C1 
and C2 , and the prior probabilities η1 and η2 . Remarkably, this expression is independent of the structure of the 
states to be discriminated.

Equations (22) and (23) together with Eq. (21) allowed us to express the information gain entirely in terms 
of the confidence probabilities. The remaining Eq. (24) represents the main constraint under which (28) should 
be optimized. From Eqs. (24) and (27) it is easy to obtain the relation

The first term on the left-hand side is a function of quantities related to state 1 alone, while the second term is 
a function of quantities related to state 2 alone. Therefore, they separately must be equal to a universal function 
of the parameters, which we denote by a. The function a still depends on the parameters of the problem but not 
on C1 and C2 and, in order to satisfy (29), it must be antisymmetric under the exchange 1 ↔ 2 . In terms of a we 
can write

This provides a straightforward analytical solution to the entire problem. Substituting α1 and α2 from Eqs. (21), 
we obtain the constraint in parametric form. It expresses C1 and C2 and hence the information gain in terms of 
the single parameter a.

More importantly, however, it leads to a visual geometric solution which is the central result of this paper. It 
can serve as guide to find the exact solution for any values of the parameters specifying the problem. We introduce 
the geometric approach in the next subsection and illustrate its power on several examples.

Geometric optimization
First, we introduce a convenient parametrization of the problem. Recall that two qubit states are always unitarily 
equivalent to two real states: the corresponding two Bloch vectors span a plane in the Bloch sphere, and this plane 
can always be unitarily rotated to the x − z plane. We can thus restrict our discussion to this plane, also termed 
as the Bloch disk. With a further rotation, the Bloch vector of one of the states, say ρ1 can be aligned with the z 
axis. So we assume, without loss of generality, that our states are real from the beginning and the Bloch vector r1 
of the first state is along the z axis, that is, we use the following parametrization of the states:

Here, 1 is the two-dimensional identity operator, σx and σz are Pauli matrices, ri is the Bloch radius, and θi is the 
polar angle of state ρi , measured from the z axis. The parameters are shown in Fig. 1 where 0 < r1, r2 ≤ 1 , θ1 = 0 , 
0 ≤ θ2 ≤ π . In the following, we use these parameters to present our results.

For given fixed values of the parameters, that is, the prior probabilities η1 and η2 and the eigenvalues of the 
transformed states, �1 and �2 , the constraint (29) (or its parametric version , (30)) can be easily plotted in the C1

-C2 plane. This gives us a unique 8-shaped curve on which we have to find the optimal values of C1 and C2 . To this 
end, we notice that the information gain expression, (28), for a fixed value of �I is also a curve in the same plane. 
If we choose the fixed value �I too large, the two curves do not intersect. Lowering the value of �I , for a certain 
threshold value the two curves become tangent. This value is the maximal information gain �Imax available by the 
measurement, that is, the accessible information. The procedure is illustrated in Fig. 2. We should also mention 
that the values �I < �Imax correspond to feasible (suboptimal) measurements, all the way to C1 = C2 = 0.5 , 
which corresponds to pure guessing.

Figure 3 shows two examples for the geometric optimization, that is, the constraint (30) and the information 
gain (28) plotted together in the C1,C2 plane, for two sets of parameters of the input states. The figure shows 
that increasing the prior probability η1 of the state ρ1 increases the optimal confidence probability C1 of the state 
while reducing the confidence C2 of the other state.

We find numerically that the optimal values are C1 = 0.4879 and C2 = 0.9469 for the left panel, while 
C1 = 0.7867 and C2 = 0.8338 for the right panel. It is interesting to note that in the first case both detectors 
identify ρ2 with larger confidence.

In order to interpret these results, we point out that Figs. 2 and 3 are symmetric under reflection about the 
C1 + C2 = 1 line. This property follows from the fact that the information gain, Eq. (28), and the constraint, 
Eq. (29), are invariant under the substitution C1 ↔ 1− C2 . In particular, the constraint which is represented by 
the 8-shaped dashed line in these plots has this symmetry and the point where it intersects itself has coordinates 
C1 = η1 and C2 = η2 . These values correspond to pure guessing with no actual measurement performed and 

(27)P(1) =
C2 − η2

C1 + C2 − 1
, P(2) =

C1 − η1

C1 + C2 − 1

(28)

�I =
C2 − η2

C1 + C2 − 1
[C1 log(C1)+ (1− C1) log(1− C1)] +

C1 − η1

C1 + C2 − 1
[C2 log(C2)+ (1− C2) log(1− C2)]

− η1 log(η1)− η2 log(η2),

(29)
sin α1 cosα1 − ρ12

C1 − η1
+

sin α2 cosα2 − ρ12

C2 − η2
= 0

(30)
sin α1 cosα1 − ρ12

C1 − η1
= a,

sin α2 cosα2 − ρ12

C2 − η2
= −a

(31)ρi(ri , θi) =
1

2
(1+ ri sin(θi)σx + ri cos(θi)σz), i = 1, 2.
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using them in Eq. (28) leads to �Imin = 0 . As noted before, Eq. (28) also gives a relation between C1 and C2 for 
a fixed value of the information gain �I . When plotted in the C1 − C2 plane, it exhibits two disjoint segments 
that are related by the reflection symmetry about the C1 + C2 = 1 line. The optimal measurement corresponds 
to the points where the solid line, Eq. (28), is tangent to the dashed line, Eq. (30). It can be seen that there are 
two sets of solutions, related by the same symmetry. Feasible measurements are in the region bounded by the 
two solid lines, yielding a value �I in the range �Imax > �I > �Imin = 0 as we approach, from either of the 
boundaries, the point C1 = η1 and C2 = η2 where �Imin = 0 . It should also be noted that, as a consequence of 
Eq. (21), knowledge of �1 and �2 , the eigenvalues of the transformed states in Eq. (16), is sufficient to find the 
optimum measurement.

θ2

φ

rx

rz

ρ1

ρ2
r1

r2

R

Figure 1.   Parametrization of real states: r1 and r2 are the Bloch radii measured from the origin, θ2 is the polar 
angle relative to the z axis ( θ1 = 0 ). R is the Euclidean distance of the states ρ1 and ρ2 , and φ is the angle between 
r1 and R.
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Figure 2.   The constraint Eq. (30) (dashed line) and the information gain Eq. (28) (dotted lines) plotted together 
in the C1,C2 plane, for various fixed suboptimal values of the information gain ( �IA = 0.18 , �IB = 0.3 , 
�IC = 0.37 ). The solid line corresponds to the maximal information gain, �Imax = 0.23129 . Optimal values of 
C1 and C2 are the coordinates of the point where the solid line is tangent to the dashed curve (note that there are 
two sets of optimal solutions). The values of the parameters are η1 = η2 = 1/2 , r1 = 0.9 , θ1 = 0 , and r2 = 0.5 , 
θ2 = π/4.
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In summary, there are two key points of the geometric approach to optimization. First, the constraint (30), 
linking C1 and C2 , restricts us to a curve in the C1 − C2 plane, and the maximum of the information gain has to be 
found along this curve. Second, for a fixed value of �I (such that 0 < �I < 1 ), the expression for the information 
gain, Eq. (28), also corresponds to a curve in the same plane. If we choose �I too large the two curves may not 
have any common points. For intermediate values the two curves may have more than one common point. The 
maximal value �Imax of the information gain is the one for which the two curves become tangent. Geometrically, 
it corresponds to the unique value of �I for which the �I(C1,C2) curve becomes tangent to the constraint. 
This can still happen for more than one point and the coordinates of these points, C1 and C2 , all correspond to 
optimal measurements, however, the value of �Imax is unique. The actual value can be found numerically. Then 
we substitute the Ci values corresponding to the tangent points back to (25) and (26) and, using Eqs. (20), (15) 
and (14), we arrive at the POVM(s) which yield(s) the maximum information about the system (MI POVM).

Comparison of the MI and ME strategies
Although initially it has been assumed that the minimum error and the maximum information measurements 
coincide, a careful numerical study revealed that, in general, they are different49. Therefore, in the following we 
present a systematic study of how these two measurements compare. Anticipating the results, we find that the 
ME and MI measurements coincide for the case of two pure states and, generally, for the case when the two states 
have the same Bloch radius ( r1 = r2 ) or they are on the same diagonal of the Bloch disk.

In the ME strategy one is looking for measurement operators �i that maximize the expression

PS is the average probability of correctly guessing the input state, aided with the measurement. Introducing

and using �1 +�2 = 1̂ , we can write Eq. (32) in a more compact form,

This expression is clearly maximal if �1 is the projector to the subspace of � belonging to positive eigenvalues. 
Hence, �2 will be the projector to the subspace belonging to negative eigenvalues.

In order to show the relationship between the ME and MI measurements, we first write Eq. (32) in the form

which can be obtained if we divide and multiply the first term on the right-hand side of Eq. (32) by P1 and the 
second by P2 and use the definition Eq. (8) for the click probabilities and Eq. (9) for the confidences. It has been 
observed earlier28 that the minimum error measurement is also the one that maximizes the average confidence. 
Furthermore, the relation (27) between the click probabilities and the confidences still holds, so finally, we can 
write PS as

(32)PS = η1Tr(ρ1�1)+ η2Tr(ρ2�2).

(33)� = η1ρ1 − η2ρ2,

(34)PS = η2 + Tr(�1�).

(35)PS = P1C1 + P2C2,
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Figure 3.   The constraint Eq. (30) (dashed line) and the information gain Eq. (28) (solid line) plotted together 
in the C1,C2 plane. The optimal values of the confidences at the upper points of tangency of the curves are (a) 
C1 = 0.4879 and C2 = 0.9469 , (b) C1 = 0.7867 and C2 = 0.8338 . The corresponding maximal information 
gains are (a) �Imax = 0.2111 and (b) �Imax = 0.1842 . The parameters of the states are (a) η1 = 0.3 , η2 = 0.7 , 
and (b) η1 = 0.7 , η2 = 0.3 . Other parameters for both figures are r1 = 0.9 , θ1 = 0 , and r2 = 0.5 , θ2 = π/4.
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This is the cost function to be maximized in the ME measurement. When we compare this to the cost function, 
Eq. (28), of the MI measurement, we see that there are similarities, e.g., the click probabilities are the same and, 
in addition, the constraint (29) is also the same for both measurements. Apart from these similarities, the two 
cost functions are rather different. So, there is no a priori reason for the ME and MI measurements to be the 
same. We will show that they are generally different indeed except for special cases when the input state has 
some intrinsic symmetry.

What we know is that they are both projective measurements in the xz plane. After determining their 
respective orientations, the difference between the ME and MI strategies can be characterized by the angle δ 
between their projectors

Next, we study the dependence of δ on the structure of the input states. The MI and ME POVMs are determined 
by using the methods presented previously. Without loss of generality, we will choose the parameters of ρ1 as r1 
and θ1 = 0 and study the dependence of δ on the parameters of ρ2 , that is, on the polar angle θ2 and the Bloch 
radius r2 in the Bloch disk, introduced in Fig. 1. In this paper, we focus on the case of equal priors, η1 = η2 = 1/2 ; 
the case of arbitrary priors will be addressed in a separate publication. Note that, in the following figures, δ is 
measured in degrees, while the polar angles are measured in radians.

We consider the general case of two mixed states. Without loss of generality, we assume that r2 ≤ r1 . Figure 4a 
shows the difference δ between the two measurement strategies as a function of the Bloch radius r2 and the 
polar angle θ2 characterizing the state ρ2 . Figure 4b shows the same quantity as a function of the polar angle θ2 , 
for representative values of the Bloch radius r2 . In these figures ρ1 is a fixed mixed state with r1 = 0.8 , θ1 = 0 . 
From these figures one can deduce that the two strategies coincide (that is, δ = 0 ) only in the case when the 
two mixed states have the same Bloch radius ( r1 = r2 ) or they are along the same diagonal of the Bloch disk 
( θ2 = 0,π ). These rules are valid for any value of r1 . Accordingly, the ME and MI strategies coincide for two pure 
states ( r1 = r2 = 1 ). For a given r2 , δ exhibits a maximum, δmax , for a certain value of the polar angle θ2 = θmax

2  . 
Figure 5 displays the polar angle θmax

2  , corresponding to the maximum difference δmax(r2) between the two 
strategies, as a function of the Bloch radius r2 , for the pure state ρ1 = |0��0| ( r1 = 1 , θ1 = 0 ). In this figure, the 
value of the polar angle θmax

2  decreases linearly, except for values of r2 close to those of the other Bloch radius 
r1 . Note that the value r2 = 1 for which the two strategies coincide is excluded from the domain of the function 
θmax
2 (r2) . Figure 4b shows that by increasing the Bloch radius r2 toward the other radius r1 the value of the 

maximal difference δmax(r2) between the ME and MI detection strategies also increases. We have found that 
the function δmax(r2) practically reaches its saturated value δmax within a precision 0.01 when r1 − r2 � 0.001 . 
Figure 6a presents the maximum difference δmax between the ME and MI strategies as a function of the purity 
r21 of the state ρ1 . The state ρ2 is always close to ρ1 ( r1 − r2 = 0.001 ), that is, R → 0 in Fig. 1. The figure shows 
that increasing the purity r21 of state ρ1 , δmax grows nearly exponentially, reaching its maximum when ρ1 is pure. 
Figure 6b shows the POVMs for this case in the computational basis. The ME POVM is aligned symmetrically 
around the states. For the MI strategy, however, one of the POVM elements virtually coincides with the pure 
state, and the other one is perpendicular to rule it out. Although the information provided by the measurements 

(36)PS =
C2 − η2

C1 + C2 − 1
C1 +

C1 − η1

C1 + C2 − 1
C2

(37)δ = arccos

√
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1 .
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Figure 4.   The difference δ between the ME and MI measurement strategies for the case of two mixed states as 
a function of (a) the Bloch radius r2 and the polar angle θ2 characterizing the state ρ2 , and (b) the polar angle 
θ2 , for representative values of r2 . ρ1 is a fixed mixed state at r1 = 0.8 , θ1 = 0 . The difference δ is measured in 
degrees, while the polar angle θ2 is measured in radians.
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vanishes when the mixed state ρ2 is in the close vicinity of the pure state ρ1 , we have found that the MI POVM 
brings more than twice as much information as the ME POVM for the presented case.

Discussion
We have developed an analytic method, supplemented by a geometric approach to optimization, for finding the 
measurement that yields the maximum information gain about a qubit system that is prepared in one of two 
known states with given prior probabilities. We have determined the parameters of the POVM of the maximum 
information gain measurement for two arbitrary (pure or mixed) states, prepared with equal prior probabilities, 
building on previous results that the optimal measurement is always a standard von Neumann measurement for 
this case. We have compared the maximum information measurement to the minimum error one, and showed 
that the POVMs of the two measurement strategies coincide exactly only when both states have the same Bloch 
radius or they are along the same diagonal of the Bloch disk. The case of general priors will be addressed in a 
subsequent publication.
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Figure 5.   The polar angle θmax
2  for which the difference δ between the ME and MI strategies is maximal, as a 

function of the Bloch radius r2 for pure state ρ1 = |0��0| ( r1 = 1 , θ1 = 0 ). The polar angle θmax
2  is measured in 

radians.
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