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We explore scaling relations for the information carried by individual events, and how that information
accumulates in catalogs like those from ground-based gravitational-wave detectors. For a variety of
situations, the larger number of quiet/distant signals dominates the overall information over the fewer loud/
close sources, independent of how many model parameters are considered. We consider implications for a
range of astrophysical scenarios, including calibration uncertainty and standard siren cosmology. However,
the large number of additional events obtained by lowering the detection threshold can rapidly increase
costs. We introduce a simple analysis that balances the costs of analyzing increasingly large numbers of low
information events against retaining a higher threshold and running a survey for longer. With the caveat that
precise cost estimates are difficult to determine, current economics favor analyzing low signal-to-noise
ratio events. However, the higher detection rates expected for next-generation detectors may argue for a
higher signal-to-noise ratio threshold for optimal scientific return.
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I. INTRODUCTION

Common questions that arise when combining informa-
tion from many separate observations are, “which obser-
vations contain the most information?” and “to what extent
does this depend on the type of measurement being
performed?” Both considerations are important for forecasts
in general, but we focus on catalogs of compact binary
coalescences (CBCs) observed with current (e.g., LIGO [1],
Virgo [2], and KAGRA [3]) and proposed (e.g., Cosmic
Explorer [4] and Einstein Telescope [5]) ground-based
gravitational-wave (GW) detectors. With large catalogs
and finite computational and/or follow-up resources, know-
ing how information is encoded within the observations can
help limit the cost required to reach a target precision.
This manuscript reviews how information from multiple

events can be combined and establishes basic rules-of-
thumb to guide cost-benefit analyses. In particular, it
corrects previous claims in the literature about the impact
of the number of parameters constrained simultaneously [6]
and provides improved guidelines for which events con-
tribute to a given measurement (Sec. II). It then provides a
few examples in Sec. III, concluding with a discussion of

cost optimization with current and proposed detectors in
Sec. IV. Large sets of samples used in all figures (both
astrophysical and detected distributions) are available in
Essick [7].

II. COMBINING OBSERVATIONS

Our analysis of CBCs’ information content is based on
the Fisher information matrix [8],

Γαβ ≡
Z

dxpðxjθÞ ∂ lnpðxjθÞ
∂θα

∂ lnpðxjθÞ
∂θβ

; ð1Þ

which provides an estimate of the constraining power of a
single observation (with data x) on source parameters (θ)
given a likelihood pðxjθÞ. Specifically, we investigate how
Γ scales with the signal-to-noise ratio (ρ) of individual
events and the distribution of ρ within GW catalogs.
For high-ρ signals, one can approximate the likelihood

as Gaussian with precision (inverse covariance) matrix
Γ [9,10]. As such, a convenient way to quantify the
information carried by an event is the determinant of Γ,
which serves as a proxy for the (inverse of the) hyper-
volume in θ-space that is consistent with observations.
Larger det jΓj imply a tighter constraint and more infor-
mation about θ.*Contact author: essick@cita.utoronto.ca

PHYSICAL REVIEW D 110, 103018 (2024)

2470-0010=2024=110(10)=103018(10) 103018-1 © 2024 American Physical Society

https://orcid.org/0000-0001-8196-9267
https://orcid.org/0000-0002-0175-5064
https://ror.org/0265wc016
https://ror.org/03dbr7087
https://ror.org/03dbr7087
https://ror.org/024mw5h28
https://ror.org/024mw5h28
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.103018&domain=pdf&date_stamp=2024-11-14
https://doi.org/10.1103/PhysRevD.110.103018
https://doi.org/10.1103/PhysRevD.110.103018
https://doi.org/10.1103/PhysRevD.110.103018
https://doi.org/10.1103/PhysRevD.110.103018


The joint likelihood of a catalog is the product of the
individual events’ likelihoods (assuming independent
noise), each of which can be approximated as a Gaussian

with Fisher matrix1 ΓðeÞ
αβ . That is,

lnpðfxegjθÞ ¼
XNe

e

lnpðxejθÞ

∼ −
1

2

XNe

e

θαΓ
ðeÞ
αβ θβ

∼ −
1

2
θα

�XNe

e

ΓðeÞ
αβ

�
θβ; ð2Þ

and the total precision matrix is the sum of the Fisher

matrixes from each event: ΓðtotÞ
αβ ¼ P

e Γ
ðeÞ
αβ . If one quantifies

the total information as the hypervolume to which the
parameters are constrained by the joint analysis, one should
consider the determinant of the total precision matrix ΓðtotÞ,

IdetΣ ¼ det

����
XNe

e

ΓðeÞ
αβ

����
≈ det

����Ne

Z
ρmax

ρthr

dρpðρÞΓαβ

����; ð3Þ

where pðρÞ is the distribution of ρ expected for a catalog of
detected events. For a Euclidean universe (or nearby
sources) [12,13],

pðρÞ ¼ Θðρthr ≤ ρÞ
ρ4

�
3ρ3maxρ

3
thr

ρ3max − ρ3thr

�
; ð4Þ

where ρthr is the detection threshold, Θ is the indicator
function, and one typically takes ρmax → ∞. This distribu-
tion also implicitly assumes that we have a signal-domi-
nated catalog (i.e., noise events are rare), which will not be
true if ρthr is lowered arbitrarily. For CBC parameters that
primarily affect the GW phase and stationary Gaussian
noise, Γαβ ∼ ρ2, which yields

IdetΣ ∝
�
Ne

�
1

ρthr
−

1

ρmax

��
3ρ3maxρ

3
thr

ρ3max − ρ3thr

��
D

: ð5Þ

where D ¼ rankfΓg is the dimensionality of the problem
(rank of the Fisher matrix). It is interesting to note that IdetΣ
is not affected if one asks unrelated questions separately or
simultaneously (it scales in the same way as the product of
separate questions). See Appendix A for more discussion.
Equation (3) can also incorporate (certain types of) prior

information trivially. Defining the information as the
amount of hypervolume that is viable a posteriori and
including a Gaussian prior with covariance Pαβ, the joint
posterior becomes

lnpðθjfxegÞ ∼ −
1

2
θα

�
P−1
αβ þ

XNe

e

ΓðeÞ
αβ

�
θβ; ð6Þ

in which case the relevant information metric is

I ¼ det

����P−1
αβ þ

XNe

e

ΓðeÞ
αβ

����: ð7Þ

If the Fisher matrix elements are small (i.e., weak con-
straints from individual events), the (inverse) prior can
dominate the sum. However, a sufficient number of signals
will eventually overwhelm the prior, and the overall
constraint will be dominated by the quietest signals in
the catalog in the long run.

III. MORE COMPLICATED Γ VS ρ SCALINGS

The quietest events carry a lot of information in

aggregate when Γ ∼ ρ2. That is, jdIdetΣ=dρthrj ∼ ρ−ðDþ1Þ
thr

(taking Ne ∼ ρ−3thr and ρmax → ∞), and information is most-
rapidly accumulated at small ρthr due to the large number
of signals. However, in general, Γ may have a more
complicated relationship with ρ, in which case the total
constraint may no longer be dominated by the quietest
events in the catalog. The following sections provide a few
concrete examples, which are summarized in Fig. 1 for
advanced LIGO and Virgo. Appendix B discusses how this
behavior can differ between current and proposed GW
detectors.

A. Breakdown of the Fisher approximation

The assumption that the single-event precision matrix
scales as Γαβ ∼ ρ2 only holds in the high-ρ limit. In truth,
the Fisher information matrix only provides a lower-limit
on the covariance (upper-limit on the precision matrix), and
the actual covariance can be much larger [10]. This happens
for small ρ, which means that the events which contribute
meaningfully to the sum in Eq. (3) may effectively need to
pass a higher threshold than detection.

1Importantly, this model assumes the parameters are shared by
all events, like the graviton’s mass or (approximately) the neutron
star radius as opposed to, e.g., the mass of each component in a
binary. This caveat also applies to the analysis within, e.g., Haster
et al. [6]. Expressions for the Fisher matrix for more general
hierarchical inferences also exist [11], but they cannot be used
within Eq. (2).
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For example, one possible scaling is

Γ ∼ ρ2
�

ρ2

ρ2o þ ρ2

�
; ð8Þ

for which Γ ∼ ρ4 at small ρ and Γ ∼ ρ2 for large ρ. Here, ρo
sets the scale below which the Fisher approximation begins
to break down, which will almost certainly be problem-
dependent. Additionally, the breakdown in Γ ∼ ρ2 may not
exactly follow Eq. (8), but Eq. (8) captures the general
behavior and makes the associated integrals analytically
tractable. Assuming ρmax → ∞,

Z
dNΓ ∼ Ne

3ρ3thr
ρo

�
π

2
− tan−1

�
ρthr
ρo

��
: ð9Þ

Since Ne ∼ ρ−3thr for nearby sources, Eq. (5) diverges as ρ−1thr
as ρthr → 0. However, Eq. (9) remains finite in the same

limit. Indeed, ρo determines which events carry the most
information; at least half the total information available is
carried by the events with ρ ≥ ρo (Fig. 1).
Additionally, a breakdown in the Fisher approximation is

a likely explanation for the behavior reported in Lackey and
Wade [15] (neutron star equation of state constraints are
dominated by the loudest events in their catalog, and there
was almost no additional information carried by quieter
events). Motivated by Lackey and Wade [15], Fig. 1
assumes Γ ∼ ρ2 breaks down below ρo ∼ 20.

B. Calibration uncertainty

Alternatively, Γ ∼ ρ2 may break down at high ρ in
the presence of calibration or waveform uncertainty.
Essick [16] shows that Γ can approach a constant at large
ρ (e.g., the fractional uncertainty from calibration), which
can be modeled as

FIG. 1. Distributions of binary neutron star (BNS) signals and their contributions to IdetΣ over the redshift to the source (left, z) and the
source’s optimal signal-to-noise ratio (right, ρopt) with a network of advanced LIGO and Virgo detectors at design sensitivity. Top to
bottom: distributions of astrophysical (solid) and detected (shaded) signals (with observed signal-to-noise ratio ≥ 10 [14]), the detected-
signal distribution weighted by individual events’ Fisher matrixes, and the (normalized) integral for IdetΣ showing how much
information is accumulated as the upper limit of the integral is increased. The bottom panels show the relative importance of different
events assuming Γ ∼ ρ2 (blue, standard scaling), Γ ∼ ρ4ð1þ ðρ=20Þ2Þ−1ð1þ ðρ=100Þ2Þ−1 (red, breakdown of the Fisher approximation
at ρ ≲ 20 [15] and pessimistic calibration uncertainty above ρ≳ 100 [16]), and Γ ∼ ½ðð200 km=sÞ=czÞ2 þ ð10%ð10=ρÞÞ2�−1 (green,
bright sirens) [17]. Horizontal lines highlight the points at which 10%, 25%, and 50% of the total information is accumulated.
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Γ ∼ ρ2
�

ρ2o
ρ2o þ ρ2

�
; ð10Þ

where ρo defines the scale at which calibration uncertainties
begin to dominate, in which case2

Z
dNΓ ∼ Ne

3ρ3thr
ρo

�
ρo
ρthr

þ tan−1
�
ρthr
ρo

�
−
π

2

�
: ð11Þ

The quietest signals in the catalog dominate the overall
information even more than for the standard scaling,
although this approaches the standard scaling if ρthr ≪
ρo (i.e., if almost all of the catalog is too quiet to be affected
by calibration errors). See Fig. 1, which assumes calibra-
tion limits the precision of signals at ρo ∼ 100 (much lower
than is likely to be the case for realistic calibration
uncertainties [16]).

C. Standard sirens

Finally, single-event constraints may always be a com-
plicated function of ρ, and the approximation Γ ∼ ρ2 may
simply never hold. Standard sirens, where one measures the
Hubble parameter (H0) at the ratio of a redshift (z) from a
(candidate) host galaxy and a luminosity distance (DL)
from the GW strain, are one such example.
In the simplest approximation,

H0 ¼
cz
DL

; ð12Þ

where c is the speed of light. Standard error propagation
suggests that

Γ−1
H0

∼ σ2H0
∼H2

0

�
σ2z
z2

þ σ2DL

D2
L

�
; ð13Þ

where z is estimated from a set of candidate host galaxies
and DL is estimated from the GW signal.
A straightforward Fisher analysis for the GW data

(neglecting the degeneracy with inclination) suggests that

σDL
∝
DL

ρ
: ð14Þ

Including the degeneracy with inclination, one might
expect σDL

∝ DL. Breaking this degeneracy depends on
measuring the GW polarization and/or higher-order modes,

which has been done but often requires relatively large
ρ [19,20].

The uncertainty in z from a galaxy catalog is the sum of
two components: the (average) measurement uncertainty
for the redshift of individual galaxies (which could include
their peculiar velocity) and a term that captures the variance
of redshifts within the catalog (fμgg)

σ2z ∼
1

Ng

XNg

g

σ2g þ
1

Ng

XNg

g

�
μg −

1

Ng

XNg

g

μg

�
2

: ð15Þ

Assuming most galaxies have similar measurement uncer-
tainty (σg), only the second term depends on ρ (through the
set of galaxies consistent with the GW localization). Here,
we focus on the case of a bright siren, where a single host
galaxy is identified (Ng ¼ 1 and σ2z ¼ σ2g).
As discussed in Chen et al. [17], the precision on H0 for

bright sirens is then limited by the distance uncertainty for
quiet/distant events while the precision of the loudest/
nearest sources is limited by the uncertainty in the redshift
measurement for individual galaxies, which does not
vanish as z → 0.3 Therefore, the most informative events
in the catalog come from intermediate ρ. Figure 1 assumes
σg ∼ ð200 km=sÞ=c and σDL

=DL ∼ 10% at ρ ∼ 10.

IV. DISCUSSION

It is useful to rewrite Eq. (5) in terms of only Ne so that
IdetΣ ∼ N1=3

e when Γ ∼ ρ2, which implies σ ∼ N−1=6
e . As

such, lowering ρthr enough to decrease σ by a factor of ∼2
will increase the catalog size (and associated computational
cost) by a factor of ∼26 ¼ 64. Figure 2 plots the cumulative
information vs the fraction of the catalog for several
detector networks and scalings of Γ vs ρ. It is clear that
a large fraction of the overall information can come from a
relatively small fraction of the catalog.
In contrast, if one fixes ρthr but runs the experiment

longer, a factor of ∼4 larger catalog size will reduce σ by a
factor of ∼2. This begs the question of whether it could be
more cost effective to run an experiment for longer with a
high threshold instead of lowering ρthr.
Consider the following cost model

C ¼ CF þ COτ þ CAðNeÞ; ð16Þ

where CF, CO, and CAðNeÞ are the fixed cost of construct-
ing an experiment, the marginal cost of operating the
experiment (with duration τ), and the cost of analyzing
Ne events, respectively. For current detectors, the number of
events scales approximately as Ne ∼ Rτðρref=ρthrÞ3, where

2This assumes calibration errors are independent for each
event. If calibration errors are not independent, the joint con-
straint will be more complicated. However, we expect our
conclusions about which events carry the most information about
astrophysical parameters to still approximately hold because
individual GW events carry relatively little information about
calibration uncertainties [16,18] (i.e., most signals are too quiet to
be affected by calibration errors).

3The second term in Eq. (15) may grow rapidly at low ρ (large
Ng), and therefore the precision of (dark) standard sirens may
always be limited by σ2z. See Appendix C.
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R is the rate of detections with a threshold ρref . The
precision of the measurement will scale as I ∼ Ne=fðρthrÞ∼
Rτρ3ref=fðρthrÞρ3thr, and, in the simplest approximation
[Eq. (3)], f ∼ ρ−2thr . Minimizing C with respect to ρthr at
fixed I yields

dC
dρthr

����
I
¼ CO

I
Rρ3ref

d
dρthr

ðρ3thrfÞ þ
dCA

dNe
I

df
dρthr

0 ¼ CO

R

�
ρthr
ρref

�
3

− 2
dCA

dNe
; ð17Þ

which defines an implicit expression for the optimal ρthr in
terms of I and marginal costs. Once this is set, the required
duration is given by τ ∼ Iρ3thrf=ρ

3
refR.

Interestingly, in the simplest model where the marginal
analysis cost (dCA=dNe) is constant, the optimal ρthr does
not depend on the precision I ,4 and

ρthr ¼ ρref

�
2RdCA=dNe

CO

�
1=3

: ð18Þ

This balances the cost of analyzing additional events (per
unit time) and the cost of operating the instrument (per
unit time).
Estimating the costs in Eq. (18) precisely is nontrivial,

but even rough numbers may provide guidance for current
and/or planned detectors. In this spirit, we provide such
estimates below. However, we stress that these examples
are merely illustrative, and more detailed calculations

should be conducted before any policy is set by such
considerations.
The current operating cost of advanced LIGO is

∼107 USD=yr [21] with an expected rate of detections
of R ∼ 1=day at design sensitivity [22]. Estimating the
marginal cost of analyzing an event as approximately 10 hrs
of an analyst’s time (dCA=dNe ∼ 300USD=event),5

Eq. (18) becomes ρthr=ρref ≈ 0.28. As such, the relatively
low rate of detections drives the most efficient threshold
lower than the nominal value (assuming the Fisher approxi-
mation holds at low ρ).
However, the rate of detections may dramatically

increase with next-generation detectors, by a factor of
≳100.6 Assuming CO and dCA=dNe are roughly the same
for future detectors, the optimal ρthr will be a factor of 1.4
higher than ρref .

7 Again, this also assumes that the Fisher
approximation holds for low-ρ events (it almost certainly
will not) and that the catalog is flux-limited. Alternatively,
if dCA=dNe improves even moderately (by as little as a
factor of ∼3), then the optimal ρthr will still be ≲ρref . This
modest reduction in analysis costs may be readily achiev-
able before next-generation detectors come online.
Additionally, the rate of binary neutron star (BNS)
detections may continue to be much smaller than the
overall detection rate. This would almost guarantee that the
optimal ρthr for questions involving BNS will remain ≲ρref

FIG. 2. Integrated information vs the fraction of the catalog considered (including quieter events first) when Γ scales with ρ in the ways
shown in Fig. 1. We show the results for low-mass signals observed with advanced LIGOs and Virgo (red) or
CE (orange) as well as the full range of CBCs observed with advanced detectors (dark blue) or CE (light blue). Horizontal lines
highlight when 10%, 25%, and 50% of the total information has been accumulated.

4Although the general optimization can depend on the amount
of information per event and the amount of information per event
(at fixed ρ) may change between, e.g., current and next-gen-
eration detectors, it is often similar [16].

5An hourly wage of 30 USD corresponds to 6 × 104 USD=yr,
which is likely a low estimate of labor costs including both salary
and overhead.

6Although the detection horizon may increase by an order of
magnitude (naively suggesting an increase of ≳103 in detection
rate), this extends beyond the peak of star formation.

7If operating costs increase proportional to the detector’s arms’
lengths (i.e., by an order of magnitude), then ρthr=ρref ∼ 0.66.
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even with higher detection rates in next-generation
catalogs.
All this being said, Fig. 2 shows that, while the simple

scaling motivated by Eq. (5) may approximately hold for
low-mass CBCs observed with next-generation detectors, it
is unlikely to hold for high-mass CBCs. Such surveys will
not be flux-limited, and the distribution pðρÞ will be
fundamentally different than Eq. (4). Indeed, one will likely
lose even less information by considering only the loudest
high-mass events observed with CE. See Appendix B for
more discussion.
Furthermore, dCA=dNe is almost certainly not constant.

For example, contamination from noise events will grow
rapidly with decreasing ρthr, and the overall number of
events that would require follow-up would be much larger
than the number of signals [23]. The confusion between
noise and signal is also bound to reduce the information per
signal at low ρ. This effectively sets the detection threshold
within current catalogs (e.g., GWTC-3 [24]).
Putting such concerns aside, one might additionally

optimize over facilities by first optimizing over (τ; ρthr)
separately, and then optimizing over facilities while taking
into account their CF. This is often done only in the context
of the science accessible with different detector designs,
neglecting their relative costs (see, e.g., Refs. [25,26]).
However, a prerequisite for such an analysis would be an
enumeration of science targets, and it is difficult to
concisely capture the full range of discovery potential
enabled by, e.g., next-generation GW detectors. At the very
least, such an exercise is beyond the scope of this paper.
Our results suggest that a more detailed cost-benefit

analysis may help determine the optimal balance of survey
duration and detection threshold for next-generation detec-
tors. The simplest scaling and cost models suggest that it
makes sense to go deep within current catalogs (although
our analysis is intentionally only a rough estimate). With
reasonable improvements in analysis costs, this may remain
true of future catalogs even with much higher detec-
tion rates.
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APPENDIX A: A COMMENT ON HASTER
ET AL. [6]

Previously, Haster et al. [6] argued that the dimension-
ality of the question(s) being asked plays a role in which
events carry the most information. That is, they claim that
the set of events which are most informative depends on the
number of parameters being constrained: quiet/distant
events dominate one-dimensional questions but higher-
dimensional questions depend most strongly on loud/
nearby events. However, if one considers two properties
that are unrelated (i.e., uncorrelated at the single-event
level), the amount of information, and which events carry
that information, should not depend on whether these
properties are estimated separately or simultaneously.
Haster et al. [6] correctly identify that each element of

Γ often scales with ρ2 for a single event. As such, det jΓj
should have an overall scaling of ρ2D, where D ¼ rankfΓg
is the dimensionality of the problem. They then estimate the
total information by summing det jΓj from separate events.
That is, they compute

IΣ det ¼
XNe

e

det jΓðeÞ
αβ j

≈ Ne

Z
ρmax

ρthr

dρpðρÞ det jΓαβj ðA1Þ

which has very different behavior than Eq. (3). If det jΓαβj
scales as ρ2D, then Eq. (A1) becomes

IΣ det ∝ Ne

�
ρ2D−3
max − ρ2D−3

thr

2D − 3

��
3ρ3maxρ

3
thr

ρ3max − ρ3thr

�
ðA2Þ

which diverges as ρmax → ∞ if D ≥ 3=2. This logic
suggests that the single loudest event carries almost all
the information for high-dimensional questions (D ≫ 1).

IΣ det also suggests that the constraint on each parameter
scales worse with the size of the catalog if multiple
questions are asked simultaneously (I1=D

Σ det ∼ N1=D), even

if they are unrelated. That is, even if ΓðeÞ
αβ is always block-

diagonal, Haster et al. [6] incorrectly predict that asking
multiple questions simultaneously affects our ability to
answer them.
Fundamentally, then, the issue with the analysis in Haster

et al. [6] boils down to the fact that

XNe

e

det jΓðeÞ
αβ j ≠ det j

XNe

e

ΓðeÞ
αβ j ðA3Þ
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Many of their conclusions still hold, though. Their pre-
diction that the cosmologically distant sources at z ∼ 1 will
dominate the total information from BNS mergers observed
with next-generation GW detectors is correct (most of the
observed sources will be at z ∼ 1; see Appendix B).
Similarly, they correctly point out that tidal information
at high frequencies will be redshifted into the sensitive band
of GW detectors for cosmologically distant BNS (see also
Refs. [34,35]), and this makes Γ a more complicated
function of ρ (other examples are given in Sec. III). In
this way, Haster et al. [6] correctly point out that the set of
events which contain the most information can depend on
the behavior of ΓðρÞ, even though they incorrectly attribute
this to the dimensionality of the question. Lastly, their
observation that the BNSmerger rate may not scale with the
comoving volume is also correct.

APPENDIX B: OTHER POPULATIONS AND
DETECTOR NETWORKS

This appendix compares the behavior of different pop-
ulations in different detector networks.
Figure 3 shows the one-sided amplitude spectral den-

sities (ASDs) used for the two LIGO detectors (Hanford
and Livingston), Virgo, and CE. It also shows the
two source-frame primary-mass distributions considered:
one that is based roughly on the current observed
population of merging binaries [36] and one restricted
to low-masses intended to model BNS systems [1M⊙ ≤
mðsrcÞ

2 ≤ mðsrcÞ
1 ≤ 3M⊙].

Figure 4 shows the distribution of inclinations (θjn) for
detected events with both populations shown in Fig. 3 for
both the HLV network and for CE. Although the selection
against edge-on binaries (θjn ¼ 90°) is reduced for CE
compared to HLV, it is still noticeable. However, unlike

with HLV, it is also clear that the extent of this selection
depends on the binary’s masses with CE. Indeed, Fig. 4 also
shows that there is still a strong selection toward more
massive binaries within low-mass populations. Catalogs of
low-mass systems from next-generation detectors will still
be flux-limited and have strong selections on, e.g., θjn and
the component masses.8

Finally, Fig. 5 shows which events are most important
with catalogs of sources detected by CE (compare to
Fig. 1). The main difference boils down to pðρÞ, which,
again, is not flux-limited for massive BBH in CE. As such,
some of the scalings reported in the main text break for
high-mass signals in CE. Indeed, one may increase ρthr
from ∼10 up to ∼100 without losing much information if
Γ ∼ ρ2 for high-mass CBCs. However, this would corre-
spond to a reduction of a factor of only ∼10 in the catalog
size (Fig. 2), rather than the expected factor of 103 for a
flux-limited catalog.

APPENDIX C: STATISTICAL STANDARD SIREN
REDSHIFT UNCERTAINTY

The distribution of redshifts from a galaxy catalog can be
approximated as

pðzÞ ¼
XNg

g

wgffiffiffiffiffiffiffiffiffiffi
2πσ2g

q e−ðz−μgÞ2=2σ2g ðC1Þ

assuming Gaussian errors on each galaxy’s measured
redshift and a weight

FIG. 3. Left: amplitude spectral densities for advanced LIGO and Virgo at design sensitivity and Cosmic Explorer. For CE, the dark
line shows the response to a source that is directly overhead the detector, and light line shows the response without frequency-dependent
interferometric effects [30]. Right: source-frame primary mass [mðsrcÞ

1 ] distributions used within this study, intended to mimic the
observed distribution of merging binaries (all CBC [36]) or capture the behavior of only low-mass objects (only BNS).

8The conclusions in, e.g., Vitale [37] are only true for massive
binary black holes (BBHs). Vitale [37] focuses on BBHs and
acknowledge that their observations may not apply for low-mass
systems. See also Vitale [38].
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FIG. 5. Analogous to Fig. 1 but for sets of events detected with CE. The cosmological reach of next-generation detectors (to beyond
the peak of star formation) means that the distribution of detected ρ falls off much less steeply for high-mass systems. As such, relatively
little information is lost by neglecting the low-ρ, high-mass systems. However, catalogs of low-mass systems remain flux-limited, and a
significant fraction of the overall information available is carried by the low-ρ, low-mass events.

FIG. 4. Left: distribution of orbital inclinations (θjn) for detected events with both populations from Fig. 3 for HLVat design sensitivity
and CE. Because the distribution is symmetric about θjn ¼ 90°, we only show 0° ≤ θjn ≤ 90°. An isotropic distribution (black line) is

also shown for reference. Right: distributions of total source-frame mass [MðsrcÞ
tot ] for the astrophysical (solid lines) and detected (shaded)

populations. While the selection in favor of high-mass systems is reduced at high masses for CE, it remains for MðsrcÞ
tot ≲ 5M⊙.
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wg ∼ pðΩgjxGWÞωg ðC2Þ

for each galaxy, which is the product of the consistency of
the Galaxy’s position on the sky (Ωg) with the GW data
(xGW) and an additional weight based on the galaxy’s
properties (ωg), which captures prior beliefs about the types
of galaxies that are more likely to host binary mergers (see,
e.g., Hanselman et al. [39]). With such a catalog, one can
immediately compute

σ2z ≡ V½z� ¼
XNg

g

wgσ
2
g þ

XNg

g

wg

0
B@μg −

XNg

g

wgμg

1
CA

2

ðC3Þ

which is Eq. (15) when wg ¼ 1=Ng.
One can estimate σ2z for a representative catalog by

taking the expected value of Eq. (C3) with respect to set of
galaxies that are uniformly distributed in comoving volume
with a Poisson distribution for the number of galaxies in the
catalog, neither of which are perfect models of reality. That
is, for simplicity, assume

wg ¼
1

Ng
ðC4Þ

and

pðμgÞ ∝
dVc

dz
ðC5Þ

for zmin < z < zmax. This yields

E½σ2z �μgjNg
¼ 1

Ng

X
g

σ2g þ
�
1 −

1

Ng

�
V½μg� ðC6Þ

where

V½μg� ¼
Z

zmax

zmin

dzpðzÞz2 −
�Z

zmax

zmin

dzpðzÞz
�

2

ðC7Þ

For well-localized events, Ng → 1 and the second term
vanishes. For poorly localized events, Ng ≫ 1 and the
second term may dominate.
Taking the expectation value with respect to the number

of galaxies, which is Poisson-distributed

PðNgÞ ¼
ΛNg

Ng!

�
1

eΛ − 1

�
ðC8Þ

for Ng ¼ 1; 2;…, yields

E½σ2z �μg;Ng
¼ hσ2giþV½μg�

�
1−

X∞
Ng¼1

PðNgÞ
1

Ng

�

¼ hσ2giþV½μg�
�
1−

1

eΛ− 1

Z
Λ

0

dλ
eλ− 1

λ

�
ðC9Þ

Although the integral is difficult to express in closed form,
one can still gain insight from recognizing that the second
term approaches V½μg�Λ=4 as Λ → 0, and that

E½Ng� ¼ Λ ∝ ðΔΩÞ
�
dNg

dz
Δz

�
ðC10Þ

could scale in several ways. ΔΩ should scale as ρ−1 (ρ−2)
for 2-IFO (3þ IFO) localizations, and Δz should scale as
Δz ¼ zmax − zmin ∼ ðDL=cÞΔH0 ∼ ρ−1 where ΔH0 is the
extent of theH0 prior, although it could also scale as a more
complicated function of ρ if one took into account the
uncertainty on DL.
Similarly, if galaxies are uniformly distributed in vol-

ume, then dNg=dz ∼ z2 ∼ ρ−2 (for nearby sources). As
such, one may expect E½Ng� to scale strongly with ρ, and
the uncertainty ð1 − N−1

g Þ V½μg� may shrink rapidly for
loud signals. Additionally, V½μg� may scale as ðΔzÞ2 ∼ ρ−2

when Ng ≫ 1, so that V½μg�=z2 ∼ constant.
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