PHYSICAL REVIEW D 110, 123041 (2024)

Neural network emulator of the Advanced LIGO
and Advanced Virgo selection function

Thomas A. Callister ,l Reed Essick,2’3’4 and Daniel E. Holz®'>%7
'Kavli Institute for Cosmological Physics, The University of Chicago,
5640 South Ellis Avenue, Chicago, Illinois 60615, USA
*Canadian Institute for Theoretical Astrophysics,
60 St. George Street, Toronto, Ontario M5S 3HS, Canada
3Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
*David A. Dunlap Department of Astronomy, University of Toronto,
50 St. George Street, Toronto, Ontario M5S 3H4, Canada
5Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
6Department of Astronomy and Astrophysics, The University of Chicago, Chicago, Illinois 60637, USA
"Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637, USA

® (Received 3 September 2024; accepted 1 November 2024; published 27 December 2024)

Characterization of search selection effects comprises a core element of gravitational-wave data analysis.
Knowledge of selection effects is needed to predict observational prospects for future surveys and is
essential in the statistical inference of astrophysical source populations from observed catalogs of compact
binary mergers. Although gravitational-wave selection functions can be directly measured via injection
campaigns—the insertion and attempted recovery of simulated signals added to real instrumental data—
such efforts are computationally expensive. Moreover, the inability to interpolate between discrete
injections limits the ability to which we can study narrow or discontinuous features in the astrophysical
distribution of compact binary properties. For this reason, there is a growing need for alternative
representations of gravitational-wave selection functions that are computationally cheap to evaluate and can
be computed across a continuous range of compact binary parameters. In this paper, we describe one such
representation. Using pipeline injections performed during Advanced LIGO and Advanced Virgo’s third
observing run (03), we train a neural network emulator for P(det |@), the probability that a given compact
binary with parameters is successfully detected, averaged over the course of O3. The emulator captures the
dependence of P(det|@) on binary masses, spins, distance, sky position, and orbital orientation, and it is
valid for compact binaries with component masses between 1 and 100M . We test the emulator’s ability to
produce accurate distributions of detectable events, and demonstrate its use in hierarchical inference of the

binary black hole population.

DOI: 10.1103/PhysRevD.110.123041

I. BACKGROUND

Like most astronomical experiments, gravitational-wave
astronomy suffers from selection biases: the Advanced LIGO
[1] and Advanced Virgo [2] instruments most readily detect
compact binary mergers that are massive, nearby, and
situated in preferred sky positions and orientations [3—6].
Unlike many other experiments, however, these selection
biases are almost exactly quantifiable. The gravitational-
wave signatures of merging compact binaries are, in most
cases, described by vacuum general relativity alone and can
therefore be calculated from first principles to a high degree
of accuracy. These calculated waveforms can then be
injected, either via hardware or software, into real instru-
mental data and analyzed with search pipelines [7-14],
allowing us to accurately replicate the survey and directly
determine how often signals are missed or found [15-19].

2470-0010/2024/110(12)/123041(26)

123041-1

Such knowledge of the gravitational-wave selection
function is essential to any physical or astrophysical
interpretation of gravitational-wave data. The selection
function is needed to forward model and predict future
observations, given models for the compact binary pop-
ulation and the physics governing it [e.g., [20-25]]. In the
reverse direction, the selection function is a critical ingre-
dient in inference: the reverse-engineering of intrinsic
source populations from incomplete and noisy catalogs
of detected gravitational-wave signals [18,19,26-28].

In principle, injection campaigns allow the selection
function to be calculated to high precision (though still
subject to systematic uncertainties like imperfect detector
calibration or imperfect gravitational waveform models).
In practice, however, we rapidly run into problems of
dimensionality and scale. Because compact binary merg-
ers are described by at least 15 parameters (the

© 2024 American Physical Society

https://orcid.org/0000-0001-9892-177X
https://orcid.org/0000-0002-0175-5064
https://ror.org/024mw5h28
https://ror.org/0265wc016
https://ror.org/03dbr7087
https://ror.org/03dbr7087
https://ror.org/024mw5h28
https://ror.org/024mw5h28
https://ror.org/024mw5h28
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.123041&domain=pdf&date_stamp=2024-12-27
https://doi.org/10.1103/PhysRevD.110.123041
https://doi.org/10.1103/PhysRevD.110.123041
https://doi.org/10.1103/PhysRevD.110.123041
https://doi.org/10.1103/PhysRevD.110.123041

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

components’ masses and spins, binary position and
orientation, etc.), it is impractical to directly compute
detection probabilities for every possible combination of
binary properties. Additionally, processing mock signals
injected into data is computationally expensive and labor
intensive, requiring at least as much time and person-
power as the actual searches for real gravitational waves.
The field therefore relies on several widespread shortcuts
to estimate selection functions and detection probabilities.
Inference of the compact binary population, for example,
usually relies on a large suite of reference injections,
whose properties are randomly drawn from an astrophysi-
cally plausible distribution of compact binary parameters
[29-33]. This fixed injection suite can be importance (re)
sampled to target other distributions that are sufficiently
“close” to the chosen reference distribution, and various
integrals over the space of detectable binary parameters
can be approximated as Monte Carlo averages over this
discrete set of injections [32,34].

There are difficulties with this paradigm, however. In the
forward direction, a fixed set of reference injections cannot
be immediately used to quantify the detectability of some
new gravitational-wave source not included among the
original injections. In the reverse direction, the use of
reference injections in population inference may become
computationally intractable as gravitational-wave catalogs
continue to grow in size. In order for systematic uncer-
tainties in search selection functions to remain subdomi-
nant, it has been estimated that the number of reference
injections must scale at least linearly with the number of
detected gravitational-wave events, although sublinear
scaling may be achievable with the use of low-discrepancy
sequences [32,35].

Due to the computational requirements of pipeline injec-
tions, a source’s anticipated signal-to-noise ratio (SNR) is a
common semianalytic proxy for detectability. In this case,
one calculates the optimal SNR p,, of a given source, or,
preferably, an “observed” SNR p that includes the effects of
random noise fluctuations, and demands that detections
exceed some detection threshold pyeaq [34,36-39].
However, although large signal-to-noise ratios are a neces-
sary condition for detection, they are not sufficient; gravi-
tational-wave detection additionally relies on auxiliary signal
consistency checks not captured by simple SNR estimates
[e.g., [40]], and instrumental noise more readily mimics
some types of signals than others. It is likely that these higher
order effects can be semianalytically mimicked by adopting a
variable SNR threshold that depends on the given source
parameters [34], but further development is needed.

In this paper we describe an alternative paradigm for
evaluating and correcting for selection effects in gravita-
tional-wave astronomy. Specifically, we construct and
demonstrate the use of a neural network that is trained
to emulate the Advanced LIGO and Advanced Virgo
selection function during the most recent “O3” observing

P(det|)

Found injections

Latent probability
surface

Missed injections

FIG. 1. A cartoon illustrating the latent detection probability
surface we seek to model using machine learning, and the discrete
realization of missed and found events that serve as our training
data. For a given gravitational-wave signal with source param-
eters @ and a random time of arrival, there exists some probability
P(det|0) that it will be successfully detected. Knowledge of
P(det|0) is required both to forward model the detectability of
different theorized source populations and to infer underlying
populations from observed catalogs.

run [33,41,42]. Although trained on a suite of discrete
injections analyzed by compact binary search pipelines, the
emulator instead learns the latent, continuous function
characterizing detection probabilities as a function of
compact binary parameters (see Fig. 1). The result is a
means of quickly and inexpensively “interpolating”
between reference injections. This allows for simple and
precise statements regarding the detectability of new
gravitational-wave signals and source populations when
forward modeling future observations. In the reverse
direction, the emulator offers a scalable and computation-
ally feasible route towards population inference with ever-
growing gravitational-wave catalogs.

The rest of this paper is organized as follows. In Sec. II,
we describe the construction and training of our neural
network emulator. In Sec. III, we then demonstrate the
trained network’s ability to accurately predict distributions
of detected events and as well as integrated detection
efficiencies. In Sec. IV, we discuss the emulator’s use in
hierarchical inference. We carry out and compare inference
of the binary black hole population using (i) standard
injections and (ii) the trained emulator. We conclude in
Sec. VI with a comparison to existing work and a
discussion of future applications.

II. TRAINING A DETECTION
PROBABILITY EMULATOR

Our goal is to learn the probability P(det |9) that a given
gravitational-wave source, with parameters ¢, would have
been detected if it occurred at a random time during the
Advanced LIGO and Advanced Virgo O3 observing run.

123041-2

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

The situation is illustrated in Fig. 1. Abstractly, there exists
some surface P(det|f) that defines the probability of
gravitational-wave detection. We do not have direct access
to this surface, however, but instead only indirect informa-
tion via the locations of successfully detected (“found”) and
undetected (“missed”) mock signals injected into gravita-
tional-wave data with various values of @ [33]. Each such
injection formally serves as an individual Bernoulli trial,
sampling the underlying P(det|0) surface and returning a
single success or a single failure. This process can be
repeated at many different times to sample different
realizations of instrumental noise and/or periods of terres-
trial contamination.

We attempt to learn this latent P(det|0) surface using a
simple feed-forward artificial neural network. We adopt a
standard multilayer perceptron architecture that takes in a
vector of binary parameters 6, parses this input via several
densely-connected layers, and concludes with a single
output neuron. The output neuron has sigmoid activation
function, yielding an estimated detection probability
P(det|0) € {0, Py}, where Py, = 0.94 is the approxi-
mate fraction of time that one or both of the LIGO-Hanford
and LIGO-Livingston detectors were online during O3
[41]. This threshold reflects the fact that arbitrarily loud
signals would still be missed 6% of the time, arriving when
neither detector is active.' The exact architecture used does
not significantly impact the emulator’s performance, but we
find the best results when adopting four hidden layers with
192 neurons each.

In the following subsections, we describe our training
process in more detail, including the training data and loss
functions used. Creating and training even a very simple
feed-forward neural network, however, requires a multitude
of additional design choices, such as the precise balance of
training datasets, activation functions, neuron initialization,
and learning rate. Details like these are described further in
Appendix B.

A. Training Data

We take as training data the set of publicly released
software injections performed during the Advanced LIGO
and Advanced Virgo O3 observing run [19,33,42]. These
comprise simulated gravitational-wave signals added into
real O3 data and subsequently passed through several
detection pipelines [7-14]. Three such injection sets were
prepared, representing the populations of intermediate- and
stellar-mass binary black holes, neutron star-black hole
binaries, and binary neutron stars; the source-frame chirp
masses and luminosity distances of these three datasets are

lAlthough this estimate neglects time in which only the
Advanced Virgo instrument was online, the Advanced Virgo
instrument was significantly less sensitive than the Advanced
LIGO instruments in O3, and so the error in this approximation is
likely small.

highlighted in the left-hand side of Fig. 2. We consider an
injection to have been “detected” if it was assigned a false-
alarm rate (FAR) of less than one per year in at least one
search pipeline. This matches the selection criterion
adopted by the LIGO-Virgo-KAGRA Collaboration in its
analysis of the compact binary population following
03 [18,19].

When the O3 injection sets were constructed, only events
with a nontrivial chance of being detected (more precisely,
events with expected network signal-to-noise ratios exceed-
ing 6) were retained [18,33]. This causes the absence of
low-mass injections at large distances in the left-hand side
of Fig. 2. Meanwhile, because of the volumetric prior and
mass distribution used to generate injections, vanishingly
few events are situated at very close distances with large
masses. In order to accurately learn P(det|0), we also need
training data representing these very weak and very loud
signals. We therefore augment the O3 injection sets in two
ways. First, we generate several additional injection sets,
but this time retain only events that fail the network SNR
cut (that is, “hopeless” events that are certain to be
undetectable). These events, shown in the center column
of Fig. 2, are all marked as “missed.” Second, we generate
sets of injections with expected matched-filtering SNRs of
at least 20 in one or both of the Hanford and Livingston
detectors. Shown in the right-hand side of Fig. 2, we regard
these as “certain” detections, effectively guaranteed to be
found provided that one or more detectors are operating at
the time of their arrival. We mark ~6% of the certain
detections as “missed.” As discussed above, this is the
percentage of detections that would arrive when neither
neither Hanford nor Livingston were operational [41], and
are therefore necessarily unobservable. The remainder of
the certain detections are labeled as “found.” See
Appendix B 1 for a further description of these additional
injection sets.

B. Defining a loss function

We train our P(det|d) emulator by maximizing the
likelihood of having obtained the recorded outcomes
(missed or found) of the injections described above.

Let the set {6,} describe the parameters of all injections
in our training data and {;} be a set of binary flags
recording whether each injection was found (4, = 1) or
missed (1; = 0). Given a model P(det |6), the likelihood of
having obtained this particular realization of missed and
found injections is

p({A}|P(det|0)) = T] P(detio)) T [t~ P(det|o))]

Found i Missed j

[1(2(det|6,))[1 — P(det|6,)]'~*.

1

(1)

123041-3

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

Pipeline Injections

“Hopeless” Injections

“Certain” Injections

Luminosity Distance [Gpc]

3 102

= e BBH

2 e NSBH

g e BNS

& e Misc. :

E 101 L. R)

O

[}

g

i

=

)

; 100_ L

Uoj 1 1
102 101 10° 10! 102 101 10° 10! 102 101 10° 10!

Luminosity Distance [Gpc]

Luminosity Distance [Gpc]

FIG. 2. Summary of the training data used in constructing our emulator for the Advanced LIGO and Advanced Virgo selection
function. Shown in the left panel are the source-frame chirp masses and luminosity distances of artificial signals injected into LIGO-
Virgo data and processed by compact binary search pipelines to determine which were missed and found. Several such populations were
produced and analyzed, corresponding to binary black holes (blue), neutron-star black hole binaries (green), and binary neutron stars
(red). We augment these with additional sets of “hopeless” injections, with no chance of successful detection; these are highlighted in the
middle panel. We additionally train on sets of “certain” injections, shown in the right panel, which are nearly certain to be identified
provided one or more Advanced LIGO detectors are operational at the time of their arrival. Although we display training data in the
mass-distance plane here, our emulator is trained on the comprehensive space of binary masses, spins, and extrinsic parameters. Note
that the “hopeless,” “certain,” and pipeline injections do not cleanly separate in the chirp mass-luminosity distance plane; this is due to
the influence of these other parameters on compact binary detection.

Rather than maximize this likelihood, we find it useful to

instead maximize the posterior p(P(det|0)|{}), with
nontrivial priors on predicted detection probabilities,

p(P(det|0)[{2})
- H —pP (det/0)) |

for some constant . The parameter f functions to disfavor
large detection probabilities, particularly in regions of
parameter space with sparse training data. The correspond-
ing loss function is

P(det |0;)%]1 = P(det|6)]' ™, (2)

L(P(det|0)) = —In p(P(det |0)|{A})
= Z[ﬂﬁ(detw) :1n P(det |6;)

- (1= P(det 6,))]. (3)

This is the standard binary cross-entropy loss function
commonly used in classification, with the additional
p-dependent penalization. In the absence of this penaliza-
tion, our network overpredicts detection probabilities at
large distances and low masses where we have few samples;
we empirically find that choosing # = 0.35 alleviates this.

As we will discuss further below, hierarchical inference
of the compact binary population does not depend on
P(det|0) directly, but instead on the integral of P(det|0)
over the full parameter space of compact binaries:

Ai)In(1 —

E(A) = P(det|A) = / dOP(det|0)p(OA). (4)

Here, p(@|A) is the probability distribution of binary
parameters according to some specific model for the
compact binary population, denoted A, and &(A) is the
fraction of all binaries in this population we expect to
successfully detect. This quantity is also called the detec-
tion efficiency. We find that neural networks trained to
optimize pointwise detection probabilities, using Eq. (3),
do not necessarily yield good estimates of the integrated
detection efficiencies needed for population inference. We
therefore augment the loss function to explicitly penalize
poorly recovered detection efficiencies and guide the net-
work towards accurate recovery of &(A).

Prior to training, we randomly draw sets of compact
binary parameters, {6, ;1> from several different population
models p(6|A;). Here, we use [to index population models
and j to index the individual draws from a given pop-
ulation. Within each training step, we compute the detec-
tion efficiencies for these reference populations as
predicted by the emulator in its current state, each of
which can be approximated via the average

1 O,
¢ ~ﬁlzj:P(det|91,j)v (5)

where N; is the number of draws from population /. For
each population, the detection efficiency can also be
estimated via reweighting of the pipeline training injec-
tions. If p(6|A;y) is the distribution from which these
injections were drawn and Ny, is the total number of
injections performed, then

123041-4

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

1 p(0i|Ar)
&~ . 6
" N F;;jip(ei‘[\inj) ©)

If we take &; estimated in this manner as our target, then we
expect the product N;&; to be binomial distributed with mean

N;&; and standard deviation \/N;&; (1 — &) = /N;&;. Inthe
limit of large N, the distribution can be well-approximated
by a Gaussian, and the likelihood of 21 itself is

) 2 N2
p(&1lér) x exp {_ %} .

(7)
Strictly, 21 and &; are each noisy estimators of some
unknown, underlying detection efficiency, over which we
could marginalize. We find via direct evaluation that this
procedure yields only small corrections to Eq. (7).

We use Eq. (7) to define an additional loss term

L= Z —In p(§|&. Ny)
T
(& =&)
— Nl men” 8
Z,: 28/N; ®

We employ four reference populations in this manner: the
three distributions traced by the binary black hole, neutron
star-black hole, and binary neutron star pipeline injections
[33], and a fourth population designed to approximate the
observed astrophysical population of binary black hole
mergers. Further details are provided in Appendix B 2.

The total training loss is given by the sum of Egs. (3)
and (8).

C. Parametrization of compact binary mergers

We take as input a 13-dimensional description of a
compact binary: component masses, component spins,
distance, sky position, binary inclination, and polarization
alngle.2 Exactly how these parameters are presented to the
neural network, however, strongly affects network perfor-
mance. We find that the best performance is achieved when
providing the squared amplitudes

o <(Mﬂe‘/M®)5/6 1+ coszz>2

e D, /Gpc 2
det M 5/6 2
oo (U)o

as direct inputs to the neural network; these determine, at
leading post-Newtonian order, the expected signal-to-noise

“We neglect the time and phase of binary coalescence. The
resulting P(det |#) computed by our emulator should therefore be
regarded as a time- and phase-averaged detection probability,
assuming uniform distributions for each quantity.

ratios in “plus” and “cross” polarizations for inspiral-
dominated signals [e.g., [4,43]]. Here, M% is the detec-
tor-frame binary chirp mass [related to the source-frame
chirp mass by Mt = M_(1 + z), where z is the source’s
redshift], D; is the luminosity distance, and : is the
inclination angle between a binary’s orbital angular
momentum and our line of sight. We also find it advanta-
geous to “overspecify” binary masses, providing the net-
work with both detector-frame total masses and chirp
masses, as well as both the standard and symmetric mass
ratios (also known as “data augmentation” in machine
learning settings). Although only two of these four param-
eters are needed to fully specify the component masses of a
binary, different inspiral stages and waveform effects are
more strongly governed by different combinations of these
parameters. We expect that a neural network would there-
fore need to “learn” each of these parameters anyway, a step
that is saved if we instead provide them directly.

In contrast, we do not provide the network with all six
spin degrees of freedom, but instead compress spin infor-
mation into several “effective” parameters that are expected
to capture most inspiral and precessional dynamics. We
include the standard effective inspiral spin [44—46],

~ x1¢€0860; + gy, cos 0,
Heff = 1+g

, (10)

as well as an analogous “asymmetric” spin parameter,

x1€0s0) — y,cos b
Yaie == 12 - 2, (11)

where y; and 6; are the dimensionless component spin
magnitudes and polar tilt angles. Both y.¢ and y 4 appear
in the leading-order spin corrections to the gravitational-

TABLE I. Compact binary parameters provided to the neural
network P(det|0) emulator.

Parameter Definition

In. A2 Log squared amp. of “+” polarization; see Eq. (9)
In A2 Log squared amp. of “x” polarization; see Eq. (9)
Mge‘ /Mg Detector-frame chirp mass

M /M, Detector-frame total mass

D;/Gpc Luminosity distance

n Reduced mass ratio: m;m,/Mz,

q Mass ratio: m,/m; (where m, < my)

a Right ascension

siné Sine declination

| cos 1| Absolute value of cosine inclination

siny Sine of polarization angle

cosy Cosine of polarization angle

Kot Effective inspiral spin

X dife “Antisymmetric” inspiral spin; see Eq. (11)

" Generalized precessing spin; see Eq. (12)

123041-5

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

wave inspiral phase entering at 1.5PN order [47]. We also
include the generalized precessing spin parameter [48],

26" = [(r1sin6,)? + (Qyra sin6,)
+2Qy > sin @, sin @, cos Ap)'/2, (12)

an extension of the precessing spin parameter first intro-
duced in Ref. [49]. Here, A¢ is the angle subtended by the
two component spins, once projected onto the plane
perpendicular to the orbital angular momentum, and

Q=¢g(3+49)/(4+3q).
The complete set of parameters passed to the neural
network is listed in Table 1.

III. PERFORMANCE OF THE TRAINED
EMULATOR

Figure 3 demonstrates the performance of the trained
network using binary black hole signals. The blue histo-
grams show the distribution of found events among the
binary black hole pipeline injections (see the left-hand
panel of Fig. 2) [33]. The underlying population from

which these injections were drawn is indicated via the
dotted histograms; this distribution is described further in
Appendix B 1. To test the accuracy with which our neural
network emulates P(det |@), we draw a new set of proposed
binary black holes from this same underlying distribution.
We use our trained network to assign detection probabilities
P(det |6) to each of these systems; these are then rejection
sampled in accordance with the predicted probabilities to
randomly identify a subset as successfully detected. This
process is repeated until we gather 10* new detections. The
resulting distributions of found events are shown via the
solid black histograms. Figures 4 and 5 analogously show
the reconstructions of detected binary neutron star and
neutron star-black hole binary populations.

The detected distributions of each class of compact
binary, as predicted by the neural network emulator, are
good visual matches to the distributions of compact
binaries actually detected by search pipelines. As a more
quantitative metric, we compute Kolmogorov-Smirnov test
statistics between actual (blue) and emulated (solid black)
distributions of found injections; the p-values of these test
statistics are shown in the upper-right corner of each

p=02%

¢ Intrinsic

Detectedé (Actual)f
1 Detected: (Emulator) b

p=33.2% | p=4.1%

1
-1.0 . 0.0
COS L

FIG. 3.

1
1.0
X%Cn

Distribution of detected binary black hole mergers as predicted by our trained neural network P(det |#) emulator (solid black

distributions), compared to the distributions of found pipeline injections (found pipeline injections). Both populations are drawn from
identical intrinsic distributions (dotted black). The trained neural network emulator produces distributions of found binary black holes
that are near matches to the actual distribution of found events from compact binary search pipelines. The numbers inset in the upper-
right corner of each plot show p-values of Kolmogorov-Smirnov test statistics between the emulated and actual distributions of found
events. These p-values indicate good statistical agreement between most pairs of distributions, but also that some pairs are not formally
indistinguishable. The emulated and actual distributions of m, values, for instance, have a p = 2 x 1073 probability of being drawn

from the same parent distribution.

123041-6

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ... PHYS. REV. D 110, 123041 (2024)

1.00 1.25 150 1.75 200 225 250
my [Mo]

-1.0 -0.5 0.0 0.5 1.0 -0.4 —0.2 0.0 0.2 04 00 0.2 0.4 0.6 0.8

CoS L Xeff x5

FIG. 4. As in Fig. 3 but for the population of detectable binary neutron stars.

subplot. Most p-values lie above 1072, indicating good A well-working P(det|6) emulator not only should
statistical agreement. Some p-values are lower, though. produce the correct distributions of detected compact
The actual and emulated distributions of binary neutron star ~ binary parameters, but also must reproduce the correct
distances, for example, have only a 10™ chance of being absolute fraction of events that are successfully detected
drawn from the same parent distribution. (the former does not necessarily imply the latter).

H i p=54% ---Detecte&-(Aictual-)““
........................... [Detected (E:mulator)

0 000 025 050 075 100 125
Dy, [Gpc]

-1.0 . 0.0 1.0 0.00 0.25 0.50 0.75 100 1.25

COS L

FIG. 5. As in Fig. 3 but for the population of detectable neutron star-black hole binaries.

123041-7

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

The absolute detection efficiency &, defined above in
Eq. (4), is necessary to successfully predict gravitational-
wave detection rates and is a critical ingredient in the
statistical inference of astrophysical compact binary pop-
ulations. To test the ability of the trained emulator to
produce accurate detection efficiencies, we repeatedly and
randomly draw from a large space of possible binary black
hole populations. Primary masses are assumed to follow a
superposition between a power law and a Gaussian peak,
secondary masses are power-law distributed, spin magni-
tudes and spin-orbit misalignment angles follow truncated
Gaussians, and the merger rate is assumed to grow as a
power law in 14z (see Appendix C for these exact
distributions and the range of hyperparameters chosen).
For each proposed population, we then compute the
integrated detection efficiency &(A) in two ways. First,
we estimate £(A) via standard reweighting of the found
binary black hole pipeline injections, as in Eq. (6) above.
Second, we instead compute the detection efficiency using
our trained neural network, drawing an ensemble of binary
parameters {0} ~ p(6|A) from the proposed population
and then directly evaluating the detection efficiency as
in Eq. (5).

Figure 6 shows the resulting detection -efficiencies
computed in both manners. Each point corresponds to a

|
N

|
W~

log,, ¢ (Neural network)
|
(=2}

log;, ¢ (Pipeline injections)

FIG. 6. Comparison of integrated binary black hole detection
efficiencies as computed by traditional reweighting of pipeline
injections (x-axis) vs our trained neural network emulator
(y-axis). Each point represents a different possible binary black
hole population, with randomly chosen mass, mass ratio, spin,
and redshift distributions. The error bars show expected uncer-
tainties, given the finite number of pipeline injections/population
draws informing each estimate. The large majority of proposed
populations yield efficiency estimates that are consistent between
the two methods. There exist a small number of outlier points, for
which the methods do not agree; these correspond to populations
for which the pipeline injection-based efficiency estimates are
highly uncertain, due to poor reweighting efficiencies from the
injections’ parent distribution.

randomly chosen population, and error bars correspond to
expected Poisson uncertainties given the finite number of
pipeline injections/draws used for each efficiency calcu-
lation. In general, we see good agreement between £(A)
values obtained through traditional injection reweighting
and values computed with our P(det|@) emulator across
efficiencies spanning many orders of magnitude. We do
note that there are several points for which the two methods
disagree, with the neural network predicting noticeably
higher detection efficiencies than the reweighted pipeline
injections. Each of these points, though, has significant
uncertainty in the reweighted pipeline injections’ efficiency
calculation, corresponding to populations that are very
different from the reference distribution by which pipeline
injections were drawn (specifically, these populations
strongly favor unequal-mass binaries).

IV. STABILIZING HIERARCHICAL INFERENCE

Hierarchical inference of the compact binary population
can be limited by the accuracy with which the detection
efficiency £(A) can be estimated. The detection efficiency
is most commonly computed by reweighting a fixed set of
pipeline injections, as in Eq. (6). Accurate estimation of
&(A) in this manner requires that (i) the injections were
drawn from a parent distribution, p(6|A;,), that is “close
to” the target population p(6|A), and/or (ii) that a very large
number of found injections be available, which in turn
requires a very large number of total trials N .

It is not clear what, formally, is meant by “close to” in the
previous sentence. What is clear, though, is that one or both
of the above conditions can readily fail in practice,
producing imprecise estimates of &(A) and hampering
inference of the compact binary population. A common
diagnostic is the “effective number” of injections informing
an estimate of £(A). If we define w; = p(6;|A)/ p(6;|Ainj)
as a short-hand for the ratio appearing in Eq. (6), then the
number of effective injections is

W 2
Negr = 4(§ZWZ2) ; (13)
i
where both sums are again taken over found injections. In
order for systematic uncertainty in &(A) due to a finite
number of injections to remain a subdominant effect, it has
been argued that one requires Ng >> ¢Noyens, Where
Neyents 1S the number of observed compact binaries and
c is some constant that is (hopefully) of order unity
[30,32].> This implies that the total number of pipeline
injections must scale linearly with catalog sizes, such that
Niotal & Nevents- However, other authors have argued that
the number of injections must scale more steeply with

*In practice, acommon choice is to demand that Neg > 4N eyens»
following Ref. [30].

123041-8

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

catalog size, such that Ny o NS ens With 1.5 Sa <2
[35]. Poorly converged £(A) estimates due to insufficient
injections already and not infrequently limit our ability to
explore the compact binary population. The required
increase of pipeline injections with catalog size (regardless
of the precise scaling) implies that this issue will persist or
be further exacerbated in the future.

A. Dynamically drawing injections

A trained P(det |0) offers one avenue to mitigating the
problem of poor £(A) estimation. The central problem, and
the reason pipeline injections must grow in number with
catalog size, is the fact that we typically must make do with
a fixed injection set. With a trained emulator, we can
abandon this constraint and instead dynamically draw new
injections from each new population of interest. A par-
ticularly efficient algorithm for doing this in the context of
hierarchical inference is the following [50]:

(1) For each compact binary parameter, draw a large

number of random values on the interval [0, 1]:

¢, ~U(0,1)
¢, ~U(0,1)
c.~U(0,1),

etc., (14)

where, e.g., ¢,, = {c,, } indicates a vector of indi-
vidual draws. This is done once, prior to beginning
inference. To improve convergence, these random
values can be sampled jointly via low-discrepancy
sequences, such as the Sobol sequence [51].

(2) Proceed with inference. Within the first likelihood
evaluation with some proposed population A, com-
pute, analytically or numerically, the inverse cumu-
lative distribution function F3'(-) associated with
each compact binary parameter.

(3) Apply these inverse distributions to our draws from
the unit interval to yield sets of physical parameter
values:

my; = F/_\,lml(cm])
m2 = F/_\,lmz (cmz)

z=F3l(c,). (15)

The resulting values will be distributed according to
the proposed population density, p(6|A).

(4) Assemble these into a matrix @ = (m;m,z...) of
compact binary parameters with shape (N gymp, N gim),
and evaluate their detection probabilities with the
trained neural network, yielding a vector of detection
probabilities P = P(det |®) with length N,p,.

(5) Take the mean of the Ny, samples in P to obtain
the detection efficiency: £(A) = (P).

(6) Repeat Steps 2-5 for each subsequent likelihood
evaluation.

The scheme outlined above assumes a factorizable
population model, such that the joint distribution
p(my,my,z,...|A) can be written as the product
p(my|A)p(my|A)p(z|A).... Tt can, however, be straight-
forwardly extended to nonfactorizable populations with
intrinsic correlations between parameters. In this case, one
iteratively performs inverse transform sampling using
conditional probability distributions. For example:

(1) Compute the cumulative probability distribution
F.(z) of source redshifts, and inverse transform
sample to obtain a redshift z drawn from p(z|A).

(2) Given this redshift sample, define the conditional
primary mass distribution p(m;|z, A). Compute the
cumulative distribution of this conditional distribu-
tion, and inverse transform sample to obtain a
primary mass drawn from p(m|z, A).

3) etc.

The result will be a tuple {z,m;, m,, ...} drawn from the
joint distribution p(m,ms, z, ...|A).

Because the detection efficiency is evaluated using draws
directly from the population A of interest, the above
algorithm can enable more accurate estimation of £(A)
than can be obtained through reweighting of fixed injec-
tions. This is particularly true when attempting to inves-
tigate narrow population features. Narrow or abrupt
features in the compact binary population are often of
great astrophysical interest but are notoriously difficult to
study, computationally speaking [e.g. [52]]. This is due, in
part, to the fact that an estimate of £(A) via reweighting of
fixed injections will be necessarily be dominated by the
small number of injections that happen to lie in the
immediate vicinity of the feature of interest. The resulting
E(A) will be subject to a small effective sample count and/
or yield large log-likelihood variance.

The above algorithm, enabled by our P(det |0) emulator,
avoids the poor convergence of £(A) in the presence of
narrow population features. As a demonstration, the upper
panel of Fig. 7 shows estimates of the detection efficiency
for an observationally plausible binary black hole popula-
tion (see Appendix C for details) as we vary the assumed
width o, of the component spin magnitude distribution.
The purple curve shows the detection efficiency as calcu-
lated using our neural network emulator, following the
algorithm above, while the green curve shows values
obtained through reweighting of fixed pipeline injections.
The lower panel, meanwhile, shows the effective number of
injections [Eq. (13)] informing these estimates.

When ¢, is large and the component spin distribution is
broad, all is well: both methods yield nearly equal &(A)
values, and each is informed by a large number of effective
samples, signifying that these values are robust. As o, is

123041-9

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

x1073

g
o

=
t

-
o

<
o

= Inj éction Rewelighting

Predicted Detection Efficiency

= Emulator

I
o
T

eff = 4 >< Nevents

Inj (;action Reweighting

= Emulator

0 e oi e —— e Ll r et ar e e s s ae
-4 -3 -2 -1 0
logyg 0y
FIG. 7. Illustration of convergence issues mitigated by use of a

P(det|@) emulator in hierarchical inference. Top: predicted
binary black hole detection efficiency & as a function of the
presumed width of the astrophysical spin magnitude distribution.
Detection efficiencies are calculated via the reweighting of fixed
pipeline injections (green) and by using the trained P(det|6)
emulator to draw new injections at each value of o, following the
algorithm in Sec. IV A (purple). At large o,,, both methods predict
comparable detection efficiencies. As o, decreases, however, the
efficiencies predicted by injection reweighting drop unphysically
to zero, due to the lack of injections falling inside the narrow
range supported by the population model. Bottom: the effective
number of injections [see Eq. (13)] informing each estimate. As
o, becomes small, the number of informative injections ap-
proaches zero, driving the unphysical behavior in the top panel. In
particular, when ¢, < 0.03 we fail the convergence criteria Ny >
4 X Neyenis commonly adopted in the literature. When instead
using the P(det|d) to draw new injections from each new
distribution of interest, the number of effective injections remains
approximately constant and the estimate of & well-converged.

lowered and the spin distribution narrows, however, the
injection reweighting begins to exhibit problems. Within
the lower panel, we see that the effective number of
injections drops quickly; by the time we reach
log;go =~ —1.5, we are already falling below the N >
Nevents threshold often adopted for reliable inference. For
even smaller 6, we see the estimation of £(A) break down.

The inferred detection efficiency rises briefly before plum-
meting unphysically to zero. In contrast, direct evaluation
with the neural network emulator remains well behaved,
even as the component spin magnitude distribution
approaches a delta function.

In principle, this approach is possible for semianalytic
sensitivity estimates as well. For example, Essick [34]
provides a closed-form estimate for P(det|p,y) that
accounts for the probability of different noise realizations.
However, in practice, this approach would require many
waveform calls within each likelihood evaluation, which
would be very costly. The neural emulator avoids this by
directly learning P(det @) instead of P(det|ppy).

Another advantage of the algorithm above is that it is
differentiable. By drawing a fixed set of random values from
the unit intervals (Step 1) and later inverse transforming
sampling to obtain physical parameter values, we ensure that
the likelihood is a deterministic function of A and hence
amenable to algorithms like Hamiltonian Monte Carlo.

We caution that the use of a detection probability
emulator as described in this section is still subject to
Monte Carlo variance. Different realizations of random
values in Eq. (14) will, in turn, yield slightly different
estimated detection efficiencies. This variance will decrease
as one increases the number of Monte Carlo samples, but in
some cases the required number of samples may be large,
particularly if binary detections come primarily from a very
small (and hence improbable) portion of parameter space.
For example, the integrated detection efficiency is usually
dominated by the small fraction of events at low redshift,
whereas the vast majority of events under reasonable
population models occur at high redshifts; a very large
number of samples will therefore be needed to obtain a
reasonable number of nearby events. In such cases, one can
instead adopt a variant of the algorithm described above, in
which some parameters are inverse-transform sampled
directly from the proposed population p(6|A) while others
(like redshift) are reweighted from a fixed reference
distribution. Such a hybrid strategy can improve conver-
gence and decrease the overall number of samples required
to estimate £(A). More details are provided in Appendix D.

B. Full hierarchical inference: A demonstration

As a further demonstration of this approach, as well as a
test of our P(det|f) emulator, we perform complete
hierarchical inference of the binary black hole population
using the algorithm described above to compute &(A). We
use the 59 binary black holes observed during the LIGO-
Virgo O3 observing run with false-alarm rates below 1 yr~!
[41,42], and adopt population models comparable to
those used in recent LIGO-Virgo-KAGRA Collaboration

*The events GW 190814 [53] and GW190917 [54], with their
very uneven mass ratios and low secondary masses, are excluded
as outliers relative to the bulk binary black hole population [19].

123041-10

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

10°F
101k
102

1073 ;

p(ma) [M3]

10—4 é

10—5 é

10-6L

FIG. 8.

Measurements of the binary black hole population, using the 59 binary black holes detected in the LIGO-Virgo-KAGRA O3

observing run with false-alarm rates below 1 yr~!. Green curves show the central 95% credible regions when correcting for selection
effects via reweighting the fixed set of pipeline injections spanning the O3 observing run. Blue curves, meanwhile, show results obtained
when instead using our trained P(det|6) emulator, along with the algorithm described in Sec. IV A, to dynamically draw new found
injections directly from the proposed population within each likelihood evaluation. The underlying posteriors on the hyperparameters
governing the binary black hole mass, spin, and redshift distributions are shown in Appendix E; see Figs. 14-16.

analyses [19]. Specifically, we assume that source-frame
primary masses follow a mixture between a power-law
continuum and a Gaussian peak [55] and that secondary
masses are power-law distributed [56]. Component spin
magnitudes follow a truncated Gaussian distribution, while
cosine spin-orbit tilts are described as a mixture between an
isotropic component and a Gaussian excess [17]. The
source-frame binary black hole volumetric merger rate is
assumed to follow a power law in (1 + z) [36]. The exact

population models used and the priors on their parameters
are presented in Appendix C.

Results are shown in Fig. 8. The pair of green curves
shows the 95% credible constraints on the probability
distribution/merger rates of binary black holes using
standard injection reweighting. Blue curves show con-
straints instead obtained using the trained P(det|f) emu-
lator. Both sets of results are near matches, with the
emulator yielding accurate reconstruction of the binary

123041-11

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

black hole primary mass, mass ratio, spin magnitude, and
spin tilt distributions, as well as accurate reconstruction of
the redshift-dependent merger rate. Posteriors on the
underlying hyperparameters under both approaches can
be seen in Appendix D.

While the results in Fig. 8 are consistent with one
another, they are not exact matches. In particular, the
neural-network-based selection effects yield a slightly
stronger preference for equal mass ratios and slightly less
evolution of the merger rate with redshift, relative to
selection effects estimated via injection reweighting. It is
not clear which approach is more accurate. On the one
hand, the neural network emulator may be more reliably
interpolating the underlying selection function, particularly
in regions where injections are sparse (such as low mass
ratios). On the other hand, because the neural network was
trained on the same injections informing the results in
green, we might expect a perfectly performing emulator to
yield identical results (up to variance associated with
Monte Carlo averaging). The slight differences in Fig. 8
may therefore indicate further room for improvement.

V. COMPARISON TO SEMIANALYTIC
SELECTION EFFECTS

As noted in Sec. I, it is common for gravitational-wave
selection effects to be semianalytically approximated via a
threshold on a source’s matched filter SNR. This threshold
is often placed on a source’s optimal SNR or on a simulated
realization of an “observed” SNR that mimics random
fluctuations due to noise. Although SNR thresholds can
approximate search selection effects, they are known to
neglect higher order aspects of gravitational-wave detection,
including signal consistency checks and nonstationary noise.
In this section, we compare our trained P(det |#) emulator to
traditional semianalytic SNR thresholds, exploring the
degree to which the neural network learns additional, higher
order information not contained in SNRs alone.

In Figure 9, we again show the distribution of success-
fully detected binary black hole injections (blue) together
with predictions from our trained neural network emulator
(solid black); see Fig. 3. Each panel of this figure contains
two additional curves. The dotted histograms show proper-
ties of found events as predicted by a semianalytic thresh-
old on a source’s optimal SNRs. Specifically, an ensemble
of simulated events is drawn from the same parent
distribution as the real pipeline injections. Each simulated
event is placed at a random time during the O3 observing
run, and its optimal matched filter SNR is computed,
summing in quadrature over the three Advanced LIGO
and Advanced Virgo detectors. Sources are labeled as
“detected” if their optimal SNRs exceed poy > 10, a
threshold found to broadly approximate the 1 yr~! false-
alarm rate threshold adopted in this and many other works.
The dashed histograms are analogous, but constructed by
instead demanding that simulated “observed” network

SNRs exceed p > 10, following Ref. [34]. These observed
SNRs are randomly drawn from the probability distribution
of possible SNRs for each event, accounting for the effects
of random noise fluctuations.’

Within Fig. 9, we see that, while our trained P(det |0)
emulator yields the correct distribution of effective pre-
cessing spin parameters, the semianalytic SNR thresholds
do not. This may reflect the fact that matched filtering
template banks do not generally include effects of spin
precession, and thus semianalytic calculations may system-
atically overestimate the SNRs of strongly-precessing bina-
ries. Barring y,,, however, it appears that the semianalytic
thresholds on both optimal and observed SNRs broadly
recover realistic distributions of detected binary black holes,
performing comparably to our trained emulator.

This conclusion breaks down, however, if we more
carefully consider predicted detections as a function of
distance. Figure 10 shows, in blue, the cumulative prob-
ability distribution of found pipeline injections within three
consecutive luminosity distance shells. Also shown are
predictions from the neural network emulator (solid black),
the semianalytic optimal SNR cut (dotted black), and the
semianalytic observed SNR cut (dashed black). As we
move to larger distances, we see that a semianalytic
threshold on optimal SNRs predicts binary black hole
detections systematically shifted towards larger masses. In
other words, this strategy systematically underestimates the
sensitivity of Advanced LIGO and Advanced Virgo detec-
tors to low-mass binaries and systematically overestimates
the sensitivity to high-mass binaries. This bias is lessened
by instead thresholding on simulated observed SNRs, but it
remains present. This behavior is consistent with Ref. [34],
which found that a mass-dependent SNR threshold was
needed to accurately predict the distance distribution of
detected binary black holes, with higher-mass binaries
requiring higher semianalytic thresholds (see their Fig. 8).

The trained neural network, in contrast, produces accu-
rate cumulative distributions in all distance bins (the
elevated variance in the 8—12 Gpc interval is due to a very
small number of events in this range). We therefore
conclude that the P(det |#) emulator is successfully learn-
ing higher-order information encoded in pipeline injections
but not captured by a simple SNR threshold.

We show analogous results for binary neutron stars and
neutron star-black hole binaries in Figs. 11 and 12,
respectively. The trends identified above for binary black
holes persist: semianalytic SNR thresholds tend to poorly
predict effective precessing spin distributions and under-
predict the distances to which low-mass systems are
successfully detected, while the neural network emulator
more accurately matches found pipeline injections. Within
Fig. 12, we also see that semianalytic approximations
overpredict the sensitivity of Advanced LIGO and

The quantity p is referred to as Pretp 10 Ref. [34].

123041-12

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

[Emulator

_————
| Ep—— |

Detected: (Actual)

Semianalytic (Opt. SNR)
Semianalytic (Obs. SNR)

1
-0.5 0.0 0.5 1.0
cost

-1.0

FIG.9. AsinFig. 3, but additionally detected binary black hole properties predicted by approximating Advanced LIGO and Advanced
Virgo selection effects via a threshold on matched filter signal-to-noise ratio. Dotted distributions show results when demanding an
optimal SNR p,, > 10, while dashed distributions correspond to a threshold p > 10 on randomly-perturbed “observed” SNRs that
capture the effects of fluctuating noise [34]. With the exception of the effective precessing spin parameter, semianalytic SNR thresholds
can broadly capture the distributions of detectable binary black holes, with visual matches comparable to our trained neural network
emulator. However, we see that SNR thresholds systematically underestimate the sensitivity of the LIGO-Virgo network to low-mass
binaries at large distances, whereas the neural network does not; see Fig. 10.

Advanced Virgo detectors to systems with very unequal
masses, with sensitivity more accurately captured by the
P(det|0) emulator.

We note that, although (possibly parameter-dependent)
semianalytic SNR thresholds and our neural network
emulator may successfully predict similar distributions

of compact binary detections, SNR thresholds cannot
compare with the neural network emulator in hierarchical
inference. As described in Sec. IV, the utility of the neural
network is its ability to estimate P(det|d) for a new
ensemble of binaries in each new likelihood evaluation.
This, in turn, requires a P(det|@) that is computationally

1.0
_ 0Gpci< Dy, <4Gpe 7 4Gpei< D, <8Gpce ra 8Gpci< Dy, < 12Gpc
2 08F r((L ((.' i
B
5 (‘f 4.
2 7 4.1'
E 0.6 F ((' - /-". L
S 4 s
(d /7"
<] 7 g
4 /.
2 04F : i L 13 L
< Detected {(Actual) l{.’
E Neural Network A
g ’"
G 02 Sermianalytic (Opt; SNR) - / -
=== Semianalytic (Obs; SNR) ”t."
0.0 i i i i AN i i i
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
my [Mg)] my [Mg) my [Mg)

FIG. 10. Cumulative distributions of detected binary black hole primary masses in three different luminosity distance intervals, as
predicted by real pipeline injections (blue), the trained P(det|6) emulator (solid black), and semianalytic thresholds on optimal and
observed SNRs (dotted and dashed black, respectively). In all distance intervals, semianalytic sensitivity estimates underestimate the
detectability of low-mass binaries, shifting predicted cumulative distributions to the right.

123041-13

CALLISTER, ESSICK, and HOLZ PHYS. REV. D 110, 123041 (2024)

|]i)etected (A tual)

: %Semianalyti;c (Opt. SNR)
;Semi-analytiév (Obs: SNR) ---------- ;

L _ 1

0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

1.0 —0.5 0.0 0.5 1.0
cost

0.0 0.2 0.4 0.6 0.8

FIG. 11. As in Fig. 9, but for binary neutron stars.

efficient and, in modern computing environments, differ- evaluation of gravitational waveforms; waveform gener-
entiable. Detection probability estimation via SNR thresh- ation is usually slow and non-differentiable, and thus
olding satisfies neither of these requirements. In particular, ~ cannot be used in an algorithm like that described in
the calculation of signal-to-noise ratios requires the Sec. IVA.

[Detected (Actual)

L Emulator
: Semianalytic (Opt. SN

Semianalytic (Obs. SNR

0.00 0.25 0.50 0.75 1.00 1.25
Dy, [Gpc]

—-1.0 —-0.5 0.0 0.5 1.0 -1.0 —-0.5 0.0 0.5 1.0 0.00 0.25 0.50 0.75 1.00 1.25
cos L Xeff Xp

FIG. 12. As in Fig. 9, but for neutron star-black hole binaries.

123041-14

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

VI. DISCUSSION

In this paper we have presented a neural network
emulator with which to describe the detection probabilities
of compact binary mergers in the LIGO-Virgo-KAGRA O3
observing run. We described the construction and training
of the emulator, and validated its accuracy via complete
hierarchical inference of the binary black hole population.

This is not the first such tool in the literature; a number of
previous studies have pursued various machine learning
strategies to model gravitational-wave selection effects
[38,57-60]. Reference [38] trained a neural network to
classify compact binaries as detectable or undetectable.
Like our study, this classification was performed on a per
event basis. One limitation of that work, however, was its
reliance on an idealized detection process: Binaries were
regarded as ‘“‘detectable” if they exceeded an optimal
matched filtering signal-to-noise ratio threshold, calculated
using fixed instrumental noise power spectral densities. In
reality, drifting instrumental sensitivities, terrestrial noise
transients, and additional signal consistency requirements
mean that compact binary detection is more complicated
than a universal signal-to-noise ratio threshold. While the
emulators presented in Ref. [38] are likely sufficient for
qualitatively accurate forecasting of future detections, they
likely do not capture these higher order effects required for
precise inference of the binary population; for this, injec-
tion campaigns (like those comprising our training data) are
needed.

A complementary strategy was undertaken in Ref. [57],
in which P(det|#) emulation is framed as a problem of
density estimation. In this approach, a Gaussian mixture
model was fit to the distribution of found injections,
yielding a function proportional to the product
P(det |0) p(0|Ainj), where p(6|Ay) is the distribution from
which the injections were drawn. Relative detection prob-
abilities of new injections @' could then be calculated by
evaluating the mixture model and dividing by p(€'|A;y),
leaving values proportional to P(det|@). This density
estimation approach has the advantage of being computa-
tionally efficient and inexpensive to train. One disadvant-
age is the requirement that users must track and evaluate the
draw probabilities p(6'|Ayy;). This becomes difficult when
training injections are themselves complex mixtures
between many disparate sets of events (as in Fig. 2). By
learning the latent P(det|@) surface itself, we avoid the
downstream need to reevaluate p(6|A;,). Directly learning
P(det|0) correspondingly facilitates iterative learning: if
the emulator is found to perform poorly in a specific
neighborhood of parameter space, additional training data
can be generated in that neighborhood and the emulator
retrained. This cycle can be repeated as necessary, with no
ties to a globally defined p(6|A;,;) distribution.

Instead of learning P(det|d), Refs. [58,59] directly
emulated the integrated detection efficiency &(A) as a

function of chosen hyperparameters A. Reference [60]
combined this idea with P(det|@) emulation in a two step
process, training a neural network to emulate signal-to-
noise ratios that were then used as training inputs for a
second network emulating £(A). The direct emulation of
detection efficiencies sidesteps the (computationally bur-
densome) need to generate any injections and may help to
avoid convergence issues associated with Monte Carlo
integration. At the same time, the direct emulation of £(A)
commits oneself to a single, chosen model for the compact
binary population, characterized by a specific set of hyper-
parameters A. Inference of the compact binary population
with a new model would require retraining of the detection
efficiency emulator, a process we wish to avoid.

As discussed above, an altogether different approach that
does not rely on machine learning is to approximate search
selection via a signal-to-noise ratio threshold [34,61]. As
we demonstrated in Sec. V, a uniform SNR threshold
applied across binary parameter space does not accurately
reproduce distributions of found binary parameters, and
will therefore introduce biases if used as a proxy for
selection effects when analyzing gravitational-wave data.
However, good performance might be achievable by
calibrating a source-dependent threshold that varies across
the space of binary parameters [34]. Alternatively, there
exist analytic fitting functions that capture the P(det |6) on
the lower-dimensional space of binary masses, distance,
and aligned spin components [62]. Analytic methods like
these have the advantage of being directly interpretable. A
deep learning approach, on the other hand, trades some
interpretability for speed, flexibility, and ease of generali-
zation: a neural network like the one we present here can
capture the behavior of P(det|0) across the high-dimen-
sional space of compact binary parameters (including spin
precession and extrinsic parameters) while requiring no
direct waveform evaluation.

As continuous representations of P(det|d) grow in
prevalence, they may influence the metrics by which
pipeline injection sets are designed. Current injection sets
are carefully designed to maximize the efficiencies with
which they can be reweighted to other populations of
interest, as in Eq. (6). When using pipeline injections as
training data for P(det|@) representations (whether a
signal-to-noise threshold, an analytic fitting function, or
a neural network emulator), though, the best performance
may be achieved with alternative design metrics. In the case
of a neural network emulator, for example, it is beneficial to
have injections uniformly placed across a much broader
range of parameter space and include both very loud and
very quiet events. It would be valuable for future studies to
more quantitatively explore suitable metrics for the gen-
eration of training data.

Similarly, future studies should explore how emulator
accuracy scales with the number of pipeline injections
provided as training data. In the Advanced LIGO and

123041-15

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

Advanced Virgo O3 observing run, 2.5 x 10° pipeline
injections were performed for each of the binary black
hole, binary neutron star, and neutron star-black hole
populations. We used just under half of these when
training our emulator (see Table II). If emulator precision
could be maintained while further decreasing the number
of training injections, this may minimize the future
computational cost of calibrating gravitational-wave
selection effects. It will also be valuable to more system-
atically explore different network architectures. In our
study, we heuristically found that a fully-connected net-
work with four 192-neuron wide hidden layers yielded a
reasonable balance between predictive accuracy and train-
ing time. It is possible, though, that further advances (e.g.
an improved loss function, alternate training data, etc.)
could enable comparable accuracy with a smaller network.

Our trained detection probability emulator is made
publicly available at [63]. The use of this emulator is
described in Appendix A below, with more details found in
documentation online.

This work made use of the following software packages:
ARVIZ [64], ASTROPY [65—67], CYTHON [68], H5PY [69,70],
JAX [71], MATPLOTLIB [72], NUMPY [73], NUMPYRO
[74,75], PANDAS [76,77], PYTHON [78], SCIKIT-LEARN
[79-81], scIpy [82,83], and TENSORFLOW [84]. Software
citation information aggregated using The Software
Citation Station [85,86].

ACKNOWLEDGMENTS

We thank Muhammad Zeeshan, Ben Farr, Christopher
Berry, and Matthew Mould for valuable comments and
conversation. T. C. is supported by the Eric and Wendy
Schmidt AI in Science Postdoctoral Fellowship, a
Schmidt Sciences program. R.E. is supported by the
Natural Sciences & Engineering Research Council of
Canada (NSERC) through a Discovery Grant
(No. RGPIN-2023-03346). D.E.H. is supported by
NSF Grants No. AST-2006645 and No. PHY2110507,
as well as by the Kavli Institute for Cosmological Physics
through an endowment from the Kavli Foundation and its
founder Fred Kavli. This work was completed in part with
resources provided by the University of Chicago’s
Research Computing Center. The authors are also grate-
ful for additional computational resources provided by
the LIGO Laboratory and supported by National Science
Foundation Grants No. PHY-0757058 and No. PHY-
0823459. This material is based upon work supported
by NSF’s LIGO Laboratory which is a major facility fully
funded by the National Science Foundation.

DATA AVAILABILITY

Our trained detection probability emulator is available
at [63], and code used to produce the results in this
study can be found at [87]. The necessary data to

regenerate figures or rerun analyses are available via
Zenodo [88].

APPENDIX A: USING THE EMULATOR

A PYTHON implementation of the trained detection
probability emulator is available at [63]. In this section,
we briefly describe how to access and use this the trained
network.

Most directly, the trained emulator can be directly
imported and evaluated as illustrated in the following
example:

from p_det import p_det 03

Instantiate trained emulator
p =p_det 03()

Define data.

The following shows a minimal working example,

in which we specify source-frame component

masses, spin magnitudes, and redshifts for

three compact binaries

params = {'mass_1’:[2.5,10.0,15.0],
‘mass 2’':[1.2,5.0,10.0],
'a_ 1’:[0.0,0.2,0.3],
‘a_2":[0.1,0.4,0.2],
"redshift’:[0.1,0.9,1.0]

}

Compute detection probabilities
detection probs = p.predict (params)

In this example, the user has provided the minimum set
of required parameters: (i) source-frame component
masses, (if) component spin magnitudes, and (iii) a
distance parameter (either redshift, luminosity distance,
or comoving distance). Additional quantities like spin
orientations and extrinsic parameters can be optionally
provided; if they are not provided, they are randomly
generated assuming isotropy. In this example, compact
binary parameters were provided in the form of a dic-
tionary, but they may also be passed via any other
structure supporting key-value functionality. Internally,
the p_det 03 .predict method checks for the pres-
ence and self-consistency of provided parameters, trans-
forms to the input parameter space expected by the neural
network, and evaluates the network.

The above example illustrates how one might use the
trained network when forward modeling sets of observ-
able compact binary signals. As in Sec. IV, another use
case is to employ the network in hierarchical inference of
the compact binary population. To this end, we need an
interface that is, ideally, compilable and differentiable, to
enable compatibility with model likelihoods and infer-
ence performed with JaAX [71] and NUMPYRO [74,75]. This
is provided by calling p_det 03 directly (which implic-
itly evaluates the p_det 03. call method) as
follows:

123041-16

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

from p_det import p_det O3
import jax
import jax.numpy as jnp

Instantiate trained emulator
p =p_det 03()

Obtain just-in-time-compiled probability
jitted p det 03 = jax.jit(p)

Generate and define binary parameters.
See online documentation for the proper
contents and formatting of this object
mass_1 [20., 30., ..]

mass 2 = [15., 29., ..]

params = jnp.array ([mass_1,
mass 2,
al,
a 2,

1)

Compute detection probabilities
detection probs = jitted p det O3 (params)

Direct evaluation in this manner necessarily lacks the
guardrails and self-consistency checks builtintothep det
03 .predict method, and instead assumes that users
follow a specific, expected format in providing compact
binary parameters; see code documentation for exact details.

APPENDIX B: MORE ON EMULATOR
TRAINING

This appendix provides additional details regarding the
training data, loss function, and procedure used for neural
network training.

1. Training data

As discussed in the main text, our training data comprises
sets of simulated compact binaries added to Advanced LIGO
and Advanced Virgo data, analyzed with search pipelines,
and labeled as detected (found) or undetected (missed); see
Fig. 1. Briefly, each injected population is described via a
power-law primary mass distribution,

p(ml |Ainj) 53 m(f(ml,min < n < ml.max)' (Bl)
Secondary masses are also described as a power laws,
following one of two conventions. First, the secondary
mass distribution can be defined conditionally on m, such
that

2 q

p(ma|my, Aipj) o my! (Mo min < my <my). (B2)

Alternatively, we can directly describe the joint distribution
of m; and m, as

p(my my|Ayyy) o m ' ©(m, = my). (B3)
Here, ©(-) is the Heaviside step function. Note, Eq. (B3)is a
different distribution than the product of Egs. (B1) and (B2).
All injection sets have independently and identically dis-
tributed component spins, with isotropic spin orientations
and uniform spin magnitude distributions between 0 < y; <
H1max and 0 < x5 < x5 nax- Volumetric merger rates evolve
as a power law in (1 + z), such that

1 dv,
x
14z dz

where dV . /dz is the differential comoving volume per unit
redshift.

As described in the main text, we supplement the LIGO-
Virgo-KAGRA pipeline injections with additional batches
of “hopeless” events that are confidently undetectable, and
“certain” events that are guaranteed to be detected if one or
more LIGO instrument is in observing mode. The distri-
butions of these hopeless and certain injection sets closely
follow the LIGO-Virgo-KAGRA pipeline injections, but
are chosen to have a shallower primary mass distribution
(and, in the BBH case, shallower growth of the merger rate
with redshift) in order to yield training data that more
uniformly covers the compact binary parameter space. We
additionally produced auxiliary hopeless injections span-
ning a broad range of masses and redshifts.

The specific hyperparameters characterizing each of
these injection sets are detailed in Table II. In addition
to hyperparameter values, this table also indicates which
convention, Eq. (B2) or Eq. (B3), is followed when
defining a secondary mass distribution. The penultimate
column indicates the reference frequencies at which com-
ponent spins were defined; these differ slightly between
injection sets. The final column indicates the number of
events drawn from each set for use as training data.

We note that the total number of available pipeline
injections is larger than the numbers we used for training.
As discussed in Sec. II B, we introduce additional terms in
the loss function involving the integrated detection effi-
ciencies of several reference populations (see Eq. (8) and
Appendix B2 below). These terms terms are slow to
evaluate. The chosen number of injections yielded a good
compromise between network accuracy and overall training
time. Additionally, the specific ratios in Table II between
pipeline, hopeless, and certain injections were found to
yield better network performance than when simply train-
ing with additional available pipeline injections.

(2 i) (14+2)" (2 <zmax). (B4)

2. Reference populations for augmented training loss

When describing our training loss function in Sec. I1 B, we
introduced an additional regularization term [Eq. (8)] used to
motivate the network to accurately recover integrated detec-
tion efficiencies. When training our emulator, we sum
Eq. (8) across four reference populations. These reference

123041-17

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

TABLE II.

Description of injection sets used to train P(det|@) emulator, including the hyperparameters defining each set, the

convention followed when defining component mass distributions, and the number N of injections used from each set; see Sec. B 1. Note
that, because 71, . = 1 min for the neutron star-black hole injections, conventions (B2) and (B3) are equivalent for this population.

Injection Set ml,min M1 max a M2 min mZ,max ﬁq Convention)fl,max)(2.max K Zmax fref N

Pipeline BBH 2Ms 100Mg -235 2M, 100M, 1 Eq. B2) 0998 0998 1 1.9 10Hz 9x10*
Hopeless BBH 2Mgy 100M, -1 2My 100Mg 1 Eq. B2) 0998 0998 0 19 16Hz 14x10°
Certain BBH 2Mo 100M, -1 2My 100Mg 1 Eq. B2) 0998 0998 0 19 16Hz 14x10°
Pipeline NSBH 25My 60My 235 1My 25Mg O Eq.(B2) 0998 04 0 025 15Hz 9x10*
Hopeless NSBH 25M, 60Mg -1 IMy, 25Mg 0 Eq.(B2) 0998 04 0 025 16Hz 14x10°
Certain NSBH 25M, 60Mg -1 IMy, 25Mg; 0 Eq.(B2) 0998 04 0 025 16Hz 1.4x10°
Pipeline BNS IMg 2.5Mg 0 IMy 25My 0 Eq. (B3) 0.4 04 0 015 15Hz 9x10*
Hopeless BNS IMy, 25Mg 0 IMy; 25Ms 0 Eq. (B3) 0.4 04 0 015 16Hz 14x10
Certain BNS Mgy 2.5Mg 0 IMyg 25My 0 Eq. (B3) 0.4 04 0 015 16Hz 14x10
Auxiliary Hopeless 1My 100M, -2 IMg 100M, -2 Eq.(B3) 0998 0998 -1 2 16Hz 24x10°

TABLE IIL

Description of the reference populations used in augmented training loss function, as defined in Eq. (8) and surrounding

text. Included in the table are the hyperparameters defining each reference population, the convention used in defining a secondary mass
distribution, the true detection efficiency & associated with each, and the number N of random draws from each population used during

training.

Reference Distribution 1y iy 7 max a Mymin Momax By CONVENtion ximax Yomax K Zmax 3 N
BBH (“Astrophysical”) ~ 5M, 100M, -3 2M, 100Mg 1 Eq. (B2) 0.998 0.998 4 19 3.8x10™* 2x10°
BBH (“Injectionlike™) 2Mgy 100Mg -235 2Mg 100Mg 1 Eq. (B2) 0998 0998 1 1.9 1.1x1073 2x10°
NSBH (“Injectionlike”) 2.5My5 60M, -235 1My 2.5My O Eq.(B3) 0.998 0.4 0 025 L.1x1072 10*
BNS (“Injectionlike”) IMy 2.5Mg 0 IMg 25My, 0 Eq. (B3) 04 0.4 0 015 1.6x1072 10*

populations followed the same functional forms used to
define and generate training data; see Eqs. (C1)—~(C7). The
specific hyperparameters characterizing each are given in
Table III. Also listed are the target detection efficiencies &; as
estimated using pipeline injections, the number N; of draws
from each population used to estimate £, at each training step.
The number of draws from each population were chosen to
yield similar expected precisions /& = 1/1/£,N, for each
population’s detection efficiency [see Eq. (7)] while also
managing local memory requirements.

3. Network structure and ensemble training

Input data are regularized via a linear transformation to
the unit interval (sklearn.StandardScaler). The
input and hidden layers use a LeakyReLU activation
function with a slope parameter of 1073, while the final
layer has a sigmoid activation function, rescaled to yield
values on the interval {0, 0.94}. Initial neuron weights were
randomly drawn from a zero-mean Gaussian distribution
with standard deviation 0.01 and biases initially set to zero;
the exception is the final output neuron, whose initial bias
was set to In(1073).

These choices were made after experimenting with a
large number of alternatives. We found that the most
impactful design choices are (i) the explicit use of

amplitude parameters [Eq. (9)] as well as the polarization
angle as input parameters, (i7) the adoption of a relatively
shallow but wide network, rather than a narrower network
with more hidden layers, and (iii) the precise number of
additional “certain” and “hopeless” injections we use to
augment the LIGO-Virgo-KAGRA injection sets.

After finalizing all details, we trained an ensemble of
approximately 50 networks, each with random initializa-
tion conditions. We graded the trained networks on two
criteria. First, for each network we computed predicted
distributions of compact binary parameters and computed
KS-test p-values between these predictions and the dis-
tributions actually recovered via pipeline injections (as in
Figs. 3-5). For each network we record the minimum p-
value, taken across all three source classes and all compact
binary parameters. Second, we compute predicted detection
efficiencies for the reference populations listed in Table 111,

and, for each population, the standardized residual (& —
&)/o: between the predicted and target values, where 6 =

\/&/N and N is the total number of trials performed in the
given computation [see Eq. (7)]. We record the maximum
standardized residual for each network. The results are
shown in Fig. 13, with each point representing a trained
network from among the ensemble. The fiducial network
adopted for this paper is marked with a red star.

123041-18

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

- 0

=

<

1

4, 2

+~

&

-

%)

nd

=

e

=

= -8

jE

o0

< 10 i i i i

0.0 0.2 0.4 0.6 0.8 1.0
Maximum Standardized Efficiency Residual
FIG. 13. Summary statistics grading trained neural networks, as

described in Appendix B 3. We trained an ensemble of networks,
each with a different realization of training data and random
initializations. The y-axis values indicate faithfulness in recov-
ering correct parameter distributions of found compact binaries,
while x-axis values indicate network accuracy in recovering
integrated detection efficiencies. The fiducial network chosen in
our study is indicated with a red star.

APPENDIX C: BINARY BLACK HOLE
POPULATION MODELS

In a number of places in the main text, we invoke or infer
realistic models for the astrophysical population of binary
black holes. This includes the discussion of integrated
detection efficiencies surrounding Fig. 6 in Sec. III, and in
the population inference performed in Sec. IV. In this
appendix we describe the precise population models used
for these results.

The primary mass distribution of binary black holes is
assumed to follow a mixture between a power-law dis-
tribution and a Gaussian peak,

€_<ml _Mm)2/26%1

p(my) e t(mi)|f, Gy

(1 4+ a)m¥
(100M)1 — (2M

+(1=7) (C1)

O)l+a ’

where t(m,) is a tapering function that sends the mass
distribution to zero at sufficiently high and low masses:

e—(ml_mluvv)z/zamlzow (m] < mlOW)
t(m)x ¢ 1 (Miow Smy Smnigh) — (C2)
o~ (m —nign)*/26my (ml > mhigh)'

Secondary masses are assumed to follow a power law,
conditioned on primary masses:

p(mylmy) = L +ﬁq)mﬂ‘?
2 1 ml+ﬁq (ZM)1+ﬂq ’

(C3)

Component spins are assumed to be independently and
identically distributed, with spin magnitudes following a
truncated Gaussian distribution on the interval 0 < y <1,

(Z) 2 e_()(_ﬂ)()z/zo-)%
P =\ 262 —Hy ’
\ 7o Erf(\/—) + Brf()

while cosine spin-orbit tilt angles @ are assumed to follow a
mixture between a truncated Gaussian and an isotropic

component,
\/ 262

Tio (1- fuoly
Erf
(Cs)

defined on the interval —1 < cos@ < 1. The black hole
merger rate per unit volume is assumed to evolve as a power
law in 1 + z, such that the total number of mergers per unit
source-frame time dt, per unit comoving volume dV . is

dN
1+ 2)~.
qidv. (2) o (1+2)

The corresponding probability distribution of binary black
hole redshifts is

(C4)

CObg—ﬂu) /265

_/’tu + Erf(14u,) ’

p(cosf) =

(Co)

dv.
dz

where dV . /dz is the differential comoving volume per unit
redshift and the additional factor of 1+ z converts from
source-frame to detector-frame time.

Table IV gives the priors and/or values adopted for the
hyperparameters describing Eqs. (C1)-(C7) at different
points throughout the paper. The second column shows the
hyperparameter distributions sampled to obtain the results
in Fig. 6. The third column gives the fixed values chosen for
Fig. 7 (the value of o, is left blank, as this parameter is
varied) when demonstrating the dynamic regeneration of
injections using the P(det|d) emulator. And the final
column gives the hyperpriors adopted when performing
full hierarchical inference in Sec. IV, both when using
traditional injection reweighting and when instead leverag-
ing the neural network emulator.

p(z) o —= (1 +2)", (€7)

APPENDIX D: HIERARCHICAL INFERENCE
METHODS AND HYBRID INJECTION
GENERATION

We perform hierarchical inference of the binary
black hole population following standard methods, as
described in, e.g., Refs. [27,28]. Consider a set of
detected gravitational-wave events, with data {d,},
where I € [1, Neyens) indexes each event. We have pos-
terior samples {6, ;} on the properties of each event,
generated according to some generic prior p(#|A,). The

123041-19

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

TABLE IV. Hyperparameters specifying the binary black hole population models used throughout this work, as
defined in Appendix C. The second column defines the distributions randomly sampled to obtain Fig. 6. The third
column gives the fixed values adopted when producing Fig. 7 (o, is varied in this figure, and so is not given a value
below). Finally, the fourth column gives the priors adopted when hierarchically inferring the binary black hole
population in Sec. IV and Fig. 8.

Detection Efficiencies

Dynamic injection regeneration

Hierarchical Inference

Parameter (Fig. 6) (Fig. 7) (Fig. 8)

U U(20M o, 50M) 35M U(20M o, 50M)
O U(2Mg, 15M) SMg U(2Mg, 15M)
fp LU(107°, 1) 1073 LU(107°,1)

a N(-2,3) -3 N(-2,3)
Mgy U(5Mg, 15M) 10M U(5Mg, 15M)
My LU(0.1M g, 10M,) 1M LU(0.1M g, 10M)
Mhigh U(50M, 100M) 80M U(50M, 100M)
5mhigh LU(lOO‘SMo, 101.5M®) IOMO LU(lOO‘SMG, 101'5M®)
By N(0, 3) 2 N(0,3)

u, u(o, 1) 0 u(o, 1)

o, LU(0.1,1) LU(0.1,1)
fiso u(o,1) 0.5 U(o,1)

Uy U(-1,1) 1 U(-1,1)

o, U(0.15,2.5) 0.5 U(0.15,2.5)

K N(0,5) 3 N(0,5)

likelihood that this data arose from a given compact
binary population A is, then,

Neyents

ces [AN /dO(0; i3 N)
p({d}|A) « e New(®) ———— 72 (D1
({d}[A) 11:[1 pOA | (D1)

where (-); denotes an ensemble average over the pos-
terior samples j.

The factor dN/dO(0;A) in Eq. (D1) is the predicted
number density of compact binary mergers (e.g. number of
events per unit redshift, per unit mass, etc.). This is related
to the volumetric source-frame rate by

dN Ty dV. dN
d0 14z dz dt,dV.dmdg...’

(D2)

where T, is our experiment’s total duration. We define the
source-frame rate following the models described in
Appendix C. In particular, it is convenient to parametrize
this function as

dN _r (Lt p(m;)
dtydVodmidg... " \1+ zer) p(my = myg)

x p(q)p(x1)p(r2)p(cos 6;) p(cos 6;),
(D3)

which avoids numerical computation of the normalization
coefficient of the mass distribution. This implies that R, is
defined to be the volumetric merger rate per unit mass,
defined at m| = my; and z = z,.p; We take mp = 20M o
and z = 0.2.

The term N, (A), meanwhile, is the expected number of
detections if the compact binary population were indeed
described by A. This is directly related to the detection
efficiency, Ney,(A) = N(A)E(A), where N(A) is the total
number of events occurring in the observation period, as
can be obtained by integrating dN/d6. When correcting for
selection effects using a fixed suite of pipeline injections,
Nexp(A) can be more directly estimated via

1 dN/dO(6;; \)
Niotal 5 P(9i|Ainj)

Nexp (A) = > (D4)

where the index i ranges over found injections, N, is the
total number of injections performed, and p(6|A;y) is the
distribution from which the injections were drawn; com-
pare to Eq. (6). As described in the main text, we can
alternatively use a trained P(det|@) emulator to evaluate
Neyp- Following the algorithm in Sec. IVA, we directly
generate a set of compact binary parameters {6;} ~ p(6|A)
drawn from the proposed population A. Then the expected
number of detections is

Ney(A) = / ‘% (0; A)P(det |0)d0

— N(A) / p(6|A)P(det|0)d0
~ N(A)(P(det|6,)),. (D5)

replacing the integral of P(det|6) over the compact binary
probability distribution with the ensemble average of our

123041-20

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

emulator, P(det |@), across the samples drawn from p(0|A).
The remaining term N(A) is the expected total number of
events (detected or otherwise); this is found by integrating
Eq. (D2). Plugging in our model for the source-frame rate
density [Eq. (D3)], this yields

[p(my)dm, [dV./dz(1 + 2} dz
p(ml = mref) (1 + Zref)K .

N(A) = Ryt (D6)

In practice, we find that the above approach does not
always yield stable results. Specifically, while the large

_ 9 9g+0.79
3.9873735

-+0.88
—4.1775 66

0.5

= Q8.2
5877522

= o ,+8.30
5347308

5 +0.70
72.90#’5?
. 76
—3.1177 50

majority of samples drawn from realistic populations will
lie at high redshifts, the detection efficiency primarily
depends on the small fraction that happen to lie at low
redshift, yielding a high-variance estimate of the integrated
detection efficiency. To circumvent this, we modify the
algorithm in Sec. IV A by, in Step 1, drawing a single, fixed
set of redshifts z ~ p(z|k = Kk¢) from a reference redshift
distribution defined by some «,.;. We choose . = —1.5 in
order to guarantee a large number of injections situated at
small redshifts. All other parameters are dynamically drawn
as usual following the algorithm in Sec. [V A. Evaluation of

9.167 119
9127755

804071771

$1.337 1000

-
wt

Mhigh [M o]

0.39%¢58

HOT
L3

apt1.33
0367555

10°

=r+16.73
11.5577 %9

H
9
L

1 n0+17.35
11.62 7.95

—

[}
=
o

Ominigh [Mo] 0mugw [Mo)]

et

4 7142697
7471551 05

EE 11+160.45
155.11 g3 54

JillsElls)

=) | =] |

5 0| ; : L
S PR . - L ; O
~75 —5.0 —2.5 20 40 5 10 15 -50 -25 5 10 15 50 10010-' 10° 10'10°° 10' 10%° 10! 10® 10°
« Hom, [MQ] Om [MG)] 10glO fp Miow [MQ] mhigh [MQ] 5m10w [MQ} 5mhigh [MG)} NeH/Nevents
FIG. 14. Inferred posteriors on the hyperparameters governing the binary black hole primary mass distribution, as discussed in Sec. IV.

Results using standard reweighting of pipeline injections are shown in green, while results obtained using our neural network P(det |0)
emulator are given in blue. The labels above each column give the median inferred hyperparameter values, with errors indicating central
95% credible bounds.

123041-21

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

Nexp(A) then proceeds as above, but with an extra
reweighting term accompanying the ensemble average over
injections. Define @ as the set of all binary parameters
except redshift, and similarly A to be all population
hyperparameters except x. Then

Now(A) = N(A) / p(B1A) p(2|)P(det |9, 2)dddz

:N(A)/p(é|A)p(Z|Kref)%
x P(det |0, z)d0dz

- p(zilk) 4 7 >
M PP)

where in the final line we are now taking the average
over our hybrid injections drawn from the fixed redshift
distribution p(z|k.r). Note that the probability distribu-
tions appearing in the reweighting factors must be
properly normalized [although the normalization coef-
ficient of p(z;|x) conveniently cancels with the redshift
integral appearing in Eq. (D6) for N(A)].

(D7)

=+0.17
0.151917

1+0.16
0.18%5 15

15+0.18
—0.621555

=+0.21
—0.657 755

£ +0.39
0.567 5]

ra+0.43
0.5370:83

We perform inference using the ‘“No U-Turn”
sampler [89] implemented in NUMPYRO [74,75], a prob-
abilistic programming library built atop JaX [71]. Our
priors are as described in Appendix C and Table IV
therein. We use posterior samples from the GWTC-2.1
[54] and GWTC-3 catalogs [42], made available via
Zenodo [90,91]. We specifically make use of the “C01:
Mixed” samples, comprising results from a mixture of
waveform models that all include the effects of spin
precession and radiation from higher-order multipole
moments. For all inference runs, we monitor convergence
by tracking the effective number of injections per catalog
event [see Eq. (13)], together with the effective number
of posterior samples informing the likelihood assigned to
each event.

APPENDIX E: ADDITIONAL RESULTS

In the main text, we showed hierarchical inference
results in the form of direct constraints on the distributions
of black holes masses, spins, and redshifts. In Figs. 14-16,
we alternatively show posteriors on the hyperparameters

Qp+1.36
U.zﬂ)t?_g1
0.98%5773

0.38703)
0.421018

—0.38

4 71+26.97
7471751 05

s 11+160.45
155.117 557z,

i i i
05 1.0 10' 10* 10%
fiso Neﬁ"/Nevents

FIG. 15. As in Fig. 14, but showing hyperparameters associated with the binary black hole component spin distribution.

123041-22

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

0+0.14
U'Qsto.l(]
‘ 0.16
0.2710 15

£+2.20
2157756

Ag+1.94
16871 35

9+1.93
2.827 1797

9Q+2.04
3.2875 08

,, +26.97
747175705
s 11+160.45

155.11 93754

103

102

10!

Neff/Nevents

0.0 0.5 1.0
Rt [GpCi3 yr_l Mél] ﬂq

10t 10% 103
R Neff /Nevents

FIG. 16. As in Fig. 14, but showing hyperparameters governing the mass ratio distribution and redshift-dependent merger rate of
binary black holes. Among all the hyperparameters across Figs. 14-16, , and « [see Egs. (C3) and (C6)] show the largest differences
between both inference methods. When inferring the binary black hole population using our P(det |§) emulator, we recover 8, and x
posteriors shifted towards larger and smaller values, respectively, relative to posteriors obtained through fixed injection reweighting.

underlying these distributions. As in the main text, green
curves show posteriors obtained via traditional injection
reweighting, while blue curves show results obtained using
our neural network P(det|6) emulator. Both sets of results
are broadly consistent with on another, with the largest
differences being slight shifts in the , and « posteriors in
Fig. 16. In each corner plot, we also show the effective
number of injections (whether fixed injections used for
reweighting or freshly generated using the neural network)
per event in the catalog sample, Negr/Neyens- Hierarchical

inference with injection reweighting yields a large range of
effective injection counts, with values that are correlated
with certain hyperparameters (e.g. @, o,,, and o,). In
contrast, using a P(det|0) emulator to draw from each
target population of interest yields Negr/Nevents Values that
are largely consistent across the full posterior and uncorre-
lated with specific hyperparameters. The one exception is «,
which is slightly correlated with effective injection counts
due to our use of the hybrid injection generation algorithm
described above.

[1] J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy
et al. (The LIGO Scientific Collaboration), Advanced
LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N.
Allemandou et al. (The Virgo Collaboration), Advanced
Virgo: A second-generation interferometric gravitational

wave detector, Classical Quantum Gravity 32, 024001
(2015).

[3] B.F. Schutz and M. Tinto, Antenna patterns of inter-
ferometric detectors of gravitational waves—I. Linearly
polarized waves, Mon. Not. R. Astron. Soc. 224, 131
(1987).

123041-23

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1093/mnras/224.1.131
https://doi.org/10.1093/mnras/224.1.131

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

[4] L. S. Finn and D. F. Chernoff, Observing binary inspiral in
gravitational radiation: One interferometer, Phys. Rev. D 47,
2198 (1993).

[5] C. Cutler and E.E. Flanagan, Gravitational waves from
merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral waveform?, Phys.
Rev. D 49, 2658 (1994).

[6] E.E. Flanagan and S. A. Hughes, Measuring gravitational
waves from binary black hole coalescences. 1. Signal to
noise for inspiral, merger, and ringdown, Phys. Rev. D 57,
4535. (1998).

[7] T. Dal Canton, A. H. Nitz, A.P. Lundgren, A. B. Nielsen,
D. A. Brown et al., Implementing a search for aligned-spin
neutron star-black hole systems with advanced ground
based gravitational wave detectors, Phys. Rev. D 90,
082004 (2014).

[8] T. Adams, D. Buskulic, V. Germain, G. M. Guidi, F. Marion
et al., Low-latency analysis pipeline for compact binary
coalescences in the advanced gravitational wave detector
era, Classical Quantum Gravity 33, 175012 (2016).

[9] S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari
et al., Method for detection and reconstruction of gravita-
tional wave transients with networks of advanced detectors,
Phys. Rev. D 93, 042004 (2016).

[10] S. A. Usman, A.H. Nitz, I. W. Harry, C. M. Biwer, D. A.
Brown et al., The PyCBC search for gravitational waves
from compact binary coalescence, Classical Quantum
Gravity 33, 215004 (2016).

[11] C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Cannon
et al., Analysis framework for the prompt discovery of
compact binary mergers in gravitational-wave data, Phys.
Rev. D 95, 042001 (2017).

[12] S. Sachdev, S. Caudill, H. Fong, R. K. L. Lo, C. Messick
et al., The GstLAL search analysis methods for compact
binary mergers in advanced LIGO’s second and Advanced
Virgo’s first observing runs, arXiv:1901.08580.

[13] F. Aubin, F. Brighenti, R. Chierici, D. Estevez, G. Greco
et al.,, The MBTA pipeline for detecting compact binary
coalescences in the third LIGO-Virgo observing run,
Classical Quantum Gravity 38, 095004 (2021).

[14] M. Drago et al., Coherent WaveBurst, A pipeline for
unmodeled gravitational-wave data analysis, SoftwareX
14, 100678 (2021).

[15] B.P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese et al., The rate of binary black hole mergers
inferred from Advanced LIGO observations surrounding
GW150914, Astrophys. J. 833, L1 (2016).

[16] C. Biwer, D. Barker, J. Batch, J. Betzwieser, R. Fisher et al.,
Validating gravitational-wave detections: The Advanced
LIGO hardware injection system, Phys. Rev. D 95,
062002 (2017).

[17] B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F.
Acernese et al. (The LIGO Scientific and the Virgo
Collaborations), Binary black hole population properties
inferred from the first and second observing Runs of
Advanced LIGO and Advanced Virgo, Astrophys. J. 882,
L24 (2019).

[18] R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K.
Ackley et al. (The LIGO Scientific and the Virgo Collab-
orations), Population properties of compact objects from the

second LIGO-Virgo gravitational-wave transient catalog,
Astrophys. J. Lett. 913, L7 (2021).

[19] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams
et al. (The LIGO Scientific, Virgo, and KAGRA Collabo-
rations), The population of merging compact binaries
inferred using gravitational waves through GWTC-3, Phys.
Rev. X 13, 011048 (2023).

[20] M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K.
Belczynski et al., Double compact objects. II1. gravitational-
wave detection rates, Astrophys. J. 806, 263 (2015).

[21] C. L. Rodriguez, M. Zevin, P. Amaro-Seoane, S. Chatterjee,
K. Kremer et al., Black holes: The next generation—repeated
mergers in dense star clusters and their gravitational-wave
properties, Phys. Rev. D 100, 043027 (2019).

[22] K. Belczynski, J. Klencki, C. E. Fields, A. Olejak, E. Berti
et al., Evolutionary roads leading to low effective spins,
high black hole masses, and O1/02 rates for LIGO/Virgo
binary black holes, Astron. Astrophys. 636, 40 (2020).

[23] S.S. Bavera, M. Fishbach, M. Zevin, E. Zapartas, and T.
Fragos, The y.g — z correlation of field binary black hole
mergers and how 3G gravitational-wave detectors can
constrain it, Astron. Astrophys. 665, A59 (2022).

[24] F. S. Broekgaarden, E. Berger, S. Stevenson, S. Justham, I.
Mandel et al., Impact of massive binary star and cosmic
evolution on gravitational wave observations—II. Double
compact object rates and properties, Mon. Not. R. Astron.
Soc. 516, 5737 (2022).

[25] G. Fragione and F. A. Rasio, Demographics of hierarchical
black hole mergers in dense star clusters, Astrophys. J. 951,
129 (2023).

[26] W. M. Farr, J. R. Gair, I. Mandel, and C. Cutler, Counting
and confusion: Bayesian rate estimation with multiple
populations, Phys. Rev. D 91, 023005 (2015).

[27] 1. Mandel, W. M. Farr, and J. R. Gair, Extracting distribution
parameters from multiple uncertain observations with se-
lection biases, Mon. Not. R. Astron. Soc. 486, 1086 (2019).

[28] S. Vitale, D. Gerosa, W. M. Farr, and S. R. Taylor, Inferring
the properties of a population of compact binaries in
presence of selection effects, in Handbook of Gravitational
Wave Astronomy (Springer, Singapore, 2020), 10.1007/978-
981-15-4702-7_45-1.

[29] V. Tiwari, Estimation of the sensitive volume for gravita-
tional-wave source populations using weighted Monte Carlo
integration, Classical Quantum Gravity 35, 145009 (2018).

[30] W. M. Farr, Accuracy requirements for empirically-measured
selection functions, Res. Notes Am. Astron. Soc. 3,66 (2019).

[31] R. Essick, Constructing mixture models for sensitivity
estimates from subsets of separate injections, Res. Notes
Am. Astron. Soc. 5, 220 (2021).

[32] R. Essick and W. Farr, Precision requirements for
Monte Carlo sums within hierarchical Bayesian inference,
arXiv:2204.00461.

[33] The LIGO Scientific, Virgo, and KAGRA Collaborations,
GWTC-3: Compact binary coalescences observed by
LIGO and Virgo during the second part of the third
observing run—O1 + O2 + O3 search sensitivity estimates,
10.5281/zen0do.5636816 (2021).

[34] R. Essick, Semianalytic sensitivity estimates for catalogs of
gravitational-wave transients, Phys. Rev. D 108, 043011
(2023).

123041-24

https://doi.org/10.1103/PhysRevD.47.2198
https://doi.org/10.1103/PhysRevD.47.2198
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.57.4535
https://doi.org/10.1103/PhysRevD.57.4535
https://doi.org/10.1103/PhysRevD.90.082004
https://doi.org/10.1103/PhysRevD.90.082004
https://doi.org/10.1088/0264-9381/33/17/175012
https://doi.org/10.1103/PhysRevD.93.042004
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1103/PhysRevD.95.042001
https://doi.org/10.1103/PhysRevD.95.042001
https://arXiv.org/abs/1901.08580
https://doi.org/10.1088/1361-6382/abe913
https://doi.org/10.1016/j.softx.2021.100678
https://doi.org/10.1016/j.softx.2021.100678
https://doi.org/10.3847/2041-8205/833/1/L1
https://doi.org/10.1103/PhysRevD.95.062002
https://doi.org/10.1103/PhysRevD.95.062002
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1088/0004-637X/806/2/263
https://doi.org/10.1103/PhysRevD.100.043027
https://doi.org/10.1051/0004-6361/201936528
https://doi.org/10.1051/0004-6361/202243724
https://doi.org/10.1093/mnras/stac1677
https://doi.org/10.1093/mnras/stac1677
https://doi.org/10.3847/1538-4357/acd9c9
https://doi.org/10.3847/1538-4357/acd9c9
https://doi.org/10.1103/PhysRevD.91.023005
https://doi.org/10.1093/mnras/stz896
https://doi.org/10.1007/978-981-15-4702-7_45-1
https://doi.org/10.1007/978-981-15-4702-7_45-1
https://doi.org/10.1088/1361-6382/aac89d
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.3847/2515-5172/ac2ba7
https://doi.org/10.3847/2515-5172/ac2ba7
https://arXiv.org/abs/2204.00461
https://doi.org/10.5281/zenodo.5636816
https://doi.org/10.1103/PhysRevD.108.043011
https://doi.org/10.1103/PhysRevD.108.043011

NEURAL NETWORK EMULATOR OF THE ADVANCED LIGO AND ...

PHYS. REV. D 110, 123041 (2024)

[35] C. Talbot and J. Golomb, Growing pains: Understanding the
impact of likelihood uncertainty on hierarchical Bayesian
inference for gravitational-wave astronomy, Mon. Not. R.
Astron. Soc. 526, 3495 (2023).

[36] M. Fishbach, D. E. Holz, and W. M. Farr, Does the black
hole merger rate evolve with redshift?, Astrophys. J. 863,
L41 (2018).

[37] M. Fishbach, W. M. Farr, and D. E. Holz, The most massive
binary black hole detections and the identification of
population outliers, Astrophys. J. Lett. 891, L31 (2020).

[38] D. Gerosa, G. Pratten, and A. Vecchio, Gravitational-wave
selection effects using neural-network classifiers, Phys. Rev.
D 102, 103020 (2020).

[39] A. Farah, M. Fishbach, B. Edelman, M. Zevin, and J. M.
Ezquiaga, gwmockcat, https://git.ligo.org/amanda.farah/
GWMockCat.

[40] B. Allen, y? time-frequency discriminator for gravitational
wave detection, Phys. Rev. D 71, 062001 (2005).

[41] R. Abbott, H. Abe, F. Acernese, K. Ackley, S. Adhicary
et al., Open data from the third observing run of LIGO,
Virgo, KAGRA, and GEO, Astrophys. J. Suppl. Ser. 267, 29
(2023).

[42] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams
et al. (The LIGO Scientific, Virgo, and KAGRA Collabo-
rations), GWTC-3: Compact binary coalescences observed
by LIGO and Virgo during the second part of the third
observing run, Phys. Rev. X 13, 041039 (2023).

[43] A. Buonanno, B.R. Iyer, E. Ochsner, Y. Pan, and B.S.
Sathyaprakash, Comparison of post-Newtonian templates
for compact binary inspiral signals in gravitational-wave
detectors, Phys. Rev. D 80, 084043 (2009).

[44] E. Racine, Analysis of spin precession in binary black hole
systems including quadrupole-monopole interaction, Phys.
Rev. D 78, 044021 (2008).

[45] L. Santamaria, F. Ohme, P. Ajith, B. Briigmann, N. Dorband
et al., Matching post-Newtonian and numerical relativity
waveforms: Systematic errors and a new phenomenological
model for nonprecessing black hole binaries, Phys. Rev. D
82, 064016 (2010).

[46] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Briigmann et al.,
Inspiral-merger-ringdown waveforms for black-hole bina-
ries with nonprecessing spins, Phys. Rev. Lett. 106, 241101
(2011).

[47] L. E. Kidder, C. M. Will, and A. G. Wiseman, Spin effects in
the inspiral of coalescing compact binaries, Phys. Rev. D 47,
R4183 (1993).

[48] D. Gerosa, M. Mould, D. Gangardt, P. Schmidt, G. Pratten,
and L. M. Thomas, A generalized precession parameter y,,
to interpret gravitational-wave data, Phys. Rev. D 103,
064067 (2021).

[49] P. Schmidt, F. Ohme, and M. Hannam, Towards models of
gravitational waveforms from generic binaries: II. Model-
ling precession effects with a single effective precession
parameter, Phys. Rev. D 91, 024043 (2015).

[50] W. Farr and B. Farr (private Communication).

[51] H. Niederreiter, Low-discrepancy and low-dispersion se-
quences, J. Number Theory 30, 51 (1988).

[52] T. A. Callister, S.J. Miller, K. Chatziioannou, and W. M.
Farr, No evidence that the majority of black holes in binaries
have zero spin, Astrophys. J. Lett. 937, L13 (2022).

[53] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW190814: Gravitational waves from the coalescence of a
23 solar mass black hole with a 2.6 solar mass compact
object, Astrophys. J. 896, L44 (2020).

[54] R. Abbott, T. Abbott, F. Acernese, K. Ackley, and C. A.
Adams, GWTC-2.1: Deep extended catalog of compact
binary coalescences observed by LIGO and Virgo during the
first half of the third observing run, Phys. Rev. D 109,
022001 (2024).

[55] C. Talbot and E. Thrane, Measuring the binary black hole
mass spectrum with an astrophysically motivated parameter-
ization, Astrophys. J. 856, 173 (2018).

[56] M. Fishbach and D. E. Holz, Picky partners: The pairing of
component masses in binary black hole mergers, Astrophys.
J. Lett. 891, L27 (2020).

[57] C. Talbot and E. Thrane, Flexible and accurate evaluation of
gravitational-wave malmquist bias with machine learning,
Astrophys. J. 927, 76 (2022).

[58] K. W. Wong, K. Breivik, K. Kremer, and T. Callister, Joint
constraints on the field-cluster mixing fraction, common
envelope efficiency, and globular cluster radii from a
population of binary hole mergers via deep learning, Phys.
Rev. D 103, 083021 (2021).

[59] M. Mould, D. Gerosa, and S.R. Taylor, Deep learning
and Bayesian inference of gravitational-wave populations:
Hierarchical black-hole mergers, Phys. Rev. D 106, 103013
(2022).

[60] C.E. A. Chapman-Bird, C. P. L. Berry, and G. Woan, Rapid
determination of LISA sensitivity to extreme mass ratio
inspirals with machine learning, Mon. Not. R. Astron. Soc.
522, 6043 (2023).

[61] D. Gerosa and M. Bellotti, Quick recipes for gravitational-
wave selection effects, Classical Quantum Gravity 41,
125002 (2024).

[62] A. Lorenzo-Medina and T. Dent, A physically modelled
selection function for compact binary mergers in the LIGO-
Virgo O3 run and beyond, arXiv:2408.13383.

[63] T. Callister, R. Essick, and D. Holz, pdet https://github
.com/tcallister/pdet (2024).

[64] R. Kumar, C. Carroll, A. Hartikainen, and O. Martin, ARVIZ
a unified library for exploratory analysis of bayesian models
in PYTHON, J. Open Source Software 4, 1143 (2019).

[65] T.P. Robitaille, E.J. Tollerud, P. Greenfield, M.
Droettboom, E. Bray et al. (AsTropPy Collaboration),
ASTROPY: A community PYTHON package for astronomy,
Astron. Astrophys. 558, A33 (2013).

[66] AsTROPY Collaboration, A. M. Price-Whelan, B. M. Sip&cz,
H.M. Giinther, P.L. Lim, S.M. Crawford et al., The
ASTROPY project: Building an open-science project
and status of the v2.0 core package, Astron. J. 156, 123
(2018).

[67] Astropy Collaboration, A. M. Price-Whelan, P. L. Lim, N.
Earl, N. Starkman, L. Bradley et al., The ASTROPY project:
Sustaining and growing a community-oriented open-source
project and the latest major release (v5.0) of the core
package, Astrophys. J. 935, 167 (2022).

[68] S.Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith, cyTHON: The best of both worlds, Comput.
Sci. Eng. 13, 31 (2011).

[69] A. Collette, Python and HDF5 (O’Reilly, 2013).

123041-25

https://doi.org/10.1093/mnras/stad2968
https://doi.org/10.1093/mnras/stad2968
https://doi.org/10.3847/2041-8213/aad800
https://doi.org/10.3847/2041-8213/aad800
https://doi.org/10.3847/2041-8213/ab77c9
https://doi.org/10.1103/PhysRevD.102.103020
https://doi.org/10.1103/PhysRevD.102.103020
https://git.ligo.org/amanda.farah/GWMockCat
https://git.ligo.org/amanda.farah/GWMockCat
https://git.ligo.org/amanda.farah/GWMockCat
https://git.ligo.org/amanda.farah/GWMockCat
https://git.ligo.org/amanda.farah/GWMockCat
https://doi.org/10.1103/PhysRevD.71.062001
https://doi.org/10.3847/1538-4365/acdc9f
https://doi.org/10.3847/1538-4365/acdc9f
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevD.80.084043
https://doi.org/10.1103/PhysRevD.78.044021
https://doi.org/10.1103/PhysRevD.78.044021
https://doi.org/10.1103/PhysRevD.82.064016
https://doi.org/10.1103/PhysRevD.82.064016
https://doi.org/10.1103/PhysRevLett.106.241101
https://doi.org/10.1103/PhysRevLett.106.241101
https://doi.org/10.1103/PhysRevD.47.R4183
https://doi.org/10.1103/PhysRevD.47.R4183
https://doi.org/10.1103/PhysRevD.103.064067
https://doi.org/10.1103/PhysRevD.103.064067
https://doi.org/10.1103/PhysRevD.91.024043
https://doi.org/10.1016/0022-314X(88)90025-X
https://doi.org/10.3847/2041-8213/ac847e
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevD.109.022001
https://doi.org/10.1103/PhysRevD.109.022001
https://doi.org/10.3847/1538-4357/aab34c
https://doi.org/10.3847/2041-8213/ab7247
https://doi.org/10.3847/2041-8213/ab7247
https://doi.org/10.3847/1538-4357/ac4bc0
https://doi.org/10.1103/PhysRevD.103.083021
https://doi.org/10.1103/PhysRevD.103.083021
https://doi.org/10.1103/PhysRevD.106.103013
https://doi.org/10.1103/PhysRevD.106.103013
https://doi.org/10.1093/mnras/stad1397
https://doi.org/10.1093/mnras/stad1397
https://doi.org/10.1088/1361-6382/ad4509
https://doi.org/10.1088/1361-6382/ad4509
https://arXiv.org/abs/2408.13383
https://github.com/tcallister/pdet
https://github.com/tcallister/pdet
https://doi.org/10.21105/joss.01143
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118

CALLISTER, ESSICK, and HOLZ

PHYS. REV. D 110, 123041 (2024)

[70] A. Collette, T. Kluyver, T. A. Caswell, J. Tocknell, J. Kieffer
et al., hSpy/h5py: 3.8.0 (2023), https://zenodo.org/records/
7560547.

[71] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary
et al., 1AX: Composable transformations of Python+NumPy
programs (2018), https://github.com/jax-ml/jax.

[72] J.D. Hunter, MATPLOTLIB: A 2d graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

[73] C.R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen et al., Array programming with NUMPY, Nature
(London) 585, 357 (2020).

[74] D. Phan, N. Pradhan, and M. Jankowiak, Composable
effects for flexible and accelerated probabilistic program-
ming in NUMPYRO, arXiv:1912.11554.

[75] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N.
Pradhan et al., Pyro: Deep universal probabilistic program-
ming, J. Mach. Learn. Res. 20, 1 (2019), https://jmlr.org/
papers/v20/18-403.html.

[76] Wes McKinney, Data structures for statistical computing in
PYTHON, in Proceedings of the 9th PYTHON in Science
Conference, edited by Stéfan van der Walt and Jarrod
Millman (2010), pp. 56-61, https://proceedings.scipy.org/
articles/Majora-92bf1922-00a.

[77] Pandas Development Team, pandas-dev/pandas: Pandas
(2024), https://zenodo.org/records/10957263.

[78] G. Van Rossum and F.L. Drake, PyrHON3 Reference
Manual (CreateSpace, Scotts Valley, CA, 2009).

[79] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion et al., SCIKIT-LEARN: Machine learning in PYTHON,
J. Mach. Learn. Res. 12, 2825 (2011), https://www.jmlr.org/
papers/v12/pedregosal la.html.

[80] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A.
Mueller et al., API design for machine learning software:
Experiences from the SCIKIT-LEARN project, in ECML
PKDD Workshop: Languages for Data Mining and
Machine Learning (2013), pp. 108-122.

[81] O. Grisel, A. Mueller, Lars, A. Gramfort, G. Louppe et al.,
scikit-learn/scikit-learn: SCIKIT-LEARN 1.5.0 (2024), https://
zenodo.org/records/11237090.

[82] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy et al., scipy1.0: Fundamental algorithms for scien-
tific computing in PYTHON, Nat. Methods 17, 261 (2020).

[83] R. Gommers, P. Virtanen, M. Haberland, E. Burovski, W.
Weckesser et al., scipy/scipy: scipy1.13.1 (2024), https://
zenodo.org/records/11255513.

[84] T. Developers, TENSORFLOW, 10.5281/zenodo.12119782
(2024).

[85] T. Wagg and F. S. Broekgaarden, Streamlining and stand-
ardizing software citations with the software citation station,
arXiv:2406.04405.

[86] T. Wagg, F. Broekgaarden, and K. Giiltekin, Tomwagg/
software-citation-station: V1.2 (2024), https://zenodo.org/
records/13225824.

[87] T. Callister, R. Essick, and D. Holz, learning-p-det
https://github.com/tcallister/learning-p-det (2024).

[88] T. Callister, R. Essick, and D. Holz, Data release: “A neural
network emulator of the Advanced LIGO and Advanced Virgo
selection function” (2024), 10.5281/zenodo.13362691.

[89] M. D. Hoffman and A. Gelman, The no-U-turn sampler:
Adaptively setting path lengths in Hamiltonian Monte Carlo,
J. Mach. Learn. Res. 15, 1593 (2014), https://jmlr.org/
papers/v15/hoffmanl4a.html.

[90] LIGO Scientific and Virgo Collaborations, GWTC-2.1:
Deep extended catalog of compact binary coalescences
observed by LIGO and Virgo during the first half of the
third observing run—parameter estimation data release,
10.5281/zenodo.6513631 (2022).

[91] LIGO Scientific, Virgo, and KAGRA Collaborations,
GWTC-3: Compact binary coalescences observed by LIGO
and Virgo during the second part of the third observing
run—parameter estimation data release, 10.5281/zen-
0d0.8177023 (2023).

123041-26

https://zenodo.org/records/7560547
https://zenodo.org/records/7560547
https://zenodo.org/records/7560547
https://github.com/jax-ml/jax
https://github.com/jax-ml/jax
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arXiv.org/abs/1912.11554
https://jmlr.org/papers/v20/18-403.html
https://jmlr.org/papers/v20/18-403.html
https://jmlr.org/papers/v20/18-403.html
https://jmlr.org/papers/v20/18-403.html
https://proceedings.scipy.org/articles/Majora-92bf1922-00a
https://proceedings.scipy.org/articles/Majora-92bf1922-00a
https://proceedings.scipy.org/articles/Majora-92bf1922-00a
https://proceedings.scipy.org/articles/Majora-92bf1922-00a
https://zenodo.org/records/10957263
https://zenodo.org/records/10957263
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://zenodo.org/records/11237090
https://zenodo.org/records/11237090
https://zenodo.org/records/11237090
https://doi.org/10.1038/s41592-019-0686-2
https://zenodo.org/records/11255513
https://zenodo.org/records/11255513
https://zenodo.org/records/11255513
https://doi.org/10.5281/zenodo.12119782
https://doi.org/10.5281/zenodo.12119782
https://arXiv.org/abs/2406.04405
https://zenodo.org/records/13225824
https://zenodo.org/records/13225824
https://zenodo.org/records/13225824
https://github.com/tcallister/learning-p-det
https://github.com/tcallister/learning-p-det
https://doi.org/10.5281/zenodo.13362691
https://jmlr.org/papers/v15/hoffman14a.html
https://jmlr.org/papers/v15/hoffman14a.html
https://jmlr.org/papers/v15/hoffman14a.html
https://jmlr.org/papers/v15/hoffman14a.html
https://doi.org/10.5281/zenodo.6513631
https://doi.org/10.5281/zenodo.8177023
https://doi.org/10.5281/zenodo.8177023

	Neural network emulator of the Advanced LIGO and Advanced Virgo selection function
	I. BACKGROUND
	II. TRAINING A DETECTION PROBABILITY EMULATOR
	A. Training Data
	B. Defining a loss function
	C. Parametrization of compact binary mergers

	III. PERFORMANCE OF THE TRAINED EMULATOR
	IV. STABILIZING HIERARCHICAL INFERENCE
	A. Dynamically drawing injections
	B. Full hierarchical inference: A demonstration

	V. COMPARISON TO SEMIANALYTIC SELECTION EFFECTS
	VI. DISCUSSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: USING THE EMULATOR
	APPENDIX B: MORE ON EMULATOR TRAINING
	1. Training data
	2. Reference populations for augmented training loss
	3. Network structure and ensemble training

	APPENDIX C: BINARY BLACK HOLE POPULATION MODELS
	APPENDIX D: HIERARCHICAL INFERENCE METHODS AND HYBRID INJECTION GENERATION
	APPENDIX E: ADDITIONAL RESULTS
	References

