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Abstract

Gravitational waves (GWs) from merging compact objects encode direct information about the luminosity distance
to the binary. When paired with a redshift measurement, this enables standard-siren cosmology: a Hubble diagram
can be constructed to directly probe the Universe’s expansion. This can be done in the absence of electromagnetic
measurements, as features in the mass distribution of GW sources provide self-calibrating redshift measurements
without the need for a definite or probabilistic host galaxy association. This “spectral siren” technique has thus far
only been applied with simple parametric representations of the mass distribution, and theoretical predictions for
features in the mass distribution are commonly presumed to be fundamental to the measurement. However, the use
of an inaccurate representation leads to biases in the cosmological inference, an acute problem given the current
uncertainties in true source population. Furthermore, it is commonly presumed that the form of the mass
distribution must be known a priori to obtain unbiased measurements of cosmological parameters in this fashion.
Here, we demonstrate that spectral sirens can accurately infer cosmological parameters without such prior
assumptions. We apply a flexible, nonparametric model for the mass distribution of compact binaries to a simulated
catalog of 1000 GW signals, consistent with expectations for the next LIGO–Virgo–KAGRA observing run. We
find that, despite our model’s flexibility, both the source mass model and cosmological parameters are correctly
reconstructed. We predict a 11.2%✎ measurement of H0, keeping all other cosmological parameters fixed, and a
6.4%✎ measurement of H(z= 0.9)✎ when fitting for multiple cosmological parameters (1σ uncertainties). This
astrophysically agnostic spectral siren technique will be essential to arrive at precise and unbiased cosmological
constraints from GW source populations.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Bayesian statistics (1900); Hubble
constant (758); Compact binary stars (283)

1. Introduction

Like light, gravitational waves (GWs) are redshifted as they
propagate across the Universe, thereby bearing imprints of the
Universe’s cosmic expansion history. Unlike light, however,
the form of GW signals is known from first principles, directly
from the theory of general relativity. Furthermore, because
GWs propagate across the Universe without attenuation from
intervening matter, and because the properties of GW detectors
are well characterized, GW selection effects are extremely well
understood. This allows for a precise estimate of each GW
catalog’s completeness and an unbiased measurement of the
true GW source population (R. Abbott et al. 2023a, 2023b;
R. Essick 2023). Additionally, the GW signals observed by the
LIGO, Virgo, and KAGRA detectors (F. Acernese et al. 2015;
J. Aasi et al. 2015; T. Akutsu et al. 2021) provide direct
measurements of the distance to their sources. This makes them
“standard sirens”: direct probes of cosmological parameters
that circumvent the need for a cosmological distance
ladder (B. F. Schutz 1986; D. E. Holz & S. A. Hughes 2005).
A well-known demonstration of standard siren cosmology was

the multimessenger event GW170817 (B. P. Abbott et al. 2017a;

D. A. Coulter et al. 2017; N. R. Tanvir et al. 2017; S. Valenti et al.
2017), whose clear association with a host galaxy provided a
precise redshift measurement and allowed for a direct “bright
siren”measurement of the Hubble constant, H0 (B. P. Abbott et al.
2017b). External redshift information can also come from galaxy
catalogs, which provide an ensemble of possible redshifts for each
GW signal, allowing for a probabilistic “dark siren” measurement
of H0 when multiple GW detections are combined (W. Del
Pozzo 2012; H.-Y. Chen et al. 2018; M. Fishbach et al. 2019;
M. Soares-Santos et al. 2019; R. Gray et al. 2020; B. P. Abbott
et al. 2021a; R. Abbott et al. 2023c; R. Gray et al. 2022; J. R. Gair
et al. 2023; R. Gray et al. 2023; S. Mastrogiovanni et al. 2023a).
Electromagnetic information about GW source redshifts

need not be available in order to use them as standard sirens,
however. GW signals provide direct measurements of each
source’s luminosity distance, DL, and redshifted (detector-
frame) masses, ( )m m z1det source= + (e.g., X. Chen et al.
2019). Therefore, if the source-frame mass is known, each GW
signal provides a direct mapping between luminosity distance
and redshift, allowing for a measurement of the expansion of
the Universe at the time the GW signal was emitted, H(z).
In practice, the source-frame masses of individual GW

signals are not known (unless tidal information is available;
e.g., C. Messenger & J. Read 2012; D. Chatterjee et al. 2021).
It is, however, possible to consider the population of compact
binaries at large and use known features in their source-frame
mass distribution to obtain self-calibrated redshift estimates.
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The full mass distribution therefore acts analogously to an
electromagnetic spectrum, in which the apparent locations of
spectral features relative to their rest-frame locations provide a
redshift measurement. The method of using the mass distribu-
tion of GW sources to measure cosmological parameters has
therefore been coined “spectral sirens” (J. M. Ezquiaga &
D. E. Holz 2022). Spectral sirens were first demonstrated to be
a feasible method to measure the Hubble constant by
D. F. Chernoff & L. S. Finn (1993) and S. R. Taylor et al.
(2012) using the binary neutron star mass distribution, and
extended to the binary black hole (BBH) mass distribution by
W. M. Farr et al. (2019). Spectral siren analyses have since
been implemented by the LIGO–Virgo–KAGRA Collabora-
tions using the latest GW catalog (R. Abbott et al. 2023c).

Central to the spectral siren methodology is knowledge of
the compact binary mass distribution. However, first principles
models for mass distributions of merging compact binaries
are not available: significant theoretical uncertainties exist
about the shapes, locations, and very existence of predicted
features in the mass distribution (e.g., M. Zevin et al. 2017;
M. Mapelli 2020; M. Zevin et al. 2021; P. Marchant &
J. Bodensteiner 2024). This includes uncertainties about
potentially dominant features, such as the existence of a
“pileup” due to pulsational-pair instability, a pair-instability-
driven upper mass gap (R. Farmer et al. 2019), the maximum
neutron star mass (C. L. Fryer & V. Kalogera 2001; J. Alsing
et al. 2018), and the existence of a putative lower mass gap
between neutron stars and black holes (F. Özel et al. 2010;
W. M. Farr et al. 2011; A. Farah et al. 2022). To this end,
spectral siren cosmology relies on simultaneously measuring
a source-frame mass spectrum alongside cosmological
parameters. This is typically accomplished by adopting a
phenomenological, parametric model for the mass distribution,
usually composed of power laws and Gaussians (e.g.,
R. Abbott et al. 2023c; S. Mastrogiovanni et al. 2023b).

Such parametric modeling of the compact binary mass
distribution raises its own set of dangers. It is well known that
different parametric models can generically yield very different

constraints on cosmological parameters (R. Abbott et al.
2021b, 2023a). This is problematic: because the measured
mass distribution serves as the template by which to extract
redshifts, a mismodeled mass distribution would introduce
systematic errors in inferred redshifts and, in turn, system-
atically bias any resulting cosmological inference (S. Mastrog-
iovanni et al. 2021; J. M. Ezquiaga & D. E. Holz 2022;
S. Mukherjee 2022; G. Pierra et al. 2024).
The situation is demonstrated in Figure 1, in which we

perform spectral siren cosmology on a simulated population of
binary black holes. We reconstruct the mass distribution using
two parametric models, one that contains the true simulated
mass distribution and one that does not. While the former
yields a measurement of H0 consistent with the true underlying
value, the latter does not. Such systematic biases may already
be relevant, as cosmological measurements by the LIGO–
Virgo–KAGRA are known to depend on the choice of mass
model used (R. Abbott et al. 2023c). Furthermore, these biases
may become a dominant source of uncertainty in the near
future (G. Pierra et al. 2024). The prospects of such a dominant
systematic uncertainty is troubling. If prior knowledge of the
mass distribution’s morphology (whether an exact theoretical
prediction or knowledge of the correct parametric family of
models) is a prerequisite for the spectral siren method, the
effectiveness of such a technique would be significantly
hampered.
In this work, we explicitly demonstrate that no prior

knowledge of the shape of the compact binary coalescence
(CBC) mass spectrum is necessary to use the spectral siren
methodology. We do this by inferring H(z) with a flexible,
nonparametric model for the mass distribution of CBCs (blue
shaded band in Figure 1). This model makes minimal prior
assumptions about the shape of the mass distribution, enabling
it to accurately infer a wide range of morphologies and remain
agnostic to the astrophysical processes that give rise to features
in the mass distribution. Despite its flexibility, our approach is
able to consistently obtain unbiased measurements of cosmo-
logical parameters, showing that nonparametric methods are

Figure 1. Spectral siren measurement for a simulated catalog with the correct parametric model (POWER LAW + PEAK, green dashed), a deliberately incorrect
parametric model (BROKEN POWER LAW, pink solid) and the nonparametric model presented in this work (Gaussian process, blue filled). The left panel shows the
recovered source-frame primary mass distribution for each model, and the simultaneously inferred posteriors on H0 are shown in the right panel. The bands in the left
panel represent the 90% credible intervals. The mass distribution and H0 value used to generate the data are shown by a solid black line in each panel. The deliberately
incorrect parametric model fails to recover the true mass distribution and therefore produces an estimate of H0 that is offset from the true value, whereas both the
correct and nonparametric models recover the mass distribution and H0. As the true mass distribution is unknown for real observations, using a nonparametric model
mitigates systematic uncertainty that would otherwise arise from mismodeling the compact binary coalescence (CBC) population.�
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not only sufficient for a spectral siren measurement, they can
also mitigate systematic effects in the measurement caused by
model misspecification.

The nonparametric mass model’s ability to recover injected
cosmological parameters demonstrates that the information in
the spectral siren measurement does not come from the
enforcement of specific features in the mass distribution.
Rather, it is provided by the assumption that either all CBCs
follow a common mass distribution, or that any evolution of the
mass distribution with redshift does not exactly mimic
cosmology (J. M. Ezquiaga & D. E. Holz 2022).

We find that our nonparametric model allows for a 11.2%✎
measurement of H0 and a 6.4%✎ measurement of H(z= 0.9)✎
during the fifth LIGO–Virgo–KAGRA observing run (O5),
when the detectors will reach their design sensitivity. We
highlight measurements of H0 within a ΛCDM universe in
order to benchmark the accuracy and precision of our
nonparametric method, as well as explore the role of spectral
sirens in elucidating the Hubble tension. However, a primary
utility of spectral siren measurements will be in constraining
H(z) under different cosmological models, and at redshifts that
are relatively inaccessible by electromagnetic observations,
especially with next-generation gravitational-wave detectors
(J. M. Ezquiaga & D. E. Holz 2021; Z.-Q. You et al. 2021;
J. M. Ezquiaga & D. E. Holz 2022; H.-Y. Chen et al. 2024).7

This paper is organized as follows. Section 2.1 describes the
simulated data set. Section 2.2 introduces the spectral siren
method, demonstrating how cosmological parameters are
inferred from the mass distribution of GW sources.
Section 2.3 describes the nonparametric mass distribution we
develop for use within the spectral siren method. In Section 3,
we present the results of using parametric and nonparametric
mass distributions, as well as projections for future constraints
on H(z). We discuss the implications of our results and outline
future work in Section 4.

This study was carried out using the reproducibility software

(R. Luger et al. 2021), which leverages

continuous integration to programmatically download the data
from Zenodo, create the figures, and compile the manuscript.
The icons next to each figure caption are hyperlinks that lead to
the code used to make that figure (pencil icons), and to the data
behind the figure (down-arrow icons). Some programmatically
generated numbers in the text also have these icons, which
function in the same way. We encourage readers to click these
hyperlinks to verify or reproduce the results and methods of
this work. The git repository associated to this study allows
anyone to rebuild the entire manuscript, and is publicly
available;8 a copy of version 0.2 has been deposited to Zenodo
at doi:10.5281/zenodo.13363159. Inference results are also
available on Zenodo at doi:10.5281/zenodo.13363131.

2. Cosmology with an Astrophysically Agnostic Mass Model

The spectral siren method functions by identifying the
relationship between luminosity distance and redshift that
causes all source-frame masses to follow a distribution that
smoothly varies as a function of time. This allows for the
simultaneous inference of both a mass distribution and
cosmological parameters, even if the form of the source-frame

mass distribution is not known in advance. As described above,
though, strongly parameterized models for the mass distribu-
tion yield biased measurements of cosmological parameters if
they poorly approximate the true mass distribution of compact
binaries. We aim to circumvent such biases and instead model
the population of GW sources in a flexible and astrophysically
agnostic way.
There exist several nonparametric methods developed for

this purpose (I. Mandel et al. 2019; V. Tiwari 2021; B. Edel-
man et al. 2022; S. Rinaldi & W. Del Pozzo 2022; J. Sadiq
et al. 2022; T. A. Callister & W. M. Farr 2024; B. Edelman
et al. 2023; A. Ray et al. 2023). While well suited to infer the
GW source population with a fixed cosmology, several of these
methods employ fixed features in source-frame mass, such as
bin edges (I. Mandel et al. 2019; A. Ray et al. 2023) or spline
nodes (B. Edelman et al. 2022). Since these locations were
chosen with a fixed cosmology, they risk causing the inference
to prefer the cosmological parameters assumed when choosing
the feature locations. Indeed, S. Mastrogiovanni et al. (2021)
show how using fixed features can significantly bias cosmo-
logical inference within the spectral siren methodology. We
therefore opt for a model of the source-frame mass distribution
that forgoes the need to define such features.
For this purpose, we construct a model with a Gaussian

process (GP), a common tool for nonparametric inference. GPs
define a random space of functions in which any subset of
function values are jointly Gaussian distributed (C. E. Rasmus-
sen & C. K. I. Williams 2006). Their smoothness properties
make them widely useful in GW data analysis for regression
problems, such as modeling time-domain waveforms
(Z. Doctor et al. 2017; E. A. Huerta et al. 2018) and the
neutron star equation of state (P. Landry & R. Essick 2019),
density estimation problems, such as estimating posterior
densities of single-event parameters from parameter estimation
samples (V. D’Emilio et al. 2021), and as a prior on histogram
bin heights for population inference (I. Mandel et al. 2017;
Y.-J. Li et al. 2021; A. Ray et al. 2023).
Our use case is slightly different from previous analyses: we

utilize a GP as a prior on the functions that describe the primary
mass distribution of CBCs. This choice encodes very little prior
information about the shape of the mass distribution, besides
enforcing that it must be smooth.

2.1. Simulated Data

To demonstrate the effectiveness of our GP-based mass
distribution in agnostically inferring both cosmological para-
meters and the population properties of GW sources, we apply
our methodology to a simulated data set. By generating a
catalog of GW sources from a known population and
cosmological model, we are able to quantify the accuracy of
our method. The use of simulated data also enables us to make
projections for future data sets and safely ignore dimensions
such as spin that do not impact cosmological measurements
but would otherwise be important to simultaneously fit
to avoid biases in population inference of real data, as real
data exhibit correlations between distance, mass, and spin
measurements (S. Biscoveanu et al. 2022).
We design our simulated catalog to match the characteristics

of the data expected from one year of observation in O5. The
BBHs in this catalog are drawn from an underlying population
described by the POWER LAW + PEAK mass distribution
presented in C. Talbot & E. Thrane (2018) and used in

7 See example spectral siren cosmological inference using parametric mass
spectrum models: https://github.com/ezquiaga/spectral_sirens.
8 https://github.com/afarah18/spectral-sirens-with-GPs
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B. P. Abbott et al. (2019) and R. Abbott et al. (2023a), and
follow the redshift distribution presented in T. Callister et al.
(2020), with hyperparameters consistent with those found in
R. Abbott et al. (2023a). We assume the mass distribution does
not evolve across the redshift range to which the O5 detectors
will be sensitive. This assumption is consistent with current
data (M. Fishbach et al. 2021; L. A. C. van Son et al. 2022;
R. Abbott et al. 2023a), in which no redshift evolution of the
black hole mass function is detected. At the same time, a
redshift-dependent mass function is a generic astrophysical
prediction, due either to changing evolutionary environments
or evolving mixture fractions between distinct compact binary
formation channels (C. J. Neijssel et al. 2019; L. A. C. van Son
et al. 2022; S. Torniamenti et al. 2024; C. S. Ye & M. Fishb-
ach 2024). We discuss this possibility further in Section 4, but
leave it primarily for future work.

We use the GWMockCat (A. M. Farah et al. 2023) package
to apply O5-like selection effects to the drawn BBHs, generate
realistic measurement uncertainty, and produce sensitivity
estimates that are consistent with the simulated GW signals.
We will use the term “event” to refer to GW signals that pass
the criteria for detection. This process results in a catalog of
Nev= 591✎ GW signals that pass the criteria for detection,
hereon called events. Additional details of the data simulation,
including the form of the injected population, are described in
Appendix A.

2.2. The Spectral Siren Method

To simultaneously infer cosmological parameters and the
population of GW sources, we employ a hierarchical Bayesian
analysis. This allows us to undo the selection effects of GW
detectors to obtain a true, astrophysical population and
constrain the cosmic expansion history.

Given a source population and background cosmology
described by hyperparameters Λ, the likelihood of observing
data {d} that contain Nev detected GW signals, each with
parameters θi, is (T. Loredo 2009; S. R. Taylor et al. 2012;
I. Mandel et al. 2019; S. Vitale et al. 2020)
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is the detector-frame merger rate density of

BBHs, conditioned on hyperparameters Λ. Following
T. A. Callister & W. M. Farr (2024), we use a semicolon to
explicitly indicate that this is a function of Λ, not a density over
Λ. ( )Nexp L is the expected number of detections given Λ and
the GW detector sensitivity, and is calculated using a Monte
Carlo sum over Ninj found signals injected into the data stream
(see R. Essick & M. Fishbach 2021; R. Essick & W. Farr 2022
for a detailed explanation of this process).

In this work, we have restricted our analysis to the BBH
primary mass distribution. However, the method can be
trivially extended to the full mass distribution of CBCs (e.g.,
M. Fishbach et al. 2020; J. M. Ezquiaga & D. E. Holz 2022).
Additionally, Appendix B demonstrates that including the mass
ratio distribution in the fit does not change the results of the
analysis presented here, so long as the mass ratio distribution is
accurately modeled.

Since parameters of individual events are not perfectly
measured, we marginalize over the possible properties of each
event. Practically, this is done by a Monte Carlo average over
the posterior samples { }j iq of each event i and dividing out the
prior used when inferring those posterior samples, πPE(θ):
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When combined with a prior p(Λ) (to be discussed below) on
the population and cosmological parameters, the result is a
posterior on both the compact binary population and the
background cosmology. The full set of hyperparameters Λ

therefore includes the shape of the mass distribution as well as
all cosmological parameters that dictate the DL–z relation: the
local expansion rate H0, the present fractional energy densities
of dark matter ΩM, dark energy ΩΛ, and radiation Ωr, and the
equation of state of dark energy w. In this work, we fix
ΩΛ= 1−ΩM, Ωr= 0, and w=−1 and use uniform priors on
H0 and ΩM, corresponding to a flat ΛCDM cosmology.
The process by which we sample the likelihood in

Equation (1) is outlined in Appendix C.

2.3. Gaussian Process–based Mass Distribution

In this Section, we give an overview of the nonparametric
mass model developed for this work. Further details on this
model, including an introduction to GPs and a discussion of
their properties is given in Appendix C.
With the GP approach, the hyperparameters describing the

mass distribution are the rate at each event-level posterior
sample’s source-frame mass, and the rate at each found
injection’s source-frame mass. The GP is p(Λ), the prior on
population parameters (except in the case of cosmological
parameters, which all have uniform priors). This is demon-
strated in Figure 2, where the left panel shows draws from a
GP, which are prior draws for the population inference. The
smooth appearance of individual draws from the population
prior, as well as the absence of overdensities at specific source-
frame mass values in the full prior distribution shown in
Figure 2 demonstrate that we have successfully fulfilled our
goal to construct a model without predefined features in source-
frame mass. Combined with the population likelihood in
Equation (1), the prior illustrated in the left panel of Figure 2
gives the population posterior in the right panel.
The lack of data just below the minimum black hole mass

and just above the maximum black hole mass, combined with
the fact that GW detectors are sensitive to objects at those
masses, causes the GP to learn a relatively low merger rate at
the edges of the mass distribution. That said, there is both a
lack of data and little detector sensitivity at masses above
∼100Me and below ∼5Me. The mass distribution is therefore
uninformed in this region and the GP reverts to its prior
distribution, which resembles random scatter around the mean
differential merger rate. Similar effects can be seen in other
nonparametric methods (T. A. Callister & W. M. Farr 2024;
B. Edelman et al. 2023). The combination of these two effects
results in what appears as an uptick in the merger rate below
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∼5Me and above ∼100Me. However, this reversion to the
prior is uninformative for the H0 constraint and does not affect
inference on cosmological parameters. Additionally, the
posterior on H0 is distinct from its prior distribution (uniform
in the range [30 km−1 s−1 Mpc, 120 km−1 s−1 Mpc], indicating
that the data are informative despite the flexibility of the
population model.

We note that other nonparametric methods may be adapted
to avoid predefined features, such as fitting for the locations of
their features simultaneously with the rest of the inference (e.g.,
V. Tiwari 2021) or, in the case of splines, by using a smoothing
function that allows for features to occur at arbitrary locations
appropriate smoothing (e.g., B. Edelman et al. 2023).

The smoothness of a given GP is determined by its kernel,
which is a function that defines the covariance between input
points in the GP (in our case, two source-frame mass values). It
defines the notion of similarity between adjacent points and
thereby encodes our assumptions about the smoothness of the
source-frame mass distribution (C. E. Rasmussen &
C. K. I. Williams 2006). Kernels themselves have parameters
that determine their properties. In our use case, these are one
level further removed from hyperparameters, so we adopt the
terminology used in T. A. Callister & W. M. Farr (2024) and
call them “hyper-hyperparameters.” We fit these hyper-
hyperparameters along with the hyperparameters Λ to minimize
prior assumptions about the form of the mass distribution.

3. Results

In this Section we show that fitting an incorrect functional
form to the mass distribution of CBCs biases the inference of
cosmological parameters when using the spectral siren
methodology. We then demonstrate that our flexible model
alleviates this bias without the need to know the morphology of
the mass distribution a priori. We illustrate this explicitly by
using three different models for the source-frame mass
distribution to infer the cosmic expansion rate from the
simulated catalog described in Section 2.1 and Appendix A.
The three models are as follows:

1. POWER LAW + PEAK, which includes the true mass
distribution within its hyperprior,

2. the BROKEN POWER LAW model presented in R. Abbott
et al. (2021b), as we do not employ a high-mass
truncation, which does not include the true mass
distribution within its hyperprior, and

3. the flexible, GP-based model described in Section 2.3,
which is able to closely approximate the morphology of
the true mass distribution, along with many other
morphologies.

For all models considered in this work, we assume the form of
the redshift distribution used to generate the data, described in
Equation (A3). We have performed the analysis both with a
fixed redshift distribution and while simultaneously fitting for
the redshift distribution and find no qualitative differences in
our conclusions: fitting for the redshift distribution broadens
the inferred posteriors on H0 equally for all mass models, but
does not affect their mean values.
The results of fitting each model to the same data set are

shown in Figure 1. The left panel shows the inferred source-
frame mass distribution for each of the considered models, and
the right panel shows the corresponding posteriors on H0. We
indicate the true underlying source mass distribution and H0

value with solid black lines in each panel.
The fits presented in Figure 1 are representative results from

a single simulated catalog. These provide insight into the full
statistical results presented below. In particular, it can be seen
that the BROKEN POWER LAW (orange curve) is inconsistent
with the true value of H0: in the run shown in Figure 1, the true
value of H0 is offset from the mean of the posterior by 2.7σ✎.
By contrast, the POWER LAW + PEAK and GP-based models
(green and blue curves) are consistent with the underlying
truth. These models recover mean values of H0 that are offset
from the true value at 0.8σ✎ and 0.3σ✎, respectively.
Additionally, the mass distribution inferred with the GP-based
model closely resembles the true, simulated distribution. This
indicates that using models that cannot accurately approximate
the true mass distribution will lead to a noticeable systematic
bias in the estimation of cosmological parameters.

Figure 2. Draws from the Gaussian process (GP) used to model the mass distribution. The left panel shows prior draws from the GP, and the right panel shows
posterior draws once the population inference is performed on the simulated data. The posterior draws in the right panel are a subset of those used to create the 90%
credible intervals in Figure 1.�
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This bias is not due to the need to know the morphology of
the mass distribution a priori, as the GP-based model recovers
the correct value of H0 despite making minimal assumptions
about the mass distribution. In reality, we do not know the true
functional form of the mass distribution, so it may be desirable
to use a nonparametric approach to avoid potential systematic
errors introduced by choosing a parametric model that likely
does not contain the true mass distribution within its
hyperprior.

To obtain a quantitative measure of the systematic bias
introduced by mismodeling the mass distribution, we repeat the
parametric analyses with 50 separate simulated catalogs of
∼1000 events each. We find that the BROKEN POWER LAW
model produces an over- or underestimate of H0 at greater than
1σ 90%✎ of the time, and the POWER LAW + PEAK model
reaches the same level of bias only 26%✎ of the time, meaning
that the BROKEN POWER LAW model produces a bias more than
3 times as often as the POWER LAW + PEAK model.
Additionally, we show in Appendix D that the BROKEN
POWER LAW model typically overestimates H0, whereas the
POWER LAW + PEAK model produces a roughly equal number
of over- and underestimates of H0. This demonstrates that
mismodeling the mass distribution can introduce statistically
significant systematic biases into measurements of cosmologi-
cal parameters.

Collectively, our results indicate that prior knowledge of the
shape of the mass distribution is not required to perform an
unbiased spectral siren measurement, so long as strong
assumptions about the shape of the mass distribution are
not made.

3.1. Projections for Future Measurements

Figure 1 demonstrates an expected 11.2%✎ (1σ uncertain-
ties) measurement of H0 after one year of O5 using the GP-
based spectral siren method, and an 8%✎ measurement with
parametric spectral sirens, demonstrating comparable statistical
uncertainties. However, we note that the precision reached in
O5 may lessen depending on the actual level of measurement
uncertainty in individual events, and the existence (or lack
thereof) of a maximum mass feature, which we have assumed
to be present in our simulated data set. These numbers are
estimated from a fit to a single simulated catalog, but we find
similar levels of statistical uncertainty from fits to different
catalog realizations. By the time of O5, the GW detector
network is projected to detect BBHs up to redshift ≈3, with
most sources lying near redshift ;1.2 (H.-Y. Chen et al. 2021).
Additionally, next-generation detectors will be sensitive to
sources up to redshift ∼100. This means that future GW
observations will be more sensitive to H(z 1) than to H0, and
can therefore constrain several additional cosmological para-
meters (H.-Y. Chen et al. 2024). We demonstrate this by
repeating the same GP-based spectral siren analysis while also
simultaneously fitting for the local matter density, ΩM. The
result is shown in Figure 3. We emphasize that these precise
measurements over a wide range in redshift enable precision
estimation of additional cosmological parameters governing
H(z).

We find O5 observations to be most sensitive to H(z= 0.9)
✎, which is measured at 6.4%✎. The left panel of Figure 3
demonstrates a strong anticorrelation between the ΩM and H0

posteriors, resulting in similarly informative constraints on the
two parameters. This is because H0 controls the y-intercept of

the H(z) curves on the right panel, while ΩM informs the slope
of those curves; the same measurement of H(z≠ 0) can be
obtained by increasing the slope while decreasing the y-
intercept, and vice versa. Similar behavior can be observed in
current measurements of the BBH redshift distribution, which
exhibits a tightening of the posterior at z∼ 0.2 with current
observations (R. Abbott et al. 2023a; T. A. Callister &
W. M. Farr 2024).
Next-generation detectors will be sensitive to a larger range

of redshifts (ET steering committee et al. 2020; M. Evans et al.
2021) and will therefore break the degeneracy between
cosmological parameters and allow for tighter constraints on
both ΩM and H0. However, the small cosmological volume
(and thus low number of mergers) at low redshift will generally
limit the constraining power of spectral sirens at z= 0,
potentially making this method more sensitive to cosmological
parameters that affect higher redshifts. Combining spectral
sirens with other methods that are sensitive to the local
expansion rate, such as those that employ electromagnetic
counterparts, may increase the precision of GW standard sirens
at all redshifts (e.g., H.-Y. Chen et al. 2024).

4. Discussion

GWs are unique cosmic messengers in that they carry both
redshift and distance information, making them remarkably
clean probes of the Universe’s expansion history calibrated
directly by the theory of general relativity. However, the
current method of determining GW redshifts via the distribu-
tion of their source masses (i.e., spectral sirens) employs an
assumption of the shape of their population, typically
encapsulated by simplified parametric functions. This choice,
often presumed to be necessary or fundamental to the method,
may introduce a systematic bias to a measurement of the
cosmological parameters that is otherwise appealing for its
unique elegance and simplicity.
In this work we show that a specific choice of mass

distribution is unnecessary to arrive at informative and accurate
posteriors on H0 and ΩM. We do this by accurately measuring
these cosmological parameters with a highly flexible model for
the mass distribution. This reinforces the notion that the
information in the spectral siren measurement comes from the
assumption that all GW sources come from the same
population, a far less stringent statement than the assumption
that we understand the exact astrophysical processes that give
rise to that population (i.e., the physics governing compact
binary formation and evolution).
Spectral sirens are particularly useful in the context of the

current Hubble tension: a disagreement between multiple
methods of measuring the local expansion rate of the Universe
(W. L. Freedman 2021). As this tension can only be explained
by nonstandard physics or yet-unknown systematic uncertain-
ties in either the cosmic distance ladder or cosmic microwave
background measurements, direct and independent probes of
the local expansion—such as those presented here—may help
determine whether the current discrepancy represents a
fundamental crack in our standard model of physics and/or
cosmology.
Neither the mechanism from which compact binaries were

formed nor the physical processes within the mechanism have
been conclusively determined. The true functional form of the
mass distribution therefore remains elusive, meaning that
systematic uncertainties arising from an incorrect choice for
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the form of the mass distribution are inevitable. With current
observations, these systematic effects are likely smaller than
statistical uncertainties. However, next-generation detectors
will herald sufficient GW observations to substantially decrease
statistical uncertainty in these measurements; for example,
G. Pierra et al. (2024) show that incorrect assumptions about
the shape of the mass distribution can lead to ∼3σ systematic
biases in H0 with catalogs of 2000 events, although this bias
may be an overestimate as it does not include measurement
uncertainty of the GW parameters. Thus, nonparametric
approaches may be preferable to avoid the systematic errors
associated with choosing a parametric model.

In parallel with this work, I. Magaña Hernandez & A. Ray
(2024) performed a spectral siren analysis on public LIGO–
Virgo–KAGRA data using histogram bins defined at fixed
locations in source-frame mass to flexibly measure the BBH
mass distribution (as originally presented in I. Mandel et al.
2017; A. Ray et al. 2023). Both our method and theirs employ
GPs. In our approach, the black hole mass function is itself
described by a Gaussian process, with no predefined features.
In I. Magaña Hernandez & A. Ray (2024), by contrast, the
mass distribution is fundamentally a binned piecewise constant
function, with a GP prior governing the relative heights of these
bins. While this binned model is flexible, sharp bin edges at
predefined locations nevertheless constitute unphysical fea-
tures. These features may yield overly optimistic constraints on
cosmological parameters, possibly explaining the increase in
precision that I. Magaña Hernandez & A. Ray (2024) find
relative to the parametric analysis on the exact same data set
performed in R. Abbott et al. (2023c). I. Magaña Hernandez &
A. Ray (2024) also include a binned reconstruction of the BBH
merger rate as a function of redshift, which we fix or model
parametrically in our own work. We stress, though, that this is
not an intrinsic limitation of our method; one could
straightforwardly adopt a second Gaussian process to govern
the overall scaling of the merger rate with redshift.

More interesting is the possibility that the black hole mass
distribution itself evolves with redshift. As demonstrated in

J. M. Ezquiaga & D. E. Holz (2022), the degeneracy between
an evolving mass distribution and the expansion of the
Universe can be broken provided that there are multiple
features present in the mass distribution, and that we do not live
in a fine-tuned Universe where the evolutionary effects
governing the CBC mass distribution perfectly mimic the
effects of cosmological redshift. The first condition (multiple
features) is known to be met in current data (R. Abbott et al.
2023a), with three robust features (A. M. Farah et al. 2023): a
maximum black hole mass and overdensities at ∼10Me and
∼35Me. It is also predicted by many population synthesis
studies, (e.g., N. Giacobbo et al. 2018; M. Mapelli & N. Gia-
cobbo 2018; L. A. C. van Son et al. 2023). The latter scenario
—with features identically and monotonically shifting to higher
masses with increasing redshift—would be astrophysically
unlikely as the locations of features in the mass distribution are
each thought to be governed by fundamentally different
physical processes (M. Mapelli 2020). Extensions to the
nonparametric methods presented here will allow for arbitrary
redshift evolution. Additionally, since Gaussian processes
naturally scale to multiple data dimensions (C. E. Rasmussen
& C. K. I. Williams 2006), the method presented here can
easily be generalized to fit the redshift dependence of the mass
distribution. Future work will extend the method developed
here to mass distributions that are allowed to evolve with
redshift. When applying an evolving mass distribution model to
a data set that exhibits evolution, we expect errors on
cosmological parameters to broaden. Noticeable redshift
evolution in the mass distribution is expected to occur above
z; 1.5 (L. A. C. van Son et al. 2022), which is not yet relevant
in current data or in expected O5 data, but will certainly be
visible in next-generation detectors.
Because GW observations are the only data input to spectral

sirens, they are sensitive to the expansion history of the
Universe over a wide range of cosmological redshift, rather
than just the local expansion H0. We have shown this by
simultaneously measuring ΩM and H0; the method can be
trivially expanded to constrain additional cosmological

Figure 3. Projected constraints on multiple cosmological parameters after one year of observing at the LIGO–Virgo–KAGRAʼs design sensitivity, using the GP-based
spectral siren method. The right panel shows the inferred expansion history of the Universe, H(z). It will be measured most precisely at z = 0.9✎, as can be seen by the
narrowing of the inferred H(z) curves there. The inset shows the posterior on H(z = 0.9)✎. Black solid lines indicate the true value of H(z) in both the inset and main
panel. The left panel shows the two-dimensional posterior on H0 and ΩM, with the true value indicated by a black “+.” The two parameters are strongly degenerate
because of the multiple ways of measuring z = 0.9✎. Spectral sirens are particularly well suited for measuring cosmological parameters that affect the Universe
at z  0.2.�
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parameters that govern H(z), such as the dark energy equation
of state parameter, w. It is also possible to use a non-ΛCDM
cosmological model for H(z), with different parameters
entirely. It may also be possible to forgo the need for a
parametric representation of H(z) altogether, for example by
using bins in luminosity distance. A similar technique using
redshift bins is commonly used in cosmological measurements
using galaxy surveys and Type 1a supernovae (e.g., R. Beig
et al. 2003; L. Anderson et al. 2014; A. Aghamousa et al.
2016), but we have not pursued that possibility in this work.
Such a method would likely increase uncertainties on H(z),
especially for z 1.5. We find that for the fifth LIGO–Virgo–
KAGRA observing run, spectral sirens will be most constrain-
ing at z= 0.9✎. This redshift is larger than the expected
redshifts of detectable electromagnetic counterparts of binary
neutron star mergers (R. W. Kiendrebeogo et al. 2023),
implying that upgrades to current GW detectors will allow
the spectral siren method to probe H(z) at otherwise unexplored
distances by GWs.

Proposed next-generation GW detectors such as Cosmic
Explorer and Einstein Telescope will be sensitive to CBCs
across cosmic time (out to z∼ 100; ET steering committee
et al. 2020; M. Evans et al. 2021). Future cosmological
surveys, such as those enabled by the Nancy Grace Roman
Space Telescope and the Vera Rubin Observatory, are expected
to be able to precisely measure H(z) to z∼ 3 (D. Spergel et al.
2015), making the spectral siren method uniquely positioned to
measure the expansion of the Universe at high redshift. When
combined with bright and dark siren methods, the low-redshift
expansion history will also be well constrained (H.-Y. Chen
et al. 2024). Sensitivity to high redshifts is a feature of the
spectral siren method in general, and nonparametric methods
such as the one presented here will be imperative to avoid
systematic biases in spectral siren cosmology.
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Appendix A
Details of Data Simulation

The exact form of the injected population is
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Here, VC(H0, ΩM) is the comoving volume for given cosmological
parameters H0 and ΩM, and ¯ { }m m f, , , , ,m min max peaka m sL =
are the (hyper-)parameters describing the power law in primary
mass, minimum and maximum black hole mass, Gaussian peak
location and width, and fraction of events in the Gaussian peak,
respectively.  is a smoothing function at low and high masses,
and pl and g are the normalizations betweenmmin andmmax for
the power-law component and truncated Gaussian component,
respectively. The smoothing creates support for masses below
mmin and above mmax. ¯ { }z , ,z p z za bL = are the parameters
governing the peak of the redshift distribution, low-z power-law
slope, and high-z power-law slope. When generating the simulated
events, we have fixed α=−2.7, m M78max = , mmin =

M10 , μ= 30Me, σ= 7.0Me, fpeak= 0.05, zp= 2.4, αz= 1.0,
and βz= 3.4. These choices correspond to the maximum
a posteriori values obtained by an analysis of GWTC-3 data
using the POWER LAW + PEAK model (R. Abbott et al. 2023a).
For simplicity, we assume a uniform mass ratio distribution. Thus,
θ= {m1, z}. We consistently apply these assumptions to the data
generation process and the population inference. We do not fit for
or simulate spins, as they do not redshift and hence do not carry
additional cosmological information, and we fix the distribution of
mass ratios.
We use cosmological parameters H0 =✎ 67.66 km−1 s−1Mpc,

ΩM= 0.3, and ΩΛ= 1−ΩM, consistent with those found by
Planck Collaboration et al. (2016). We emphasize, however, that
the choice of cosmological parameters for data generation is
arbitrary and does not impact the results, since we are concerned
only with the ability of our method to recover the injected values.
Throughout the data generation and inference, we use the
approximations presented in M. Adachi & M. Kasai (2012) to
efficiently convert between DL and z for a given set of
cosmological parameters ΩM and H0.
We do not include neutron stars in our simulation set, as

their contribution to the spectral siren measurement is expected
to be subdominant in O5. However, if a lower mass gap
between the heaviest neutron stars and lightest black holes
exists, it will provide an additional feature with which to
inform the measurement, and will be the most informative
feature for spectral siren measurements with next-generation
detectors (J. M. Ezquiaga & D. E. Holz 2022).
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After passing the simulated events through projected
detector selection effects, the resulting catalog has 591✎
events, consistent with the numbers projected for O5 by
R. W. Kiendrebeogo et al. (2023). We use the software package
GWMockCat (A. M. Farah et al. 2023) to simulate posterior
samples for these events with measurement uncertainties
typical of those expected from O5 detectors. GWMockCat
also simulates a set of software injections, which we use to
estimate selection effects in the inference. To determine
the detectability of both injections and simulated events in
O5, we use the projected O5 LIGO power spectral density
(B. P. Abbott et al. 2020a, 2020b) for a single detector to
calculate observed signal-to-noise ratios (SNRs) ρobs, and we
consider events and injections with a single-detector SNR
ρobs> 8 to be detectable. The full procedure for this
mock data generation process is described in M. Fishbach &
D. E. Holz (2017), A. M. Farah et al. (2023), and R. Essick &
M. Fishbach (2024).

Appendix B
Effects of Fitting for Secondary Mass

We examine the effect of only fitting the distribution of
primary masses on our results. To do so, we perform two
spectral siren analyses: one that includes a fit to mass ratio, and
one that does not. Both analyses use the parametric POWER
LAW + PEAK model for the distribution of primary masses. We
model the distribution of mass ratios with a power law, similar
to the majority of analyses presented in R. Abbott et al.
(2021b, 2023a).
We use the same set of simulated events for both analyses.

These are generated in the same way as described in
Section 2.1. The inference results are shown in Figure 4. We
find the posteriors on H0 to be similar between the two cases.
Additionally, the recovered mass spectra are nearly identical.
We therefore conclude that fitting for mass ratio does not
significantly impact our main conclusions.

Figure 4. Comparison of a parametric spectral siren analysis performed while fitting for the distributions of primary and secondary masses (magenta solid) and
primary masses only (green dashed). The posterior on H0 is relatively unchanged between the two, and only minor differences are observed in the mass spectra. �
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Appendix C
Gaussian Process–based Mass Distribution

In this Section, we discuss the properties of the GP-based
mass distribution and describe our modeling choices in more
detail.

Practically, the difference in the inference of the population
when using a GP versus other modeling choices is that the
population model ( ( )dN dt d ;i idet q q L in Equation (1)) is
determined directly by a realization of the GP, rather than by
a handful of hyperparameters Λ and evaluated on an analytical
function. In other words, when using parametric models,

( )dN dt d ;i idet q q L is calculated by evaluating a specific
functional form described by a small set of hyperparameters.
With the GP approach, the hyperparameters describing the
mass distribution are the rate at each event-level posterior
sample’s source-frame mass, and the rate at each found
injection’s source-frame mass. The GP is p(Λ), the prior on
population parameters (except in the case of cosmological
parameters, which all have uniform priors).

Because the GP is defined only at specific data points, we
have NevM+Ninj mass hyperparameters, where M is the
number of posterior samples per event and Ninj is the number of
injections used to calculate the selection function (see, e.g.,
S. Vitale et al. 2020; R. Essick & M. Fishbach 2021). In this
way, our GP-based mass distribution is similar to the
autoregressive population models used in T. A. Callister &
W. M. Farr (2024). Indeed, an autoregressive process is a GP
with a specific choice of kernel.

The kernel is a function that defines the covariance between
input points in the GP (in our case, two source-frame mass
values). It defines the notion of similarity between adjacent
points and thereby encodes our assumptions about the
smoothness of the source-frame mass distribution (C. E. Rasm-
ussen & C. K. I. Williams 2006). We use a Matérn kernel
(M. S. Handcock & M. L. Stein 1993; M. L. Stein 1999) with
ν= 5/2, but have repeated the analysis with ν= 3/2 and ∞,
finding little impact on the results, except that the ν=∞ case
(also called the squared exponential kernel) produces a slightly
more jagged mass distribution. In addition to the mean, Matérn
kernels have two parameters that determine their properties: a
length scale l and a variance s. In our use case, these are one
level further removed from hyperparameters, so we adopt the
terminology used in T. A. Callister & W. M. Farr (2024) and
call them “hyper-hyperparameters.” We fit these hyper-
hyperparameters along with the hyperparameters Λ to minimize
prior assumptions about the form of the mass distribution. We
use penalized-complexity priors on the hyper-hyperparameters
to enforce that the model does not create small-scale structure
uninformed by data, thereby avoiding overfitting (D. Simpson
et al. 2017; D. Simpson 2022). Explicitly, the priors on l and s
are Fréchet and Gamma distributions, respectively, and are
defined to have less than 5% support for correlation lengths
smaller than the average spacing between event-level posterior
means.

The time to evaluate a GP is notorious for scaling as the cube
of the number of data points, making GPs unwieldy with large
data sets, such as the ( )109 posterior samples and software
injections expected for O5. We therefore make two approx-
imations to a full GP to increase computational efficiency.
First, for each likelihood evaluation, we evaluate a full GP on a
regular grid between 0.1Me and 250Me and then interpolate it
at each data point. Second, we use the quasi-separability of

Matérn kernels to analytically perform the transformation
between covariance matrix and GP draw. This second step is
done using the QuasisepSolver module (D. Foreman-Ma-
ckey et al. 2017) in the tinygp code base (D. Foreman-Ma-
ckey et al. 2021), and requires data to be sortable (i.e., one-
dimensional).
Algorithmically, each posterior evaluation contains the

following steps:✎

1. Draw cosmological parameters H0 and ΩM from uniform
prior distributions.

2. Convert the luminosity distances and detector-frame
masses of each event posterior sample to redshifts and
source-frame masses according to the cosmology speci-
fied by step 1.

3. Draw hyper-hyperparameters l and s from the penalized-
complexity priors described above.

4. Draw a single GP realization with a kernel defined by l
and s. This is defined on a regular grid of source-frame
masses and evaluated using the QuasisepSolver in
tinygp.

5. Interpolate the GP at each event posterior sample and
injection source-frame mass (from step 3).

6. Calculate the population likelihood according to
Equation (1).

We perform these steps within numpyro (E. Bingham et al.
2019; D. Phan et al. 2019), sampling the posterior using the no-
u-turn sampler for Hamiltonian Monte Carlo (M. D. Hoffman
& A. Gelman 2011). This can be seen explicitly in the source
code accompanying this paper, in the scripts/priors.py
✎ script. At each likelihood evaluation, we calculate the
effective number of parameter estimation samples and found
injections. After sampling, we determine if the effective
number of samples exceed the efficiency criteria detailed in
R. Essick & W. Farr (2022). All results presented in this work
exceed these efficiency criteria without the need to excise
regions of parameter space with low numbers of effective
samples.

Appendix D
Biases Induced by the BROKEN POWER LAW Model

Figure 5 shows recovered posteriors on H0 as inferred from
50 mock catalogs using both the BROKEN POWER LAW and
POWER LAW + PEAK parametric models. We find that the
POWER LAW + PEAK model recovers H0 posteriors that are
largely symmetric about the true value, whereas the BROKEN
POWER LAW model typically finds more support for larger H0

values. We note that G. Pierra et al. (2024) report an
underestimate of H0 when fitting their Broken Power Law
model to a single data set generated with POWER LAW + PEAK,
but the prior bounds on the maximum mass parameter of their
model do not extend below the injected value of that parameter,
which in turn does not allow for the possibility of an
overestimated H0. It is therefore not possible to directly
compare the direction of our observed H0 offset with theirs,
despite the similarities between our chosen population models.
Regardless, this systematic offset demonstrates that incorrect

parametric models unfortunately induce a systematic bias in
cosmological inference, not an increase in statistical uncer-
tainty. Other parametric models may show different trends
depending on which parts of the mass distribution they
incorrectly model and how. Therefore, while we are able to
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identify the shortcomings of BROKEN POWER LAW when
POWER LAW + PEAK describes the true mass distribution, it is
not possible in practice to know which direction an incorrect
parametric model will bias H0 toward. Mitigating the bias by
using more flexible models may thus be the simplest solution to
this problem.
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