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Abstract
With the goal of transferringdg algebra structures on complexes along contractions,we
introduce a new condition on the associated homotopy, namely a generalized version
of the Leibniz rule. We prove that, with this condition, the transfer works to yield a
dg algebra (with vanishing descended higher A∞ products) and prove that it works
also after an application of the Perturbation Lemma even though the new homotopy
may no longer satisfy that condition. We also extend these results to the setting of A∞
algebras. Then we return to our original motivation from commutative algebra. We
apply these methods to find a newmethod for building a dg algebra structure on a well-
known resolution, obtaining one that is both concrete and permutation invariant. The
naturality of the construction enables us to find dg algebra homomorphisms between
these as well, enabling them to be used as inputs for constructing bar resolutions.

Keywords Dg algebras · Contractions · Perturbation lemma · A-infinity algebras
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Introduction

In this paper we prove a new result enabling us to transfer dg algebra structures
between complexes along certain homotopy equivalences. Thenwe give an application
to commutative algebra which was, in fact, our original motivation, namely to obtain
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a particularly well-behaved dg algebra structure on a well known free resolution in
commutative algebra.

There is indeed a long history of studying the transfer of algebraic structures in dif-
ferent settings, falling under the general rubric of homological perturbation theory
(HPT). Consider a contraction, or strong deformation retract, between two com-
plexes. In general, one can use the well-known Homotopy Transfer Theorem (HTT)
of Kadeishvili in [32] to transfer a dg algebra structure along it, but this usually yields
only a strongly homotopy associative algebra, or A∞ algebra, structure introduced
in [51, 52]. One setting of special interest has been that of a contraction between a
complex and its homology; here the transferred operations give theMassey operations
on the homology. These techniques were developed further by Gugenheim, Lambe,
and Stasheff in [15–19, 41], as well as in papers such as [9, 22, 24, 38, 43], with more
recent developments described in [28, 29]; there are also Lie algebra variants.

To add to the story, we prove two results. For each, the key is a condition on
the associated homotopy, namely a generalized version of the Leibniz rule that we
introduce in this paper.

First, we show that a dg algebra structure on one complex can be transferred along
a contraction to yield a dg algebra structure on the other one on the nose, and indeed
that all the higher A∞ products obtained via the HTT results vanish, as long as the
associated homotopy satisfies the generalized Leibniz rule; see Propositions 1.4 and
5.5. Our extra hypothesis on the homotopy ensures that the product on the retract
is, in fact, associative. Similarly, we note that the classical formulas for transferring
A∞ structures become much simpler in the presence of an analogous extension of the
generalizedLeibniz condition on the homotopy to higher products; see Proposition 5.7.

In our second result, we address the effect on such transfers of a homological tool
called the Perturbation Lemma, intimately related to the story above; this scenario
is key for our main application to commutative algebra. In [22], Huebschmann and
Kadeishvili prove that, for a contraction consisting of dg algebra homomorphisms
between two dg algebras, if one performs a multiplicative perturbation of the differen-
tial (that is, one for which the complex remains a dg algebra), the Perturbation Lemma
produces a contraction in the category of dg algebras with the same product structures.
However, one cannot apply this result if either of the maps in the contraction is not
a dg algebra homomorphism. Such a situation occurs quite naturally, for example,
for the algebra structures resulting from our first transfer result (and in our intended
application), where only one of the maps is in general a dg algebra homomorphism;
cf. Remark 2.6.

Instead, we prove another transfer result from scratch, namely that transferring a
dg algebra structure along a contraction after a multiplicative perturbation still yields
a dg algebra structure on the nose as long as the initial homotopy (before perturbation)
satisfies the generalized Leibniz rule; see Proposition 2.5. This is a useful extension
of our first result since the perturbed homotopy may no longer satisfy the generalized
Leibniz rule. We also note that transferring after perturbation yields a different dg
algebra structure than transferring before would.

In the last section, we provide a more detailed discussion contrasting the results in
this paper to similar results in the literature.
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Transferring algebra structures... 563

In the second portion of the paper, we turn to the application to commutative algebra
that motivated us to develop such transfer results. In that setting, one is interested in
algebra structures on the minimal free resolution of a ring A as an R-module for the
regular ring R in a presentation A = R/I ; this line of investigation was pioneered by
Buchsbaum and Eisenbud in [6] (as a shift from the earlier focus on the resolutions
of the residue field over A), who also noted that any lift of the multiplication on the
quotient ring to the resolution works if it is associative (and hence associativity is
really the crux of the matter). However, it is worth noting that few such resolutions
are known to carry dg algebra structures. Short resolutions are known to have a dg
algebra structure [6, 21, 37, 39] but counterexamples of longer ones can be found in
[3, 49, 50]. And yet having such a structure provides one with a powerful tool. We
refer the reader to [4] for a full discussion.

We apply our transfer results to obtain a new method of building dg algebra struc-
tures on the well-known resolutions constructed by Buchsbaum and Eisenbud in [5]
using Schurmodules. These are theminimal graded free resolutionsLa of the quotients
R/ma of a polynomial ring R in n variables by the ath powers of the homogeneous
maximal ideal. More recently, these resolutions have been used as the main compo-
nents in constructions of minimal resolutions of general graded Artinian algebras in
[12, 44].

The resolutions La were shown to have a dg algebra structure by several authors.
The first was Srinivasan in 1989 who constructed an explicit product using Young
tableaux; see [48]. Next in 1996 Peeva proved in [45] that one can place a dg algebra
structure on the Eliahou–Kervaire resolution, which applies here since the powers of
the maximal ideal are Borel-fixed. In [42] Maeda used the representation theory of
the symmetric group Sn to show that in characteristic zero any Sn-invariant lift of the
multiplication on the quotient ring to the resolution is automatically associative, but
did not give any explicit formulas.

In contrast to the other approaches, we use our homotopy transfer results to define a
product which is both explicit and very natural in that it is transferred from a truncation
of a Koszul complex and is naturally Sn-invariant. Indeed one immediate benefit is that
it also enables us to define dg algebra homomorphisms between these resolutions; see
TheoremB below. Hence one can use these resolutions as inputs for the bar resolutions
given by Iyengar in [30], yielding a free resolution of R/ma as a module over R/mb

for any positive integers b > a (in fact, a minimal one as the products are minimal).
We note that the only price of the symmetry driving this method is an increase in the
number of terms and, relatedly, some non-integer rational coefficients causing us some
minor restrictions on the characteristic.

More precisely, we prove the following results. In the first one, which is Theo-
rem 3.11, we first use the Perturbation Lemma to realize the resolution of La of R/ma

as a deformation retract of a complex Xa defined in (3.4) with an obvious dg algebra
structure and then transfer the algebra structure over using our perturbed transfer result
Proposition 2.5.

123



564 C. Miller, H. Rahmati

Theorem A Let a be a positive integer. Suppose that k is a field of characteristic zero
or positive characteristic p ≥ a + n. Consider the deformation retract

Xah∞
p∞

La

i∞

obtained in (3.6). Defining the product of α, β ∈ La by

αβ = p∞ (i∞(α)i∞(β))

yields a dg algebra structure on La . Furthermore, with this structure the map i∞ is a
homomorphism of dg algebras.

To prove this, we use a scaled version of the deRham differential to produce a
contracting homotopy for the Koszul complex on the variables that satisfies the gen-
eralized Leibniz rule; see Lemma 3.10. It is also worth mentioning that the product
that we define can be constructed in a basis free fashion; see Remark 3.14.

As a corollary we construct very natural dg algebra homomorphisms between these
resolutions as follows; see Theorem 4.1.
Theorem B. For positive integers b ≥ a, the natural surjection Xb � Xa induces a
homomorphism of dg algebras

fb,a : Lb → La

that gives a lifting of the natural surjection R/mb −→ R/ma . In particular, the Koszul
complex on the variables, K = L1, is a dg algebra over Lb for every positive integer
b. Moreover, one has that fc,a = fb,a fc,b whenever c ≥ b ≥ a.

The paper is organized as follows: In Sect. 1, we prove the general statement for
transferring dg algebra structures along a strong deformation retract whose homo-
topy satisfies the generalized Leibniz rule; see Proposition 1.4. In Sect. 2, we recall
the well-known Perturbation Lemma and prove Proposition 2.5, a perturbed version
of our dg algebra transfer result from Sect. 1. Section3 contains our main applica-
tion, which is to obtain, in a new way, dg algebra structures on the resolutions La of
Buchsbaum and Eisenbud for all a ≥ 1. In Sect. 4, we construct dg algebra homomor-
phisms between these resolutions. Finally, in Sect. 5, we study the implications of the
additional hypotheses of generalized Leibniz-type rules for the Homotopy Transfer
Theorems, resulting in Propositions 5.5 and 5.7.

Finally, in Sect. 6, we provide a comparison of the results in this paper to similar
results in the literature.

In this paper, we assume that the complexes consist of R-modules for some com-
mutative ring R and that they are graded homologically, rather than cohomologically;
the reader should be aware that some sources for A∞ algebras use the latter instead.
One more note: All double complexes in this paper are considered to be anticommu-
tative as in [55], and hence their totalizations do not require any change of sign in the
differentials. When we speak of a double complex we often mean the totalization of it
as a complex (for example, when we discuss a dg algebra structure on it); which way
we are viewing it should be clear from the context.
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Transferring algebra structures... 565

Furthermore, in the body of this paper, we will use the term strong deformation
retract, rather than the term contraction.

1 Transfer of dg algebra structures

In this section, we show how to transfer dg algebra structures along certain homotopy
equivalences, namely deformation retracts whose associated homotopy behaves well
with respect to products. As a further exploration, in Sect. 5 we determine the effect
of this condition for the homotopy on the A∞-algebra structures resulting from the
Homotopy Transfer Theorem.

We begin with the classical definition.

1.1 Definition A differential graded algebra over R (dg algebra) is a complex (X , ∂)

of R-modules lying in nonnegative degrees equipped with a product given by a chain
map

X ⊗R X → X , (α, β) → αβ

giving an associative and unitary product with 1 ∈ X0.
The fact that the product is a chain map is equivalent to the differentials of X

satisfying the Leibniz rule:

∂(αβ) = ∂(α)β + (−1)|α|α∂(β), for all α, β ∈ X

where |α| denotes the degree of α. In addition, we assume that the product is strictly
graded commutative, that is, αβ = (−1)|α||β|βα for all α, β ∈ X and α2 = 0 if the
degree of α is odd.

A homomorphism of dg algebras is a morphism of complexes φ : X → X ′ such
that φ(1) = 1 and φ(αβ) = φ(α)φ(β).

Next we recall the definitions of the main ingredients in transfer of algebra struc-
tures.

1.2 Definition A set of homotopy equivalence data between two chain complexes is
the following set of information: quasi-isomorphisms of complexes

(X , ∂X )
p

(Y , ∂Y )
i

with i p � 1 and pi � 1.
It is called a deformation retract if, in addition, one has pi = 1. In this case we use

the following notation

(X , ∂X )h
p

(Y , ∂Y )
i

including only the associated homotopy h with i p = 1 + ∂Xh + h∂X .
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566 C. Miller, H. Rahmati

With further hypotheses, these are called strong deformation retracts or contrac-
tions; see Definition 2.3.

Next we introduce a new condition on the associated homotopy that is the key to
our results, namely one that is in some sense weakly multiplicative and hence enables
associativity to be preservedwhen transferring algebra structures. This property, a gen-
eralization of the Leibniz rule, is crucial in preserving the associativity of a transferred
algebra structure.

1.3 Definition Let X be a complex of R-modules equipped with a product, and let
h : X → X be a graded map (but not necessarily a chain map).

We say that h satisfies the scaled Leibniz rule if for every α, β ∈ X there are
r , s ∈ R depending only on the degrees of α and β, respectively, such that

h(αβ) = rh(α)β + sαh(β)

for every α and β in X .
Although this condition is the natural one for our application, the proofs of our

transfer results go through if the homotopy h satisfies a weaker condition, which we
call the generalized Leibniz rule, namely that

h(αβ) ∈ h(α)X + Xh(β)

for every α and β in X .

We now prove the main result of this section. Note that the hypothesis hi = 0 holds
for strong deformation retract; see Definition 2.3. This is the case in our application
in Sect. 3.

1.4 Proposition Let X be a dg algebra. Consider a deformation retract

(X , ∂ X )h
p

(Y , ∂Y )
i

with associated homotopy h that satisfies the generalized Leibniz rule and that hi = 0
(or, more generally, that (∂Xh+ h∂X ) (i(α)i(β)) = 0). The following product defines
a dg algebra structure on Y

αβ
def= p (i(α)i(β)) for α, β ∈ Y

where the product inside parentheses is the one in X.
Moreover, with this structure on Y , themap i becomes a dg algebra homomorphism.

Proof The Leibniz rule for Y holds without the assumptions that h satisfies the gen-
eralized Leibniz rule and hi = 0. Indeed, for any elements α, β ∈ Y , one has
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Transferring algebra structures... 567

∂Y (αβ) = (∂Y p)(i(α)i(β))

= (p∂X )(i(α)i(β))

= p
(
∂X (i(α))i(β) + (−1)|α|i(α)∂X (i(β))

)

= p
(
i(∂Y (α))i(β)

)
+ (−1)|α| p

(
i(α)i(∂Y (β))

)

= ∂Y (α)β + (−1)|α|α∂Y (β)

where the first equality is from the definition of the product, the second one holds
since p is a chain map, the third one is from the Leibniz rule for X , the fourth holds
since i is a chain map, the fifth is again from the definition of the product.

To prove the associativity and the last assertion, we use the condition that

(∂Xh + h∂X ) (i(α)i(β)) = 0 (1.4.1)

for all α, β ∈ Y . As an aside, we verify that this equality holds, in particular, when
h satisfies the generalized Leibniz rule: if one expands this expression using this rule
and the fact that ∂X satisfies the Leibniz rule, one sees that every term has a factor
with hi , which is zero, or a factor with h∂X i which is also zero since ∂X i = i∂Y .

To verify associativity, take any elements α, β, γ ∈ Y . One has

(αβ)γ = p (i(α)i(β)) γ

= p ((i p(i(α)i(β))i(γ ))

= p
(
(1 + ∂Xh + h∂X ) (i(α)i(β)) i(γ )

)

= p ((i(α)i(β)) i(γ ))

where the first two equalities are from the definition of the product and the third one
is by the equality i p = 1 + ∂Xh + h∂X . A similar argument shows that

α(βγ ) = p (i(α) (i(β)i(γ )))

and hence associativity holds since it holds for X .
Finally, one can see that p(1) is the identity element of Y and that the product on

Y is graded commutative since p and i are graded maps.
To see that the map i is a dg algebra homomorphism, let α, β ∈ Y . One then has

i(αβ) = i p (i(α)i(β))

= (1 + ∂Xh + h∂X ) (i(α)i(β))

= i(α)i(β)

where the second equality holds as i and p form a deformation retract and the last one
follows from (1.4.1). 	


123



568 C. Miller, H. Rahmati

1.5 Remark Although themaps i and p in Proposition 1.4 formadeformation retract, in
contrast to i , the map p need not be a homomorphism of dg algebras for the transferred
dg algebra structure on Y . We give an example in Remark 3.7.

For the application we have in mind in Sect. 3, we need a slightly stronger result
since, after we apply the Perturbation Lemma, the new homotopy need no longer
satisfy the generalized Leibniz rule even if the original one does; however we show
in this case that the transfer still works as long as the original deformation retract is
strong. We give this result in Proposition 2.5.

2 Transfer of dg algebra structures and the Perturbation Lemma

The second aim of this paper, which we address in the next section, is to use transfer
along a deformation retract to find a dg algebra structure on a well known complex
that we recall in Sect. 3.3. Building this deformation retract involves a homological
tool called the Perturbation Lemma. In this section we extend the transfer result in
Proposition 1.4 to perturbations of the original setting, resulting in Proposition 2.5. In
Remark 2.6 we compare our result with the one in [22].

The Perturbation Lemma generates new homotopy equivalences from initial ones;
in general the aim is to modify the differentials of the complexes while maintaining a
homotopy equivalence. The PerturbationLemmafirst appeared in print in [8], although
it had its roots in [7, 20, 47], and unpublished correspondence between Brown and
Barratt; it appears again in [18]. Its full early history may be read in [29], as well as the
MathSciNet entry for [16] written by R. Brown. Further work applying and extending
perturbation-theoretic methods was done in [15–19, 22, 24–29, 41] (as well as recent
work in the context of Lie algebras, whichwe do notmention here). In [11] Dyckerhoff
and Murfet develop the lemma for the analogous case of matrix factorizations and in
[23] Hogancamp does so for curved algebras. We also found the survey [10] useful.

The Perturbation Lemma is especially useful for double complexes where one can
temporarily forget either the horizontal or the vertical differentials and add them back
in later as the “perturbation”; this is the context in which we will apply it in Sect. 3.

We define some terminology that is needed in stating the Perturbation Lemma.

2.1 Definition Consider a set of homotopy equivalence data

(X , ∂ X )h
p

(Y , ∂Y )
i

A perturbation is a map δ on X of the same degree as the differential ∂X such that
(∂X + δ)2 = 0, that is, ∂X + δ is again a differential. The perturbation δ is called
small if 1 − δh is invertible. Most commonly, this happens when δh is elementwise
nilpotent for then one has

(1 − δh)−1 =
∞∑
j=0

(δh) j = 1 + (δh) + (δh)2 + · · ·
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Transferring algebra structures... 569

where the sum is finite on each element of X .

In the next definition we recall the the data obtained by perturbing a homotopy
equivalence data.

2.2 Definition Consider a set of homotopy equivalence data

(X , ∂X )h
p

(Y , ∂Y )
i

with associated homotopy h. Let δ be a small perturbation on X , and let A = (1 −
δh)−1δ. We define the following new data

(X , ∂X∞)h∞
p∞

(Y , ∂Y∞)
i∞

where

i∞ = i + hAi, p∞ = p + pAh, ∂X∞ = ∂X + δ, and ∂Y∞ = ∂Y + pAi

and set
h∞ = h + hAh

Note that when δh is elementwise nilpotent, then the formulas can be rewritten as
follows.

i∞ = (1 + (hδ) + (hδ)2 + · · · )i
p∞ = p(1 + (δh) + (δh)2 + · · · )
h∞ = h(1 + (δh) + (δh)2 + · · · )
∂Y∞ = ∂Y + pδi∞

= ∂Y + p∞δi

2.3 Definition A strong deformation retract, often called a contraction since its intro-
duction in [13], is a deformation retract that satisfies the following equations

hi = 0, ph = 0, h2 = 0. (2.3.1)

These ensure that the property pi = 1 is inherited by the perturbed data.
As described in [10] for example, any deformation retract can be converted into a

strong one by modifying the chosen homotopy in several steps. Fortunately, for our
application, the deformation retracts involved are all strong.

With this terminology, we are now ready to state the Perturbation Lemma.
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570 C. Miller, H. Rahmati

2.4 Perturbation Lemma. Given a set of homotopy equivalence data

(X , ∂X )h
p

(Y , ∂Y )
i

its perturbation via a small perturbation gives a set of homotopy equivalence data

(X , ∂X∞)h∞
p∞

(Y , ∂Y∞)
i∞

If, furthermore, the original homotopy equivalence is a strong deformation retract,
then so is the resulting one, that is,

p∞i∞ = 1, h2∞ = 0, h∞i∞ = 0, and p∞h∞ = 0,

Recall that by Proposition 1.4, given a strong deformation retract whose homotopy
satisfies the generalized Leibniz rule, a dg algebra structure can be transferred along
it. One might want to use the Perturbation Lemma to obtain new deformation retracts
to which one could apply this proposition. However, even if the original homotopy
satisfies the generalized Leibniz rule, the new one may no longer satisfy it. We remedy
this by proving an extension of the transfer results as follows.

Recall that a perturbation δ on a dg algebra is called multiplicative if it satisfies
the Leibniz rule (equivalently, if the algebra (X , ∂X∞) from Lemma 2.4 is still a dg
algebra).

2.5 Proposition Let X be a dg algebra. Consider a strong deformation retract,

(X , ∂X )h
p

(Y , ∂Y )
i

with associated homotopy h that satisfies the generalized Leibniz rule, and let δ be a
small perturbation on X.

If δ is multiplicative, then the following product defines a dg algebra structure on
the perturbed complex (Y , ∂Y∞)

αβ
def= p∞ (i∞(α)i∞(β)) = p (i∞(α)i∞(β)) for α, β ∈ Y

where the product inside parentheses is the one in X.
Moreover, with this structure on Y , the map i∞ becomes a dg algebra homomor-

phism.

Proof The proof is the same as that of Proposition 1.4 with the exception that to prove
associativity and that i∞ is a dg algebra homomorphism, one needs to show that

(∂X∞h∞ + h∞∂X∞) (i∞(α)i∞(β)) = 0.
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Transferring algebra structures... 571

Here this follows by similar reasoning due to the facts that one has

h∞ = h + hAh and i∞ = i + hAi where A = (1 − δh)−1δ

and that h2 = 0 and hi = 0. 	

2.6 Remark We may contrast this result to the Algebra Perturbation Lemma in [16]
and [22, 2.1∗]. In their result, Guggenheim, Lambe and Stasheff and, independently,
Huebschmann and Kadeishvili assume that X and Y are dg algebras and the maps i
and p are both dg algebra homomorphisms. They prove that after an application of the
Perturbation Lemma the complex Y with its new differential is still a dg algebra and the
maps i∞ and p∞ in the resulting deformation retract are dg algebra homomorphisms
for this structure. Note that the algebra structures on X and Y have not changed after
perturbation.

We, on the other hand, start by assuming that only X is a dg algebra and, even if
one were to consider the transferred dg algebra structure on Y using Proposition 1.4,
the map p is not necessarily a homomorphism of dg algebras. This is the case in the
setting of our application in Sect. 3; see Remark 3.7 for an example. Furthermore, in
the same remark we show also that the algebra structure on Y that results from the
transfer after perturbation via Proposition 2.5 is in general not the same as the product
one gets via transfer without a perturbation. So our results apply in a different setting
than the Algebra Perturbation Lemma does and yield different structures.

Connections with the literature are discussed further in Sect. 6.

3 Application to aminimal resolution

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. In [5], Buchsbaum and
Eisenbud introduced the minimal free resolution La of the quotient R/(x1, . . . , xn)a

of R by powers of the homogeneous maximal ideal. In [48], Srinivasan gives a dg
algebra structure on La using Young tableaux. In this section, we use the Perturbation
Lemma in a simple way to obtain a dg algebra structure on La that is Sn-invariant.
Our approach works in characteristic zero and in positive characteristic provided that
the characteristic is large enough.

We begin by recalling the definition of the resolution La and relating it to (the
totalization of) a truncation of a certain double complex in (3.1), (3.3), and (3.4). In
(3.5) and (3.6) we use the Perturbation Lemma to form a deformation retract between
them, as long as one has an appropriately nice associated homotopy so that one can
apply Proposition 2.5. Lastly we define such a homotopy using a scaled de Rham
differential in (3.8), proving its properties in Lemmas 3.9 and 3.10, culminating in
Theorem 3.11.

3.1 Here we define the double complex we will be working with. This is simply
a rearrangement of a Koszul complex as a double complex of free R-modules; see
Remark 3.2.

Let S = R[y1, . . . , yn] be a polynomial ring and let � = R〈e1, . . . , en〉 be an
exterior algebra. Consider the following (anticommutative) double complex whose
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572 C. Miller, H. Rahmati

rows are the strands of the Koszul complex K (y1, . . . , yn; S) and whose columns are
the tensor product over R of the Koszul complex over R on x1, . . . , xn with the graded
pieces Sa of S. We denote both it and its totalization by S, as it is clear everywhere
from the context which we mean. All the tensor products in the diagram are over R.

�n ⊗ Sa
d

κ · · ·

· · · κ
�n−1 ⊗ Sa

κ · · ·
...

d

...

d
...

d

�a ⊗ S2

d

κ · · · · · · κ
�2 ⊗ Sa

d

κ · · ·

...

d

�a ⊗ S1
d

κ
�a−1 ⊗ S2

d

κ · · · · · · κ
�1 ⊗ Sa

d

κ · · ·

�a ⊗ S0
κ

�a−1 ⊗ S1
κ

�a−2 ⊗ S2
κ · · · · · · κ

�0 ⊗ Sa

...

d

...

d

...

d

�3 ⊗ S0
κ

d

�2 ⊗ S1
κ

d

�1 ⊗ S2
d

κ · · ·

�2 ⊗ S0
κ

d

�1 ⊗ S1
κ

d

�0 ⊗ S2

�1 ⊗ S0
κ

d

�0 ⊗ S1

�0 ⊗ S0

(3.1.1)

More explicitly, the horizontal differentials κi,a : �i ⊗ Sa → �i−1 ⊗ Sa+1 are
given by

κi,a(ei1 ∧ · · · ∧ eii ⊗ p) =
a∑
j=1

(−1) j+1ei1 ∧ · · · ∧ êi j ∧ · · · ∧ eii ⊗ yi j p (3.1.2)

and the vertical differentials di,a : �i ⊗ Sa → �i−1 ⊗ Sa are given by

di,a = kosi ⊗ 1

where kosi denotes the i th differential in the Koszul complex K (x1, . . . , xn; R).
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Transferring algebra structures... 573

For the totalization of this double complex (or of truncations of it), since it is
anticommutative, the differentials are defined as

∂i =
∑
a

(κi,a + di,a)

without adding any signs. For simplicity we write

∂ = κ + d.

We continue to omit the indices on the maps when there is no ambiguity.

3.2 Remark As an aside,we give a slightly differentway of obtaining a double complex
which could have been used in this section. It differs only in signs from the one pictured
in (3.1.1), but comes from a well known construction as follows.

Let V be a k-vector space with dimk V = n, and consider the symmetric and
exterior algebras

S = S(V ) ∼= k[x ′
1, . . . , x

′
n] ∼= k[x ′′

1 , . . . , x ′′
n ]

� = �(V ) ∼= k〈e1, . . . , en〉

Consider S ∼= R as a module over its enveloping algebra S
e = S ⊗k S via the

multiplicationmap. Its minimal graded free resolution, after identifying the two copies
of S with polynomial rings as in the display above, is the Koszul complex�⊗k S⊗k S
on the regular sequence {x ′

i ⊗ 1 − 1 ⊗ x ′′
i }. Rearranging factors, it can be expressed

as

S ⊗k � ⊗k S = S ⊗k �︸ ︷︷ ︸
∂ ′

⊗k S = S ⊗k � ⊗k S︸ ︷︷ ︸
∂ ′′

with the homological degree being the degree of the middle factor and

∂ = ∂ ′ ⊗ 1 − 1 ⊗ ∂ ′′ = d − κ

where ∂ ′ is the Koszul differential on x ′
1, . . . , x

′
n and ∂ ′′ is the Koszul differential

on x ′′
1 , . . . , x ′′

n . Viewing graded strands, one can write this as a totalization of an
anticommutative double complex of free R-modules given by

S ⊗k �
i ⊗k S j ∼= R ⊗k �

i ⊗k S j ∼= (R ⊗k �
i
) ⊗R (R ⊗k S j ) ∼= �i ⊗R S j

Although this double complex differs from the one pictured in (3.1.1) by a sign on the
horizontal maps κ , one could equally well use this complex in the rest of this section;
similarly, one could obtain the double complex (3.1.1) from a Koszul complex by
using −x ′′

i in place of x ′′
i above.
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3.3 We introduce the complexesLa of Buchsbaum andEisenbud here. They show that
this is a minimal R-free resolution of R/ma , where m is the homogeneous maximal
ideal of R.

It is well known that the rows of the double complex (3.1.1) except the bottom one
are exact; in fact, they can be viewed as the result of applying a base change to the
strands of the tautological Koszul complex (see, for example, [44]). Hence they are
contractible as they consist of free R-modules. So one can define free R-modules

Li,a = im κi+1,a−1 = ker κi,a ∼= coker κi+2,a−2,

in other words, with split exact sequences

�i+2 ⊗ Sa−2
κi+2,a−2−−−−−→ �i+1 ⊗ Sa−1

κi+1,a−1−−−−−→ Li,a −→ 0

0 −→ Li,a
⊆−→ �i ⊗ Sa

κi,a−−→ �i−1 ⊗ Sa+1.

The vertical differentials d in the diagram induce maps on these modules, which we
again denote by d, to yield a complex

La : 0 → Ln−1,a
dn−1−−−→ Ln−2,a

dn−2−−−→ · · · → L0,a
(−1)a−1ε−−−−−−→ R → 0

augmented by the negative of the evaluation map

ε : L0,a = �0 ⊗ Sa ∼= Sa → R (3.3.1)

induced by the evaluation map from S = R[y1, . . . , yn] to R = k[x1, . . . , xn] sending
yi to xi . We remark that the original complex defined by Buchsbaum and Eisenbud
is augmented by ε, not (−1)a−1ε, but we work with this isomorphic complex instead
since this convention makes the computations via our method simpler.

3.4 Next we define tr≥a(S) and tr≤a−1(S) to be the totalizations of the truncations at
column a of the anticommutative double complex S

{�i ⊗ S j | j ≥ a} and {�i ⊗ S j | j ≤ a − 1},

respectively, with differentials inherited from S. It is well-known that there is a quasi-
isomorphism, and hence a homotopy equivalence,

tr≤a−1(S) � La

but we will re-derive this via the Perturbation Lemma in order to simultaneously trans-
fer a dg algebra structure from tr≤a−1(S) over toLa (by obtaining a strong deformation
retract rather than just any homotopy equivalence).

To set up for this, we first argue as in [54] that the left truncation tr≤a−1(S) itself
has a natural dg algebra structure. Indeed, the entire complex S is a dg algebra with
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the obvious multiplication: for α ∈ �i ⊗ Sa and β ∈ � j ⊗ Sb, the product is obtained
by multiplying the factors in � and in S independently. It satisfies the Leibniz rule
and other properties of a dg algebra because the differentials κ and d do and because
homological degree in the totalization of S is, in fact, given by the degree in �. With
this multiplication, the right truncation tr≥a(S) is clearly a dg ideal and the quotient
complex

Xa
def= tr≤a−1(S) ∼= S/tr≥a(S)

is therefore a dg algebra. Concretely, the resulting product on the left truncation
tr≤a−1(S) is given by the multiplication on S with the proviso that any terms landing
in �i ⊗ S j with j ≥ a are taken to be zero.

For the next step, we first need a tool for converting a split exact sequence to a
deformation retract fromany truncation to the imageof thedifferential at the truncation.

3.5 Let (X , ∂X ) be a contractible complex of R-modules, i.e., one that is homotopy
equivalent to zero via a homotopy s, (i.e., one that is split exact). Denote its truncation
at position c by

tr≥c(X) = · · · −→ Xn
∂X
n+1−−−→ · · · −→ Xc+1

∂X
c+1−−−→ Xc −→ 0

Let im ∂X
c denote the stalk complex with this module in degree c and 0 modules

elsewhere. The chain maps i and p given in degree c by sc−1 and ∂X
c , respectively,

yield a deformation retract

tr≥c(X)
p

im ∂X
c

i

with associated homotopy h = −s|tr≥c X . Indeed one can easily check that pi = 1 and
i p � 1 via the homotopy h. Note that one could also use coker ∂X

c+1 instead of im ∂X
c

with appropriate i and p.
If, furthermore, the original contracting homotopy satisfies s2 = 0, then the defor-

mation retract is strong: h2 = 0 and hi = 0 and one always has ph = 0 due to the
fact that p = 0 in degrees n �= c.

Nextwewant to transfer this structure fromXa = tr≤a−1(S), which has a dg algebra
structure by (3.4) to the minimal free resolution La of R/ma . By Proposition 2.5, it
suffices to find a strong deformation retract of the form

(Xa, ∂
Xa ) (La, d)

that comes via a perturbation of a strong deformation retract whose homotopy satisfies
generalized Leibniz. Note that the differential ofXa is exactly κ +d. In 3.6, we discuss
how one can find this deformation retract, given a contracting homotopy on the higher
rows of S, which we define in 3.8 and whose required properties we establish in
Lemmas 3.9 and 3.10.
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3.6 Here is an overview of howwe obtain such a deformation retract using the Pertur-
bation Lemma; see (2.4). First we form a deformation retract between two complexes
X

◦
a and L

◦
a , where X

◦
a is obtained from Xa by replacing the vertical differentials d by

0 and L
◦
a is the complex La with differentials set equal to zero. We do this via (3.5)

using the homotopy from 3.8. Second we use the Perturbation Lemma to reinsert the
original differentials on each, which has the effect of modifying the maps i and p.

We start by finding a deformation retract of the form

(X◦
a, κ)h

p
(L◦

a, 0)
i

For rows of X◦
a except the bottom one, we use (3.5) as follows. Recall that the rows

of S are split exact with a contracting homotopy that we call σ (an explicit one is
given in Remark 3.8). So each row that gets truncated has a deformation retract onto
the image Li,a of the next horizontal differential; see diagram (3.6.2). Note that some
of the lower rows will remain intact and hence are homotopy equivalent to zero; see
(3.6.2). On the other hand, the row �0 ⊗ S0 at the bottom of the diagram is not exact
and so needs to be dealt with separately in conjunction with R = (La)0. For this we
use that there is an isomorphism ε : �0 ⊗ S0 → R defined in (3.3.1).

Putting this all together, one obtains chain maps given by

i =
{

σ on Li,a

ε−1 on R

p =

⎧⎪⎨
⎪⎩

κ on �i ⊗ Sa−1 for i > 0

ε on �0 ⊗ S0
0 else,

(3.6.1)

with the property that pi = 1 and i p � 1 via the homotopy h = −σ |X◦
a
. The maps i

and p are pictured in following diagram.
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0

�n ⊗ Sa−1 p Ln−1,a

i

· · · �n−1 ⊗ Sa−1 p Ln−2,a

i

...
...

...

... �a ⊗ S1 · · · · · · �2 ⊗ Sa−1 p L1,a

i

�a ⊗ S0 �a−1 ⊗ S1 · · · · · · �1 ⊗ Sa−1 p L0,a

i

�a−1 ⊗ S0
... · · · �0 ⊗ Sa−1 R

i

... �2 ⊗ S1 · · ·

�2 ⊗ S0 �1 ⊗ S1 · · ·

�1 ⊗ S0 �0 ⊗ S1

�0 ⊗ S0

p

(3.6.2)

Next we apply the Pertubation Lemma, adding the missing vertical differentials d
of Xa and d of La . More precisely, consider the perturbation δ = d on X

◦
a ; this is a

small perturbation since the double complex Xa is bounded. First, we check that that
the differentials on La obtained in this way are the original differentials on La . On
L j,a with j > 0, this is because one has

∂L
◦
a + p∞δi = 0 + p(1 + (dh) + (dh)2 + · · · )di = pdi = dpi = d

where the second equality follows from the fact that p vanishes onmost of the diagram,
the third one follows from the fact that p is defined using κ and ε, as well as the
commutativity of diagram (3.1.1) and the properties of ε, and the last one is because
pi = 1. OnL0,a a similar computation gives that the inherited differential is (−1)a−1ε
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In summary, one gets a homotopy equivalence

(X◦
a, ∂

Xa = κ + d)
p∞

(L◦
a, ∂

La = d)
i∞

(3.6.3)

For later use, we calculate the new chain maps i∞ and p∞, as well as the associated
homotopy h∞ using the formulas in Definition 2.2. The map i∞ is given by

i∞ = (1 + (hδ) + (hδ)2 + · · · )i

where δ = d, and this can be written as

i∞ =
{

(1 + (−σd) + (−σd)2 + · · · )σ on Li,a

ε−1 on R.
(3.6.4)

In contrast, the map p∞ is remarkably simpler since p equals zero on most of its
domain. Indeed it is given by

p∞ = p(1 + (δh) + (δh)2 + · · · )

which can be written as

p∞ =

⎧⎪⎨
⎪⎩

κ on �i ⊗ Sa−1 for i > 0

(−1) jε on �0 ⊗ S j for all j

0 else.

(3.6.5)

We record also the resulting homotopy for i∞ p∞ � 1, which is

h∞ = h(1 + (δh) + (δh)2 + · · · )
= −σ(1 + (−dσ) + (−dσ)2 + · · · ) (3.6.6)

The map p∞ has the form pictured in the following diagram.
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0

�n ⊗ Sa−1
p∞

Ln−1,a 0

· · · �n−1 ⊗ Sa−1
p∞

Ln−2,a 0

...
...

...

... �a ⊗ S1 · · · · · · �2 ⊗ Sa−1
p∞

L1,a 0

�a ⊗ S0 �a−1 ⊗ S1 · · · · · · �1 ⊗ Sa−1
p∞

L0,a 0

�a−1 ⊗ S0
... · · · �0 ⊗ Sa−1

p∞
R

... �2 ⊗ S1 · · ·

�2 ⊗ S0 �1 ⊗ S1 · · ·

�1 ⊗ S0 �0 ⊗ S1

p∞

�0 ⊗ S0
p∞

(3.6.7)

3.7 Remark As an aside, we provide an example to show the claim in Remark 1.5. To
see this, consider the dg algebra structure on L◦

2 obtained by applying Proposition 1.4
to the deformation retract

(X◦
2, κ)h

p
(L◦

2, 0)
i

given in 3.6.1 and 3.6.2. Let α = e1 ⊗ 1 ∈ �1 ⊗ S0 and β = 1⊗ y1 ∈ �0 ⊗ S1. Since
p(α) = 0, one has p(α)p(β) = 0. However, p(αβ) = p(e1⊗ y1) = 1⊗ y21 ∈ L0,2 =
�0 ⊗ S2 is clearly nonzero. Therefore, p is not a homomorphism of dg algebras.

Additionally, one can also see that for a ≥ 2 the transferred algebra structure on
La is trivial except for products involving (La)0 = R. Fortunately, an application of
Proposition 2.5 for the perturbation described in 3.6 results in a nontrivial product.
Indeed, it is easy to see that a mostly trivial product would not satisfy the Leibniz rule.

We now define an explicit contracting homotopy σ on the rows of S that can be
used to complete the argument in 3.6. This turns out to be nothing but a scaled version
of the de Rham differential.

3.8 In view of Proposition 2.5, in order to transfer the dg algebra structure from Xa

to La we need a strong deformation retract. As explained in 3.6 in view of (3.5), this
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comes down to finding a contracting homotopy σ with σ 2 = 0 on the rows

· · · → �i−1 ⊗ Sm+1 → �i ⊗ Sm → �i+1 ⊗ Sm−1 → · · ·

of the entire diagram S displayed in (3.1.1) with the property that i + m > 0.
Assume now that the field k has characteristic zero (for the positive characteristic

case, see the end of this portion).
Define σi,m : �i ⊗ Sm → �i+1 ⊗ Sm−1 as

σi,m(et1 ∧ · · · ∧ eti ⊗ yp1 · · · ypm ) = 1

i + m

m∑
j=1

ep j ∧ et1 ∧ · · · ∧ eti ⊗ yp1 · · · ŷp j · · · ypm

where ŷt denotes omission of the factor yt and it is understood that σi,m = 0 when
the target of the map is the zero module, that is, when m = 0 or i = n. This can also
be written as a scaled de Rham differential

σi,m = 1

i + m

n∑
j=1

e j ⊗ ∂

∂ y j
.

To address the case of positive characteristic p, note that in general we only need
to define a contracting homotopy σi,m for m ≤ a when we apply (3.5) to truncate the
complex at position a − 1, and so it suffices to assume p ≥ n + a. This ensures that
when necessary one has 1

i+m ∈ k.
In Lemma 3.9, we show σ is a contracting homotopy with σ 2 = 0. In view of

Lemma 1.4, we also require the homotopy to satisfy the generalized Leibniz property;
this also comes down to the same property for σ on the rows of the entire diagram S

in (3.1.1), which we verify in Lemma 3.10.
A contracting homotopy was defined previously by Srinivasan in [48]. However, it

does not satisfy either required property. The map σ defined above is more symmetric
(it is invariant under permutations of the variables) and hence ends up having its square
equal to zero and satisfying the generalized Leibniz rule, in fact, the stronger scaled
Leibniz rule, as we see in the next two results.

3.9 Lemma Consider the maps σ defined in (3.8) on the rows of diagram (3.1.1) in
which the indices sum to a positive number.

If R has characteristic zero, the maps σ give a contracting homotopy on the rows
and satisfy σ 2 = 0.

If R has positive characteristic p, the same conclusions hold forσi,m withm ≤ a−1
as long as p ≥ n + a.

Proof First we show that κσ + σκ = 1. At the ends of the rows, one can show this
easily, so we may work with basis elements of �i ⊗ Sm with m, i > 0. We compute
κσ and σκ separately. The reader should note that, although some of the terms in
the formulas could contain factors of the form e j ∧ e j , we do not replace any such
repeated factors with 0 as leaving them avoids describing complicated cases. This does
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not affect our computations since the formula for the Koszul differential κ gives the
same output for either form of input.

For any α = et1 ∧ · · · ∧ eti ⊗ yp1 · · · ypm ∈ �i ⊗ Sm , one has

κi+1,m−1σi,m(α)

= 1

i + m

m∑
j=1

[α +
i∑

u=1

(−1)uep j ∧ et1 ∧ · · · êtu · · · ∧ eti ⊗ ytu yp1 · · · ŷp j · · · ypm ]

= 1

i + m
[mα +

m∑
j=1

i∑
u=1

(−1)uep j ∧ et1 ∧ · · · êtu · · · ∧ eti ⊗ ytu yp1 · · · ŷp j · · · ypm ]

and

σi−1,m+1κi,m(α)

=
i∑

u=1

(−1)u+1 1

i + m
[α +

m∑
j=1

ep j ∧ et1 ∧ · · · êtu · · · ∧ eti ⊗ ytu yp1 · · · ŷp j · · · ypm ]

= 1

i + m
[iα +

m∑
j=1

i∑
u=1

(−1)u+1ep j ∧ et1 ∧ · · · êtu · · · ∧ eti ⊗ ytu yp1 · · · ŷp j · · · ypm ]

Thus for m, i > 0 one has

(κi+1,m−1σi,m + σi−1,m+1κi,m)(α) =
(

m

i + m

)
α +

(
i

i + m

)
α = α

Next, to see that σ 2 = 0, one computes for m ≥ 2

σi+1,m−1σi,m(α) = 1

(i + m)2

m∑
j=1

m∑
u=1
u �= j

epu ∧ ep j ∧ et1 ∧ · · · ∧ eti ⊗ yp1 · · · ŷpu · · · ŷp j · · · ypm

which is zero since epu ∧ ep j = −ep j ∧ epu .
Note that this proof works in positive characteristic as long as the maps σi,m are

defined, which is guaranteed by the hypotheses. 	

3.10 Lemma If R has characteristic zero, the maps σ defined in (3.8) satisfy the scaled
Leibniz rule. More precisely, when α ∈ �i ⊗ Sa, β ∈ � j ⊗ Sb with i + a + j + b
positive, the maps σ satisfy

σ(αβ) = 1

i + a + j + b

(
(i + a)σ (α)β + (−1)i ( j + b)ασ(β)

)

and when i = a = j = b = 0 one has that σ(αβ), σ(α), and σ(β) are all 0.
If R has positive characteristic p, the same conclusion holds as long as p ≥

i + a + j + b.
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Proof Without loss of generality, we may assume that

α = et1 ∧ · · · ∧ eti ⊗ yp1 · · · ypa and β = es1 ∧ · · · ∧ es j ⊗ yq1 · · · yqb
are basis elements with i +a+ j +b > 0 (the case when i +a+ j +b = 0 is trivial).

Then one has the following equalities

σ(αβ) = σ(et1 ∧ · · · ∧ eti ∧ es1 ∧ · · · ∧ es j ⊗ yp1 · · · ypa yq1 · · · yqb )

= 1

i + a + j + b

(
a∑

u=1

epu ∧ et1 ∧ · · · ∧ es j ⊗ yp1 · · · ŷp j · · · ypa yq1 · · · yqb

+
b∑

v=1

eqv ∧ et1 ∧ · · · ∧ es j ⊗ yp1 · · · ypa yq1 · · · ŷqv · · · yqb
)

= 1

i + a + j + b

(
a∑

u=1

(epu ∧ et1 ∧ · · · ∧ eti ⊗ yp1 · · · ŷp j · · · ypa )(β)

+
b∑

v=1

(−1)i (α)(eqv ∧ es1 ∧ · · · ∧ es j ⊗ yq1 · · · ŷqv · · · yqb )
)

= 1

i + a + j + b

(
(i + a)σ (α)β + (−1)i ( j + b)ασ(β)

)

where an empty sum is considered to be zero. 	

Next we put together all the ingredients from this section to obtain our main appli-

cation of our homotopy transfer results. The proof is an application of Proposition 2.5
to the deformation retract obtained in (3.6) with the homotopy h∞ defined in (3.6.6)
obtained from the homotopy σ on the rows of the diagram (3.1.1) satisfying the scaled
Leibniz rule and hence the generalized Leibniz rule; see (3.8), (3.9), and (3.10). See
also the overview in the paragraph before (3.6). One note: one need only check the
homotopy h on Xa satisfies the scaled Leibniz rule for products that land in �i ⊗ Sm
for i ≤ n and m < a since otherwise the product is zero and the result is trivial; this
explains why we need only take p ≥ a + n in the statement below.

3.11 Theorem Let a be a positive integer. Suppose that k is a field of characteristic
zero or positive characteristic p ≥ a + n. Consider the deformation retract obtained
in (3.6)

X
◦
a,h∞

p∞
L

◦
a

i∞

with the associated homotopy h∞ defined in (3.6.6) using σ from (3.8), where i∞ and
p∞ are defined as in (3.6.4) and (3.6.5).

Defining the product of α, β ∈ La by

αβ = p∞ (i∞(α)i∞(β))
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yields a dg algebra structure on La. Furthermore, with this structure the map i∞ is a
homomorphism of dg algebras.

Proof The proof is is an application of Proposition 2.5 to the deformation retract
obtained in (3.6) as described in the paragraph above. 	

3.12 Remark The product given in the theorem above can be described explicitly, using
the definitions of i∞ and p∞, as follows.

Consider elements α, β ∈ La . If one of them is in (La)0 = R then their product
is the one coming from the R-module structure of each (La)i . If both have positive
degree, then

αβ = κ(̃αβ̃)

where κ is defined in (3.1.2) and

α̃ = (1 + (−σd) + (−σd)2 + · · · )σ (α)

β̃ = (1 + (−σd) + (−σd)2 + · · · )σ (β)

where the scaled de Rham differential σ is defined in 3.8.

3.13 Remark Because of the symmetric way in which the maps κ , d and h are defined,
the dg algebra structure defined on La in Theorem 3.11 is invariant under the action
of the symmetric group on the polynomial ring.

3.14 Remark One may note that our algebra structure is, in fact, basis free, although
we do not describe it in a basis free way because it was more straightforward to show
the required properties of the homotopy via an explicit formula. It is well known that
the differentials in the complex from which we transfer our structure are so, and one
can see that the homotopy is as well, as it is just a scaled version of the de Rham map.

4 Comparisonmaps

In this section we use the results from the previous sections to obtain comparison
maps lifting the natural surjections R/mb −→ R/ma for any b ≥ a to their respective
minimal free resolutions Lb and La , and these maps turn out to be dg algebra mor-
phisms (for the dg algebra structures placed on them in the previous section). Since
L1 is simply the Koszul complex K on the variables, this yields that K is a dg algebra
over Lb for each b ≥ 1.

To set up the statement, recall from (3.6.3) that for any c there is a homotopy
equivalence

Xch∞
p∞

Lc

i∞
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pictured in (3.6.7) that is used in Theorem 3.11 to place a dg algebra structure on Lc

for which i∞ is a dg algebra homomorphism. Although the value of c varies below,
it should be clear from the context which i∞ and p∞ maps are being applied. Recall
also from (3.4) that we can view Xc as the quotient S/tr≥c(S) of the dg algebra S by
the dg ideal

tr≥c(S) = {�i ⊗ S j | j ≥ c}
In this way, Xc inherits the dg algebra structure from S. Therefore, if b ≥ a, the
inclusion of dg ideals tr≥b(S) ↪→ tr≥a(S) gives a natural quotient map

πb,a : Xb = S/tr≥b(S) � S/tr≥a(S) = Xa

which has the effect of sending the columns �i ⊗ S j to zero for a ≤ j ≤ b − 1. This
is clearly a homomorphism of dg algebras.

4.1 Theorem Let a and b be positive integers with b ≥ a. The chain map

fb,a = p∞πb,ai∞ : Lb → La

is a homomorphism of dg algebras that gives a lifting of the natural surjection
R/mb −→ R/ma. In particular, the Koszul complex on the variables, which is L1, is
a dg algebra over Lb for every positive integer b.

Moreover, if c ≥ b ≥ a then fc,a = fb,a fc,b.

Proof First note that fb,a is a chain map since it is a composition of chain maps. Also,
( fb,a)0 is the identity map on R; thus fb,a gives a lifting of the natural surjection
R/mb −→ R/ma .

Next we show that fb,a is a homomorphism of dg algebras. Clearly, if b = a then
fb,a is the identity map. So we may assume that b > a. Let α and β be homogeneous
elements of Lb. If either sits in degree 0, then fb,a(αβ) = fb,a(α) fb,a(β) as fb,a is
a homomorphism of R-modules. So we may assume that α ∈ Li,b and β ∈ L j,b for
some 0 ≤ i, j ≤ n. Since πb,a and i∞ are homomorphisms of dg algebras, one has

fb,a(αβ) = p∞πb,ai∞(αβ)

= p∞(πb,ai∞(α)trb,ai∞(β))

We pause to compute the composition

πb,ai∞ = πb,a(1 + (hδ) + · · · + (hδ)b−1)i

= ((hδ)b−a + · · · + (hδ)b−1)i
(4.1.1)

and so we have

fb,a(αβ) = p∞
(
[(hδ)b−a + · · · + (hδ)b−1]i(α) [(hδ)b−a + · · · + (hδ)b−1]i(β)

)
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From (4.1.1) we also get an alternate formula for fb,a as follows which we use in
the next part

fb,a = p∞πb,ai∞
= p∞((hδ)b−a + · · · + (hδ)b−1)i

= p∞(hδ)b−ai

(4.1.2)

where the other terms disappear as they are in the portion of the domain where p∞
equals 0. Note that in the last line p∞ can be replaced by p.

Next we compute

fb,a(α) fb,a(β) = p∞(i∞( fb,a(α)) i∞( fb,a(β)))

by the definition of the product in La . This is equal to fb,a(αβ) because

i∞ fb,a = i∞ p∞(hδ)b−ai

= (1 + (hδ) + · · · + (hδ)a−1)i p[hδ(hδ)b−a−1]i
= (1 + (hδ) + · · · + (hδ)a−1)σκ(−σ)δ(hδ)b−a−1i

= (1 + (hδ) + · · · + (hδ)a−1)(−σ)δ(hδ)b−a−1i

= (1 + (hδ) + · · · + (hδ)a−1)(hδ)b−ai

= ((hδ)b−a + · · · + (hδ)b−1)i

(4.1.3)

where the first equality is by (4.1.2), the second one is by the definitions of i∞ and p∞,
the third one is by the definitions of i , p, and h, the fourth one is because σκσ = σ

since the homotopy σ satisfies σκ = 1 − κσ and σ 2 = 0, and the fifth is because
h = −σ . Note that when we apply the definitions of i , p, and h we are using that the
terms are in � j ⊗ S for j > 0.

Last we compute the composition

fb,a fc,b = (
p∞πb,ai∞

)
fc,b

= p∞πb,a((hδ)c−b + · · · + (hδ)c−1)i

= p∞(hδ)c−ai = fc,a

where the second equality is by (4.1.3), the third is from the definitions of the maps,
and the last is by (4.1.2). as desired. 	


Note that for a = 1, of course, the map p∞ : X1 → L1 is an isomorphism of
complexes, hence it is trivial that fb,a is a homomorphism of dg algebras since πb,a

and i∞ always are.

4.2 Remark In the proof above, the following more explicit formula for the map
fb,a : Lb → La was derived; see 4.1.2.

fb,a = p(hδ)b−ai (4.2.1)
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As a consequence we see that for j > 0

im( fb,a) j ⊆ mb−a(La) j (4.2.2)

since the map δ which is the same as d = kos ⊗ 1 has image in m times the next free
module as kos is the differential in the Koszul complex on the variables. This may
also be seen in an elementary way using long exact sequences of Tor modules.

5 Connections to homotopy transfer theorems

In Proposition 1.4, we found that a dg algebra structure transferred along certain
deformation retracts as long as the homotopy satisfies the generalized Leibniz rule,
defined in 1.3. In this section, we explore the effect of this condition on the A∞-algebra
structures resulting from the well-known Homotopy Transfer Theorem. The resulting
structure via this theorem yields only an A∞-structure on the retract, which often has
nontrivial higher products, evenwhen the transferred structure is associative and hence
gives a dg algebra. Under the aforementioned additional hypothesis on the homotopy,
we compute the higher operations that arise from the transfer and find them to vanish
after all in Proposition 5.5. In Proposition 5.7, we also discuss what happens when
the original complex is merely an A∞-algebra under a similar, but much stronger
hypothesis on the homotopy.

We note that most sources for the Homotopy Transfer Theorems work with dg
algebras and A∞-algebras over a field of characteristic zero. However, these are known
to hold over a commutative ring R as long as one makes some freeness assumptions.
For simplicity we assume in this section that R is a field of characteristic 0 (or, more
generally, that we are in a setting in which the Homotopy Transfer Theorems are
known to hold). However, we should point out that our transfer results Proposition 1.4
and 2.5 do not require any such hypotheses.

We begin by recalling both the definition of an A∞-algebra and the Homotopy
Transfer Theorem for a dg algebra. The concept of an A∞-algebra was introduced
by Stasheff in [51, 52] in his study of loop spaces, where the natural product is only
associative up to homotopy. For some expositions of this topic, see [34–36, 40].

5.1 Definition An A∞ -algebra over a ring R is a complex A of R-modules together
with R-multilinear maps of degree n − 2

mn : A⊗n → A

for each n ≥ 1, called operations or multiplications, satisfying the following relations,
called the Stasheff identities.

• The first operation is simply the differential:

m1 = ∂A.
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• The second operation satisfies the Leibniz rule:

m1m2 = m2(m1 ⊗ 1 + 1 ⊗ m1).

• The third one verifies that m2 is associative up to the homotopy m3:

m2(1 ⊗ m2 − m2 ⊗ 1)

= m1m3 + m3(m1 ⊗ 1 ⊗ 1 + 1 ⊗ m1 ⊗ 1 + 1 ⊗ 1 ⊗ m1)

Note that the left hand side is the obstruction to associativity for m2 and that the
right hand side is the boundary of m3 in HomR(A⊗3, A).

• More generally, for n ≥ 1, we have

n∑
s=1

∑
r ,t≥0

(−1)r+stmr+1+t (1
⊗r ⊗ ms ⊗ 1⊗t ) = 0

where the sums are taken over the values of r , s, t with r + s + t = n.

Note that when one applies the maps in each formula above to an element, one
should use the Koszul sign rule: For graded maps f and g, one has

( f ⊗ g)(x ⊗ y) = (−1)|g||x | f (x) ⊗ g(y)

for homogeneous elements x and y, where |w| denotes the degree of w whether it is
a map or homogenous element.

Recall thatwe are using homological notation; in cohomological notation the degree
of mn would be 2 − n rather than n − 2. Note also that for the signs we follow the
conventions in Getzler-Jones [14]; see, for example, the survey by Keller [34].

5.2 Remark Note that an A∞-algebra whose operations mn are zero for all n ≥ 3 is a
dg algebra where the product is given by m2. Conversely, a dg algebra can be given
the structure of an A∞-algebra by setting m≥3 = 0.

However, m1 and m2 can usually be extended to other A∞-algebra structures.
Indeed, one can have nonzero higher operations for which the boundary of m3 in
HomR(A⊗3, A) is equal to zero and hence A is still associative.

The Homotopy Transfer Theorems were first proved by Kadeishvili in [32] and
[33]. We recall them in (5.4) and (5.6). For this, we follow the exposition in Vallette’s
survey [53]. We note that our signs are the opposite of those in his survey since his
homotopy is the negative of ours (he has 1 − i p = ∂Xh + h∂X , rather than i p − 1).
This should not make a difference as the precise signs do not matter for our proofs.

5.3 Notation We recall the planar rooted tree notation introduced by Kontsevich and
Soibelman in [38] which represents these products pictorially as this will make it
easier to describe the Homotopy Transfer Theorems. The notation that we use are
from Vallette’s survey. All the diagrams are read from the top down, that is, the inputs
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are thought of as being entered on the top and the multi-intersections correspond to
the higher products mn being performed. Further, wherever a letter appears in such
a diagram, one applies the corresponding map at that point. Again, the sign rule
described in Definition 5.1 is understood to be in effect.

First, the higher operation mn is drawn as follows.

1 2 · · · n

����
�

��
����
�

��

In this notation, the properties of Leibniz rule and associativity can be drawn as
follows.

�
�

�
�

=

∂

∂

�
�

�
�

+

∂

�
�

�
�

�
�

�
�

�
�

��

=

�
�

�
�

��

�
�

To justify the first equation, note that ∂ ⊗ 1 will produce no sign when applied to the
input x ⊗ y since |1| = 0, but 1 ⊗ ∂ will have the sign (−1)|x |.

We now recall the Homotopy Transfer Theorem [32] that allows one to transfer
a dg algebra structure along a deformation retract yielding an A∞-structure on the
retract. For this, we will define the transferred higher operations using the tree notation
introduced above.

5.4 Homotopy Transfer Theorem for dg algebras. Let

(X , ∂X )h
p

(Y , ∂Y )
i

be a deformation retract where X is a dg algebra. As in Remark 5.2, one considers X
an A∞-algebra with m1 equal to the differential, m2 equal to the dg algebra product
on X , and mX

n = 0 for n ≥ 3.
The Homotopy Transfer Theorem gives an A∞-structure on Y as follows: First set

mY
1 = ∂Y . For n ≥ 2, the nth operation mY

n is defined as
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�

1 2 · · · n

����
�

��
����
�

��

:=
∑
PBTn

±

ii

�� h

����

�
�

h

i

�
��

�
�

� h
�

�
�

�
�

ii

p

where the left hand side is the notation for mY
n and where the sum is over PBTn , the

set of all planar binary rooted trees with n leaves, and the tree diagram pictured on the
right is just a representative example of such a tree. The pattern of maps appearing on
each tree is meant to indicate that every product is followed by an application of h,
except for the last one, where instead p is applied. The actual signs, indicated simply as
± above, are defined in the various sources quoted, but we shall not need them for our
results. Again, in applying the maps in trees, the sign rule described in Definition 5.1
is understood to be in effect.

In particular, mY
2 and mY

3 are given by

where the signs in the expression for mY
3 are the opposite of those in [53] since, as we

recall, his homotopy is the negative of ours.

Under the hypotheses in this paper, we can show that the transfer actually yields
an A∞-algebra with all higher operations m≥3 equal to zero. Proposition 1.4 does
yield a dg algebra, and so one could extend it to an A∞-algebra by defining the higher
operations m≥3 equal to zero, but the Homotopy Transfer Theorem (5.4) also gives a
set of higher operations, which may not be the same. Here we prove that those vanish
as well.

5.5 Proposition Let X be a dg algebra. Consider a deformation retract

(X , ∂X )h
p

(Y , ∂Y )
i

that satisfies the generalized Leibniz rule and hi = 0. Then the A∞-algebra structure
on Y obtained from the dg algebra structure on X via 5.4 has trivial higher operations,
that is, mY

n = 0 for all n ≥ 3.
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Proof Recall from 5.4 that the operationsmY
n for n ≥ 3 transferred from the dg algebra

structure on X are signed sums of elements described by planar binary rooted trees
with n leaves. The signs do not matter as we prove that every term equals zero. Indeed,
each term always includes a factor of the form h(i(α)i(β)) for some α, β ∈ Y (this
will be nested inside other maps i , h and p and products from X ). This vanishes as h
satisfies the generalized Leibniz rule and hi = 0 holds. Hence these higher operations
mn all vanish. 	


What if one beginswith a complex X that is an A∞-algebra rather than a dg algebra?
First we recall the version of the Homotopy Transfer Theorem for this situation from
[33], namely a more general version that allows one to transfer an A∞-structure along
a deformation retract yielding an A∞-structure on the retract. We again use the tree
notation introduced above.

5.6 Homotopy Transfer Theorem for A∞ -algebras. Let

(X , ∂X )h
p

(Y , ∂Y )
i

be a deformation retract where X is an A∞-algebra. The Homotopy Transfer Theorem
gives an A∞-structure on Y as follows: First set mY

1 = ∂Y . For n ≥ 2, the operation
mY

n is defined as

�

1 2 · · · n

����
�

��
����
�

��

:=
∑
PTn

±

ii i

�� h

����

�
�

h

i

�
��

�
�

� h
��

���
�����

��
ii ii i

p
where the

left hand side is the notation for mY
n and where the sum is over PTn , the set of

all planar (not necessarily binary) rooted trees with n leaves, and the tree diagram
pictured on the right is just a representative example of such a tree, where the higher
products are all occurring in X . Once again, the pattern is that every such product is
followed by an application of h, except for the last one, where instead p is applied.
Again, the actual signs are defined in the various sources quoted, but we shall not need
them for our results.

Next we impose analogous but much stronger conditions on the homotopy when
X is merely an A∞-algebra, rather than a dg algebra. We do not have any example
that satisfies this condition, but include this result for completeness in case it could be
useful. We say that the homotopy h on X satisfies the generalized Leibniz rule for an
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A∞ -algebra if for every n ≥ 2 one has

h(mn(a1 ⊗ · · · ⊗ an)) ∈
n∑

i=1

mn(X ⊗ · · · ⊗ h(ai ) ⊗ · · · ⊗ X)

where h(ai ) is the i th factor and the other factors are X . Under this hypothesis, we
can show that the formulas for the transferred operations via the Homotopy Transfer
Theorem for A∞-algebras (see Sect. 5.6) are much simpler than usual (they are just
the ones induced by going back and forth along the homotopy equivalence).

5.7 Proposition Let X be an A∞-algebra with operations mX
n for n ≥ 1. Consider a

deformation retract

(X , ∂X )h
p

(Y , ∂Y )
i

that satisfies the generalized Leibniz rule for an A∞-algebra and hi = 0. Then the
A∞-algebra structure on Y obtained from the A∞-algebra structure on X via Sect.
5.6 has operations given by

mY
n = p mX

n (i ⊗ · · · ⊗ i)

for all n ≥ 1.

Proof Note that in Sect. 5.6, it follows from the construction and the properties of a
deformation retract that

mY
1 = ∂Y = p mX

1 i and mY
2 = p mX

2 (i ⊗ i).

This covers the cases n = 1, 2.
Recall from Sect. 5.6 that the operations mY

n for n ≥ 3 transferred from the dg
algebra structure on X are signed sums of elements described by planar rooted trees
with n leaves. The signs do not matter as all of the terms vanish except one. Indeed,
expanding using that hi = 0 and the generalized Leibniz rule for an A∞-algebra
leaves only the desired term as that is the only one given by a tree with only one
(higher) operation, hence simply followed by an application of p and not involving
the homotopy h; this term is known to be positive. 	


5.8 Remark We note that one can prove generalizations of Propositions 5.5 and 5.7
to obtain transfer results along the retract obtained after applying the Perturbation
Lemma. To see this, one would modify the proofs above similarly to how we extended
Proposition 1.4 to Proposition 2.5.
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6 Comparison with the literature

We now give a precise comparison with the related results in the literature. Let

(X , ∂X )h
p

(Y , ∂Y )
i

be a strong deformation retract, or contraction, as defined in Definition 2.3.
Our basic transfer result, Proposition 1.4, lives in the realm of Homotopy Transfer

Theorems (often abbreviated HTT), where X has a certain algebraic structure and
one wishes to transfer it to obtain some sort of algebra structure on the retract Y .
In Kadeishvili’s well known result, [32], he transfers a dg algebra structure on X
to the retract Y , potentially losing strict associativity, and obtaining an A∞-algebra
structure, which in particular is associative up to homotopy. In Proposition 1.4, we add
a condition on the homotopy h, a weakening of the notion of derivation, namely the
generalized Leibniz condition, that h(αβ) ∈ h(α)X+Xh(β) for allα, β ∈ X , or, more
generally, that (∂Xh + h∂X ) (i(α)i(β)) = 0. In the process we show that the transfer
gives an (associative) dg algebra structure on Y . In Proposition 5.5, we see that the
higher multiplication maps m≥3 from the transfer of Kadeishvili vanish as well. This
yields that i becomes an A∞-algebra homomorphism (and that Kadeishvili’s resulting
on structure on Y is A∞-isomorphic to ours).

Our second transfer result, Proposition 2.5, lies in the realm of Homological Pertur-
bation Theory (abbreviated HPT). We have presented our result as a transfer theorem,
namely that one can transfer the structure even after using the classic Perturbation
Lemma 2.4 to perturb the original contraction via δ and obtain a new contraction

(X , ∂X∞)h∞
p∞

(Y , ∂Y∞)
i∞

where ∂X∞ = ∂X + δ

We show that the transfer still yields associativity if h satisfies the generalized Leib-
niz condition (even though h∞ may not), and hence yields a dg algebra (with the
usual assumptions that the perturbation δ is small, that is, locally nilpotent, and is
multiplicative, that is, a derivation).

However, in view of our first result, we may assume that Y has a priori a dg algebra
structure transferred from X along the initial contraction, and then consider that we
are perturbing it. In this sense, our second result comes closer to some classical results,
as discussed below.

First, in [16, 22], Guggenheim, Lambe and Stasheff, and Huebschmann and
Kadeishvili, respectively, proved that if both i and p are homomorphisms of dg alge-
bras and h is an algebra homotopy, that is,

μX (h ⊗ i p + 1 ⊗ h) = hμX

where μX is the product on the algebra X , then perturbing via a small multiplicative
perturbation δ yields the same setting for the perturbed contraction. However, for the
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structures resulting from Proposition 1.4 we only get that i is a dg algebra homomor-
phism, and indeed p is not one in our application in Sect. 3. A slightly different version
is given by Gugenheim and Lambe in [15], in which they assume that only i is a dg
algebra homomorphism, but require that pδh = 0, which again we do not have for
our intended application. These results also give a conclusion of a different flavor, as
they imply that the transferred product after perturbation is identical to the original
product, which is not the case in our application. Finally, we note that if we were to
assume that p is a dg algebra homomorphism we would get a product unchanged after
perturbation as well.

Second, in [46, Theorem4.16], Real proves that aweakening of the conditions in the
papers discussed above still yields a successful transfer. More precisely, he assumes
that i is a dg algebra homomorphism and that

hμX

(
(h ⊗ i p + 1 ⊗ h)δ⊗2

)n
i⊗2 = 0 for all n ≥ 1 (6.0.1)

and obtains that the perturbed contraction has the property that i∞ is a dg algebra
homomorphism, where the new product Y can be given by either of two equal formulas

α · β = p∞(i∞(α)i∞(β))

= pμX

∑
n≥0

(−1)n
(
(h ⊗ i p + 1 ⊗ h)δ⊗2

)n
i⊗2

How does this compare with our result? On the one hand, one can easily check that
our condition, namely that h satisfies the generalized Leibniz rule, does indeed yield
condition 6.0.1 above. On the other hand, we do not know whether his condition 6.0.1
is stronger or weaker than our condition

(∂Xh + h∂X ) (i(α)i(β)) = 0 for all α, β ∈ X

which is what is really needed for our proof. Note that the proof in [46] seems to boil
down to the single condition

h∞(i∞(α)i∞(β)) = 0 for all α, β ∈ X

Although our generalized Leibniz condition is stronger than Real’s condition 6.0.1, it
is often simpler to verify, such as for our application. In addition, our proof is quite
simple and direct.

Real’s weaker hypotheses were designed for the many applications given in that
paper and have also allowed for other applications in which the original perturbation
theorems did not suffice, such as those in [1, 2, 31].
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