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ABSTRACT. In this paper we develop a new approach for studying dif-
ferential operators of an isolated singularity graded hypersurface ring
R defining a surface in affine three-space over a field of characteristic
zero. With this method, we construct an explicit minimal generating
set for the modules of differential operators of order two and three,
as well as their minimal free resolutions; this expands the results of
Bernstein, Gel’fand, and Gel’fand and of Vigué. Our construction re-
lies, in part, on a description of these modules that we derive in the
singularity category of R. Namely, we build explicit matrix factoriza-
tions starting from that of the residue field.

1. Introduction

For an algebra R over a field k, its module of derivations and its module of Kéh-
ler differentials are fundamental classical objects that inform on the singularities
of R. The derivations are part of the ring of k-linear differential operators on R,
denoted Dp; this ring is filtered by the submodules Di?l «» the differential oper-
ators of order at most i, for i > 0. The ring of differential operators has proved
invaluable in both algebra and geometry [9; 22; 29; 30].

Throughout this article, k is of characteristic zero. In this setting, the ring
of differential operators of a polynomial ring R = k[x1, ..., x,] is the Weyl al-
gebra Drjx = R(01, ..., d,) where the differential operators of order i are the
R-linear combinations of partial derivatives of order, in the familiar sense, at
most i; see Definition for a precise definition. More generally, Grothendieck
showed that D is generated as an R-algebra by the derivations under compo-
sition whenever R is smooth. In 1961, Nakai [33] conjectured that the converse
should hold; this is now known as Nakai’s conjecture and implies the well-known
Lipman—Zariski conjecture [28]. Nakai’s conjecture is still wide open outside of
a handful of cases [12; 23; 32; 35; 37; 39].
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2 R. N. DIETHORN ET AL.

When R is singular, even in specific examples, it is extremely difficult to de-
termine the differential operators of each order that are not compositions of lower
order operators; the behavior is radically different from the smooth case. Never-
theless, studying Dgx when R is singular is an old and interesting problem that
has seen a revival of interest lately, especially with its connections with simplicity
of D-modules [5; 7; 115 145 15;24; 31; 39; 40; 41]. Many approaches for studying
differential operators are either algebraic or via sheaf cohomology.

The singular rings under consideration in the present article are those isolated
singularity hypersurface rings considered by Vigué [41]. He established that Dgx
is not generated by the operators of any bounded order and has no differential
operators of negative degree when R = k[x, y, z]/(f) is an isolated singularity
hypersurface with f homogeneous of degree at least 3; this generalizes the work
of Bernstein, Gel’fand, and Gel’fand on the cubic cone k[x, y, z]/ 3+ y3 +73
in [8]. Moreover, Vigué showed that in each order i, the module D’le has at
least three generators that are not in the R-subalgebra of Dg|x generated by lower
order operators. These operators were identified abstractly by an analysis of sheaf
cohomology.

In this paper we develop a method for gleaning new insights on these ob-
jects, including the explicit operators of a fixed order. Our approach, which is
via the homological algebra of their resolutions, is in some ways similar in spirit
to Herzog—Martsinkovsky’s work on modules of derivations [21]. Surprisingly, a
crucial ingredient for discovering the differential operators of low orders, which
can be described as syzygies (cf. Section 2.2), was formulating a hypothesized
structure for their resolutions, rather than calculating generators as a usual first
step in building the resolutions. Our method is a way to work forward in the res-
olution to discover the generators. In fact, neither previous work in the literature
nor our extensive Macaulay?2 [19] experiments identified viable candidates for
a possible set of generators. We describe this method in Section but omit
the extensive work involved and concentrate on proving that these are indeed the
generators and resolutions by localization and depth counting methods.

Indeed our methods reveal an unexpectedly beautiful structure to the resolu-
tions: They come from matrix factorizations built in a very simple way from sev-
eral copies of two different Koszul complexes on the ambient polynomial ring
0, namely KOSQ(x, v, z) on the variables and KOSQ(fx, fy, fz) on the partial
derivatives of f, connected by natural maps constructed from the Hessian matrix
of second derivatives of f and its exterior powers. See Section for details.

It should be stressed that the computations involved (although they look com-
plex) stem from the familiar Euler identity, and it is really the homological under-
pinnings that allow for success.

The generating operators can be expressed in terms of foundational derivations.
Namely, the generators can be expressed in terms of the Euler and Hamiltonian
derivations

& =x0x +ydy + 20, Hyz = fz0y — fy9;,
Mo = fxd; — fz0x, and  Hyy = fyox — fidy
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Differential Operators of Low Order 3

These four operators form a minimal generating set for the module of derivations;
its minimal resolution is recalled in . Our main result is the following, con-
tained in Theorems s , ,and

THEOREM A. Assume that R = k[x,y, z]1/(f) is an isolated hypersurface singu-
larity where f is homogeneous of degree d > 3 and k is a field of characteristic
zero. A minimal set of generators for D%‘ ¢ IS given by

{1» gv HyZa HZXa nyv 627 gH}‘Za gHZXs 5ny» AXa Ays AZ}v
with
1 1 d-—2
Av=—|H + ———AEP+——
. x[ et @t Tty
where Ay, is the 2 x 2-minor obtained by deleting the Ist row and Ist column
of the Hessian matrix of f, and similar formulas hold for A,, A; as described in
Theorem
A minimal set of generators for D%‘ « 18 the union of the generating set above
with

Axxg:| ’

{839 82HyZ7 ngZ)C ’ ngxyy EAX’ gAy’ gAZ? ZX’ Zya Zz}v
where Z,, Zy, and Z; are defined in Theorem
Furthermore, the augmented minimal R-free resolutions of D%ﬂ © and D?QI «
have the forms
[%]

L RS R L RS RIS RI2 L D20
and
Viop21 9 p21 ¥opo1 ¢ o1 [%/] 2 3
~+—>R" - R" — R" - R —> R - Dp,; — 0,
where the differentials are described explicitly in Theorems and , re-
spectively.

The resolutions in Theorem A are minimal graded free resolutions, where R is
viewed as a standard graded k-algebra. We record the graded Betti numbers of
D%?I « and D%l « in Corollaries and , respectively.

In the process of proving Theorem A we also establish, in Corollaries
and , the following result.

COROLLARY B. Fori =2, 3, there are short exact sequences of R-modules
0— Die_ucl - D;?\k — Homg (Sym' (Qgp), R) — 0,

where Di?_|kl — Dﬁelk is the inclusion; in particular, Die‘,(/Dj,{“(l is maximal
Cohen—Macaulay.

We note that there are always left exact sequences of the form above; surjectivity
on the right is the novel content. Some of the results above are naturally stated
in terms of the singularity category Dsg(R) of R introduced by Buchweitz [13];
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see . The singularity category is a triangulated category that records the tails
of resolutions over R. Since R is an isolated singularity, it is well known that every
object in Dgg(R) can be built from £ in finitely many steps using shifts, mapping
cones, and retracts. The number of mapping cones (+1) it takes to build M from
k is called the level of M with respect to k, denoted Ievel’lgsg( R)M ; this invariant
was introduced in [3]. Since R is a hypersurface, the tail of any R-resolution
is necessarily given by a matrix factorization, in the sense of [17], of f over
k[x, y, z]. In constructing the resolutions of HomR(Symi (Rgk), R), fori =2, 3,
we describe a procedure to build its corresponding matrix factorization starting
from the matrix factorization of k; see Sections and . As a consequence,
we obtain the following; see Corollaries and

CoROLLARY C. Fori =2,3,

Ievelllgsg(R)(HomR(Symi (Qri), R) <i and |eve|’5$g( ryDgp) <G +1)/2.

1.1. Methods

Our general approach to Theorem A is as follows: Focusing on the order filtration
on the ring of differential operators

0 ! 2
Drix €EDrix EDri -+

we proceed inductively. For i > 1, we first find the minimal R-free resolution and
a minimal set of generators of Hompg (Symi (2gk), R), the R-linear dual of the ith
symmetric power of the modules of Kéhler differentials. Next, we build a degree
one chain map from this resolution to our, inductively constructed, resolution of
D;{Ikl. We then show its mapping cone is a minimal resolution of Dﬂﬂ > Which
yields Corollary

We employ two key techniques in building the resolution of
Hompg (Sym' (Qgx), R).

1.1.1. Matrix Factorizations from Diagrams of Koszul Complexes. Here we de-
scribe the structure of the matrix factorizations associated with the minimal reso-
lutions of each D" /D"~ for various orders n. They are obtained from the Z/2-
graded totalizations of the diagrams below by adding in nullhomotopies for mul-
tiplication by f. Equivalently to find homotopies, we instead describe a structure
of dg module over the Koszul complex Kos(f) on these totalized complexes, as
described in and . The diagram for D' /DO is shown in Figure

The diagram for D?/D' is shown in Figure 2. Notice that it is the diagram for
D'/DP with a new first row glued in. The new maps are described in Section

The diagram for D3/D? (see Figure 3) is then obtained by gluing a new first
row into the diagram for D?/D'. The diagonal maps are obtained from the Koszul
03

62 a1

Kos(z,y, 2) Q Q* Q* Q.

Figure 1 Diagram for matrix factorization of D! / DO,
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Differential Operators of Low Order

Kos(fa, fy, f2)

A Hessian(f)

Kos(z,y, z)

Figure 2 Diagram for matrix factorization of D? / Dl.

Kos(z,y, 2)

(A Hessian(f))*

afy7fz)

N\ Hessian(f)

Kos(z, y, z)

7

Figure 3 Diagram for matrix factorization of D3 / D%,

Kos(fz, fy, [2)

/

7

Vi
A\ Hessian(f)
Kos(z, y, 2)
s
/
(A Hessian(f))*
AN

| Kos(fa, fy» [2)

A\ Hessian(f)

Kos(z,y, 2)

5
D3 D2 D1
Q Q° Q° Q
as a2 [e31] @o
83 82 (31
Q Q? Q? Q
03 . 02 . o1
Q Q? Q? Q
@o - (0%} —a3
D3 D> Dy
Q Q° Q° Q
LO&B (e D) [e5] (e75)
83 62 81
Q Q? Q? Q
D3 Do D,
Q Q* Q° Q
Lag [e7) aq @Q
3 3
Q—+ Q- Q>0
ag —a1 a2 —as
D3 Do Dy
Q Q° Q° Q
as (e D) [e5] @0
03 D2 o
Q Q° Q@ ——Q

Figure 4 Conjectured diagram for matrix factorization of D*/D3.

complex on the partial derivatives of the Hessian determinant of f; these are
described as o; fori =1, 2, 3 in Section

For order 4 we conjecture that the diagram on the right in Figure

, together

with additional maps from the top row to the bottom that are as yet undetermined
(the orange maps indicated on the left), supports the matrix factorization for the
resolution. The Betti numbers and the displayed maps certainly agree with our
computations on Macaulay?2. Similarly, we believe that analogous diagrams
with n rows support the factorizations for higher orders n.
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1.1.2. Working Forward from Matrix Factorizations to Relations and Generators.
We briefly describe our method for discovering the generators of D /D!~ for
i = 2,3. However, the details of these calculations do not appear in this paper;
instead we concentrate only on proving exactness of the augmented complexes
that arise from the method.

We realize Hompg (Symi (S2Rk), R) as the kernel of a matrix J; ;_ obtained
from the Jacobian matrix; see Remark . Its minimal resolution fits into a
diagram as follows:

£ 9 3 0_1=J;i-1

ker J; i —1
ey
We conjecture that the form of F-q is given by the complex coming from the
matrix factorization described in Section . Then we work forward to dis-
cover a suitable map dp that completes the diagram. This gives the generators of
D'/DI~L.

To discover the map 9, first note that the dual of the complex F in (1) is a
complex. Therefore, the image of 9 is contained in the kernel of 9} But the dual
FZ , of the 2-periodic portion of the complex Fx( is exact since it arises from the
transposed matrix factorization. Therefore, the kernel of 9} is the image of 9.
Choosing bases, this means that the rows of dy are combinations of the rows of
0. We construct the rows of dy from suitable R-linear combinations of the rows
of 9, so that the columns of dy are in the kernel of J; ;_; and match the expected
degrees of the operators.

1.2. Convention

Before sketching an outline for the paper, we wish to highlight an important bit
of notation here. In the body of the paper, given a differential operator F in D%‘ o
we will write its images in Déﬂk/DEkl and Hompg (Symi (2Rk), R) in roman font
F.In , we also identify Di{\ v Die_\kl as a submodule of a free module, and so
F will also be identified with its corresponding column vector. The basis of the
column space is indexed by the divided power partial derivatives of order exactly
i (listed in lexicographic order); see for further details. For example, E H,,
denotes the image of the differential operator € o H.yy in D /Dy

EHyy =xfy0] + (vfy — Xfo)0cdy + 2fy0x0; — yfxd; — 2fx9y0; mod Dy
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as well as the column vector

2xfy
ny —xfx
zfy
Eny - _2})}fx
_fo
0

It turns out that working in the quotients D$e| o Di‘e—ucl’ and this slight abuse of
notation, simplifies several calculations. See Remark s , Section ,
and Section for more details on these notational conventions.

1.3. Outline

Finally, we end the introduction with a brief outline of the paper. Section 2 con-
tains background information on differential operators, homological constructions
(such as matrix factorizations), and a minimal free resolution of D}e| &+ Section
contains a glossary of matrices that are used throughout the remainder of the doc-
ument.

Sections 4 and 5 are the central parts of the paper. We briefly describe the for-
mer, and the latter follows the identical outline: In Section 4.1, a set of generators
for Homg (Sym?($2 R|k), R) is proposed; a matrix factorization corresponding to
this module is introduced in Section 4.2; in Section 4.3, the pieces from the pre-
vious subsections are stitched together to identify a minimal free resolution of
HomR(Symz(ka), R); it is in Section that the degree one map from this
resolution to the resolution of D11e| « 18 constructed; as a consequence, the minimal
R-free resolution of D%Ik is obtained in Theorem ; finally, in Section ,
we identify a minimal set of generators for D%ﬂ ¢ Written as honest differential
operators in Dg.

The article is concluded by several appendices containing formulas and calcu-
lations that are utilized in the arguments discussed before.

2. Background

In this paper, we work in the following setting unless specified otherwise.

NotaTION 2.0.1. Throughout Q is the polynomial ring k[x, y, z] over a field &,
let f be a homogeneous polynomial in Q of a fixed degree d > 3, and set

R:=Q/(f).

We assume that the characteristic of k is zero. Since f € (x,y, z)>, it follows
that R is a singular hypersurface ring. Finally, we make the assumption that R is
an isolated singularity, meaning—in the usual sense—that Ry, is a regular local
ring for all primes p different from the maximal ideal m = (x, y, z) R of R. This
implies, since R is therefore a normal graded ring, that R is a domain.

-
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2.1. Generalities on Differential Operators

We recall some basics on Grothendieck’s notion of differential operators; see [20].
We do not restrict ourselves to the setting of Notation in this subsection.

DEFINITION 2.1.1. Let¢: k — A be a homomorphism of commutative rings. The
module of k-linear differential operators on A of order at most i, denoted D’A‘ o
is defined inductively as follows:

. Dg‘k:HomA(A,A)zA; _

o D, =1{5 cHomi(A, A)|Sopu—pode Dg—lkl forall u € DY, } forall i > 0.

Each Diﬂ ¢ 18 an A-module where A acts via postmultiplication. The union of

the modules Diﬂ  over all natural numbers i is the ring of k-linear differential
operators on A, denoted D 4.

2.1.2. Given two differemigl operators o € Di&l cand B € Dil &> the composition
o o 3 is an element of ij ; the union D4, obtains the structure of a noncom-
mutative ring with composition as the multiplication operation. We write compo-
sitions with product notation in the sequel. Because multiplication is compatible
with the order filtration, D 4« equipped with the order filtration is a filtered ring. In
general, the associated graded ring with respect to this filtration is a commutative
ring, which we denote as gr(D4|x). We employ the tautological exact sequences

0— Df4_|k1 — Dka — gr(Dap)i — 0
in what follows.

2.1.3. In general, the inclusion Diﬂkl - Din % does not split as A-modules. How-

ever, the inclusion D(f)\l « S Df4| ¢ has an A-linear left inverse given by evaluation at
1 € A; the kernel of this evaluation map is called the module of ith order deriva-
tions. For i = 1, this is the usual module of derivations Der 4 .

2.14. If k is a commutative ring and P =k[xy, ..., x,] is a polynomial ring over
k, then D;’I i 1s a free P-module with basis

{3}({6111)...3)((:") lay +---+a, <i},

where 8;1,“" ) is the k-linear map determined by

N b bi\ » bi—a; by.
3)5?')()511"'%"):<a)xll”’xi' Ly

1

if Q C k, then we can identify 8)(5?" ) with % times the q;-iterate of the deriva-

tion %. By convention, we set B,E?i) to be the zero map if ¢; < 0.
We also have that gr(Dp\); is a free P-module with basis

(0 gy 4+ 4 a, =i},

-
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Differential Operators of Low Order 9
where overline denotes congruence class modulo Div_|k1~ The ring gr(Dp¢) is a di-
vided power algebra over B in n divided power variables generated by the classes
of the derivations %; if Q C k, it is isomorphic to a polynomial ring on these
variables or, equivalently, the symmetric algebra on Derp .

2.1.5. Let A be a commutative ring, P = k[x1,...,x,] be a polynomial ring
over k, and set A = P/J with J = (f1,..., fix) an ideal of P. There are iso-
morphisms

;o BeDy18() )
Dy = D .
Plk

To identify these elements in the numerator, we introduce the following notation:
for a differential operator § and sequence of elements g = (g1, ..., gn), We set

[37 g] = [ o [[8’ gl]v g2]9 LERE] gm]

Note that [§, g] is unaffected by permuting the elements of g. If g is the empty
sequence, we take [§, g] :=§.

LEMMA 2.1.6. In the notation of , an element § € D}‘k maps J into J if and
only if [8,81(fj) € J forall j =1,...,m and all tuples g = (g1, ..., g¢) such
that0 <l <iand g; € {x1,...,xp} forallt=1,...,¢.

Proof. The forward implication is straightforward. For the reverse implication, it
suffices to show that if § € D},‘ ¢ satisfies the condition in the statement, then

S(xi'---xinfiyed forallai,...,a, >0.

We proceed by induction on i. For the case i = 0, an operator of order zero sta-
bilizes every ideal, so the claim is clear. For the inductive step, we proceed by
induction on £ =aj + - - - + a,. For the case £ = 0, this follows by the hypothesis
[8,41(f;) € J. For £ > 0, we have a; > 0 for some k; without loss of generality,
we can take k = 1. For any sequence g of variables of length at most i — 1, let
g’ be the sequence obtained from g by appending x;. Then [§, x;] € Dj;l}1 and
([, x11, g1(f}) = [0, g/](fj) € J by hypothesis, so by the induction hypothesis on
i, [8, x1] maps J into J. By the induction hypothesis on £, (S(xi”_1 cexy" fi) e .
Thus,

S(x{" - xdn f) =8x1(Xfl_1 X" f)
=@ 8 ) + (8, 1T x ) € U,

as required. O

We may identify Diﬂ « With a submodule of the free A-module A ® p Di,,‘ i Via the

isomorphism above, where an element of A @ p D}l & corresponds to an operator
taken modulo J. Under this identification, we have the following.

© 0O N o g »~ WO N =
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PrOPOSITION 2.1.7. In the notation of 5, an element of the free A-module
AQp D’Plk corresponds to an element of Df4|k if and only if it is in the kernel of

the homomorphism of free A-modules ¢: A Qp Dj;lk — F_; given by

¢i(3;£‘1‘])"'8;£:‘"))= Z a}gtlll—bl).,.a)gzn—bn)(fj)e(bl ..... b

0<by+-+b, <i
I<j=m

where F_; is the free A-module with basis

{ety,..b),j 10<b1+---+b, <i, 1 <j<m}

Proof. This follows from Lemma plus the observation that, for the se-

quence g in which each x; appears b; times, we have [8§7I)~--8§Z"),g] =
ajgal*bl) . a(an*bn) O
| .

Xn

We note that this description also follows from the presentations of modules of
principal parts in [6] and [1 1].

2.1.8. The maps ¢; from Proposition fit into a commutative diagram
0——= A®p Dy} —= A®p Dy —= A®p gr(D} )i —=0

\L‘Pil lq» J{x/n (2)

0———F.i Fi F_i 0

with exact rows, where F_;_ is the free A-module with basis
{ewy,..b),jl b1+ +by=i—1,1<j<m}

and

wi(aﬁ‘fl) ...3)53")) - Z 3§7u—b|) "‘3;f'l_b”)(fj)e(bl ’’’’’ b

bl+"'+bn:i_l
l<j=<m

Note that 8)5?‘_17') e Bﬁf" —bu) fj) is nonzero only when, for some ¢ €
{1,...,n}, we have ap = by + 1 and a,, = by, for m # ¢; for this tuple by, ..., by,
we have

From this description, one sees that y; can be identified with the ith symmetric
power of the map {, which is concretely given by

Y10x) = Y 0 (f))e....00. 5
J

that is, v is the transpose of the Jacobian morphism that presents the module of
Kahler differentials.
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2.1.9. By considering kernels in (2), we obtain a left exact sequence
0— qu_‘kl — Dy — ker(¥) 3)

induced by the natural inclusion and projection maps. In general, this does not
need to be a short exact sequence—that is, the last map need not be surjective—
however, when i = 1, this is the case, and the kernel of v is the usual module of
derivations.

From (3), and the definition, we obtain injective morphisms

gr(Dak)i — ker(y;), 4)
which are isomorphisms when (3) forms a short exact sequence. .
For an A-linear derivation 7 € D}Mk and u € Dfﬂk, we have nou € DfL\Tkl.
Thus, composition with n gives a well-defined map:
"
gr(Dak)i = gr(Daji)i+i- (5)

If the morphism (4) is an isomorphism for some i, then the morphism (5) of
composition by 7 yields a morphism

ker(;) = ker(Wit1). (6)

2.2. Concrete Considerations on Differential Operators

We now realize the objects and maps discussed in Section concretely in the
setting of Notation

2.2.1. We have that DiQ‘k is a free Q-module with basis

(0@aP3) 10<a+b+c<i).

We order our bases with the graded lexicographic order throughout. In particular,
the ordered basis for F'<3 we use throughout is

03, 029,,0P0,, 0,02, 9,0,,, 902, 0, 9P0,, 9,02, 0,
9P, dedy, 9:0:, 07, 8,0, 97
By, By, 0,

L

9

likewise, the first row above gives the ordered basis of gr(Dgx)3, the last three
rows give the ordered basis of D2Q| «» and so on. We order the bases of F; simi-
larly.

2.2.2. We now write the matrices corresponding to the maps ¢; and v, from
Proposition and with respect to the bases in . First, the matrices
for V1, Y2, and 3, respectively, are

d  dy 9,

J10:=e [fx fy N ]’

© 0O N o g »~ WO N =
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3 ady a9, 0P 9y9, o

| S fy Sz 00 0
Jo1= ¢ 0 fx 0 fy fz 0 ,

el 0 0 fx O fy f2

o 9P, 0P, 8,0 a0, a0 o aPa, 8,02 9

)

ew| fo fy fi O 0O O O O 0 O
ew| O fo O fp fi O 0O O 0 0
Jpmes| 00 fc 0O f £ 0 0 0 0
ew| O 0 0 fi O O f fi 0O 0
we| O 0 0 0O £ 0O O f f O
x| 0 0 0 0 0 fi 0O 0 f f |

Above, we have rewritten the target bases as monomials; for example, e,y
corresponds to e(j,1,0y,1 in the notation of
In particular, for i = 2, 3, the left exact sequences (3) take the form

0— Dl = Dy = ker(Ji.i 1), @)
inducing injective maps as in (4),
gr(DRy)i — ker(Jii—1). ®)
Under these identifications, the maps
Diﬂk — ker(J;;i—1) and gr(Dgj)i — ker(J;;—1)

as in (3) are simply given by restricting coordinates.

We describe the matrices for ¢; as block matrices via grouping the basis ele-
ments in the source and the target by the sums of their indices. Block components
include the following:

3 9,9y a0, 9P ay0, o

J2.0 =e [%fxx fxy Srz %fyy fyz %fzz]’

o a8y 0. 0.0y vdyo. a0 oy e, a0 o)
J3,0 =e [%fxxx %fxxy %fxxz %fxyy fxyz %fxzz %fyyy %fyyz %fyzz %fzzz]’
o a0, 070 ac0y acdyd; 9,07 oy 839, 8yl o)
e 3fex foy frz 3fy Sz 3fz O 0 00
J3,1 = ey 0 %fxx 0 fxy Sxz 0 %fyy fyz %fzz 0
€z 0 0 %fxx 0 fxy fxz 0 %fyy fyz %fzz

Consider the following block matrices:

Jio Do Jio S0 J30
P = [JI,O] , Py = |: 0’ J ’ ] , and P3:=| 0 J1 J31
21 0 0 Jis

© 0O N o g »~ WO N =

-
o

11
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Then, for i =1, 2, 3, the matrix for ¢; is given by P; with an additional column of
zeroes corresponding to the R-basis element 1 € R ®¢ D"Q‘ &+ The column of ze-
roes corresponds to a free cyclic summand of ¢; with basis 1, which corresponds
to the image of D(1)e|k in Di?lk'

REMARK 2.2.3. For a matrix M, we take S' (M) = Symi (M) to ith symmetric
power of a matrix: that is, the matrix minimally presenting the ith symmetric
power of the cokernel of M.
Let J be the usual Jacobian matrix. Observe that J; o = J, Jo.; = S>(JT)T,
and J3 2 = S3(JT)T, and more generally J; ;1 = ST . In particular, we have
ker(J; ;1) =ker(S'(JT)T) = Homg (cokerS' (J7), R)

=~ Homg (S (coker JT), R) = Homg (S' Qg, R).

2.2.4. In light of the discussion before, we identify elements of D%‘ ¢ s constant
operators in DOR| « Plus the collection of vectors v € R? such that Pv = 0, that is,

D%?lk =R @ ker P>.

Likewise, we identify elements of D??I « s constant operators in D(,)ﬂ « Plus the

collection of vectors v € R!® such that P3v =0, that is,
D = R @ ker Ps.
As in (0), for any derivation 1, we obtain a well-defined map induced by com-
position with n:
ker(J) — ker(J2,1).

If the restriction map D%‘ « — ker(Ja1) is surjective, then we also obtain a
well-defined map induced by composition with 7:

ker(Jz,1) — ker(J32).

2.3. Koszul Complexes and Matrix Factorizations

In this subsection we make use of differential graded (henceforth abbreviated to
dg) algebras and their dg modules. A suitable reference for background on these
topics is [1].

23.1. Let f = fi,..., f, be a list of elements in Q. We write Kos2(f) for
the Koszul complex on Q over f, regarded as a dg Q-algebra in the usual way.
That is, Kos@(f) is the exterior algebra on the free module @;_, Qe;, where
¢; has homological degree one, and differential that is completely determined by
d(e;) = f; and the Leibniz rule.

Of particular interest will be the case in which n = 3, where we order the bases
of homological degrees 1 and 2 according to

Kos?(f) = Qe1 @ Qex ® Qes and  Kosf (f) = Qezer ® Qeres ® Qerer.

© 0O N o g »~ WO N =
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With this convention the differentials in Kos?(f) can be expressed using the
following matrices:

Y f
f2 f3l 0 — 0.

NortaTION 2.3.2. Consider the Koszul complexes Kos€(x, y,z) and Kos€( frs
fy, f2). The differential of the first Koszul complex is denoted by 9 and the dif-
ferential of the second Koszul complex is written as D. Explicitly,

0 -z vy
h=|z 0 —x]|, 81=83T=[x y z],
=y x 0
0 -2 f
D2= fz 0 _fx 5 D1=D3T=[fx fy fz]
__fy fx 0

REMARK 2.3.3. The assumption that R has an isolated singularity implies fy, fy,
Sz forms a Q-regular sequence; this is explained at the beginning of Section
Hence, Kos ( fx, fy, f2) is adg Q-algebra resolution of Q/(fx, fy, f7). Further-
more, Kos€(x, y, z) is a dg Q-algebra resolution of k.

2.3.4. Throughout we will consider the dg Q-algebra E = Kos?(d - f) with e the
degree one generator. Since f is a Q-regular element, the augmentation map

ES Q/d-f)=R

is a quasi-isomorphism of dg Q-algebras.

Next, the Euler identity d - f = xfx + yf, + zf; in Q defines dg E-module
structures on Kos2( fy, fy, fz) and Kos?(x, y, z). Left multiplication by e on
Kos?(fy, Sy, f2) is described by the following matrices:

00 B3 E g«

recall that e has homological degree 1, and so left multiplication by e increases
homological degree by 1. In fact, e- is a square-zero nullhomotopy for multiplica-
tionby d - f on idKos® (e fy-f) | which is exactly the data of a dg E-module; see
[1, Remark 2.2.1].

Similarly, left multiplication by e on Kos€ (x, y, z) is described by the follow-
ing matrices:

0003232 g o

When we refer to KOSQ(fx, fy, fz) and KosQ(x, v, z) as dg E-modules, it is with
the structures prescribed before, respectively. The fact that left multiplication by
e on these complexes defines square-zero nullhomotopies for multiplication by
d - f can be checked from Appendix

© 0O N o g »~ WO N =
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In [17], Eisenbud showed that any R-module’s minimal free resolution is eventu-
ally two-periodic; this data can be described completely in terms of his theory of
matrix factorizations as introduced in loc. cit. We briefly recall these points and
their connections with certain triangulated categories associated with R. For ease
of exposition, we describe the former over regular rings; see [17; 27; 43] for more
general treatments of this topic.

For the rest of the subsection, let A be a regular ring and a € A be an A-regular
element.

2.3.5. A matrix factorization of a (over A) is a pair of maps between finite rank
free A-modules
Fy 5F 1 ﬁ) Fy

such that «f = a - idF, and Ba = a - idf,. It follows that Fp, F have the same
rank, and so « and 8 can be represented by square matrices of the same size.

The collection of matrix factorizations of a (over A), with morphisms defined
in the obvious way, forms a Frobenius exact category. Hence its stable category,
denoted [mf(A, a)], is a triangulated category where the suspension functor is
given by

E(Fo& Fp E) Fy) = F; - F()_—ﬂ> F.

2.3.6. Set K := Kos”(a). Given a bounded complex G of finite rank free A-
modules
0-G,—~>G,_1—-—>G,,—0

with a dg K-module structure, one can define a matrix factorization of a over A

as follows: Set
Fo::@Gi, F :Z@G,’,

i even i odd

and, slightly abusing notation, set o and B to be 3° + o where o denotes left
multiplication by the exterior generator of K. This matrix factorization of a is
denoted by Fold(G).

2.3.7. In [17, Section 6], the machinery above is applied to show that every min-
imal free resolution over a hypersurface ring is eventually two-periodic. A funda-

mental, yet key idea behind this is that given a matrix factorization Fy Ny ﬁ)
Fy of a the complex

1 ®1 1
> Fo®4 AJ@) S Fr@a AJ) 22 Fy@u AJa) 22 ..

is exact; see [ 17, Proposition 5.1] or [36].

2.3.8. For a commutative Noetherian ring B, we let DP(B) denote the bounded
derived category of finitely generated B-modules. The objects are those B-
complexes whose homology is concentrated in finitely many degrees and each
homology module is finitely generated over B. This is a triangulated category in
the standard way; see [26] and details on thick subcategories.

© 0O N o g »~ WO N =
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We let Dgg(B) denote the Verdier quotient of DP(B) by the perfect B-
complexes. This was independently introduced by Buchweitz in [13] and Orlov
in [34]. This is a triangulated category that records the singularity of B, and more
generally the asymptotics of free resolutions over B. Assume B = A/(a) a sin-
gular hypersurface ring. By loc. cit., it follows that there is an equivalence of
triangulated categories

Deg(B) = [Mf(A, a)].

2.3.9. Let T be a triangulated category. Here we recall the notion of level from
[3]; this is an invariant that records how many “steps” it takes to build on object
in T from another only utilizing the triangulated structure of T.

Recall that a thick subcategory of T is a triangulated subcategory that is closed
under retracts. For an object X in T, we let thickt X denote the smallest thick
subcategory of T containing X . There is an inductive construction of thickt X from
[10], see also [3]. Set thick-}- X to be the smallest full subcategory of T containing
X and closed under (de-)suspensions, finite sums, and retracts. Now inductively,
thick} X is the smallest full subcategory of T containing objects C fitting into an
exact triangle

A—B—C—

with A in thick¥_1 X and B in thick% X, which is closed under (de-)suspensions,
finite sums, and retracts. By [3, Section 2.2],

thickr X = |_J thickf X.

n>1

Following [3], the level of an object Y with respect to X is
levelX ¥ =inf{n > 0:Y is in thick} X}.

Now assume that B is an isolated singularity hypersurface ring with residue
field k. It is well known that Ievel’BSg(R)M < oo for any M in Dgg(R); see, for

example, [16; 25]. We give bounds on Ievel"[‘)sg ( R)D;?\ i for i =2,3 in Corollaries
and , respectively. See also Question for a proposed upper bound
on Ievelll‘Dsg ( R)D’R| ¢ < oo for arbitrary i.

2.4. First Order Differential Operators

Let P =k[xy,...,x,] and A = P/(f) where k is a perfect field and f is a ho-
mogeneous element of degree d > 2. We also impose that A is an isolated singu-
larity. Thus, (fy,, ..., fx,» f) = (fx» ... fx,) has height n, so the partial deriva-
tives form a P-regular sequence. Set B := A/(fy,, ..., fx,), Which is an Artinian
complete intersection quotient of A. In this subsection we recall the relationship
between B and the first order differential operators on A, as well as the minimal
A-free resolution of B. We refer the reader to for the 3-variable case that
examined in this paper.

© 0O N o g »~ WO N =
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2.4.1. We recall from that D}‘H « = A @ Deryj, where the copy of A is the
set of constant operators, and Der 4« is the collection of derivations; in particular
Derax = [gr(Dap)]r-

As in , we have

Dergje Zker(J) =ker[fe, -+ fu]-

To find the generators and minimal free resolution of this R-module, we construct
a minimal free resolution of B = coker J
af i
o> F3—>F,—>R'"->R—>0

and adding a contractible subcomplex R — R in degrees 1 and 2 yields Der Alk @s
the image of the second differential. That is, in

& ] :

s FbL®R——R"®R R ®

Dergx B

we obtain the generators of Der4x from the image of [ B(Z)F ?], and the minimal free
resolution of Der 4 is procured by truncating the complex in (9) at homological
degree two and shifting by two.

Next we explain how to obtain the minimal R-free resolution of B, and hence of
D} in light of

2.4.2. Let C =Kos?(d - f) be the Koszul complex on the homogeneous element
d - f over P, where recall d is the degree of f. Since fy,,..., fy, is a P-regular
sequence,

K :=Kos” (feys.. s fr,)
is a P-free resolution of B. Also, set

K’ =Kos” (x1,...,x),

which is a P-free resolution of the residue field k. In fact, K and K’ are dg C-
algebras. Indeed, let the standard bases of K| and K { be denoted &1, ..., &, and
£[,..., &, respectively. The Euler identity in P,

d-f=) xifq

i=1

defines dg C-module structures on K and K': Namely, if £ is an exterior variable
of C, then left multiplication by & is given by left multiplication by

n n
inéi on K and fo,.g,.’ on K, (10

i=1 i=1

© 0O N o g »~ WO N =
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respectively. As a consequence, using [38, Theorem 4], the minimal A-free reso-
lutions of B and k are given by

n n
A®p K<y oy =)"x ®si> and  A®p K’<y ly=>"f ®s{>,
i=1 i=1

respectively; as underlying graded A-modules these have the form

A®p K©p@Py" and A®p K @r PPy©Y,

i>0 i20

respectively, where y(® is a basis element living in homological degree 2i and the
differential on each complex is uniquely extended by the rule specified and the
formula 3(y) = dy - y~D_ See [2] for a detailed account of this construction.
Each of these is also the Shamash resolution from [36] (see also [17]). Note that
upon fixing the lexicographically ordered bases on K and K’, respectively, left
multiplication by > 7, x;& on K is given by the appropriate matrix 3K’ repre-
senting the differential of K’. Similarly, left multiplication by >/, fy,&/ on K’
is given by the appropriate matrix 3% representing the differential of K.

2.4.3. Continue with the notation set in . By inspection of the resolutions
in (10), minding that y is a divided power variable of degree two, the matrix
factorizations describing the minimal A-resolutions of B and k, respectively, have
the following forms:

P2n71 i) Pznfl ﬁ) Pznfl and P2n71 E) P2n71 g)Pznfl’
respectively, where
COKHT 9k 0 0
0 T Bk 0
o= KT oK and
0 0 35 )" 9
r ook 0 0 0
@KHT 9K 0 0
P=1 0 @ o o

here the self-duality of the Koszul complex is being used. Therefore, there are the
following isomorphisms in Dgg(A):

Dy, ~B~%k.

REMARK 2.4.4. In [21], Herzog and Martsinkovsky show that D,14|k ~ Yk in
Dsg(A) whenever A is an isolated singularity complete intersection ring of pos-
itive Krull dimension. The strategy employed in loc. cit. is the so-called “glu-
ing” method to produce complete resolutions; this differs from the dg-method

© 0O N o g »~ WO N =
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described above. We opt for the latter as it keeps the present discussion mostly
self-contained and in line with the strategy employed in Sections 4 and
Note that in the case that A is an isolated singularity complete intersection
ring, we trivially have
levelp (4) (D) =1
from the isomorphism above. This equality should be compared with Corollaries

and for D124| ¢ and Df“ « When A is a hypersurface of Krull dimension
two; see Question as well.
2.4.5. Now returning to Notation , following , we obtain the following

minimal R-free resolution of B = R/(fx, fy, f2):

[33 DZ] [Dl 0 } [a3 Dz] [ D, 0 ]
0 9 — D 0 9 —3, D 93 D .
_ 1 s L0 31 R 1] pa L7 31 g (63 2] R [ f] R0,

where the matrices are defined in Notation . Therefore, again using , the
(augmented) minimal R-free resolution of D 11e| ¢ has the form

oo
ma s, b, [

R R G |] Rerl Y kU
Diy B
and a minimal set of generators Dllﬂ « 1s given by the columns of [803 %2 (1)], where
the rows correspond to the basis 9y, dy, 9;, 1 as described in . The following
notation for the matrices above will be used in the sequel:
_ _ | D1 0 _ |93 Do
Mo()=[d5 Da].  Mi(l)= [_82 DJ, My (1) = [0 o |-

Recall that D}e\ ¢ = R @ Dergy. In particular, a minimal set of generators of
Derg|x is given by the columns of [03 D;]. We name these derivations:
€ :=x0y + ydy + 20, (11)
is the Euler derivation, and
Hy = f20y — fy0;, Hox = fx0; — fz0x, and
ny = fyax - fxay
are the Hamiltonian derivations. The relations on these derivations are given by

the columns of [ 3 DO% ], or more explicitly as

fx€+ nyy —ZH;x =0,
fy(c: _xny +ZH}’Z =O, (13)
f:€+xHoy — yHy =0.

12)

As previously mentioned, a similar method will be employed in Sections 4 and
for calculating the minimal free resolutions of D%ﬂ i and D?QI ¢ We end this subsec-
tion by recording the graded Betti numbers of D}e\ ¢ Tegarded as a graded module
over the standard k-algebra R.

© 0O N o g »~ WO N =
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2.4.6. Regarding R as a standard graded k-algebra, it follows that each Dé@l k
is a graded R-submodule of the graded k-linear endomorphisms of R. For a k-
linear graded endomorphism g of R, we let g denote the degree of g. That is,
|g| is the unique integer satisfying g(R;) € R for each j € Z. Under these
conventions,

I€]=0 and |Hy;|=|Hoxl=Hyyl=d -2

using that [0y | = |dy| = |0;| = —1.

2.4.7. Let N be a finitely generated graded R-module. Its i, jth-graded Betti
number is
B (N) = rank; Tor[ (N, k) j;

that is, ﬂfj(N ) is the rank of the free module in homological degree i and basis
in internal degree — ;.
It is straightforward to check that the differentials in the free resolution of

D'= Dll?l e in , are homogeneous with respect to the internal grading of R.
Therefore, the graded Betti numbers of D! are
27 J = 07
By (D=3, j=d-2,
0, otherwise,
and forn > 1,
I, j=nd-—1,
Br 1, (DHY={3, j=nd+d—3, and
0, otherwise
3, j=nd,
pr (DH=11, j=nd+d-2,
0, otherwise.

3. Glossary of Matrices

All of the following are matrices with entries in R; see Notation . When
writing a block matrix, 0,,x, will denote the m x n-matrix whose entries are all
Zero.

3.1. Matrices Needed in Section

0 -z vy X
=[x vy 2], h=|z 0 —x|, B=1y|,
-y x 0 z
0o - f fx
Dl—[fx fy fz]’ D; = Iz 0 —fx > D3 = fy s
-f f 0 E

© 0O N o g »~ WO N =



© O N o o »~ W0 N =

A A B B BB B OWOW W W W W W W W W N NN DNDDNDNDNDNNDNDDND S S S aaa S g
o O A W N - O © N OO OO A XN -4 O © N OO O p» XN 4 O © 0N OO o b~ WM =+ O

MMJ 2024/06/04 v0.24.17 Prn:13/10/2024; 21:39  F:mm;|6386.tex; (Aurimas) p. 21

Differential Operators of Low Order

X xy Xz fo fo fe
g=|xy ¥ yz|, A=|fo fiv fHz|, S=det(r),
Xz Yz 22 frz Syz Sz

Acx = fyyfoo = fror Dy = fexfoo— fior D= foxfyy — fiye
Avy=frofy: = fey S Dxz= fayfyz — fezfoye

Ayz = fxyfxz - fxxfyz,

5 =0:(0). 8, =0,(8),  8.=0.0),

1 1 Ax)c Axy sz
GIZHA, azzm xy Ay

A vz | »
Ay Ayz

iz

> b

__ b

d—-13"
90(2)212,02[%fxx fxy fxz %fyy fyz %fzz]’
61(2) =(d —1)[03x4 2],

a3

0 0 —o
me=a-n[)

i| fori >1,

—(d—=1)[03x1 03x3 —2 -
02i4+1(2) = — | o 0 Oies fori > 1.
3.2. Additional Matrices Needed in Section
r ! 5 8, &
M= =G ra
1 0 =8, &
op=——>——| §; 0 =41,
—_1)3 _
d—1)d-2) —8, 8 0
XAxy YAyxx ZAxx
XAxy YAxy zZAyxy
B, = 1 XAyz  YAxz ZAxg
d—1|xAyy YAy, zAy,
XAy, YAy, ZAy,
XAz YAy Az
[ Hyz (Ao Hy (M) = 3% Hy: (M) + 325 )
Heo(Axy) Hy:(Ayy) ; L (Hys (Aye) + Hor (M) + 22700
B, — Hyy (D) L (Hyz(Aye) + Hay(Byy) + 7500y Hy:(Az:)
2= Hao(Any) + 3% Hey (A He(Bye) = 325
L(Hor (B o) + Hey (Agy) + 25200 Hyy(Ayy) Heo(Azo)
L Hey(Ay) — 225 Hey(Aye) + 35 Hyy(Az2)
[J3,0
o3 ="
| /3.1
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22 R. N. DIETHORN ET AL.
[6fus 2hoy 3fec afon foz S whw 3fwe 2he G
— Ef“ fx,v frz if.v.v f.vz if 0 0 0 0
0 3fu O fo fe 0 3fw fe 3 O
L0 0 3 fox 0 Sy S 0 ihy e 3f=
03— [0 Lt —(d—g(d—z)oz]
_O6><4 B @—hia— B2
[01x3  01x3 —(d—1)(d—2)oy 0
033 —4DA 03x3 —(d —1)(d —2)03
02i(3) = | O1x3 O1x3 —3(d — Doy 0
03x3 033 03x3 —3(d — 1oy
| 03x3 033 %A 031
fori > 1,
_03><l 03x3 #0[2 —d-1)(d—-2)oy
0 d2;1 01 O1x3 01x3
02i+1(3) = | O3 03x3 03x3 —3(d —1)oy
03x1  0O3x3 03%3 9(d2—_1)a2
L 0 O1x3 #31 O1x3
fori > 1.

4. Differential Operators of Order 2

In this subsection we adopt Notation and construct the minimal R-free reso-
lution of D%‘ «> see Theorem . The bulk of the work is in Sections to 4.3,
and it is assembled in Section

4.1. A Set of Generators of ker Ja,1

In this subsection we introduce what we later show, see Proposition , to be
the generators of ker J, . We have Dergjx = R(E, Hyz, Hox, Hay), Where £ =
X0y + y0y + 20 is the Euler operator and Hy, = f,0y — f}0;, Hox = fx0; — f20x,
and H,y = fy0x — fx0y are the Hamiltonians. Composing & with each of these to
obtain the elements £ o &£, £ o Hy;, £ o Hyy,and € o Hyy in D%lk. Their images

in ker(J2,1) € R® under the map v, from (7) are of particular interest, and so we
introduce the following notation:
E2:=1(E0&)
= x207 + 2xy0,dy + 2x20,0; + y70; + 2y20y,0; + 2797,
EH,; =v(EoHy,)
= xfz0xdy — xf2050; + Vf205 + (2fz — Y1)y d: — 2fy 02,
EH; =v(E oH;y)
= —x07 = Yfudedy + (Xf — 2f) 00 + Yfi0y0; + 2fe07,
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Eny = ])2(5 o ny)
= Xfy02 + Oofy — X0y + 23000 — V02 — 2fudyics

note that lower order terms are dropped since the map v, factors through

D%e|k/D11‘<‘|k' These correspond to vectors in RO with the basis {8;2), 0y dy, 0x 0z,
2 2

9, 9,0., 0}

x2 0
xy xf;
E2=2|*2|.  Em,.=| T |
y? . 2yf-
vz z2fe = yfy
22 =2zfy
—2xf; 2xfy
—yfz yfy —xfx
EH., = | N i EH,, = _sz;yf
X
Vfx —zfx
27f 0

Similarly, by composing each Hamiltonian with itself and considering their
images under v, we have the following elements in R®:

2 2
0 I y
0 0 —fxfy
0 —fof 0
H} =2 2ol HX =2 0 Hp =2 e
X
_fyfz 0 0
1y 12 0

REMARK 4.1.1. In Section 4.5, we identify elements of ker(J2,1) with elements in
R ® ¢ F<2, the free module with basis

0, 8,0y, 0,0z, 017, 0,0;, 98, B, By, 3y, 1

as in , by taking the naive lift: the vector with zeroes in the last four coordi-
nates.

We now introduce the remaining three generators of a minimal generating set of
ker J»,1; see Proposition

LEMMA 4.1.2. The elements

1 2 1 2
I R et |

o D N
oy = — _— ,
y y X (d_1)2 yy
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24 R. N. DIETHORN ET AL.

1
AZZEZ}

_! HY +——
a;

Tz d—1)2
are well defined in R®.

Proof. We verify the statement for «, and the other two arguments are similar.
Consider

o 2 2 2 ]
dy 2y + @e* Ay
oy =2 fx fy + ﬁx)’Azz
2
1 0x9; T XZ A
2 2 d—1
N I Y (P
(d 1) a)’ fx + (d*l)zy 2z
dy0; @ 21)2 yzhz,
87(,2) d 21)2Z AZZ i

which we claim is divisible by z. This is clear for the 9, d;, d,3;, and 81(2) entries.
For the 8;2) entry, we have
2 2 2 2
ny +m}€ AZZ (d— 1)2( X AZZ Z Axx +2XZsz+x AZZ)
2z
@12
where the first equality follows from identity (59).
For the 9,9, entry, we have

2

2fefyt G s
2

T @1y
2z
(d I)Z(XAyz+ysz ZAxy),

where the first equality follows from identity (58).

(2xAxz — 2Axx),

(_ZzAxy —xyAz +xzAy; + yzAx + XYA)

Similarly, applying identity (59) to the 352) entry (or swapping x and y in the

8}52) entry), we find that vector (14) is given by

9 2xAyz; — 2Axx
ady| XAy + YAy —2A4y
2z a0, XA,
, 15
d—1)2 a®? 2yAy; — Ay, (15
dyd: YAz
o ZAz;
which is divisible by z, as desired. 0
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We will show that {E?, EHy,, EH;y, EHyy, ay,ay, ;) is a minimal generating
set for ker J» 1 in Section

4.1.3. From the computations above, writing these generators in terms of the basis
{8;2), 0y dy, 0y 0z, 8;2), 0y 0, BZ(Z)} gives the columns of the following matrix:

M0(2);=[E2 EH,. EH.. EH,, ﬁA(z)],

where
o oy oz
XAy 2xAxy — yAyx 2xAx; — 2Axx
YAxx XAyy XAyz'i‘ysz_ZAxy
AQ2) = ZAxx ZAxy + XAy — YAy XAz
2yAxy —xAyy YAyy 2yAy; —zAyy
ysz+ZAxy _XAyz ZAyy YAz
27Ax; — XAy, 2ZAyz — YAz ZA;;

4.2. Matrix Factorization

In this subsection we construct a matrix factorization that is associated with
ker J 1; see . Adopt the notation and conventions from Section

4.2.1. We first define a dg E-module map o : Kos€( fy, fys fo) — Kos?(x, y, 2):

0 Ny C B By) C B ) 0
o3 Laz lm o0
0 o PRy L B Ny) B R ) 0

with o; defined in Section 3. Using Appendix D, namely equations (86), « is a
map of complexes. Furthermore, combining the fact that each ¢; is symmetric and
the E-actions in , it follows from (86) that « is a dg E-module map.

Next, since « is a dg E-module map, its mapping cone cone(x) is a dg E-
module; see, for example, [2, Section 1.1]. Explicitly, cone(«) is the complex of
free Q-modules

. ] %3 [ 8] @ [0 2] g 0 o g
0 o 0’
with e- given by
0«0 [-9 0] g; [aoz 01} %3 [_33 —(’)?2} g [123} 0«0
0 0* 0’
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26 R. N. DIETHORN ET AL.

The Q-linear quotient complex L of £~ ! cone(a), obtained by contracting away
the copy of Q — Q, given by

—-D 3 1_p 0 3
[ a33] % [ 022 33} % [op 3]
Q 0’
can be equipped with a dg E-module structure by defining e- as
3 3
[-01 0] % [i)z l;)l] % [—Z’z]
0 0’

The dg E-module structure is obtained from the quasi-isomorphism ¢: L —
¥ ! cone(w) given by

L: 00 0°—0 (16)

0<Q 03 <o.

[ =0,
1 = {1id, i=1,2,3,
0, else.
4.2.2. Let L be as constructed in . Following , from L we obtain the

matrix factorization Fold(L) of d - f over Q:

¢ -Dy 0 a 0
-Dy  a & » 0 -D3
0 —5; 0 0 D o

o’ 0’ 0’
Changing bases yields the equivalent matrix factorization:
3 Dy 2m Dy 0 —203
8 %Oq g’z —32 2%1 z;)
-9 3
0’ = 0’ Q'
Finally, we set M (2) and M1(2) to be these matrices tensored down to R, that is,
03 Dy 20 D 0 —203
My2)=|0 %q Dy| and M(2Q:=|—-8 20 0 |,
0 0 01 0 —0> Ds
where both matrices have entries in R. Recall from that the two-periodic
complex
L RTMQL 7 M) 7 M@ g M) 7
is exact.

4.3. Resolution of ker J 1

In this subsection we establish exactness of the following sequence of R-modules:

D1
RC = R3,

) My (2) R7 M>(2) R7 My (2) R’ My (2)

where the definitions of the matrices M;(2) can be found in and
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LEMMA 4.3.1. The R-module (kerg(J2,1))x =kerg, (J2,1) is freely generated by
E* EH,., and H?..

Proof. We show that the given set generates ker J> 1. For this, recall that since R
has an isolated singularity, we have that f,, f, forms a (possibly improper) reg-
ular sequence in Ry: indeed, R, is a domain so f), and f; are nonzerodivisors,
and by the Euler relation, fx € (fy, f2)Rx, s0 (fy, f2)Rx = (fx, fy, f)Rx =Ry
by the isolated singularity hypothesis, and then fy, f; is an (improper) reg-
ular sequence by the Chinese remainder theorem. To compute ker J» 1, we let
[axx, axy, axz, ayy, ayz, aZZ]T be an element in kerg (J2,1).

Rewriting each f, = —(% fy + £ f2) in the J>,1 matrix, and multiplying it by
[axx, axy, axz, ayy, ay;, a7, we get the following equalities:

Z
0= —(%fy + ;fz)axx + fyaxy + fza:

y z
= fy (axy - _axx) + /2 (axz - _axx)
X X

and hence as fy, f; is Ry-regular, there exists by in R, such that
y Z
axy:blfz+;ava axzz_blfy‘i‘;axm 17

Similarly, from

—(/xfy +z/xf)axy + fyayy + fzay; =0 and
_()’/xfy +z/xf)ax; + fyayz + fza;; =0

we conclude that there exist b> € R, from the first equation and b3 € R, from the
second equation, such that

y Z

ayy =bs f; + L o ay; =—bafy + o
y Z

Ayz =b3 f; + =axz, az; = —b3 fy + —ay;.
X X

Substituting (17) into these equations yields

2
y y < Yz
ayy =bs fr + b1~ fr + Saxx, ay: = =bofy +b1— fo + Haux,
x X X X
2
y vz Z z
ay; =b3f, — bl;fy + x_za)w(a Az = _b3f}’ - bl;fy + ;axx-

Equating the expressions for ay,, one can see that

Iy (bz - Xbl) + fz(b3 - ibl) =0,
X X

and so finally there exists ¢ € R, such that

Z
by=cf.+2b,  by=—cfy+ by
X X
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28 R. N. DIETHORN ET AL.

Therefore, from the equalities above and substituting in a = ay,/2x%, b = by /x,
we get that

Ayx 2ax?

axy bxf, + 2axy

ax; | —bxfy+2axz ) 2
ayy | cf? 4 2byf: + 2ay* =abm+ bEHy: + cHy.
Aayz _nyfz_b(ZfZ_Yf)')+2ayZ

azz ny2 —2bzfy + 2az?

To see linear independence over R, suppose that a E> + bE Hy, +c Hf,z =0

with a,b,c € R,. The 8§2)—coordinate of the left-hand side is 2ax2, so a = 0.
After substituting a = 0, the 9xdy-coordinate of the left-hand side is bxf, so

b = 0. Then, substituting ¢ = 0, the 8§2)-coordinate is cf, 2 so ¢ =0, and the
linear independence follows. g

LEMMA 4.3.2. We have Mo(2)M; (2) = Ogx7.

Proof. We verify that each column of M/ (2) yields a relation on the columns of
My (2), which correspond to the generators of ker(J/21).
Composing the relations in (13) with £ (cf. ) yields relations

FE*+yEH,y —zEH;, =0,
fyE* = xEHyy +zEH,; =0,
f:E*+xEH, — yEH,, =0,

which correspond to the first three columns of M (2).
There is another relation of the form

2
y“x_xay=m(fszHyz‘i‘fyzEHzx+fzzEny)' (18)
We check coordinate by coordinate. In the 8)52) coordinate, we have

dx
(XxyAxx — 2x2Axy +xyAxx) = 71)2()’Axx XAxy)

d

2
= ﬁ(—zxfzfyz + zxfnyZ)’

where the second equality uses (53). In the 9,0, coordinate, we have the follow-
ing, where (53) is again applied for the second equality:

2
— 1)2 (y Ayx —x Ayv)

2y Ar—xA
(d 1)2(y xx — X xy) d—

= ﬁ(xfzfxz - Yfzfyz + )’fyfzz — xfx f22)-

2
@-1?

d

2x
1)2 (XAy) + yAxy)
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In the 0,0, coordinate, another application of (53) yields the second equality
below

2
1)2 (YzAxx —x7Axy — X Ayz +xyAyz)

2z
_ 1)2 (YA — -XAX_))

d—

(d d— )2 (XAyZ YAxz)

= m(_xfyfxz —2f2 fye +xfx fyz + 2fy fe2)-

The 8}(,2) coordinate follows from the 8,52) coordinate by symmetry, and likewise

the 9,0, coordinate follows from the 9,3, coordinate. In the 8;2) coordinate, a
final application of (53) establishes

2
d— 1)2 (2yzA,; _xYAzz_zszyz +xyAyz)

— ﬁ(_2zfyfxz +2z2fx fyz)-

Thus we have established the relation in (18) that corresponds to the sixth column
of M| (2); the relations coming from the fourth and fifth columns of M (2) follow
from this one by symmetry.

The last relation, corresponding to the seventh column of M/ (2) is

26
S @d-1? )
5@

To see this, by symmetry, it suffices to check for the 9

+ Srox + fy‘xy + fzo; =0.

and 9, 0y coordinates. In
the 3)52) coordinate, we have

NP
(d—1)>
2
(d_ 1)2(xfoxx +2xf‘ Xy yfyAxx+2xfz xz — ZfzAxx)
dx
(d 1)3( XS+(d_1)(foxx+fyAxy+fz xz))
=0,

where the last equality is (52).
In the 9,0y coordinate, we have

2 2
_(d_1)32xy8+(d l)z(yfo”+xfyAyy+foAyz+)’fz Xz Zfz xy)
—4xy 2x

B R e S A 7

2z
(d )2f2

4y 2x yé _ 2y x4
‘(d—1)35+(d—1)2(d—1 f"A) d— 1>2< ~Fyh )

2y
d—1)7 (fxDxx + [ Axz)
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2z
Ta-pte
280 (afe =ty —f) =
=@y M )=
where the second equality uses (52). g

LEMMA 4.3.3. We have (ker Mo(2))x = (im M1 (2))y.

Proof. Letv e (ker My(2))y; write v = (a, by, by, b;, cx,cy, ;) € RZ so that
aE* + byHy; +byHyx + b Hyy + cxay + cyoy + c o, =0. (19)

From Lemma and symmetry we have that E 2 E Hyy, and szy freely gener-
ate
Ry (E?, EHy,, EHyy, EHyy, 0y, y, 7).

Using the relations on the generators, we have that

2
A
H2—2nyH}+ (f + )Ez,

d—1)?
2 i /, Ayy 2
ay = —Hxv+2 xEny—i— <X+ﬁ>E,
A
—H2 Y
-z

By considering the HyZ coefficient on relation (19), we get that xcx + ycy +
zc; = 0. Observe that D3 = 3,[0, f;/x, fy/x]T, so ker[x y z]R is generated
by the image of 82T . Thus, using columns 4-6 of M/ (2), there exists a relation
v’ € (im M1 (2)), such that the cy, ¢y, ¢, coordinates of v’ agree with v. Replacing
v with v — v/, we may assume that ¢, = ¢, =c; =0.

Now, we have

X

fy 2 y fx
EHyZ:ZEny_Z_zE , EH,,

“EHy+ 3 EH,, = EH,,,

and by considering the E Hy, coefficient on relation ( ), we get that xby + yby +
zb; = 0. Using columns 1-3 of M| (2), we can find a relation v” € (im M{(2))y
such that the by, by, b;-coordinates of v” agree with those of v and the c,, Cy,
c; coordinates are zero. Replacing v with v — v”, we can assume that b, = b, =
b;=cy=cy=c;=0.But aE? = 0implies a = 0, and the assertion follows. [

We are now ready to prove the main result of this subsection.

PROPOSITION 4.3.4. The sequence of R-modules

MO R7 M>(2) R7 M (2) R7 Mo(2) RO 2L J2,1 R3

is exact. In particular, the R-module kerg J» 1 is generated by the operators

{E%, EHy;, EHyy, EHyy, 0y, @y, 02}
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Proof. First note that since M1(2) and M;(2) are the images over R of a matrix

factorization of f over Q as proved in , one obtains that the (infinite) portion
of the sequence involving those matrices is exact; see . Furthermore, the
initial portion of the sequence is also a complex by and the facts that the

columns of My(2) correspond locally to compositions of lower order operators
and that x, y, and z are each nonzerodivisors over R.

For the initial portion of the sequence, we argue by localization. We begin by
using the lemmas above to establish that the homologies of the sequence are sup-
ported at the homogeneous maximal ideal (that is, the sequence is exact on the
punctured spectrum). Let p # (x, y, z), so that x, y, or z is a unit after localiz-
ing at p. By Lemma and symmetry, we have (ker Mo(2))p = (im M1(2))y.
Furthermore, to see ker(J2,1)p = im Mo(2), note that, since HyzZ is generated by
o, and E? over Ry, ker(J2,1)y is generated by EZ, EHy;, and a,. By symme-
try, we have that ker(J2,1)y is generated by E?, EH,,, and ay; and ker(J2,1); is
generated by E2, EH,y, and o;. Thus, if p # (x, y, z), we have that ker(J2,1)y is
generated by E?, EHy;, EH;x, EHyy, ax, oy, o.

Next we use depth to argue that the initial portion of the sequence is, in fact,
exact. For this, we use the lemma below in stages. First consider the inclusion

i:imMi(2) < ker My(2).

From the exactness of the infinite periodic portion of the complex above, we see
that im M1 (2) is an infinite syzygy, hence maximal Cohen—Macaulay, and so it
satisfies Sy as the ring R is a 2-dimensional hypersurface. Furthermore, since
ker My(2) is contained in R, it satisfies S;. By exactness on the punctured spec-
trum as explained before, the inclusion i is isomorphism when localized at each
prime of height at most 1, and so by Lemma it is an isomorphism.

Next consider the inclusion

j:imMp(2) — ker Jp 1.

To see that im M((2) satisfies S, we note that by the previous step, one has an
isomorphism coker M1 (2) = im My(2), and again from the exactness of the infi-
nite periodic portion of the complex above coker M1 (2) = ker M>(2) is an infinite
syzygy and hence maximal Cohen—Macaulay. The module ker J»; satisfies S
because it is contained in a free R-module, and hence j is an isomorphism by
Lemma and exactness on the punctured spectrum as explained before. [

The following is a standard useful tool for proving that maps are isomorphisms. It
can be verified by depth-counting arguments after localization at minimal primes
in the support of the cokernel and the kernel.

LEMMA 4.3.5. Let ¢: M — N be a homomorphism of finitely generated modules
over a Noetherian ring. Suppose that M and N satisfy Serre’s property S» and
S1, respectively. If the localization @y is an isomorphism for all primes of height
at most 1, then ¢ is an isomorphism.

-
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32 R. N. DIETHORN ET AL.
4.4. Resolution of D%?lk
We now construct the minimal R-free resolution of D%ﬂ .

4.4.1. Recall the R-free resolution of R/( fx, fy, f7) constructed in

Ma(1 M (1 Mj(1 M (1 Mo(1
G(l)=-- z()R4 1()R4 2()R4 1()R4 0()R31>R—>0.
Also, consider the sequence
My (2 M2 Ma(2 M2 Moy(2 —J
G2)=-- 2()R7 |()R7 2()R7 1()R7 0()R6 2,1 R3—>O,
which is an R-free resolution of coker J; by Proposition . Define 6(2) :
> 1602) = G according to the diagram
. —M(2) R7 —M>(2) R7 -M(2) R7 —My(2) R6 —J21 R3 0
L%(Z) L%(Z) L(ﬂ (2) kGO(Z)
Ma(1 My(1 My(1
2(1) R4 1(D) R4 o(D) R3 J R 0
where each 6;(2) is defined in Section
LEMMA 4.4.2. The map 6(2): 16— GO, defined in , Is a morphism

of complexes. In particular, its cone, which we denote by (C, d€), is the following
nonnegatively graded complex of free R-modules:

4 | M) 62 4 | Mo()  61(2) 3 D1 6p(2)
R [ 0 M1(2):| R [ 0 MO(Z):| R [0 1 R

C:=cone(@2)=---— @ @ @ @ — 0.
R R’ R® R?
Proof. Adopt the notation from . For the rightmost square in , observe
that
—00(2) Mo (2)
1
=71 [O1xs  fldor + by + fiBxz  feBbay + By + By febaz+ fyBy + fi ]

=[01x4 Ja2]=J61(2);

we justify the first equality, and the remaining ones are evident.
For the first equality, first use (49) and (50) from Appendix A to deduce that
the first four columns of M((2) are in the kernel of 6y(2). Now note that

AXX

O0(2)(ar) =(d — 1)(fxAx + fyAyz + fz0z2) —260(2)

=(d—D(fxAxz + fyAyz + f:Az) — %ZS
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=(d- 1)(foxz + fyAyz + szzz)

3
- E(d = D(fx Az + fyAyz + fAz)

d—1
= _T(foxz + fyAyz + f2Az);

the first equality follows from (49), the second equality uses (5 1), the third equal-
ity follows from (52). This shows that the last entries are equal and the equality
in the two remaining entries can be shown similarly.
The second square commutes as
—01 QM (D) =(d —1)[03x3 @232 —a2Ds3]
=d—1)[03x3 Drar —d3a3]
= Mo(1)02(2),

where the second equality uses (86). Also, to see that the third square commutes
observe that
0 0 —d
—0,2)My(2)=—(d —1) |: 3x3 3x3 o3 1:|

O1x3 3o1g 1Dy
d—1 |:O3><3 033 —2D10t2]
2 01x3 D30; 0r0tn
= M (1)63(2),
where the second equality uses the symmetry of «;, (86), and (89).
Finally, since (M2 (i), M1(i)) for i = 1,2 correspond to matrix factorizations
of d - f over Q and

—02(2Q)M>(2) = M1(1)63(2),
it is standard that

—03(2)M>(1) = M2 (1)02(2).
Now, using the two-periodicity of G(1) and £~1G(2) after homological degree
two, all the remaining squares in the diagram commute. Thus 6(2) is a map of
complexes, so taking its cone yields the desired complex C defined before. |

THEOREM 4.4.3. Assume that R = k[x, y, z]/(f) is an isolated singularity hyper-
surface where k is a field of characteristic zero. The augmented minimal R-free
resolution of D%ﬂk C R?>® R® @ R has the form

M 67 R*
My() 63 pa [M{() 6,2 pa [Ma() 6327 pa | 0 M)
[ 0 M2(2)] R [ 0 MI(Z)] R [ 0 M2<2)] R 0 0 @7 e o
R —)DR\kﬁov
R’ R7 R’ @
R

where a minimal set of generators for D%I ¢ 15 given by the columns of

Mo(1) 61(2) 0

e= 0 My(2) 0
0 0 1
and the block matrices are defined in , , and Section
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34 R. N. DIETHORN ET AL.

Proof. By Lemma , C is a bounded below complex of finite rank free R-
modules. Moreover, there is the cone exact sequence of complexes

0—-G(l)—-C—-GR2)—0. (20)

Since G(1) and G(2) have homology concentrated in degree zero by

and Proposition , examining the induced long exact sequence in homology
forces C to also have homology concentrated only in degree zero. Thus C is a
minimal free resolution of coker af. The desired conclusion now follows from
the R-module isomorphism

Dy Skerdf @ R=imd§ @ R =ime,

which follows from , observing that Blc equals P> in and noting that
Dy =Jipand 6p(2) = Ja0. O

By truncating the exact sequence of complexes in (20) in homological degrees one
and higher, the resulting long exact sequence in homology yields the following
corollary to Theorem

COROLLARY 4.4.4. There is a short exact sequence of R-modules
0— Dpy = Diy — kerJa 1 — 0,

where Dlle\k — D%ﬂk is the inclusion.

Similar to , the differentials in the resolution of D%?I « are homogeneous with
respect to the internal grading of R where

oty | = |aty| = |og| = 2d — 5.

Hence, from Theorem we can read off the graded Betti numbers of D%ﬂ .

COROLLARY 4.4.5. The graded Betti numbers of D* = D%‘ ¢ are given by

3, j=0,
6, j=d-2
R 2 b )
PoitPI=03 G o0q s,
0, otherwise,
and forn > 1,
6, j=nd-—1,
1, j=nd+d-3,
Bro1,;(DH=1{3, j=nd+d—4, and
1, j=nd+2d—-6,
0, otherwise
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2, j=nd,
6, j=nd+d-2,
B (D) = :
3, j=nd+2d-5,
0, otherwise.

COROLLARY 4.4.6. The following inequalities are both satisfied

level, gy (kerJo,1) <2 and levelf, (g (D) <3.

Proof. The second inequality follows from the first as
IeveI]E)Sg( o DPrp) < IeveI]E)Sg( ryker 1) + |eve|’559( & &)

using Corollary , as well as Remark . For the first inequality, from

and it follows that the matrix factorization modeling the tail of the minimal
free resolution of ker J> 1 is a mapping cone on the matrix factorization of k (up
to a shift), and as a consequence the desired inequality is satisfied. 0

REMARK 4.4.7. Since R is an isolated singularity,

A= Q/(fe, [y, D =R/(fx, fy, [2)

is an Artinian complete intersection. Its socle is § as defined in Section 3. It fol-
lows from [ 18, Exercise 21.23] that the matrix factorization corresponding to the
R-resolution of A/(§) is the same as the matrix factorization constructed in
Therefore there is an isomorphism ker J> 1 > A/(8) in Dgg(R), see . Hence,
D%ﬂk is a mapping cone of a morphism £ ~'A4/(8) — k in Dsg(R). The isomor-
phism above does not necessarily hold when Q has more than three variables;
indeed, even for straightforward examples in four variables their corresponding
matrix factorizations have different ranks.

4.5. A Set of Generators of D%ﬂk

Now we write the generators of D%QI & given in Theorem as differential oper-
ators. By abuse of notation, we consider elements of ker(J> 1) as elements of the
ambient free module R'? of D% & as in Remark . We begin by writing some
relevant operators of order two in terms of lifts of their images in ker(J,1) and
operators of order one, as follows:

E2=E?+&, (1)
EHy, = EHy, + (d — DH,y,, EMo = EHy 4 (d — DHy,

22
EMyxy = EHyy + (d — 1) Hyy, (22)
1 1

M. =HL+ mx(A”ax + Arydy + Ayd;) — mA”&
1 1
Moo= H, + -1 ly(Axyax + Ayydy + Ayzd) — -1 1Ayy5v 23)

1 1
M, =HE + T (At F Ayl + Arede) — T AzcE.
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Note that above we are lifting the representative for E? in Section from
ker(J2,1) = Dy /Dy t Dyt and so

E* = x%32 + 2xyd,dy + 2x28,0; + y? 0y + 2yz8,0, + 2207
the same convention is adopted for E H;;.

THEOREM 4.5.1. A minimal set of generators for D%ﬂk is given by GoUG1 U G,
where Go = {1}, G1 ={&, Hyz, Hox, Hay} and

G ={E2, EMyzy EHoxy EHuy, Ax, Ay, A,

with
A= % :Hfz + ﬁamgz + %Amé’},
"4)’ - % :ng + ﬁA)’}'gz + %A)’yé}’
A, = é :H)%y + ﬁ%gz + %Aug]

Proof. First note that a generating set for Dfﬂ « can be given by the union of a
minimal set of generators for D11e| « and any set of lifts to D%‘ i of a minimal set of
generators for the quotient D%&l /D 11e| - First, from Section 2.4, especially (1 1) and
(12), the union Go U G is a minimal generating set for D}e|k' Second, we claim
that G» is the desired set of lifts from the quotient D%?\ e/ D}e| &+ As compositions of
lower order operators, the first seven elements of G, are clearly in D%?I &~ Further-
more, Ay, Ay, A, are also well-defined operators, so elements of D%ﬂ - Indeed,
using (21) and (23), one can check that Ay, A,, and A, agree with the gen-
erators corresponding to last three columns of the augmentation map ¢ in Theo-
rem . Now, since the images of the elements of G in the quotient D%ﬂ /D 11€| k
are the minimal set of generators {Ez, EHy;, EH;y, EHyy, 0y, 0y, ;) from
Lemma , we get that Go U G U G, is a set of generators for D%‘k. This
is in fact a minimal set of generators of D%l ¢ since its cardinality agrees with
,B(f (DRk) calculated in Theorem . O

REMARK 4.5.2. Note that except for Ay, A,, and A;, the generators in Theo-
rem do not agree with the lifts of the generators of ker J; 1, that is, the gen-
erators of D%‘ « given in the augmentation map ¢ in Theorem . However, one
can subtract lower order operators so that they do agree. For example, one could
replace £ in the generating set with £2 — £ and EHy, with EHy, — (d — DH,y,
so that they agree with the corresponding generators from Theorem . One
can replace the others similarly using (22).
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5. Differential Operators of Order 3

We continue with Notation . In this section, we construct the minimal R-

free resolution of D??I > see Theorem . Following the model in the previous

section, the majority of the work in the present section is contained in Sections
to

5.1. A Set of Generators of ker J3 »

In this subsection we introduce a set of generators for ker J3; see Proposi-
tion . We begin by composing £ with each of the generators of ker J» 1 (see

{E%, EHy;, EH,y, EHyy, ax, oy, o2}

from Proposition as well as each Hamiltonian with itself three times, and
we compute their coefficients in the basis

0P, 90y,,029., 0,0, 9,9,9-, 0,07, 9, 81?9, 9,0, 0

as follows:
SR _ 0 _
xzy 2x2fz
x2z —2x2 f,
xy2 4xyf;
3 Xyz 2 _2x)’fy +2xzf;
E°=6 2 | E“Hy, = —dxzf, ,
y? 6y f:
vz —2y* fy +4yzf:
yz? —4yzfy + 272 f,
L2 L _612fy _
[ —6x%f. ] i 6x2 fy 7]
—4xyf; —2x2fx +4x)’fy
2x2 f — dxzf. dxzfy
—2y2fz —4xyfy + 2y2fy
2 2xyfx —2yzf: 2 —2xzfx + 2yzfy
E*Hzx = dxzfy — 2221, |’ E"Hey = 222 1y aE
0 _6y2fx
2y% fr —4yzfi
dyzfx _2Z2fx
6szx _ L 0 .
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Eay

Ea,

vz

The rest of the subsection is spent constructing the remaining generators of a

T d—1)?

R. N. DIETHORN ET AL.

3x2A”
3xyAxy
3xzAxy
2xyAyy — szyy +2y2Axx
XyAyxz +x2Axy _szyz +2yzAxx
2x7A; — X2 A + 272 A,
6y2Axy —3xyAyy
2y Ay, + 4yzAyy —2xyAy; —xzZAy,y,
4yzAx; —xyA; + ZZzAxy —2xzAy,
622 Ay, —3xzA,;
6x2AXy —3xyAxx
2xyAxy — Y Ay +2x2A
4x7 Ay — yZAxx + 2x2AyZ —2xy Ay,
3xyAyy
YZAxy +xyAy; — yzAxy +2xzAy,

d—1)? 2Z2Axy +4xzAy; —2y2Ax; — Xy Ay,

T d-1)7?

=6

3y2Ayy
3yzhyy
2yzAy; — y2A, + 2Z2Ayy
612Ayz —3yzA,;
6)62AxZ —3xzAyy
2)62AyZ FA4xy Ay —2x2Axy — yZ Ay
2X2A: — 22 Ay + 2x2 A,
dxyAy; —xzAyy + 292 Ay, — 2yzAyy
XZAyz + yzAy; — Zszz +2xyA;;
3xzA,;
6y2Ayz —3yzAyy
2yzAy; — zszy +2y2A,,

3yzA,,
L 312Azz
0 7 [ =3 ]
0 0
O fxfzz
0 0
0 0
, H> =6 , H3,
0 R o
I 0
—fyf? 0
NE: 0
-5 A

minimal generating set of ker J3 »; see Proposition

=6
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3
y

_fxfy2
0
fif
0

0
_f3

0
0
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LEMMA 5.1.1. The elements

1
CX:;E[H;*'M nzA”EzH”"ETiTﬁETiESH”‘A“’Eﬂ’
Z —i[fﬁ +—— 3 A,y E’H R (A )Eﬂ
v @-12 Cod-DXd-2) T
I —i[lﬂ +— 3 —— _A..E’H —;H (A )E3]
2 (d—1)2 Yo@-12@-2)

are well defined in R'°.

Proof. We verify that ¢, is well defined in R'°, and the other two calculations
follow by symmetry. That is, we claim
1

H2 +—— & AwE’Hy, — ———
o d-12d-2)

(d— 1)2

which is given by the matrix

Hy (A E3,

Y [ WM )z(Axx)x3
o, m Hyz (Bx)x?y + 7 1)2x2fz xx
aP9, m )z(Axx)x <= - l)zx fy XX
3x3;2) _Wid_z) )Z(AXX)Xy + @ 1)2x)’fz xx
0y 0y 0; _mHyz(Axx)x}’Z - (d—1)2 (nyy —X2f7) Axx
3xaz(2) m )z(Axx)xzz ( lz)zfov xx
33('3) m yz(Axx)y + @- 1)2y fZAxx +6f3
33(2)3: m yz(Axx)y <= @ 1)2 (yzf) 2yz2f ) Axx — 6fyf2
3)’31(2) m )Z(Axx)yz (d 1 Y (2yzfy - szz)Axx +6f, fz
2 i m Hy;(A)z — = l)zzzfy —6f; ]
(24
is divisible by x. We show that the 8, 82(2) and 3;3) entries are divisible by x?; the

calculations for the other entries are similar.
For the 9, 81(2) entry, we have

% 4 (Ago)xz? — 12 xzfy A
d-1D2d-2) " (d—12 T
6
T d-1)2d-2)
X [(szxx,y - fyAxx,z)xZZ + foy(XAxx,x + YAxxy +2Axx )]
= _m[xzzszxx,y +xzzfyAxx,x +x.yzfyAxx,y]
6

2 2
=TT Tra S A = i)
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. 6x%z Heo(Avy)
Tod-DXd-2) T

where the third equality follows from the Euler identity (48).
For the 82(3) entry, we have

6

5 3 5 o
d— 1)2(d_2)Hyz(Axx)z @ 1)21 Fybx =6
___ 6 3 o o
= (d_ I)Z(d_z) [HyZ(Axx)Z +3(d Z)Z fyAxx+(d 2)fy]
_ 6
T @d-12d-2

x [HyZ(AXX)Z3 + (d - Z)fy(3Z2Axx + 2XZsz - szzz - ZzAxx)]
6
T T@-12d-2
X [Hyz(Ax) +2(d = 2) f3(@ Ay + X281 — (d = )2 fyA]
6
)

X [Hy,(Axx) 2 + fy(ZPE(Axy) + x2E(Ayy)) — (d — 2)x° fy Az,

where the second equality follows from identity (59) in Appendix

Applying identity (66b) from Appendix to rewrite fyE(Ayy) and

fyE(Ay;), we have
fy(ZzE(Axx) +xzE(Axz))
= 22 (X Hyy(Ayx) — 2Hy; (Arx)) + x2(x Hyy(Arz) — 2Hyz (Axz))

so that the BZ@) entry becomes
6

_ 3 2 _ 3
—(d 2@ —2) Hy (Axx)z - 1)2Z Sy Axx 6fy
6
T @-12d-2)
X [xzz(ny(Axx) — Hy (Axr)) +x2(Zny(sz) —(d~- 2)fyAzz)]
6
T @-12d-2)
X [XZZ(—di 1X3y) +x2(Zny(sz) —(d- Z)fyAzz)]
e
 (d—-DXd-2)
X |:Zny(sz) —(d - Z)fyAZZ - ﬁzzs)}’

where the second equality follows from identity (68) in Appendix
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By similar calculations for the remaining entries, we find that matrix (24) is
given by

Y XHy;(Axx)
352)5% YHy; (Axx) — (d —2) frAxx
3;2)31 ZHyz(Axx) +(d — 2)fyAxx
dx 3.52) YH x (Axx)
6x> 0x 0y 0; %(nyy(Axx) + z2Hzx (Axx))
T Wd—1)2d—2) 2Hyy(Arx) :

0P | yHo(Axy) + 77328+ (d — 2) f2 Ay

3;2)32 nyy(Axy) - d—llyﬂsz - (d - Z)fyAyy

0,02 | ZHox(Ax) + 75928y + (d —2) f: A
O | 2Hey(Axz) — 727228y — (d — 2) fy A |

which is divisible by x2, as desired. The corresponding statements about divisi-
bility for ¢y and ¢, follow from x, y, z-symmetry. O

We will show that {E3, E>H,, E?H,,, E*Hyy, Eay, Eay, Ea;, {y, Cy, C:) is a
minimal generating set for ker J3 » in Section 5.3; see Lemma

5.1.2. From the computations above, writing these generators in terms of the basis
{8)52), 0y 0y, 0x 0z, 8§2), 0y 0z, 81(2)} gives the columns of the following matrix:

— 3 2 2 2 _ 6
Mo(3) = [E E2Hy, E’Hyx EHxy Eax Eay Ea; — 8o Z],
where
3 gy &

r xHy (Ary) XHyz(Agy) = 757528, = (d = 2) fo Ae XHyo (M) + 757578, + (d = 2) fy A
YHy:(Dxx) = (d = 2) fz A xHyz(Ayy) XHer (Ayz) — 747 x98y — (d = 2) fr A
2Hy: (D) + (d = 2) fy A XHyy(Axy) + 755 528: + (d = 2) fx D xHy:(Az:)

YHor (D) XHo (Ayy) +(d = 2) f2 Ayy YHy(Ay2) + 757580 + (d = 2 fyAyy
7 = LV Hey (D) + 2Hoe (D)) L (@Hyz(Ayy) + xHyy (Ayy)) 3 (Hox (D) + yHyo (M)
: ZHyy (Acy) THy:(Ayo) — g x28e —(d = 2) f A XHyy (Dzr) = (d —2) fy A
YHo (D) + 727328+ (d =2 f: Ay YHoc(Dyy) YHo (Ay) — 721328, — (d =2 frAyy
YHuy(Axy) = 77328 — (d = 2) fyAyy 2Ho (Ayy) = (d —2) Dy YH.(Az2)
THo (Ax) + 77 v28y +(d —2) f: Az 2Hyy (Ayy) YHey(Az2) +(d = 2) fi Az
L 2Huy (M) = 75228y — (d =D fyBe 2Hoy(Ay) + 77228 +(d = 2) fi Az 2Hyy (D) ]

5.2. Matrix Factorization

Throughout this subsection we recall the dg £-module L constructed in .In
particular, its differentials BiL are defined in (16).

5.2.1. Consider the map : Kos€(x, y,z) — L given by

0 0— 2.2 " g 0
B3 B2 b1 Bo
oL ok oL
0 0—=0* 200 =0} 0
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where
—] (0%) 1
B2 = ; B1= , Bo= 503,
%6 1 %02 3
and the matrices o; are defined in Section . First note that this is a chain

map: Using Appendix D, the rightmost square commutes by matrix identity (88),
the middle square commutes by matrix identities (89) and (86), and the leftmost
square commutes by Euler (48) applied to f and 8.

Next note that 8 is a morphism of dg E-modules. Indeed, the E-action com-
mutes with Bp, 81 using (88). The E-action commutes with 81, 8, using (86) and
(91). The E-action commutes with B, B3 just using the Euler identity. There-
fore B is a dg E-module map, and so cone(8) naturally inherits a dg E-module
structure. Consider the projection of complexes

cone(B) : 0 0 o* o’ o’ 03 0
0 0 Q3 Q7 Q7 Q3 0

with w =[1 93]; this is a quasi-isomorphism that defines a dg E-module on the
target. Namely, if we let G denote the source of the projection, then G is the dg
E-module whose underlying complex is

—i — 0 0
—ay ay —Dy 0
1 1

301 300 @ 33

7[%"3 o ]

G: 00’ 0’ 0 0}=0
with e- given by
-D3 0 0 0
754, [3]
_ 0 0 D —-D
03 2 Uy o7 22 93 o

5.2.2. Let G be as constructed in . Applying to it produces the matrix
factorization Fold(G) of d - f over Q:

0 —d1 0 0 303 ay ) 0
q a =Dy 0 =Dy 0 0 —d
—Dy 302 ap 03 0 ) 0 Tal
QIO 0 —Dy —q 0 Qlo 0 0 Dy 391 QlO
Changing bases yields the equivalent matrix factorization:
9 D 2 —2
0 1 gz s 72 P, 0 20, 0
29 2 2 —  2a; 0 —203
0 0 349 Dy 0 ) 3a; 0
Q]O 0o 0 0 EN 10 Lo 0 —9 Dy Q]O
Therefore, from , the complex

M>(3 Mi(3 M>(3 Mi(3
e s RIO 2(3) R10 13) R10 2(3) R0 13) R0,

-
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is exact, where

(03 Dy 207 —209
0 lq Dz 30l2
M>(3) = 2 and
2(3) 0 0 %q D>
L0 0 0 01
" D, 0 —201 0
_ | =02 2o 0 —203
M®="0" 25 30 0
L 0 0 —0> D3

5.3. Resolution of ker J3 »
In this subsection we establish exactness of the following sequence of R-modules:

J32

M3 R10 M>(3) R0 My (3) R10 My (3) R10 RO

where the definitions of the matrices M;(3) can be found in and
The proof of the following lemma is similar to Lemma

LEMMA 5.3.1. The Ry -module (kerg(J32))x =kerg, (J3,2) is freely generated by
the operators E3, EzHyz, Ea,, and H;Z.

LemMaA 5.3.2. We have My(3)M1(3) =0109x10-

Proof. First note that the relations on the generators of ker J 1 give seven rela-
tions on the first seven columns of My (3). These are simply obtained by compos-
ing the generators of ker J> 1 by E (and viewing the images in the filtration factor
D3/ D»); see Appendix for the details. To see that the remaining columns of
M (3) give relations, see Proposition and Lemma . g

LEMMA 5.3.3. We have (ker My(3))x = (im M (3))x.

Proof. The proof follows along the same lines as Lemma . Namely, one can
express the columns of Mp(3) in terms of the free basis E3, EzHyz, Ea,, H;z

above. Considering the Hf,z coefficients, the coefficients of ¢x, ¢y, ¢; in the re-
lation must be in the span of d;. Subtracting off a suitable linear combination of
columns 7-9 of M;(3), one can replace the given relation with one in which the
x, &y, & coefficients are zero. Repeating like so with the oy, ay, a; coefficients,
and then the EzHyZ, EZHZX, Eszy coefficients, one obtains a relation of the
form a E3 = 0, which must be the zero relation. O

We are now ready to prove the main result of this subsection.
PROPOSITION 5.3.4. The sequence of R-modules

B2
RlO R(J

) M;(3) R10 M>(3) R10 M;(3) R10 My(3)
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is exact. In particular, the R-module kerg J3 2 is generated by the elements

{E®, E*Hy, E*Hy, E*Hyy, Eay, Eay, Eaz, &, £y, £}
Proof. In view of and Lemmas s , and , a proof parallel to
that of Proposition can be used to prove the statement. |

5.4. Resolution of D?ﬂk

In this subsection we construct the resolution of D?%lk by defining a “lift” of
00 (3); here it is interpreted as a map from the degree one part of the resolution of
coker J3 2, constructed in Section 5.3, to the complex C = cone(6(2)) defined in
Lemma

5.4.1. Consider the diagram

—M,;(3)

RIO RIO RIO RIO R6 0
03(3) 62(2) 01(3) 0(3)
C C aC

Rll % R 11 % R9 gl R4 0
where M; (3) are defined in and , and the 0; (3) are declared in Section
The proof of the next lemma is similar to that of Lemma . In light of this,
and the lengthy computations involved, its proof is Appendix
LEMMA 5.4.2. The diagram in commutes. That is, 6(3) is a morphism of

complexes.

THEOREM 5.4.3. Assume that R =k[x,y, z]/(f) is an isolated singularity hyper-
surface where k is a field of characteristic zero. The augmented minimal R-free
resolution of D;ﬂk C R® ® R® @ R has the form

) 6> (3) 11
Rl i 60 Rl LI NC) Rl i 60 RO M3 RED
0 My(3) 0 M@3 0 My@3) 0 0

N @ ® ® RS D}, —0,
R]() Rl() R]O Rl() o)
R

where a minimal set of generators for D??lk is given by the columns of

E 63 0
e=|0 My(3 0
0o 0 1

and the block matrices making up the differentials are defined in Lemma ,
,and ; see also Section

-
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Proof. The proof is essentially the same as that of Theorem ; one uses Propo-
sition and Lemma in lieu of Proposition and Lemma , re-
spectively. g

The theorem yields the following corollary, which is analogous to Corollary
COROLLARY 5.4.4. There is a short exact sequence of R-modules
0— D%ﬂk — D?ﬂk —kerJzpo — 0
where D%?\k — D?ﬂk is the inclusion.
QUESTION 5.4.5. Is there a short exact sequence of R-modules
0— DEkI — Dﬁelk —kerJ; ;-1 =0
where Dé{lkl — D;Ik is the inclusion for all i > 0?

In contrast, the reader can find short exact sequences relating the cokernel of the
inclusion D’R_lkl — Dj,ﬂ « to global sections of certain sheaves in [42].

Similar to and Corollary , the differentials in the resolution of D?QI k
are homogeneous with respect to the internal grading of R where

1Sl =18yl = 18] = 3d = 8.

Hence, from Theorem we can read off the graded Betti numbers of D%l &

COROLLARY 5.4.6. The graded Betti numbers of D> = D%‘ ¢ are given by

4’ J=09
9, j=d—2,
B (D =16, j=2d-5,
3, j=3d-38,
0, otherwise
and forn > 1
9, j=nd-—1,
1, j=nd+d-3,
6, j=nd+d-—4,
ﬂZIiz—l,j(DS)z 1, j=nd+2d—-6, and
3, j=nd+2d-7,
1, j=nd+3d-9,
0, otherwise

-
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3, j=nd,
9, j=nd+d-2,
,82’;’].(D3)= 6, j=nd+2d-5,
3, j=nd+3d-3§,
0, otherwise.

COROLLARY 5.4.7. The following inequalities are satisfied:

levelp, gy (ker J32) <3 and levelf, (g, (Dgy) <6.

Proof. Using Corollary and Corollary , we have the following:
k 3 k k 2
levelp, (r) (D) < levelp_ (g)(ker J32) +levelp_ ) (Dgpi)
< Ievelllgsg(R) (ker J32) + 3,

and so the first inequality implies the second. The first inequality is from

and Proposition . g
Based on the (partial) evidence in Corollaries and , as well as Re-
mark , we ask the following.

QUESTION 5.4.8. Let R be an isolated singularity hypersurface ring with residue
field k of characteristic zero. For every positive integer i, do the following in-
equalities hold:

levelp gy (ker Jii—1) <i and levelf (g (D) <ii +1)/2?
REMARK 5.4.9. By [4, Proposition 4.11], for any N in Dgg(R), the following
inequality is satisfied:
levelp,  (r)(N) < 2LE(R/(fx, fys f2));

here €£(—) denotes the Loewy length of an R-module. So Question has a
positive answer whenever n is at least 26(R/(fx, fy, f;)). However, it would
still be enlightening if ker J; ;_; can be built from k using i explicitly described
mapping cones as was the case for i = 2, 3 in Corollaries and , respec-
tively.

5.5. A Set of Generators of D??lk

Now we write the generators of D;QI « given in Theorem as differential oper-
ators. In what follows, as in Section 4.5, we write E2, E>, EH;j, EZH,-j, Hfj for
the representatives in D%l « specified in Sections 4.1 and 5.1. For example,
E® =x79] 4 3x2y07 0y + 3x°2070; + 3xy* 0,07 + 6xy20, 00 + 3x270,07
+ 3702 4+ 3y%2070, + 3yz°0,07 + 2792

Finally, we also adopt the notation from Section
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We begin by writing some relevant operators of order at most three in terms of
their images in the ker(J3,2) = D?QI v D%ﬂ « and lower order operators. Composing
& with (21) and (22), we have

E3=FE+3E*>+ E=E>+3&%*-2¢, (25)
EN=E’H+dEH +(d— 1)EHN
=E’H+Q2d—1V)EH +(d —1)*H
=E*H+ (2d —1)EH —d(d — DA, (26)

where H denotes any one of the Hamiltonians, H,, H;x, or H.y. Composing H
with (23), we have

My, = Hy + My (f1)0] — 2Hy(fy )9y 0: + My (£)07 @7

1 1
- HHyZ(Axx)g - HAXXH)?ZS (28)

1
+ H(Hyz (xAxx)0x + Hyz (xAxy)ay + Hyz(Xsz)az) (29)

+ (X AxxHyz0r + XAy Hy By 4+ x Ay Hy0). (30)

d—1
Noting that, by (22), we have H,,£ = EHy, + Hy; = EHy; — (d — 2)H,,, sim-
plifying (29) and (30), and using identities (53) to rewrite (27), we find that

2
M. =H;. + T (@ = DAGH e = AEHye + 2D H2)

1 1
- —Hyz(Axx)g - —Axx (gHyz - (d - 2)Hyz)

d—1 d—1
1
+ dTlx(Hyz(Axx)ax + Hyz(Axy)ay + Hyz(sz)az)
1
+ HXDXH);Z,

where Dy = Ay, 0x + Ayydy + Ay, d;. Simplifying once more, we obtain the fol-
lowing expression for H)sz:

1
M. =H;. - T BAGEH + Hy(An)E = Bd = HAxHye = 3xDi My
= X(Hyz (Axx) 0 +Hyz (Axy)dy + Hy: (Axz)0;)]. 3D

We obtain similar expressions for the cubes of the other Hamiltonians below.

1
HE, = H2, = B0y EHor + Hax (Byy)E = (3d = ) Ay, Hex = 3Dy Hay

= Y(Hox (Axy)0x + Hox (Ayy)dy + Hox (Ay2)2)], (32)
I
iy = Hy = 7 BAEHay + Hay(Ac)€ — (3d —4) A My — 32D My
— 2(Hay (Axz)0x + Hay (Ay2)0y + Hay (Az2)3:)]. (33)
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THEOREM 5.5.1. A minimal set of generators for D?Qlk is given by GoUG1 UG U
G3 where Gy, G, and G, are defined in Theorem and

G3 :{53’ ngyzy ngzxa ngxy» S.Ax, gAy 5-/417 Z)n Zys Zz}y

with
z =L " +;(6(d—Z)A E My — 2Hyo (M) E>
x X2 yz 2(d _ 1)2(d . 2) XX vz yz XX
—6(d = 2) A EMy; = 3(d = )My (Ax)E?
—2(d -1 —2)(d —3)AxxHy; + (3Bd — 7)7'[yz(Axx)5)i|a
z—1H3 ! 6(d —2) Ay E>H oy — 2H 1 (Ay))E?
Y_F zx+m(( —2)Ay,y x = 2 ( yy)

—6(d —2)AyyEHox — 3(d — 3 Hon (Ayy)E?

- 2(d - 1)(d - 2)(d - 3)Ayy7'lzx + (3d - 7),Hzx(Ayy)5)i|»

1 3 1 2 3
Z=5 [ny + a2y 6@~ DA Hay = 2Hay (A€

—6(d —2) A EHyy —3(d = 3)Hyy (A)E?

—2(d—-1D(d—=2)(d —=3)AzzHyy + (3d — 7)ny(Azz)5)i|-

Proof. The proof is similar to Theorem , so it suffices to show that Z, Z,,
and Z, agree with the generators corresponding to the last three columns of ¢ in
Theorem , and thus they are well-defined operators in D%?I e
Analyzing the column of the augmentation map ¢ in Theorem that lifts
Ly, we see that the corresponding operator is given by
z 1 3 3 2 1 3 4
x:x_z Hyz'i‘mAxxE Hyz_mHyz(Axx)E (3 )
1
+ m((Syaz —8;0y) 35)
3 @
T d-Dhd-2 Hy7 (Axx)0,” + Hpx (Axx)0x 0y
8
+ Hyy (D)9 + (Hzxmxy) + ﬁ)a;” (36)
1 726, — y$
+ 5 (Hzx (sz) + ny(Axy) + ﬁ)ayaz
28y
+ <ny(sz) — dTyl)az(Z)] 37
where (34) comes from the formula for ¢, in Lemma , and (35), (36), and

(37) come from the lift 61 (3) defined in Section 3.
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Next we use (25), (26), and (31) to rewrite (34), as follows:

1 1
Zi=—|H, +—
T X2 |:Hyz + d—1
—3xDyHy, 39)

+ Hyz(Axx)E = X (Hyz (Axx)0x + Hyz (Axy)y + Hyz (Ar2)d2)] (40)

[BAEHy; — Bd =4 A H,y, (38)

+ WA”(SQ’HW —Q2d — D)EH,, +d(d — 1)H,y,) (1)

- mﬁﬂmm)(é3 -3£2 4 25)] (42)
ta- ! GO — 8 43)

- w—lfm [Hyz(Axx)8§2> + Hor (Ar) 0y dy

Moy (A0, + ( Hoa(Biy) + )a<2> (“4)

1 26, —y
+ 5 (Hzx(sz) + ny(Axy) + ﬁ)ayaz

(o000 - 25 ) | 45)

One can check that using identities (67) and (68) to rewrite (40), combining them
with (43), and simplifying using the Euler identity (48) yields

1 )c2

+ dTl(,Hyz(Axx)g - X(Hyz(Axx)ax + Hyz(Axy)ay + Hyz(sz)az))]

2(d —-2)

= Gt (46)

One can also check that combining (39) with (44) and (45) and using the Euler
identity (48) to simplify yields

Ta- 2[Hyz<Axx>8<2> + Hex (D) DDy

y3 @
+ ny (Axx)0x0; + | Hex (Axy) + 8

1 20—y
+ 5 (Hzx(AxZ) + ny(Axy) + ﬁ)ayaz
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Z8y @
+ ny(sz)— dj 82
3
- 2x2(d — 1)(d —-2) (2(d =2)Axx EHy; — Hyz(Axx)E2)
3

T22d—-1)d-2)
X (2(d - 2)Axx((c:?'lyz - (d - I)Hyz) - %yz(Axx)(gz - S)), (47)

where the last equality follows from (2 1) and (22). Finally, using (46) and (47) to
rewrite the formula for Z, in (38) through (45) gives the desired formula for Z,.

The proofs for Z, and Z; are similar. g
REMARK 5.5.2. Similar to Remark , except for Zy, Zy, and Z,, the gen-
erators in Theorem do not agree with the generators of D%l ¢ given in the
augmentation map ¢ in Theorem . However, one can subtract lower order

operators to obtain generators that do agree. For the first four generators, such
formulas follow directly from (25) and (26). One can check that the operator

given by subtracting %Ax from €A, agrees with the corresponding generator
in Theorem , and similarly for £A4, and £A;.

A. Identities

In this appendix we collect identities that are used extensively throughout the
paper. Let f € k[x, y, z] be homogeneous of degree d > 3, where k is a field of
characteristic zero. Recall that

E(f)=xfx+yfy+zf:=d-f (48)

in k[x,y,z] (and O in R), where E = xd, + yd, + zd; is the Euler operator.
Differentiating (48) with respect to x, y, z produces the following system where
{x,y,z} ={a,b,c}:

afaa +bfap +cfoc=d - 1) fu. (49)

A.l. Identities Involving Second Order Derivatives

Multiplying the first equation in the system above by x, the second one by y, and
the third by z and then adding them all together, we obtain a second order Eulerian
identity

32 fux + 3 foy + 2 for + 200 xy + 208fec + 292fye =0. (50)
Importing A from Section 3, we have

Ayx Axy Ay
adj(A) = | Ay A,
Ay, Ay,
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and from the matrix identity A adj(A) = §13x3, where I3x3 is the identity 3 x 3
matrix, we obtain the following identities with {x, y, z} = {a, b, c}:

8:faaAaa+fabAab+facAaC7 (5121)
0= faaAab + fabAbb + facAbc- (Slb)

An application of Cramer’s rule to system (49) yields for {x, y, z} = {a, b, ¢}
afs:(d_1)(faAaa+fbAab+chac)- (52)
Using equations (49), one can easily obtain the following useful identities:

XAxy — YAy =(d - 1)(fzfyz - fyfzz)v
YAxy = xAyy =(d — D(fz faz — fx f22),
XAy, — YAy, =(d — D(fy faz — [x fy2),
ZAyy - yAzy =(d — D(fzfox — [x fx2),
YAz — 28 = (d — D(fy fax — frx fay), (53)
ZAxx — XAy = (d — 1)(fzfyy - fyfzy)’
ZAxy _XAyz =(d - 1)(fxfzy - fzfxy),
Ay — XA =(d — 1)(fyfxy - fxfyy)7
ZAxy — YAy, =(0d— 1)(fyfxz - fzfxy)-
To prove these, one starts by the right-hand side of the equations above and re-

places (d — 1) fx, (d — 1) fy and (d — 1) f; with (49) respectively and then sim-
plifies the resulting equations.

A.2. Identities Involving Third Order Derivatives

Differentiating (49) in various manners yields the following system of equations
for {a,b,c} ={x,y, z}:

afaaa + bfaab + cfaac = (d — 2) faa, (54)
afuab + bfabb + Cfabc = (d - 2)fab' (55)

From (54) and (55), one obtains the following identities with {a, b, c} =
{x,y, 2}

azfaaa + bzfahb + szacc + 2abfaah + 2acfacc + Zbcfahc
=d-2)d—-1fa. (56)

From (56) we obtain the following third order Eulerian identity:

x3fxxx + ygfyyy + ngzzz + 3(XZfoxy +xy2fxyy + yzzfyyz
+ yzzfyzz + xzzfxxz + xzzfxzz) + 6Xnyxyz =0. (57)
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A.3. Applications of the Eulerian Identities

We can express fy fy, fxfz, fyfz as linear combinations of the cofactors of
A with coefficients certain monomials in x, y, z. More precisely, we have for
{a,b,c}=1{x,y,z}):

1
Jafo= )2{6 Aap+abAce —acApe —beAgc} + - l)fabf (58)

N T
“_(d—l)z{ b*Aee —c Abb+2bCAbg}+(d )faaf (59)

We shall prove (58) with a =y, b = z, and ¢ = x. The others follow similarly.

Proof of (58). From (49) we obtain

1
@ W F3fwy + i) e + 3t 222

[xzfxzfxy +x)’fyzfxy +xzfzzfxy +nyxzfyy

fyfz =

T @d-1y
+y fyzfyy + nyzzfyy +foyzfxz + nyyzz +12fzzfyz]

1
(d 1)2 [fyz(yzfyy + Z2fzz + yzfyz +xzfv; + nyxy)

+ fxy (? fre +x2f20) + XY fxz oy + ¥efea fry]
== 1)2[fvz( X2 frx = 2fys — X2fxz — XY fry +d(d — 1) f)
+ foy (0 fre + x2f20) + X3 faz oy + vifee fry]-
Using (50) to replace (y2 fyy +2% for + y2fyz + X2frz + X fry) With —x2 frx —
Yzfyz — X2fxz — Xyfxy +d(d — 1) f, we obtain

fofo= [ Ay, = xyAre — x2Ayy + y2Ar +dd — D fyo f1.

d—1)2

A.4. Some Facts on Partial Derivatives

Now, if we differentiate (52) with respect to y and z, (52) with respect to x and
Z, (52) with respect to x and y and use the identity (51b), we obtain the following
with {x, y, z} = {a, b, c}:

adp, =(d — 1)(faAuu,b + fbAab,b + chac,b)' (60)

Here Agp . denotes the derivative of A,, with respect to the variable c.
Moreover, if we differentiate (52) with respect to x, (52) with respect to y,
(52) with respect to z, use the identity (51a) and then simplify, we obtain for
{x,y,2}={a,b,c}

a(sa = (d - 2)8 + (d - 1)(fa Aaa,a + fbAab,a + chac,a)- (61)
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fxzy
fyzy ’

fzzy

denote the matrices obtained by differentiating the columns of the matrix A with

respect to x, y, z respectively. If we differentiate (

x, y, z respectively and simplify, then we can see that

8y =tr(adj(A) F),

8, = tr(adj(A)G),

8; =tr(adj(A)H),

) with respect to the variables

(62)

where tr A denotes the trace of a matrix A. We will prove the first equality in (62).
The others follow similarly.

To see this, recall § = fyxAxy + fayAxy + frz Ay If we differentiate with
respect to x, then we obtain

I = (fxxx Axx + fxyx Axy + fxzx sz)

+ fxx Axx,x + fxy A)cy,x + fxz sz,x-
Differentiating the following subdeterminants

Axy = fxzfyz - fxyfzz’

with respect to x, we obtain the following equations:

2
Ayyx = fyyfzz - fyz,

Axx,x = fyyxfzz + fyyfzzx - nyzfyzx’
Axy,x = fxzxfyz + fzxfyzx - fxyxfzz - fxyfzzx’
sz,x = fxyxfyz + fxyfyzx - fxzxfyy - fxzfyyx-

Now we see that

FexBxx + fryDryx + forBrzx
= fxx(fyyxfzz + fyyfzzx - 2fyzfyzx)
+ Fey(Fezx oz + fox fyzx — ey foz — Fey fozx)
+ fxz(fxyxfyz + fxyfyzx - fxzxfyy - fxzfyyx)
= foyx(Frafyz = Fay fe2) + Fypx (Fex foz = F3) + Feye (Fex fry = Fyzfrx)
+ feye(fox fry = Fye foo) + feox (Foy foz — Foy Feo) + Ffeaz(Fex fyy — £3)
= (Auy fryx + Ay fyyr + Ayz fra) + (Axz frax + Ayz frax + Azz foz)-

So we have

fxx A)cx,x + fxyAxy,x + fxx sz,x
= (Axyfxyx + Ayyfyyx + Ayzfyzx) + (szfxzx + Ayzfyzx + Azzfzzx)-
Putting this together with (63), we see that §, = tr(adj(A) F), as claimed.

(63)

Ayz = fxyfyz - fxzfyy

(642)
(64b)
(64c)
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A.5. Identities Involving the Derivatives of the Subdeterminants A,y

We collect some useful identities involving the derivatives of the (i, j) cofactors
of A:

Aua,a + Aub,b + Aac,c =0 with {x, Yy, z}={a,b,c}. (65)

Proof of (65). We show this for one choice of a, b, c, but the others follow from
symmetry. Differentiating the equation

Axy = fxzfyz - fxyfzz
with respect to x, we obtain the following equation:
Axy,)c = fxzxfyz + fxzfyzx - fxyxfzz - fxyfzzx~

Now, we have that Ayyy = fxxyfzz + fxxfzzy - zfxzfxzy and Ayzz= fxyzfxz +
Sxy fxzz = Frexz fyz — fox fyzz- Adding the last two equalities together, we obtain

Ayy,y + Ayz,z = fxxyfzz - fxyzfxz - fxxzfyz + fxzzfxy = _Axy,x~ O

B. Hamiltonian Identities

In this appendix, we collect some identities involving the Hamiltonians acting on
various cofactors of the matrix A. These identities are used in the calculation of
the entries of the matrix product 61(3) M1 (3) and thus in construction of the lift
6>(3) in Section 5.4. Recall

Hyz:fzay_fyBZv Hzx:fxaz_fzax’ ny:fyax_fxayv

and we define H,y = —Hy;, H,; = —H;\, Hyy = — H,y. There are some funda-
mental relations among all the Hamiltonians and the Euler derivations:

SxHy; + fyHzx + foHey =0, (66a)

faE —cHeq +bHypy =0 with{a,b, c}={x,y,z}. (66b)

B.1. Relations Among H;j(Ay)

We have the following identities with {a, b, c} = {x, y, z}:

Hou(Aus) — Hpo(Agy) = 2% (67)
ca aa bc\BRab _(d—l)’
_ bép—(d—2)8
Hbc(Abc) - Hab(Aab) = (d — 1) . (68)
Using (67) we obtain
8y —z8
2Hye(Aye) = Hoe(Ae) + Hy (Aay) + 2%, (69)

y8y + 28, _ 2(d —2)6

0=Hyy(Axy) — Hyx (Ayy) + d-1) @da-1"

(70)
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Additionally, if we replace ydy + z6, with its equal 3(d — 2)§ — x4y, then (70)
becomes

0= Hyey(Avy) — Hox(Ays) + =20 =20 71
= Hyy(Axy) — Hyx( XZ)+W. (71

We present the proofs (67) witha = x, b = y, and ¢ = z, and the remaining follow
along the same lines.

Proof. We use the identities in (60) from Appendix A to verify the identity:

Hyz(Axy) = szxy,y - fyAxy,z
= _fZAxx,x - szxz,z - fyAxy,z

_ (A ) x(SZ .
- X XX d _ 1 k]
the second equality uses (65), whereas the third uses (60). Il

B.2. Identities on How H;j Act on Some Elements in k[x, y, 7]

Here we collect some useful identities on how H;; act on (49), (52). Note that
Hy,(x) =0, Hy;(y) = f;, and Hy,(z) = — f,. Moreover, using the equalities in
(53), we have

1

Hyz(fx) = fzfyx - fyfzx = m()’AxZ - ZAxy)a (72a)
1

Hyz(fy) = fzfyy - fyfzy = m(ZAxx —xAy), (72b)
1

Hyz(fz)zfzfyz_fyfzzz(d—_])(XAxy_yAxx)- (72¢)

If we apply the various Hamiltonians to (52), then we obtain the following with
{a,b,c}=1{x,y,z}:

a(fedp — fpde)

faHbc(Aaa) + fbec(Aab) + chbc(Abc) = d—1 s (733)
b(fedp — fpbe d—2)8
FuHoe(Ba) + o Hoe () + fo Hoe (D) = 2 o lf vl ! T 1) fes
(73b)
“0p — fpdc d—2)6
faHbc(Aac) + fbec(Abc) + chbc(Acc) = C(f db— lfb ) (d — 1) fb’
(73¢)
Hbc(fa)Aaa + Hbc(fb)Aab + Hbc(fC)Aac =0. (73d)

REMARK B.2.1. Some of the equations above can be rewritten in different ways.
For example, if we look at equation (732) using the basic identity x&y + yd, +
78; = 3(d — 2)d and rewriting xf, = —yf, —zf; (over R)or xfy =d - f — yfy —
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zf; on k[x, y, z], then we can write

x(fxds = f280) | (d—=2)8

d—1 d—1 f:
_ 5z(d'f_yfy_Zfz)_xfz5x+(d_2)8fz
N d—1
_ — fz(x6x +Z32)_yfy‘sz+(d_2)8fz +d ds, f
d—1 d—1
_ =[2G =25 — ydy) = yfyd: + (d = 2)8f; td ds; ¥
d—1 d—1
_ y(fzfsy - fy‘sz) _ 2(d —2)6 ds,;
N d—1 d—1 f2+dd—1f'

We prove the identities in (73) for a = x, b = y, and ¢ = z. The remaining identi-
ties follow similarly.

Proof of (73). We first prove Hy, (fx)Axx + Hy (fy)Axy + Hy, (fz) Ay, =0. We
have
Hyz(fx)Axx + Hyz (fy)Axy + Hyz(fz)sz
= (fzfxy - fyfzx)Axx + (fzfyy - fyfyz)Axy + (fzfyz - fyfzz)sz
= fz(fxyAxx + fyyAxy + fyZsz) - fy(fszxx + fyZAxy + fZZAZZ)
=0,

where the last equality uses (51). Applying Hy, to (52) yields

xHy:(8) = (d — D[ fx Hy:(Axx) + fyHyz(Axy) + foHy: (Axz)
+ Hyz (fx) Axx + Hyz (fy) Axy + Hy: (f2) Axz]
=(d- 1)[foyz(Axx) + fyHyz(Axy) + szyz(sz)],
where the second equality is from (73d).
Hence
xHy(8)

foyz(Axx) + fyHyz(Axy) + szyz(sz) = d—1

9

and thus (732) is proved.

For (73b) we use (67) and (68), rewrite Hy,(Ayy) in terms of H;x(Ayy),
rewrite Hy,(A,;) in terms of Hyy(Ayy), and then use the fundamental relation
among the Hamiltonians (662) applied to A,,. So we have

foyz(Axy) + fyHyz(Ayy) + szyz(Ayz)

8;
:foyz(Axy)+fy(Hzx(AX)f)_dy_'1>
8y —(d—2)6
+ fz (ny(Axy) + %)

= foyz(Axy) + fszx(Axy) + szxy(Axy)
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)’(fzfsy - fy‘sz) _ (d—-2)

d—1 d—1

_ )’(fz‘sy - fyaz) _ (d— Z)Sf
B d—1 d—1 "%
where the last equality uses (662). Finally, for (73c) we will use (67) and (68),
rewrite Hy;(A,;) in terms of Hx(Ay;), rewrite Hy;(A;;) in terms of Hyy(Ay,),
and then use the fundamental relation among the Hamiltonians (662) applied to

Ay
So we have

foyz(sz) + fyHyz(Ayz) + szyz(Azz)

- fXHyZ(AxZ) + fy (Hzx(sz) - W)

fz

d—1
= foyz(sz) + fszx(sz) + szxy(sz)
Z(fzay - fysz) (d—2)

+fz(ny<sz>+ 2y )

d—1 d—1 Iy
(_)Z(fzay_fyaz) (d_2)8f
- d—1 d—1 "% O]

The remaining identities are used in Appendix
By direct calculation one can show

Hyz(fxx) + Hzx(fxy) + ny(fxz) =0,
Hyz(fxy) + Hzx(fyy) + ny(fyz) =0, (74)
Hyz(fxz) + Hzx(fyz) + ny(fzz) =0.

We also see how the Hamiltonians H;; act on (51a) and (51b). Applying Hy, to
(51a) yields

Hyz(‘s) = Hyz(fxx)Axx + Hyz(fxy)Axy + Hyz(fxz)sz
+ [fxxHyz(Axx) + fxyHyz(Axy) + fszyz(sz)]»
and hence
fxxHyz(Axx) + fxyHyz(Axy) + fszyz(sz)
= Hy;(8) — [Hy:(fxx)Axx + Hy (fry) Axy + Hyz (fiz) Axl. (75)
Similarly, if we apply H_x to (51b), then we have
0=Hzx (fxy)Axx + Hyx (fyy)Axy + Hyx (fyz)sz
+ [fxszx(Axx) + fyszx(Axy) + fyszx(sz)]y
and hence
fx}’HZX(AXX) + fyszx(Axy) + fyszx(sz)
= —[Hyx (fay) Axx + Hox (fyy) Dxy + Hox (fyz) Aszl (76)
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And finally, if we apply Hy to (51b), then we have

0= ny(fxz)Axx + ny(fyz)Axy + ny(fzz)sz
+ [fszxy(Axx) + fyy ny(Axy) + fzszy(sz)]’

and hence

JrzHey(Axx) + fyzHey(Axy) + foz Hry(Axz)
= —[Hxy(faz) Dxx + Hxy(fy2) Dxy + Hay (f22) Axz]- (77

REMARK B.2.2. Analogous equations hold if we apply the other Hamiltonians to
the equations in (51).

C. Computations for My(3)M;(3) =0

C.1. From Relations Among Generators of ker(J2,1) to Relations Among
Generators of ker(J32)

Recall from Lemma that the following relations hold for the generators of
ker(J2,1):
fuE? —cEHe +bEH,, =0, for{a,b,c}={x,y,z}, (73)
2
m(faaEHbc + fabEHea + fac E Hap) — cop + boe
=0 for{a,b,c}={x,y,z} (79)
25 2
_(d——1)3E + frox + fyay + fra; =0. (80)

Precomposing with £ we obtain seven relations amongst the generators of
ker(J3,2), corresponding to the first seven columns of M (3).

We shall now describe what will turn out to be the remaining relations among
the generators. They correspond to columns 8—10 of M (3).

ProposITION C.1.1. We have over R that

26, 5 3
_d/3(dx_ 2)E + d—1 (faxEox + fryEoy + fr:Eaz) — 28y + y5, =0,
(81a)

25 ;3
—d/3(dy_2)E t+ o FevBax + fiyEay + frz Eao) + 26 — x¢: =0,
(81b)

26 3 3
_d/S(dz_ 2) E° + T-1 (fxzEax + fyEay + fr:Ea;) — yi + x5y =0.
81c)

Proof. We shall prove (81a). The rest follow similarly. We will use d’ :=d — 1.
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A

Recall that H?, + 2% E? = za,. If we apply E to it and look at the “cubic

xy 142
order terms”, then we obtain

A
2 22 -3
EH; =zEa; — 72 E-.
We have
z (1 3 Yy -2 Hyx (Ayy) 3
—z28y +yi = —?(;(ZHM) + WE Hy — mE
y 3 3A,, 2 ny(Azz) 3
+ Z_2(HX)’ + F E ny - d/z(d—Z)E

z |1
= _?[;(f)fE-3 +3yfIE Hey +3y* feEH], + Y HJ))

]

+ Z%(ij + 3§§Z E*H,, — —ﬁ‘(’f_z;)) E3>
- _%[Z%(ffﬁ +3yf2EH,,

+3y% fi (ZEaz - jzzz E3) + y3H3y>

s

+ Z%(ij + 3§§Z E*H,, — —Cfg‘(’f_“;) E3>

o yZZZ d/2z2 d’2(d _ 2)y2 d’z(d _ 2)Z2

32 3yAx\ 37y, 3fx
+ (_ yZ2 + d/2Z2 E ny — d/zyZZE Hzx — TEOIZ
[ 2 3hAL 3fily,

— |: f)? 3fiAz ZHzx(Ayy) nyy(Azz) ]E3

o y272 dr2z2 d?y?
1 2H x (Ayy) _ nyy(AZZ) E3
d2d-\ 2

32 3yAr 3A,)\ ., 3fx
+ <_ yZ2 d/2Z2 d/zy E HXJ/ - TEQZ’

+

where the second equality uses zH,; = fyE + yHyy, and in order to get the last
equality, we use (78) and rewrite zE?H, in terms of E3, E2Hy, via the for-
mula zE%H,, = fyE> + yE?Hyy. To conclude the proof of (812), we need the

following lemma.

(82)
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Lemma C.1.2. The following equality holds:

3
E(fxanx + fxyEO‘y + frEay)

3f 6 0f
— Z)‘ Ea:+ 25528y = YA )E?Hyy — ﬁAuE3. (83)

Proof. We have
3
J(fxanx + fiyEay + frzEay)
3
= d_,z[fxx(ZEax) + foy(zEay) + fr(zEa;)]

3 2
= _, [(xfxx + yfxy +zfx) Ea; + Z(AyzEszy - AzzEszx)i|

3 6 6 6
_éEZ—i—( Ay — —yAZZ)EzHXy—iAZZ

d/2 d/z Z2 d/2 22
3f 6 6f
= TXEaZ pr (zAy; — YA E*Hyy — dT;ZAZZE3,
where the second equality follows from (79), the third one follows from (49), and
the last one holds by (78). O

To return to the proof of (812), we combine the equalities in the proof of Proposi-
tion and Lemma to obtain

3
E(fxxEle + fiyEay + fr;Eaz) — 28y + y¢,
— [_ fx3 4 3fXAZZ _ 3foyy

y222 d/2Z2 d/2y2
+ 1 ZHzx(Ayy) _ nyy(AZZ) E3
d’(d —2) y2 72

32 3yA 3Ay,y 3
+<_ fx+ y z y))EZny_iE

yz2  d?2 d?y
3f 6 o0f
+ ZX Ea; + dez(ZAyz - yAzz)EZHX)’ - d/zgz Az

f
[d’2 xz 2(y A+ 22Dy — 2928y + 3y Ay =327 A, — 6y°A)

1 3 3 3
+ d2(d —2)y2;2 (Z7Hex (Ayy) =y ny(Azz)i|E

3, 3y
[d@ SO Az + 2P Ay — 2yszz)+d/2 SA

38y 64 6yA
d/2y d/2z dIZZ2

1|E2ny
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1 2 2

= W[_Y fRE(A) —z fxE(Ayy) - nyxE(Ayz)
+ 22 Hox (Ayy) — yP Hey (A1 E® + 0E? Hyy

3 1

T d2(d - 2)y%Z2
- ZZ(ZHzx(Ayy) - nyy(Ayy)) - yZ(ZHzx(Ayz - nyy(Ayz)))
+ 2 o (Ayy) = Y Hyy (A)E?

B 1

©d?(d - 2)y%z?
x [y 2(Hyy(Ayz) — Hox(Az2) + 22 (Hyy(Ayy) — Hoo (Ay)]E?

T dBd-2) "

[—y*(zHzx (D) — yHyiy(Azr))

where the second equality follows from (59); to obtain the fifth equality, we re-
peatedly apply the fundamental identity f, E — zH;x + yHyy =0 to each of A,
Ayy, and Ay, and use the fact that E(A;j) =2(d — 2)A;j; and the last equality
follows from (67) and (68). We have thus proven (812). O

C.2. Relation Among &y, {y, &, and the Various E2Hij

In this subsection we establish a relation that corresponds to the last column of
M;(3). We use the following notation: d’ == (d — 1),d” := (d — 1)3(d — 2) =
d?(d —2).

LEMMA C.2.1. We have

26 28y 26
fxgx + fy;y + fzgz - d_,),cEzHyz - d_,iEszx - d_,,zEszy =0. (84)

Proof. Observe that

1
fx{x = ;(_yfy - Zfz)é—x

= ﬁ(_ygx) + é(_Zé'x)
X X

_&[&

3
T E3_ E(fszax + fyzEay + frrEaz) — x;“yi|

28 3
+ %[——%3 + E(fxyE(xx + fyyEay + fy:Ea) — xé‘z]

d//
2(fy6; — f76 3
=_fy§y_fzé‘z‘i‘wE@‘i‘%[(fzfxy_f)'fxz)Eax

+ (fzfyy - fyfyz)EO‘y + (fzfyz - fyfzz)Eaz]
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62 R. N. DIETHORN ET AL.
Z(fyfsz - fz‘sy) E3
d"x
d,2 [(YAx; —zAxy)Eay + (2Axx —xAx)Eay
+ (XAxy - yAxx)Eaz)]

= _fyCy - fzgz +

:_fygy_fzfz d'x (5 f) (Sysz3)
3
d,2 [Axx(zEay — yEay) + Ayy(xEa; — zEay)
+ Ax;(YEay —xEay)]
= _fyfy = fz¢:
d” [8 (— zE H}Z+xE Hyy) — 8y (yE Hyz—xE H_)]
3
+ E[Axx(Zan —yEay) + Axyy(xEa; — zEay)
+ A (YEoy — Xan)]
= _fyf} = fz¢:
+ o 2 [(-3(d — 25+ x8,) E°H Hy, + x8yE* Hoy + X8, E* Hyy ]
+ i (Al f B Hy + fuy E*Hee + 2B Hy)

+ Ay (fryE*Hy: + fyyE*Hox + fy.E*Hyy)
+ Ay (fe:E*Hy, + fy:E*Hyx + fzzEszy)]

65
=_fy§y fzé‘z E2 )z+ (3xE Hyz +‘S E Hzx+8 E ny)

4’
d/3 (fxxAxx + fxyAxy + fxz xz)E Hvz

+ (fxyAxx + fyyAxy + fyZsz)E Hyx

+ (fszxx + f)zAxy + fzz xz)Eszy]

=—fity — 280+ d/,(é E’Hy, + 8yE*H., + 8.E*Hyy)
65 65
— i B Hye 4 < EPHye,

where the first equality follows from (48), the third from (81c) and (81b), the fifth
from (53), the seventh from (78), the eighth from (79), and the ninth from (51).
Hence we have shown

fxgx + fyé-y + fzé-z -
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D. Matrix Identities

In this appendix we collect matrix identities involving the matrices, with entries
in R, from Section

=0y, 9, =—0, D =Di,

(85)
D] =-D;, o1=0j., o) =—o,

01D3 = 033, 3D = D10, dio; = ;1 D;, (86)

1)
Qo = 0o = mlﬁlx& 87)

1 1

50’331 =ajon + 53202, qo3 =3ay D3, (88)
q = 0301, a1qg = 0, Ds, a1q = D30y, qd =0, (89
3 — 0 ¥, (90)

030] — hop = ——— ,

301 =0 =3 133
D03 +0yD3 =0, Dioy =—01Ds. o1

E. Proof of Lemma

E.1. First Square Commutes

Write
r 1 1 1 1 1 1 1 1
glfxxx ffxxy jfxxz flfxyy fxyz jlfxzz gfyyy ffyyz ifyzz gfzzz
90(3): jfxx lfxy fxz nyy fyz jfzz ]0 0 10 0
0 §fxx 0 fxy fxz 0 ifyy fyz jfzz 0
L0 0 Sfa O fo S O 3fy S 3t
[ < —ri— >
| <=r—>
Tl <—r3—>|"
| < —r4— >

where r; denote the rows of the matrix 6y(3).
ProrosiTION E.1.1. The following equality is satisfied: —6y(3) Mo(3) = 81C491 3).

The proof is given at the end of the subsection after a series of preparatory lem-
mas. We make use of the description of My(3) as

Mo(3)=[E® E’H,, E’H,, E’H. Eoa, Eay, Ea, & &y i

discussed in

LemMA E.1.2. The products 60(3)E*, 00(3) E* H,, 00(3) E> Hy, and 6y (3) E> Hy,
all vanish.

Proof. Using (57), one shows that r| E3 =0. Also,
rE> =3x (X frx + ¥* fyy + 2 far + 203 fry + 25 2fxz 4 252f52),
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r3E3 =3y(x? fex + ¥ fyy + 22 for + 2xY fry + 2x2fcz + 2y2fy2),
r4E3 = 3Z(x2fxx + yzfyy + Z2fzz + Zx}’fxy +2xzfx; + 2nyyz)7

and note that the right-hand sides of the equations above are zero in R by (50),
and hence 6y(3)E3 = O4x1. Next we show that 6y(3) E2Hy, = O4y. Similarly,
one can show that 00(3)E2Hzx = 04x1, 90(3)E2ny = 04x1. We have

PFLE*Hye = fo(x? foxy + 25V fryy + 252fye + 37 Fryy + 292 fspe + 22 frze)
- fy(xzfxxz + 2x)}fxyz +2x2fxz; + yzfyyz + Zyzfyzz + szzzz)

= =2)d=D(fefy =y f)
:0’

where the second equality uses (50). The calculations that riEzHyZ =0 for
i =2,3,4 follow similarly using (49) and (50). Hence 00(3)E2HyZ = O4x1, as
claimed. g

LEmMMA E.1.3. The following equalities are satisfied:

[(d —2)8] (d—2)8
—X x8 -y x8
603 Eay, = —— , 603 Eay = ——— s
0() (055 (d—1)2 y(s 0() oy (d_1)2 y(s
| 0 z6
[(d —2)8
—Z x6
0BREa, = ———
0() o7 (d_1)2 yé‘

Proof. We verify that the first equality is satisfied in the first and third entry; the
rest are similar and left to the reader.
Observe that

d—1)>?
@1 oy = A ((d D~ 1) e = 5 Cferr + ¥y + zfxxz)>

+ Axy(xyfxyy +xzfxyz + yzfyyy + 2yzfyyz + szyzz)
+ sz(xyfxyz +x2fxzz + yzfyyz + Znyyzz + szzzz)
2
X Xy Xz
+ Ayy (_E\fx)’y - Tfyyy - 7f)'yz>
+ Ayz(_x2fxyz - x)’fyyz - xzfyzz)
x2 Xy Xz
+ Azz _?fxzz - Tfyzz - Efzzz
d—2 A
= @D = 1) ey, — LT B

+ Axy((d —-2)(d — l)fy - x(xfxxy + yfxyy + foyz))
+ Ay ((d—-2)d -1 f, — nyxyz — x2fxzz)

27
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X
3 Ayy (X fryy + Vfyyy +2fyy2)
- xAyz (xfxyz + yfyyz + nyzz)
X
- 5 Agr (X fxzz + Yfyzz +2f222)

= (d - 2)(d - 1)(foxx + fyAxy + fZsz)
(d —2)x
_T
d—-2)x
_T

d-2)x
— ——(fx;Axz + fyszz + fezAz2)

(fxxAxx + fxyAxy + fszxz)

(fxyAxy + fyyAyy + fyszz)
2

d—2

=— x4.
2

65

The first equality uses (56), the second follows from (54) and (56), the third equal-
ity is from (54) and (55), and the fourth equality is from (51) and (52). Hence

rEoa, =—d ((;l:lz))zx& as needed.

Next consider

d—1)7?
2

Xy
r3Eoy =2y Axx (X frx + Yfay +2fxz) — foxAxx

+ Axy(zxyfxy +xzfx; + 3y2fyy + 4nyyz + szzz)

+2y Ay (xfrz + )’fyz +2f22)
— Xy frzAxz — xAyy(xfxy + )’fyy + nyz)

Xy Xy
- TfyyAyy - XAyz(xfxz + Vfaz T 2fz) — szzAzz

X
:2(d - l)yfoxx - TyfxxAxx

+ Axy(_xzfxx —XxZfx; + 2y2fyy + zyzfyz)

+2(d = DyfeAxz = xyfazAx; — (d — l)xfyAyy -

Xy
—(d - l)xszyz - szzAzz

X
=2(d — DyfeAxx — TyfxxAxx +2(d — I)nyAxy

- (d - l)xfoxy - nyxyAxy

+2(d = DyfiAxz — xyfrzAxz — (d — l)xfyAyy

Xy Xy
- EA)’)' —(d—Dxf;Ay; — EfzzAzz

=2(d — Dy(fxAsx + fyAxy + feAx2)
—(d - l)x(foxy + fyAyy + szyz)

Xy
- T(fxxAxx + fxyAxy + fszxz)

X
_yAyy

2
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66 R. N. DIETHORN ET AL.
Xy
- T(fxyAxy + fyyAyy + fyszZ)
Xy

- T(fszxz + fyszz + fezAzz)
3xy
=2yx8 — xy8 — 75,

where the second equality uses (49) and (50), and the last equality uses (51) and
(52). Hence r3Ea, = —ﬁy, as claimed. O

LEmMMA E.1.4. There is an equality

Szfy_Syfz axfz_szfx 8yfx_8xfy

_ 1 0 381, =381y
90(3) [;Z é‘y gz] - W _38fz 0 38fx
35fy —368f 0
Proof. We compute first 6y(3)¢,. Recall that
Ll 3 ALEH Hy.(Ayo) E
§x—x—2 yz-i-m xx T A= )d =12 v (Axx)E™ |,

and since by Lemma
00(3)E? = 041 =60 (3)E* H,

it suffices to compute 6y(3) H. 3 We claim that

yz
) Sny - Syfz
X 0
6oV H = ——— . 92)
O A
35f,

Indeed, since the first six entries of Hy?’Z are zero, we see that rzHy?’Z = 0. Next,
observe

r3Hy =3 fy 2 — 6Ly f fy +3fecfo fy
=3f2(fyy fo = Fyefy) = 3 by (ke — Fofy)

3
= d le) [f2(zAxx —xAyz) — fy(XAxy — yAxx)]
=2 A A
= d— 1)[ xx (2f7 +yfy) _x(fy Xy + fzAx)]
_ 3f
= d—-1 [—x(fxAxx + fyAxy + feAx)]
_ .2 —38f;
(d—D*
where the third equality uses (53) and the last equality is from (52). Similarly, one
can verify that r4 H 32 =x? (;ijz")z .
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To compute r1 H 3Z, notice that
Hy:(fyy) = fefyyy = Jy Fyyes Hy:(fy2) = fafyye = fy Fyzes
Hy:(feo) = fofyee = Sy feze-
As a consequence, with H = H,, the following equalities hold:
rH? = £ fyyy = 3f2fy fyye 435215 free = ) foze
= F2(fs Fyyy = FyFyye) = 2F (e Fyye — FyFyze) + £ (Fofyze = fy fozz)

= f2H(fyy) = 2f: fyH(fy2) + fFH(f2)
= fz[sz(fyy) - fyH(fyz)] - fy[sz(fyz) - fyH(fzz)]-

From (53) we have

1
H(fy) = fzfyy - fyfyz = m(ZAxx —xAyx;) and

1
H(f)= fzfyz - fyfzz = dT](XAxy — yAxx).

Applying H to the first and second equation, respectively, yields

1
sz(fyy) - fyH(fyz) = m[_fyAxx +zH(Axy) —xH(A;)]

= FwH(f) + fyH(fy), 93)
1
sz(fyz) - fyH(fzz) = H[XH(Axy) — [eAxx — YH(A)]
— yzH(f2) + [ H(fy). (94)

Multiplying (93) with f, (94) with f, and subtracting establishes the following:

rH? = £1fH(fyy) — HH) = HLHfy) = fyH(f)]

1
= _d 1 [H(Axx)(zf; + yfy) —x(f;H(Axy) + fyH(Axy)]

+ H(fZ)(f)’fyZ - f)’Yfz) + H(fy)(fzfyz - fyfzz)
= _d_—xl (feH(Axx) + fyH(Axy) + f2H(Ayy))
_2%h =4
T d-1)?

’

where the first equality was established above and the last equality is from (732).
Similarly, one can check that

» 3xfz - Szfx
38
fo(3)HS = (d i T sz and

—36fx
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3 z?
90(3)ny = ((1—7

from which

8y fr =80 fy
—35f,

1)2 36 fx ’
0

[6: fo — 82 fx
361

1
6o (3)¢y = @—12 0 and

1
003 = ——3

| 38

_(Syfx —0x fy
—368fy

(d —1)? 38fx

follow, respectively.

E.1.5. Next consider the vectors

3
here Ay = —————
where A, a-Dd—2
Vy =
3
where Ay = ——————
(d—-1)(d-2)
V.=

0

Hyo(Avy)
Haoo(Avy)

Hyy(Arr)
Hoy(Axy) + 2%
L(Hoe(Avp) + Hy (Axy) + 2520
Hey(Ars) — 22

[
Hyz(Axy) - ;Tl
HYZ(A)’}')

1 X8y —28;
Q(Hyz(Ayz) + Hyy(Axy) + ﬁ)
Hz (Ayy)

Hyy(Ayy) 5
Hyy(Ayo) + 325
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r X8y

Hy (Axz) + =7
1 y8y—X8y
Q(Hyz(Ayz) + H (Ayz) + a—1 )
where A, = 3 Hy2(Az)
T d-Dd-2) Ho(Ay) — 32
HZ.X(AZZ)
Hyy (A7)

LEMMA E.1.6. The following equality is satisfied:

S2fy = 0yfe Sxfr—08fx Syfx— xSy

1 0 38 —38f

c z y

v v vi= (d—1)2 —368f 0 38fx
381, —38f, 0

Proof. Using (67), (68), (75), (76), (77), and (74), it follows that A, € ker6y(2).
Now applying (662), (73b), and (70), one can verify that Blc V, is the first column
of the matrix on the right-hand side. Similar computations show that the other

columns agree. O
Proof of Proposition . Using identities (51) and (52), and Lemma , it
is straightforward to compute the entries of 81C91 (3). Comparing these with the
entries computed in Lemmas to , one concludes

3C61(3) = —00(3) Mo (3). O

E.2. The Second Square Commutes

Next, we show the following.
ProPOSITION E.2.1. The equality —01(3)M(3) = 3592(3) holds.

Proof. Letd =d — 1. Using the identities in Appendices A and B, one can show
that —61(3) M (3) is of the form

03x3 d—_ZHK A i|
W,
Osx3  Opx3 I

where

Jeboy =tz fofyy = Ffve Jafye = Ffe
K= fxfxz_fzfxx fxfyz_fzfxy fxfzz_fzfxz s
fyfxx_fxfxy fyfxy_fxfyy fyfxz_fxfyz
98 | X8  xdy x4
=—Dhx3—— y8x  ¥8y ¥&: |,
2d a? 28 z8y 26,

A
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i Hy (8)
H (8)
Hyy(8)
| 5 Hyz (9)
W=—| 75(CHx(8)+yH ()
A% 3 (xHyy (8) + 2H(3))
25 Her (8)
25 (yHyy (8) + 2Ho1(8))
25 Hey (8)
and where IT is the matrix described as
A)C)C ]
Ayy
91 Ay, 9
HZ_E Ayy [fx fy fz]+ﬁ
Ay,
A |
22
2xy
3 2xz
“Ta || bl
2yz
_2z2

Note that the first three columns of —6;(3)M(3) are zero. Since the first three

columns of 6, (3) are also zero, one has

S O ONn <

0 O
x 0
0 x
2y 0
z Yy
0 2z

Col; (=61 (3)M1(3)) = C01,~(82Ct92(3)) fori =1,2,3.

Next the fourth column of —6;(3) M (3) is of the form

G (fefey = Frfxd)
%(fxfxz - fzfxx)
%(fyfxx - fxfxy)

L ]

and we have the following equality:

fzfxv _f fxz

d+1 : Y

% fxfxz - fzfxx
fyfxx _fxfxy

o d+1 0 e

A fxx fz +fxy 0 +fxz

2 ~f fi

fo
- fx
0
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Therefore,

d_—gl(fzfxy - fyfxz)
%(fxfxz - fzfxx)

= Cols (356 (3)).
dzil(fyfxx _fxfxy) ?
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Similar calculations show that the fifth and sixth columns of —0, (3) M (3) are the
same as those of 82C 02(3), respectively. The last column of —6;(3)M(3) is given

by

d?(d-2)
W= | gy ((feds = f280) + y(f28y = £,62)
e (H(fybe = fedy) + 208y = fy0)

Ty O = fedy) +2(fxd: — f:82)
i iy 22Uk = fidy)
0 fa —fy
— S_X —fz 8_)’ 0 + 3_Z Jx
= 472 fy dr _fx dr 0
O6x1 | O6x1 | [ O6x1 |
031 | [ 03x1
0 2xf;
N 38, _J}fz N 38 y yfz y
d2(d —2) _xz;f a2d—2) |
z
(ny —2z2f7) —yfx
2zfy L —2zfx i
[ 0351 ]
—2xfy
N 38, X fx _fyfy
T A —Z
TR I
2fx
— 0 -

O6x1 J

3#(@& — fidy)

d?(d-2)

27 (fedy = £182) ]
22 (fxde — f28)

zx(fszy - fy8z)

2y(fx8; — fz6x)
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Hence

W=—_3 <5x Cola(35) + 8y Col3(35) + 8, Cols(35)

3
+ Colg(3S) + 8y Col7 (35) + 8, Colg (35 )]).
It then follows that

Col1o(—61(3)M; (3)) = Col10(d5 62(3)).

To verify equalities in columns 7-9, we need the following observations:

Observation 1. The following equalities are satisfied:

[2x8 — (d — 1) fr Axx
9 9 9 9 y8 —(d — 1) fxAxy
5ot 3 oy + 3= g | G R
—(d—1) fxAy;
—(d—=1)fxl;
[2x Ay
y Axy
L9 | 2| 9A | A
Td2| 0| | Ay
0 Ay,
0 AL

Similarly, one can show

O AX)C
X Axy
9 9 9 9% | 0 9y | A
yfoen eyt he=ga oy 1 = Ay |
Z Ayz
L 0 i A
(0] Axx
0 Axy
9 9 9 9 | x 9/ | A
Efxz“x + Efyzo‘y + Efzzaz —a2lo| T @ Aji
y Ay;
_ZZ_ Azz
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Observation 2. One has an equality

9 9 9
S fer Colo(35) + 5 fo Colyo(35) + 5 fe Coly1(35)

_ - 5 A
0 b
0 0
0 0
95 2x 9 jixixx
=% | Y |~ 7| JxBAx
” ’ y
d z d .
0 fxAyy
0 fxdy;
_0_ | fxAzz |

Using the observations above, we conclude that the seventh column of
—01(3)M;(3) can be written as

8x C 38}( C 9 C
_d_/z CO]1(82 ) — m C015(82 ) + E(fxx C019(82 )

+ fry Col1o(35) + frz Coly1 (85)),

which is the same as the seventh column of 82C 0>(3). Similar arguments take care
of the eighth and ninth columns. g

E.3. The Third Square Commutes
ProposITION E.3.1. The following equality is satisfied: —60>(3)M>(3) = 83C€3 3).

Proof. Let K and P denote the 3 x 3 matrices defined by
K:=AD;, and P :=D;0;.

Let 7 be the 3 x 3 matrix defined by
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The matrix —6,(3) M>(3) is of the form

oo 0 0 |LRxs UDys L2 HD ) 2@ ]
0
0 Colp Wi g R R
0
3x8 3ys 328 3H () 3H..(8) 3Hyy (8)
00 0 0 a7 ar 9t d%(d-2) a%(d—2) d%(d-2)
00 0 0 0 0 0
3
00 0 0 0 0 0 a5t
00 0 0 0 0 0
00 0 0
=3d’ =9
ojo o 0 =3d'p 2K
Lojo 0 0 |
Using the identities in Appendix A is a direct check, similar to those in Proposi-
tion and Appendix E.2, that 33C 03(3) agrees with the matrix above. Alterna-
tively, expressing each matrix as a block matrix, one can use the identities from
Appendix D. d
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