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Abstract. We investigate the properties of a family of polytopes that naturally arise in connection with a prob-
lem in distributed data storage, namely service rate region polytopes. The service rate region of a
distributed coded system describes the data access requests that the underlying system can support.
In this paper, we study the polytope structure of the service rate region with the primary goal of
describing its geometric shape and properties. We achieve this by introducing various structural pa-
rameters of the service rate region and establishing upper and lower bounds for them. The techniques
we apply in this paper range from coding theory to optimization. One of our main results shows
that every rational point of the service rate region has a so-called rational allocation, answering an
open question in the research area.
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Introduction. Distributed storage systems split data across servers to provide access ser-
vices to multiple, possibly concurrent, users. The simplest way to reliably handle concurrent
requests is to replicate data according to their popularity; see, for instance, [23, 28]. Unfortu-
nately, this method can be expensive in terms of storage. Moreover, predicting how the interest
in data changes is not always easy. For these reasons, erasure-coding has gained attention as
a form of redundant storage; see, e.g., [10] and references therein.

Recent work establishes the concept of service rate region as an essential measure of the
e!ciency of a distributed coded system that should be considered in the system’s design
phase; see [1, 2, 4, 16, 17, 18]. To understand this metric, consider distributed systems in
which k data objects are stored, using a linear [n,k]q error-correcting code across n servers,
each with the same capacity µ\rightarrow R. The service rate region of the distributed coded system is
the set of all request rates (\omega 1, . . . ,\omega k)\rightarrow Rk that the system can simultaneously handle. Such
a distributed system is defined by a full rank k\uparrow n matrix G, and its service rate region is a
convex polytope in Rk.
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Previous work in the area focuses on characterizing the service rate region of a distributed
coded system and finding the optimal strategy to split the rate requests across the servers to
maximize the region; see, e.g., [2]. The service rate region has been characterized for binary
simplex codes and two classes of maximum distance separable (MDS) codes: (1) systematic
MDS codes when n \downarrow 2k and (2) MDS codes with arbitrary length and dimension that do
not permit any data objects decoding from fewer than k stored objects; see again [2] and
references therein.

A combinatorial approach to the service rate region has been introduced in [16], establish-
ing and using the equivalence between the service rate problem and the well-known fractional
matching problem on hypergraphs. In the same work, the authors showed that the service rate
problem generalizes, in a precise sense, batch, private information retrieval (PIR), and switch
codes; see [11, 12, 15, 25, 29, 30] for the details and background material about these classes of
codes. In [17], the service rate regions of the binary first-order Reed–Muller codes and binary
simplex codes have been determined using a geometric approach. In [3], coding-theoretic tools
have been used to identify a polytope that contains the service rate region, giving an outer
bound for it.

Contributions. In contrast with previous approaches, this paper focuses on describing
the polytope structure of the service rate region and its geometric properties, such as its
volume. Key tools to achieve this goal are outer bounds for the service rate region polytope,
which we obtain by applying methods ranging from coding theory to convex geometry.

We also propose a discretized notion of service rate region that arises naturally in the
integer allocation model. We prove that the discretized notion returns precisely the ratio-
nal points of the originally proposed (continuous) notion. When investigating the connection
between the allocation and the service rate region polytopes, we show that every rational
point of the region has a rational allocation. The last part of the paper focuses on the service
rate regions of systematic MDS matrices, for which we compute, for example, the volume in
dimensions 2 and 3.

The rest of the paper is organized as follows: Section 1 introduces access models and
states the service rate problem. Section 2 is devoted to the various representations of the
service rate region polytope. In section 3, we discretize the concept of service rate region,
also showing that rational points in the region have rational allocation. In section 4, we
introduce and study the rth max-sum capacity and the system’s volume. Section 5 is devoted
to proving di""erent outer bounds on the service rate region. Section 6 focuses on systematic
MDS codes. Elementary background on polytopes and error-correcting codes is provided in the
appendices.

1. System model and problem formulation. We consider a distributed service system
with n identical nodes (servers). Each node has two functional components: one for data
storage and the other for processing download requests posed by the system users. This
section establishes the notation, defines distributed service systems and their service rate
regions, and states the problems this paper addresses.

Throughout the paper, q denotes a prime power, and Fq is the finite field with q elements.
We work with integers n> k\downarrow 2. All vectors in what follows are row vectors unless otherwise
stated.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE SERVICE RATE REGION POLYTOPE 555

1.1. Storage model. We consider a coded, distributed data storage system where k ob-
jects (elements of Fq) are linearly encoded and stored across n servers. Each server stores
precisely one element of Fq. Therefore, the coded system is specified by a rank k matrix
G\rightarrow Fk\uparrow n

q , which we call the generator matrix of the system. If (x1, . . . , xk)\rightarrow Fk
q is the k-tuple

of objects to be stored, then the jth server stores the jth component of the encoded vector

(x1, . . . , xk) ·G\rightarrow Fn
q .

Note that, by definition, the n servers store linear combinations of the data objects rather
than just copies of them. The latter storage strategy is called (simple) replication.

Following the coding theory terminology [21], we say that the matrix G is systematic if its
first k columns form the identity k\uparrow k matrix. If the \varepsilon th column of G is a nonzero multiple of
the standard basis vector ei, then we say that \varepsilon is a systematic node for the ith data object.
If every \varepsilon \rightarrow {1, . . . , n} is a systematic node, then we say that G is a replication matrix. Note
that a replication matrix describes a system where each object is stored as it is (up to nonzero
multiples).

Notation 1.1. To simplify the statements throughout the paper, without loss of generality,
we work with a fixed matrix G \rightarrow Fk\uparrow n

q of rank k. We denote by G
\omega the \varepsilon th column of G and

assume that none of its columns is the zero vector.

Since n > k, we may be able to recover each object from di""erent sets of servers, which
motivates the following definitions and terminology.

Definition 1.2. Let R \updownarrow {1, . . . , n} be such that ei \rightarrow \nearrow G\omega | \varepsilon \rightarrow R\searrow and \nearrow G\omega | \varepsilon \rightarrow R\searrow is the
Fq-span of the columns of G indexed by R. Then R is called a recovery set for the ith object.
For i\rightarrow {1, . . . , k}, let

Rall

i (G) := {R\updownarrow {1, . . . , n} | ei \rightarrow \nearrow G\omega | \varepsilon \rightarrow R\searrow },

where superscript “all” indicates that Rall

i (G) contains all the recovery sets for the ith object.

Since G has rank k by assumption, we have Rall

i (G) \simeq = \Leftarrow for all i \rightarrow {1, . . . , k}. Moreover,
R \simeq = \Leftarrow for all i \rightarrow {1, . . . , k} and R \rightarrow Rall

i (G). We continue by formalizing the concept of a
recovery system.

Definition 1.3. A (recovery) G-system is a k-tuple R = (R1, . . . ,Rk), with Ri \updownarrow Rall

i (G)
and Ri \simeq = \Leftarrow for all i\rightarrow {1, . . . , k}.

1.2. Service and access models. We adopt two service models and refer to them as the
queuing and the bandwidth models. They are based on two common ways of implementing
resource sharing by incoming data access requests. In the queueing model, the requests to
download from a node are placed in its queue. Each node can serve on average µ requests per
unit of time. To maintain the stability of each queue, the total request arrival rate at each
node must not exceed its service rate µ.

In the bandwidth model, each node can concurrently serve multiple data access requests.
When each node has an I/O bus with a finite access bandwidth W bits/second and a download
requires streaming at a fixed bandwidth of b bits/second, a node can simultaneously serve up
to µ = \Rightarrow W/b\Uparrow number of requests. In both cases, we refer to µ as the server’s capacity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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556 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

(formal definitions will be given later). In the queuing model, requests to download object
i arrive at rate \omega i \rightarrow R\downarrow 0. In the bandwidth model, \omega i is the number of object i requests
simultaneously in the system. In both models, \omega i,R is the portion of \omega i assigned to be served
by the recovery set R \rightarrow Ri. We refer to a set {\omega i,R |R \rightarrow Ri, i= 1, . . . , k} as a request allocation.

1.3. Normalization and integrality. We can normalize all request allocation values and
rates by dividing them by the node service capacity µ. In this case, all normalized request
rates \omega i and the numbers in {\omega i,R | R \rightarrow Ri, i \rightarrow {1, . . . , k}} are multiples of 1/µ. Since in
the bandwidth model, these numbers count requests, their normalized versions are integer
multiples of 1/µ. Furthermore, there are practical scenarios wherein each served request oc-
cupies the entire bandwidth of the server it is accessing (e.g., streaming from low-bandwidth
edge devices). In such cases, \omega i are integers, and \omega i,R are binary numbers. In other practical
scenarios, a user can simultaneously download data from multiple nodes at a fraction of its
bandwidth from each, and the assumption that \omega i,R is integer multiples of 1/µ can be relaxed.

1.4. Service rate region and problem formulation. We are interested in characterizing
the k-tuples (\omega 1, . . . ,\omega k)\rightarrow Rk of rate requests that the data storage system can support. The
set of such tuples is formally defined as follows, yielding to the notion of the service rate region
of a distributed storage system.

Definition 1.4. Let R = (R1, . . . ,Rk) be a G-system. The service rate region associated
with R and µ is the set of all (\omega 1, . . . ,\omega k) \rightarrow Rk for which there exists a collection of real
numbers

{\omega i,R | i\rightarrow {1, . . . , k}, R \rightarrow Ri}

with the following properties:
\Biggr) 

R\updownarrow Ri

\omega i,R = \omega i for 1\Downarrow i\Downarrow k,(1.1)

k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri
\omega \updownarrow R

\omega i,R \Downarrow µ for 1\Downarrow \varepsilon \Downarrow n,(1.2)

\omega i,R \downarrow 0 for 1\Downarrow i\Downarrow k, R \rightarrow Ri.(1.3)

A collection {\omega i,R} that satisfies properties (1.2) and (1.3) above is called a feasible allo-
cation for the pair (R, µ). The service rate region associated with R and µ is denoted by

\#(R, µ)\updownarrow Rk
.

Observe that the service rate region of a G-system is independent of the ordering of the
recovery sets in each Ri.

Remark 1.5. It turns out that \#(R, µ) is a down-monotone polytope; see Theorem 2.3
below and Appendix A for the definitions. We will elaborate on this when introducing the
allocation polytope in section 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE SERVICE RATE REGION POLYTOPE 557

The service rate region of a G-system R may not change if we select a suitable subset
of the recovery sets, which allows us to reduce the number of variables and inequalities in
Definition 1.4. We start with the following observation, whose proof is simple and therefore
omitted.

Proposition 1.6. Suppose that R= (R1, . . . ,Rk) and R\nearrow = (R\nearrow 
1
, . . . ,R\nearrow 

k) are G-systems with
R\nearrow 

i \updownarrow Ri for all i\rightarrow {1, . . . , k}. Then \#(R, µ)\leftrightarrow \#(R\nearrow 
, µ). In particular, \#(R, µ)\updownarrow \#(Rall(G), µ)

for any G-system R.

The service rate region \#(Rall(G), µ) does not change when we select from Rall(G) the
recovery sets that are minimal with respect to inclusion, in the following precise sense.

Definition 1.7. A set R \rightarrow Rall

i is called i-minimal if there is no R
\nearrow \rightarrow Rall

i (G) with R
\nearrow \varsupsetneq R.

We let Rmin(G) be the G-system defined, for all i, by

Rmin

i (G) := {R \rightarrow Rall

i (G) |R is i-minimal}.

The proof of the following result is not di!cult and is therefore left to the reader.

Proposition 1.8. We have \#(Rmin(G), µ) =\#(Rall(G), µ).

Remark 1.9. It immediately follows from the definitions that \#(R, µ) = µ\#(R,1) for any
G-system R, where µ\#(R,1) = {µ\omega | \omega \rightarrow \#(R,1)}. In what follows, we will often assume µ= 1
without loss of generality.

The following symbols will further simplify the statements in what follows.

Notation 1.10. For a G-system R = (R1, . . . ,Rk) we let \#(R) = \#(R,1). We also write
\#(G,µ) = \#(Rall(G), µ) = \#(Rmin(G), µ), where the latter equality follows from Proposi-
tion 1.8. Finally, we set \#(G) =\#(G,1).

We conclude with an example illustrating the concepts introduced in this section.

Example 1.11. Consider the matrices

G1 =

\Biggl[ 
1 0 1 1
0 1 0 0

\Biggr] 
\rightarrow F2\uparrow 4

2
, G2 =

\Biggl\lfloor 

\Biggr\rfloor 
1 0 0 1 0 1
0 1 0 1 2 2
0 0 1 1 1 1

\Biggl\lceil 

\Biggr\rceil \rightarrow F3\uparrow 6

3
.

The corresponding service rate regions are depicted in Figure 1. For the matrix G2 we have

Rmin

1 (G2) = {{1},{5,6},{2,3,4},{2,4,5},{3,4,6},{2,3,6},{3,4,5}},
Rmin

2 (G2) = {{2},{3,5},{4,6},{1,3,4},{1,4,5},{1,3,6}},
Rmin

3 (G2) = {{3},{2,5},{1,2,4},{1,4,6},{1,2,6},{1,4,5}}.

Moreover, for all i \rightarrow {1,2,3} we have Rall

i = {R \updownarrow {1, . . . ,6} | S \updownarrow R for some S \rightarrow Rmin

i (G2)}.
Finally, to see that, for example, the point P = (3/2,3/2,1/2) belongs to \#(G2), we can
consider the feasible allocation given by

\omega 1,R =

\Biggl\{ 
\Biggr\} \Biggl\langle 

\Biggr\} \Biggr\rangle 

1 if R= {1},
1/2 if R= {5,6},
0 otherwise,

\omega 2,R =

\Biggl\{ 
\Biggr\} \Biggl\langle 

\Biggr\} \Biggr\rangle 

1 if R= {2},
1/2 if R= {3,5},
0 otherwise,

\omega 3,R =

\Bigg/ 
1/2 if R= {3},
0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1

3
\omega 1

\omega 2

(a) !(G1), Example 1.11.

\omega 2

\omega 1

\omega 3

(b) !(G2), Example 1.11.

Figure 1. The service rate regions of the systems in Example 1.11.

It is easy to see that the collection {\omega i,R} satisfies the properties (1.1)–(1.3) for (Rmin(G2),1).

This paper mainly describes the geometric properties of the service rate region \#(R, µ).
Most of our results hold for an arbitrary G-system R, although our main focus is on \#(G).

2. The service rate region and the allocation polytopes. This section describes the
polytope structure of the service rate region associated with an arbitrary G-system R. We
also illustrate how the geometric structure has implications for the allocation of users in the
corresponding system. For these purposes, viewing the service rate region as the image of a
higher dimensional polytope under a linear map is often convenient; we call this the allocation
polytope.

Definition 2.1. Let R = (R1, . . . ,Rk) be a G-system, mi = |Ri| for i \rightarrow {1, . . . , k}, and
m(R) =m1+ · · ·+mk. The allocation polytope of (R, µ) is the set of (\omega i,R | i\rightarrow {1, . . . , k}, R \rightarrow 
Ri) that satisfy the inequalities (1.2) and (1.3). We denote the allocation polytope by

A(R, µ)\updownarrow Rm(R)
.

We also let A(G) =A(Rall(G)) =A(Rmin(G)), where the latter identity can be shown similarly
to Proposition 1.8.

We now show that the allocation polytope is indeed a polytope, and we state its connection
with the service rate region. We will use the following fact, which easily follows from the
definition of a convex hull combined with Theorem A.1 and the observations right after it.

Lemma 2.2. Let P \updownarrow Rm be a polytope and let f :Rm \nwarrow Rk be a linear map. Then f(P) is
a polytope and |(f(P))\updownarrow f(|(P)).

The connection between the allocation polytope and the service rate region is described
by the next result, which also summarizes some properties of these two regions. In particular,
we are interested in maps of the form given in Theorem 2.3.

Theorem 2.3. Let R be a G-system and let m(R) be as in Definition 2.1. The following
hold.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE SERVICE RATE REGION POLYTOPE 559

1. We have f(A(R, µ)) =\#(R, µ), where f :Rm(R) \nwarrow Rk is the linear map defined by

f : \omega = (\omega i,R|i\rightarrow {1, . . . , k}, R \rightarrow Ri) \swarrow \nwarrow 
\Bigg\backslash 

\Biggr) 

R\updownarrow R1

\omega 1,R, . . . ,
\Biggr) 

R\updownarrow Rk

\omega k,R

\Big/ 
.

2. A(R, µ) and \#(R, µ) are down-monotone polytopes.

Proof. The fact that \#(R, µ) is the image of A(R, µ) under f easily follows from Defi-
nitions 1.4 and 2.1. We now establish the second part of the statement. The set A(R, µ)
is a polyhedron by definition. Its boundedness can be shown as follows. Summing all the
inequalities in (1.2), we get

\Big\backslash k
i=1

\Big\backslash 
R\updownarrow Ri

\omega i,R \Downarrow nµ. Using \omega i,R \downarrow 0 for all pairs (i,R), we get
that any \omega \rightarrow A(R, µ) satisfies

\propto \omega \propto 2 \Downarrow 
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri

|\omega i,R|=
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri

\omega i,R \Downarrow nµ,

where \propto \omega \propto 2 is the 2-norm of \omega . The fact that \#(R, µ) is bounded follows from Lemma 2.2
and the boundedness of A(R, µ). Finally, it is not hard to directly check that the polytopes
A(R, µ) and \#(R, µ) are down-monotone.

We now turn to the natural question of describing the vertices and the points of the service
rate region with rational entries. We will use the connection between the service rate region
and the allocation polytope to answer these questions.

We note that a linear map f : Rm \nwarrow Rk is called rational if its matrix concerning
the canonical basis has rational entries. The next result follows from Proposition A.2 and
Corollary A.3.

Lemma 2.4. Let P \updownarrow Rm be a rational polytope and f :Rm \nwarrow Rk be a rational linear map.
Then f(P) is a polytope whose vertices have rational entries.

The following result will be crucial to qualitatively describe the connection between the
allocation polytope and the service rate region.

Lemma 2.5. Let P \updownarrow Rm be a rational polytope, and let f : Rm \nwarrow Rk be a rational linear
map. We have f(P \prime Qm) = f(P)\prime Qk.

Proof. The inclusion \updownarrow is immediate. To prove the other inclusion, we let y \rightarrow f(P)\prime Qk.
Write f = (f1, . . . , fk), where fi : Rm \nwarrow R. We need to show that there exists x \rightarrow P \prime Qm

with fi(x) = yi for all i \rightarrow {1, . . . , k}. Since P is rational, P = {x \rightarrow Rm | Ax\searrow \Downarrow b
\searrow }

for some A \rightarrow Q\varepsilon \uparrow m and b \rightarrow Q\varepsilon . We append to A and b a total of 2k rows, of which k

are for the inequalities {fi(x) \Downarrow yi | i = 1, . . . , k} and the other k are for the inequalities
{\infty fi(x) \Downarrow \infty yi | i = 1, . . . , k}. Let A

\nearrow and b
\nearrow denote the resulting matrix and vector, of size

(\vargamma + 2k)\uparrow m and length \vargamma + 2k, respectively. Then, by definition, P \nearrow = {x \rightarrow Rm |A\nearrow 
x
\searrow \Downarrow b

\nearrow \searrow }
is a polyhedron. Note that we need to prove that P \nearrow \prime Qm \simeq = \Leftarrow . We first observe that P \nearrow is
bounded because P \nearrow \updownarrow P and P is bounded. Moreover, P \nearrow is rational because A

\nearrow and b
\nearrow have

rational entries (here, we use the fact that y has rational entries and f is a rational map).
Moreover, P \nearrow is nonempty because y \rightarrow f(P) by assumption, which implies the existence of
z \rightarrow P with f(z) = y, i.e., of z \rightarrow P \nearrow . Then P \nearrow has at least one vertex x and that vertex must
have rational entries by Corollary A.3. Thus P \nearrow \prime Qm \simeq = \Leftarrow , as desired.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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560 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

We are now ready to state the main result of this section (note that the properties of the
statement only hold for µ= 1).

Theorem 2.6. Let R be a G-system. The following hold.
1. The vertices of \#(R) have rational entries.
2. \#(R)\prime Qk = f(A(R)\prime Qk), where f is defined as in Theorem 2.3.

Proof. The vertices of \#(R) have rational entries because of Theorem 2.3 and Lemma 2.4.
The second part of the statement follows by combining Theorem 2.3 with Lemma 2.5.

Note that property 2 of Theorem 2.6 implies that every rational point of the service rate
region has a feasible rational allocation; see Definition 1.4. This fact, which does not appear
to be obvious, is important from the application point of view in the sense of subsection 1.3.

3. The integer allocation model. In this section, we consider practical scenarios, de-
scribed in section 1.3, wherein each server has a specific bandwidth, and each served request
occupies the entire bandwidth when served, i.e., the \omega i,R’s are constrained to be either 0 or
1. We define the service rate region for this model and show how it relates to the model we
considered in the previous section.

Assume we use the system s\rightarrow Z\downarrow 1 times, each time with possibly di""erent allocation. Let
\varpi i(R) be the number of times that recovery set R \rightarrow Ri is used to recover the ith object within
the s uses of the system. Then the number of times the ith object is recovered is equal to
\omega i =

\Big\backslash 
R\updownarrow Ri

\varpi i(R). This motivates the following definitions.

Definition 3.1. Let R be a G-system. An R-allocation is a k-tuple of functions \varpi =
(\varpi 1, . . . ,\varpi k), where \varpi i : Ri \nwarrow N for all i \rightarrow {1, . . . , k}. The service rate of \varpi is the vector
\omega (\varpi ) = (\omega 1, . . . ,\omega k)\rightarrow Nk, where

\omega i =
\Biggr) 

R\updownarrow Ri

\varpi i(R) for all i\rightarrow {1, . . . , k}.

For \varepsilon \rightarrow {1, . . . , n} we define

\varrho \omega (R,\varpi ) =
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri

\varrho \omega (R)\varpi i(R) where \varrho \omega (R) =

\Bigg/ 
1 if \varepsilon \rightarrow R,

0 otherwise.

In Definition 3.1, the quantity \varrho \omega (R,\varpi ) represents the number of times server \varepsilon is con-
tacted.

Definition 3.2. Let R be a G-system. The one-shot service rate region of R with capacity
s \rightarrow Z\downarrow 1 is \#1(R, s) = {\omega (\varpi )/s | \varpi an R-allocation, \varrho \omega (R,\varpi ) \Downarrow s for 1 \Downarrow \varepsilon \Downarrow n}. The rational
service rate region of R is the set

\#Q(R) =
\left( 

s\updownarrow Z\rightarrow 1

\#1(R, s).

In this section, we will show the following “topological” connection between the rational
service rate region and the service rate region as defined in section 1.
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THE SERVICE RATE REGION POLYTOPE 561

Theorem 3.3. Let R be a G-system. The following hold.
1. \#Q(R) =\#(R)\prime Qk.
2. \#(R) =\#Q(R), where the latter is the closure of \#Q(R) with respect to the Euclidean

topology in Rk.

Remark 3.4. Before proving Theorem 3.3, we stress that it is particularly relevant for the
practical scenarios described in section 1.3, which may require that allocations be integer or
rational. It shows that (1) the rational points in the service rate region can be achieved with
rational allocations, and (2) all points can be achieved by averaging over multiple system uses.

We will use the following result in the proof of Theorem 3.3.

Lemma 3.5. Let P \updownarrow Rm be a down-monotone polytope. Then P = P \prime Qm, where the
latter is the closure of P \prime Qm for the Euclidean topology.

Proof. The inclusion P \prime Qm \updownarrow P holds because P is closed and Qm =Rm, which implies
P \prime Qm \updownarrow P \prime Qm = P \prime Rm = P. For the other inclusion, we will prove that for all x \rightarrow P
and all \varsigma > 0 we have B\vargamma (x) \prime P \prime Qm \simeq = \Leftarrow , where B\vargamma (x) is the ball of radius \varsigma centered at x.
This implies P \updownarrow P \prime Qm using, for example, [22, Theorems 17.5 and 20.3]. Fix any x and \varsigma 

as above. Write x = (x1, . . . , xm) \rightarrow Rm. Since Q is dense in R, for every i \rightarrow {1, . . . ,m} there
exists yi \rightarrow Q with xi\infty \varsigma /m\Downarrow yi \Downarrow xi. Since P is down-monotone, we have y= (y1, . . . , ym)\rightarrow P .
The fact that y \rightarrow B\vargamma (x)\prime P \prime Qm now follows from

\propto x\infty y\propto 
2
\Downarrow \propto x\infty y\propto 

1
=

m\Biggr) 

i=1

(xi \infty yi)\Downarrow m · \varsigma /m= \varsigma ,

We used the standard notation for the p-norm in Rk.

Proof of Theorem 3.3. The second part of the statement follows from the first part in
combination with Lemma 3.5. Therefore it su!ces to establish the first part.

Let \omega \rightarrow \#Q(R). There is an s \rightarrow Z\downarrow 1 and an R-allocation \varpi such that s\omega = \omega (\varpi ) =
(\omega 1, . . . ,\omega k) \rightarrow s\#1(R, s) and \varrho \omega (R,\varpi ) \Downarrow s for all \varepsilon \rightarrow {1, . . . , n}. Note that \omega \rightarrow Qk. We will
show that the set \right) 

\varpi i(R)

s
| i\rightarrow {1, . . . , n}, R \rightarrow Ri

\left[ 

satisfies properties (1.1), (1.2), and (1.3). By definition, for 1 \Downarrow i \Downarrow k we have \omega i/s =\Big\backslash 
R\updownarrow Ri

\varpi i(R)/s. Moreover, the condition \varrho \omega (R,\varpi )\Downarrow s can be rewritten as

k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri
\omega \updownarrow R

\varpi i(R)

s
\Downarrow 1 for 1\Downarrow \varepsilon \Downarrow n.

Finally, \varpi i(R)/s \downarrow 0 for all i \rightarrow {1, . . . , k} and all R \rightarrow Ri. We therefore conclude that
\omega \rightarrow \#(R)\prime Qk; hence \#Q(R)\updownarrow \#(R)\prime Qk.

To prove the other containment, let \omega \rightarrow \#(R)\prime Qk. By Theorem 2.6, we have \#(R)\prime Qk =
f(A(R)\prime Qk), where f is defined as in Theorem 2.3. In particular, there exist rational numbers
{\omega i,R \rightarrow Q | i \rightarrow {1, . . . , k}, R \rightarrow Ri} that satisfy properties (1.1)–(1.3) of Definition 1.4. By
definition, \omega i,R = ui,R/vi,R, ui,R, vi,R \rightarrow N, and vi,R > 0 for all i \rightarrow {1, . . . , k} and R \rightarrow Ri.
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562 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

Let s := lcm(vi,R | i \rightarrow {1, . . . , k}, R \rightarrow Ri), so that s\omega = (s\omega 1, . . . , s\omega k) \rightarrow Nk. We claim that
s\omega \rightarrow s\#1(R, s). Now for 1\Downarrow i\Downarrow k, define \varpi i(R) = s\omega i,R; note that \varpi i always maps to N by the
construction of the number s. Then for 1\Downarrow i\Downarrow k we have s\omega i =

\Big\backslash 
R\updownarrow Ri

\varpi i(R), from which we
conclude that \varpi = (\varpi 1, . . . ,\varpi k) is an R-allocation. Furthermore, for \varepsilon \rightarrow {1, . . . , n} we have

\varrho \omega (R,\varpi ) =
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri

\varrho \omega (R)\varpi i(R) =
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri
\omega \updownarrow R

\varpi i(R) =
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri
\omega \updownarrow R

s\omega i,R \Downarrow s,

where the second equality follows from the definition of \varrho \omega (R) and the last inequality follows
from (1.2). This shows that s\omega \rightarrow s\#1(R, s), and equivalently \omega \rightarrow \#1(R, s); hence \omega \rightarrow \#Q(R),
as desired.

We conclude this section with an example illustrating Theorem 3.3.

Example 3.6. Let

G :=

\Biggl[ 
1 0 1 1
0 1 1 2

\Biggr] 
\rightarrow F2\uparrow 4

3
.

Consider the G-system R =Rmin(G) = (R1,R2), where R1 := {{1},{2,3},{2,4},{3,4}} and
R2 := {{2},{1,3},{1,4},{3,4}}. The corresponding service rate region is depicted in Figure 2,
along with the point P = (4/3,2/3).

We have P \rightarrow \#(R) \prime Q2 and P \rightarrow \#1(R,3); i.e., P can be achieved in three uses of the
system. An example of an R-allocation, in the sense of Definition 3.1, is given by

\varpi 1 :R1 \nwarrow N
{1} \swarrow \nwarrow 2

{2,3} \swarrow \nwarrow 1

{2,4} \swarrow \nwarrow 0

{3,4} \swarrow \nwarrow 1

\varpi 2 :R2 \nwarrow N
{2} \swarrow \nwarrow 1

{1,3} \swarrow \nwarrow 0

{1,4} \swarrow \nwarrow 1

{3,4} \swarrow \nwarrow 0

We have \varrho 1(R,\varpi ) = \varpi 1({1}) + \varpi 2({1,4}) = 3, \varrho 2(R,\varpi ) = \varpi 1({2,3}) + \varpi 2({2}) = 2,
\varrho 3(R,\varpi ) = \varpi 1({2,3}) + \varpi 1({3,4}) = 2, \varrho 4(R,\varpi ) = \varpi 1({3,4}) + \varpi 2({1,4}) = 2. Moreover,\Big\backslash 

R\updownarrow R1
\varpi 1(R) = 4 and

\Big\backslash 
R\updownarrow R2

\varpi 2(R) = 2, showing that (4,2)\rightarrow \#1(R,3).

\omega 1

\omega 2

2.5

2.5

P

Figure 2. Service rate region for the G-system in Example 3.6 and the point P = (4/3,2/3).
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THE SERVICE RATE REGION POLYTOPE 563

4. Fundamental parameters of the service rate region. This section introduces some
fundamental parameters of the service rate region that describe its “shape.” We then study
them by applying various techniques. The results are aimed at describing how the algebra of
the underlying matrix G determines the geometry of the service region polytope \#(G,µ). To
simplify the notation (and without loss of generality), we assume µ= 1. We start by recalling
two types of elementary polytopes.

Definition 4.1. Let h, \varrho \rightarrow R\downarrow 0. The h-hypercube in Rk is the convex hull of the set {x \rightarrow 
Rk
\downarrow 0

| xi \rightarrow {0, h} for 1\Downarrow i\Downarrow k}. We say that h is the size of the hypercube. The \varrho -simplex in
Rk is the convex hull of the set {\varrho e1, . . . , \varrho ek}, where ei is the ith standard basis vector of Fk

q .
Again, we say that \varrho is the size of the simplex.

We will introduce the first set of parameters for the service rate region. Other parameters
will be introduced later.

Definition 4.2. Let R be a G-system. We let:

\omega 
r(R) =max

\Bigg/ 
k\Biggr) 

i=1

\omega 
r
i | \omega \rightarrow \#(R)

\right] 
, [rthmax-sum capacity]

\omega (R) = \omega 
1(R), [max-sum capacity]

\omega 
\rightarrow 
i (R) =max{x\rightarrow R | xei \rightarrow \#(R)} for 1\Downarrow i\Downarrow k,

\omega 
\rightarrow (R) =max{\omega \rightarrow 

i (R) | 1\Downarrow i\Downarrow k} .

Furthermore, we denote as follows the largest size of a hypercube and a simplex contained in
the service rate region:

h(R) =max{x\rightarrow R | (x, . . . , x)\rightarrow \#(R)},
\varrho (R) =min{\omega \rightarrow 

i (R) | 1\Downarrow i\Downarrow k} .

When R=Rall(G) or R=Rmin(G), we simply write \omega 
r(G), \omega (G), \omega \rightarrow 

i (G), \omega \rightarrow (G), h(G), and
\varrho (G).

The next example shows that, in general, a point achieving the max-sum capacity will not
achieve the rth max-sum capacity for r > 1.

Example 4.3. Consider the service rate region of Example 3.6, depicted in Figure 2. One
can show that \omega (G) is achieved by (1,2) and (2,1). On the other hand, \omega 2(G) = 6.25> 5 = 1+4
is achieved by (2.5,0) and (0,2.5).

We start with a result showing how the parameters h(R), \omega (R), and \varrho (R) relate to each
other.

Proposition 4.4. Let R be a G-system. We have

h(R)\Downarrow min

\right) 
\omega (R)

k
, \varrho (R)

\left[ 
.

Proof. We first show that h(R) \Downarrow \omega (R)/k. Suppose that h(R) > \omega (R)/k. By definition,
we have (h(R), . . . , h(R))\rightarrow \#(R). Therefore

\omega (R)\downarrow h(R)k >
\omega (R)

k
k= \omega (R),
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564 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

which is a contradiction. For the second part of the proof, assume that h(R)> \varrho (R). Then, by
the definition of \varrho (R) there must exist at least one element of the set {h(R)ei | 1\Downarrow i\Downarrow k}\updownarrow Fk

q

that does not belong to \#(R). This contradicts the definition of h(R).

Remark 4.5. The bound of Proposition 4.4 is met with equality for the service rate region
depicted in Figure 1(a). However, the bound is not sharp in general. Consider, for instance,
the service rate region \#(G) for

G=

\Biggl\lfloor 

\Biggr\rfloor 
1 1 0 1
0 0 1 1
0 0 0 1

\Biggl\lceil 

\Biggr\rceil \rightarrow F3\uparrow 4

2
.

Note that (0,0,1), (0,1,0), (1,0,1), (2,1,0)\rightarrow \#(G). It can be shown that h(G) = 0.5, \omega (G) = 3,
and \varrho (G) = 1.

In the next example, we show that the values \varrho (R) and \omega (R)/k are not comparable in
general, showing that taking the minimum in the bound of Proposition 4.4 is indeed needed.

Example 4.6. For the service rate region of Example 3.6, we have \varrho (G) = 2.5 > 1.5 =
\omega (G)/2. However, for the service rate region of Figure 1(b) we have \varrho (G) = 1< 2 = \omega (G)/2.

The quantity \omega 
2(R) has a precise geometric significance; it gives the smallest sphere wedge

that contains the service rate region. To illustrate how \omega 
2(R) relates to the other fundamental

parameters, we will use an argument based on the Bhatia–Davis inequality [7] from statistics.
Note that the following bound is sharp for the G-system of Example 4.18 below.

Theorem 4.7. Let R be a G-system. We have

\omega 
2(R)\Downarrow k\infty 1

k
\omega 
\rightarrow (R)\omega (R) +

(\omega (R))2

k
.

Proof. Let \̂omega \rightarrow \#(R) achieve \omega 
2(R). We apply the Bhatia–Davis inequality [7] to the

coordinates of \̂omega , obtaining

1

k

k\Biggr) 

i=1

\̂omega 
2

i \Downarrow 
\Bigg\backslash 

max
1\simeq i\simeq k

{\̂omega i}\infty 
1

k

k\Biggr) 

i=1

\̂omega i

\Big/ \Bigg\backslash 
1

k

k\Biggr) 

i=1

\̂omega i \infty min
1\simeq i\simeq k

{\̂omega i}
\Big/ 
+

1

k2

\Bigg\backslash 
k\Biggr) 

i=1

\̂omega i

\Big/ 2

\Downarrow 
\Biggl[ 
k\infty 1

k
max
1\simeq i\simeq k

{\̂omega i}
\Biggr] \Bigg\backslash 

1

k

k\Biggr) 

i=1

\̂omega i

\Big/ 
+

1

k2

\Bigg\backslash 
k\Biggr) 

i=1

\̂omega i

\Big/ 2

\Downarrow 
\Biggl[ 
k\infty 1

k
\omega 
\rightarrow (R)

\Biggr] \Biggl[ 
1

k
\omega (R)

\Biggr] 
+

1

k2
\omega (R)2.

Since \̂omega achieves \omega 
2(R) by assumption, we can rewrite the inequality we just obtained as

follows:
1

k
\omega 
2(R)\Downarrow k\infty 1

k2
\omega 
\rightarrow (R)\omega (R) +

1

k2
(\omega (R))2.

Multiplying both sides by k gives the desired result.

Another natural parameter of the service rate region is its volume. Recall that the volume
of a convex polytope P is the Lebesgue measure [20] of its interior, which we denote by vol(P).
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THE SERVICE RATE REGION POLYTOPE 565

Distributed service systems strive to support the data download of simultaneous users whose
numbers and interests vary over time. The larger the service rate region volume, the larger
the number of di""erent user-number configurations the system can serve.

Computing the volume of a polytope is a di!cult task in general [13]. However, some
cases are relevant for our purposes, where simple observations give a closed formula for the
volume of the service rate region.

Proposition 4.8. Suppose that G is a replication matrix; see page 3 for the definition. We
have

vol(\#(G)) =
k 

i=1

|{1\Downarrow \varepsilon \Downarrow n | the \varepsilon th column of G is a nonzero multiple of ei}|.

Proof. It is easy to see that the service rate region \#(G) is a hyperrectangle in Rk, where
each edge has a length equal to the number of times the corresponding standard basis vector
appears as a column in G. The \#(G) volume is then determined as the quantity in the
statement.

In Theorem 6.5 we will give a closed formula for the volume of \#(G), when G generates
a 3-dimensional MDS code of length at least 6. The result is embedded in section 6, which is
devoted to the service rate region of systematic MDS codes.

We now compute the volume of the allocation polytope of a replication system, showing
in particular that the volume of the allocation polytope does not determine the volume of the
service rate region. Intuitively, this follows from the fact that the volume of the allocation
polytope is multilinear in the coordinates corresponding to the same object, whereas the
volume of the service rate polytope is linear in their sum. We introduce a class of polytopes
that will be used later in section 5.

Definition 4.9. A polytope of the form P = {x \rightarrow [0,1]m | yx\searrow \Downarrow n} \updownarrow Rm, where n and m

are positive integers and y \rightarrow Rm
\downarrow 0

is a vector, is called a relaxed knapsack polytope in Rm.

The volume of a relaxed knapsack polytope as in Definition 4.9 is known to be

vol(P) =
1

m!
 m

i=1
yi

\Biggr) 

x\updownarrow {0,1}m\Leftarrow P

(\infty 1)wt(x)
g(x)m,(4.1)

where wt(x) is the number of nonzero entries of x and g(x) = n\infty 
\Big\backslash m

i=1
yixi for all x\rightarrow Rm; see,

e.g., [6]. Using the above formula for the volume and some elementary generating functions
theory, we compute the volume of the allocation polytope of a replication matrix.

Proposition 4.10. Suppose that G is a replication matrix. We have vol(A(G)) = 1.

Proof. It is not hard to see that A(G) = {x\rightarrow [0,1]n | x1+ · · ·+xn \Downarrow n}, which is a relaxed
knapsack polytope obtained for m = n and y = 1n = (1, . . . ,1). Therefore, using (4.1) and
denoting by [xn]S(x) the coe!cient of xn in a power series S(x), we compute

vol(A(G)) =
1

n!

\Biggr) 

x\updownarrow {0,1}n

(\infty 1)wt(x)(n\infty (x1 + . . .+ xn))
n =

1

n!

\Biggr) 

x\updownarrow {0,1}n

(\infty 1)wt(x)(n\infty wt(x))n

=
1

n!

n\Biggr) 

i=0

(\infty 1)i(n\infty i)n
\Biggl[ 
n

i

\Biggr] 
=

n\Biggr) 

i=0

(\infty 1)i
\Biggl[ 
n

i

\Biggr] 
[xn]e(n\Rightarrow i)x = [xn](ex \infty 1)n = 1,
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566 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

where all passages easily follow from binomial theorem and the Taylor expansion of the expo-
nential function.

Note that even though the volume of the allocation polytope is the same for every repli-
cation matrix, the volume of the service rate region is not a constant; see Proposition 4.8.

Throughout this section, we focus on the connection between the parameters of \#(G) and
those of the error-correcting code generated by G; see Appendix B for some coding theory
background.

We start by recalling the following result from [2], whose statement relies on interpreting
the columns of G as points of the finite projective space PG(k \infty 1, q); see [31] for a general
reference. This can be done because, as stated in Notation 1.1, none of the columns of G is
the zero vector.

Proposition 4.11. Let \omega \rightarrow \#(G) and let I \updownarrow {1, . . . , k} be an index set. Let H be a hyperplane
of PG(k\infty 1, q) not containing any of the standard basis vectors ei, for i\rightarrow I, and let S denote
the multiset of columns of G in PG(k\infty 1, q). We have

\Biggr) 

i\updownarrow I
\omega i \Downarrow |S \H|,

where S \H is the multiset of points obtained from S after removing all the points contained
in H, counted with their multiplicity.

The following lemma is well known and can be shown by considering the columns of G as
a multiset of points in PG(k \infty 1, q), which are not all contained in a hyperplane since G has
rank k by assumption.

Lemma 4.12. Let S be the multiset of the columns of G, viewed as projective points in
PG(k\infty 1, q). Let d be the minimum distance of the code generated by G. Then every hyperplane
of PG(k\infty 1, q) contains at most n\infty d points of S, and there exists a hyperplane of PG(k\infty 1, q)
which contains exactly n\infty d points of S.

We can also apply Proposition 4.11 to show a connection between the minimum distance
of the code generated by G and the largest simplex contained in the service rate region.

Corollary 4.13. Let d denote the minimum distance of the code generated by G. We have

\in \varrho (G)\ni \Downarrow d.

Proof. Let i\rightarrow {1, . . . , k} be fixed and let H \updownarrow PG(k\infty 1, q) be a hyperplane that does not
contain ei. By applying Proposition 4.11 with I = {i} and \omega = \varrho (G)ei \rightarrow \#(G), we have

\varrho (G)\Downarrow |S \H|= n\infty |S \prime H|,

where S is the multiset of columns of G. We can follow the same reasoning for every i. Since
every hyperplane H does not contain some ei,

d= n\infty max{|S \prime H| : H \updownarrow PG(k\infty 1, q), H hyperplane},

and \varrho (G)\Downarrow |S \H|, we conclude that \in \varrho (G)\ni \Downarrow d.
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THE SERVICE RATE REGION POLYTOPE 567

The bound of Corollary 4.13 is met with equality by some matrices G, as the following
example illustrates.

Example 4.14. Let

G=

\Biggl\lfloor 

\Biggr\rfloor 
1 0 0 1
0 1 0 1
0 0 1 1

\Biggl\lceil 

\Biggr\rceil \rightarrow F3\uparrow 4

2
.

It can be easily seen that 2ei \rightarrow \#(G) for i\rightarrow {1,2,3}, and therefore \varrho (G) = 2.

In the last part of this section, inspired by the coding theory literature, we introduce the
notion of availability for the matrix G. We then describe the role this notion plays in shaping
the geometry of the service rate region.

Definition 4.15. Suppose that G is systematic. We say that G has availability t \rightarrow Z\downarrow 0 if
Rall

i (G) contains t+ 1 pairwise disjoint sets for all i\rightarrow {1, . . . , k}.
The following result easily follows from the definitions.

Proposition 4.16. Suppose that G is systematic and has availability t. Then (t+1)ei \rightarrow \#(G)
for all i\rightarrow {1, . . . , k}. In particular, \Rightarrow \varrho (G)\Uparrow \downarrow t+ 1.

By combining Corollary 4.13 with Proposition 4.16 we obtain the following result.

Corollary 4.17. Suppose that G is systematic and has availability t. Let d denote the mini-
mum distance of the code generated by G. We have d\downarrow t+ 1.

We conclude this section with an example where Proposition 4.16 and Corollary 4.17 are
sharp.

Example 4.18 (the simplex code). Let

G=

\Biggl\lfloor 

\Biggr\rfloor 
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

\Biggl\lceil 

\Biggr\rceil \rightarrow F3\uparrow 7

2
.

Then G has availability 3 and Proposition 4.16 is sharp in this case. Note that G is the
generator matrix of one of the best known error-correcting codes, namely the simplex code;
see, e.g., [21].

5. Outer bounds. In this section, we derive outer bounds for the service rate region \#(G)
as bounding polytopes P \leftrightarrow \#(G). We apply methods from coding theory and optimization,
dedicating a subsection to each of the two approaches. We illustrate how to apply the bounds
with examples and comment on their sharpness.

5.1. Coding theory approach. We start with a simple result that can be easily obtained
by summing the inequalities that define the allocation polytope, namely the constraints in
(1.2) for 1\Downarrow \varepsilon \Downarrow n.

Lemma 5.1 (total capacity bound). Let R be a G-system and let {\omega i,R} be a feasible allo-
cation for (R, µ); see Definition 1.4. We have
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568 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

k\Biggr) 

i=1

\Biggr) 

R\updownarrow Ri

|R|\omega i,R \Downarrow µn.(5.1)

The following result links the size of the recovery sets of a G-system to the parameters of
the (dual of the) error-correcting code generated by G.

Proposition 5.2. Suppose that G is systematic. Let d\Uparrow denote the minimum distance of the
dual of the code generated by G. For all i \rightarrow {1, . . . , k} and R \rightarrow Rall

i (G) we have R = {i} or
|R|\downarrow d

\Uparrow \infty 1.

We now establish the first outer bound of this section.

Theorem 5.3 (dual distance bound). Suppose that G is systematic. Let d
\Uparrow denote the

minimum distance of the dual of the code generated by G. If (\omega 1, . . . ,\omega k)\rightarrow \#(G), then

k\Biggr) 

i=1

(min{\omega i,1}+ (d\Uparrow \infty 1)max{0,\omega i \infty 1})\Downarrow n.

Proof. Let (\omega 1, . . . ,\omega k) \rightarrow \#(G) and let {\omega i,R} be a feasible allocation for (R,1). By
Proposition 5.2 we have |R| \downarrow d

\Uparrow \infty 1 for every i \rightarrow {1, . . . , k} and R \rightarrow Rall

i (G) with R \simeq = {i}.
We can therefore rewrite the left-hand side of (5.1) as follows:

k\Biggr) 

i=1

\omega i,{i} +
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Rall
i (G)

R \Downarrow ={i}

|R|\omega i,R \downarrow 
k\Biggr) 

i=1

\omega i,{i} + (d\Uparrow \infty 1)
k\Biggr) 

i=1

\Biggr) 

R\updownarrow Rall
i (G)

R \Downarrow ={i}

\omega i,R

=
k\Biggr) 

i=1

\omega i,{i} + (d\Uparrow \infty 1)
k\Biggr) 

i=1

 
\omega i \infty \omega i,{i}

 

= (d\Uparrow \infty 1)
k\Biggr) 

i=1

\omega i \infty (d\Uparrow \infty 2)
k\Biggr) 

i=1

\omega i,{i}.(5.2)

Since G has no all-zero column, we have d
\Uparrow \downarrow 2. Therefore, using the fact that \omega i,{i} \Downarrow 

min{\omega i,1} for all i, we can further say that the right-hand side of (5.2) is at least

(d\Uparrow \infty 1)
k\Biggr) 

i=1

\omega i \infty (d\Uparrow \infty 2)
k\Biggr) 

i=1

min{\omega i,1}=
k\Biggr) 

i=1

(min{\omega i,1}+ (d\Uparrow \infty 1)max{0,\omega i \infty 1}),

which, combined with (5.1), gives the statement.

Remark 5.4. It follows from [4] that the dual distance bound of Theorem 5.3 is sharp if G
is a systematic MDS matrix and n\downarrow 2k; see Appendix B for the definition of an MDS matrix.
The bound can be sharp also for systematic matrices G \rightarrow Fk\uparrow n

q that generate an MDS code
and have n< 2k. This is the case of the matrix G of Example 4.14.

It turns out that Theorem 5.3 is not particularly e""ective for systems that mainly imple-
ment replication, i.e., for matrices G that are very similar to a replication matrix. We obtain
the following result by considering the number of systematic nodes for each object. Since the
proof is similar to the one of Theorem 5.3, we omit it here.
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THE SERVICE RATE REGION POLYTOPE 569

Theorem 5.5. Suppose that G is systematic and let si denote the number of systematic
nodes for the ith object, for i\rightarrow {1, . . . , k}. If (\omega 1, . . . ,\omega k)\rightarrow \#(G), then

k\Biggr) 

i=1

(min{\omega i, si}+ 2max{0,\omega i \infty si})\Downarrow n.

The outer bounds Theorems 5.3 and 5.5 are not generally comparable, as the following
example illustrates.

Example 5.6. An example where Theorem 5.3 outperforms Theorem 5.5 is given by the
region in Example 4.14. By Remark 5.4, the bound of Theorem 5.3 gives the exact service
rate region. This automatically outperforms the bound of Theorem 5.5 as (d\Uparrow \infty 1) = 3 > 2.
Now consider the service rate region of Example 1.11 depicted in Figure 1(b). The bounding
polytopes given by Theorems 5.3 and 5.5 are depicted in Figure 3, showing that Theorem 5.5
outperforms Theorem 5.3 in that case.

The next result is a hybrid between Theorems 5.3 and 5.5, in the sense that it takes into
account both the minimum distance of the dual of the code generated by G and the number
of systematic nodes.

Theorem 5.7. Let d\Uparrow be the minimum distance of the dual of the code generated by G and
let si denote the number of systematic nodes for the ith object, for i \rightarrow {1, . . . , k}. For all
(\omega 1, . . . ,\omega k)\rightarrow \#(G) we have

\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

(min{si,\omega i}+max{2, d\Uparrow \infty 1}max{0,\omega i \infty si}) +
\Biggr) 

i\updownarrow {1,...,k}
si=0

2\omega i \Downarrow n.

Proof. Let (\omega 1, . . . ,\omega k)\rightarrow \#(G) and let {\omega i,R} be a corresponding feasible allocation. Write
R for Rmin(G). By Proposition 5.2 and the fact that d\Uparrow = 2 if there exist two columns of G
that are linearly dependent, we obtain

4

2.5

3.5 4

1

3

(3, 1)

\omega 1

\omega 2

Theorem 5.3
Theorem 5.5
!(G)

Figure 3. The service rate region of Example 1.11, Figure 1(b), is an example where the bound of Theorem
5.5 gives a better approximation than the bound of Theorem 5.3.
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\Biggr) 

i\updownarrow {1,...,k}

\Biggr) 

R\updownarrow R
|R|\omega i,R \downarrow 

\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

\Biggl\lfloor 

\left\{ \left\{ \Biggr\rfloor 
\Biggr) 

R\updownarrow R
|R|=1

\omega i,R +max{2, d\Uparrow \infty 1}
\Biggr) 

R\updownarrow R
|R| \Downarrow =1

\omega i,R

\Biggl\lceil 

\right\} \right\} \Biggr\rceil 

+
\Biggr) 

i\updownarrow {1,...,k}
si=0

\Biggr) 

R\updownarrow R
2\omega i,R.

Therefore,

\Biggr) 

i\updownarrow {1,...,k}

\Biggr) 

R\updownarrow R
|R|\omega i,R

\downarrow 
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

\Biggr) 

R\updownarrow R
|R|=1

\omega i,R +
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

\Biggl\lfloor 

\left\{ \left\{ \Biggr\rfloor max{2, d\Uparrow \infty 1}

\Biggl\lfloor 

\left\{ \left\{ \Biggr\rfloor \omega i \infty 
\Biggr) 

R\updownarrow R
|R|=1

\omega i,R

\Biggl\lceil 

\right\} \right\} \Biggr\rceil 

\Biggl\lceil 

\right\} \right\} \Biggr\rceil +
\Biggr) 

i\updownarrow {1,...,k}
si=0

2\omega i

\downarrow 
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

max{2, d\Uparrow \infty 1}\omega i \infty (max{2, d\Uparrow \infty 1}\infty 1)
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

min{si,\omega i}

+
\Biggr) 

i\updownarrow {1,...,k}
si=0

2\omega i

=
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

(min{si,\omega i}+max{2, d\Uparrow \infty 1} (\omega i \infty min{si,\omega i})) +
\Biggr) 

i\updownarrow {1,...,k}
si=0

2\omega i

=
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0

(min{si,\omega i}+max{2, d\Uparrow \infty 1}max{0,\omega i \infty si}) +
\Biggr) 

i\updownarrow {1,...,k}
si=0

2\omega i,

where the first inequality follows from Definition 1.4, and the second follows from the inequality

\Biggr) 

R\updownarrow R
|R|=1

\omega i,R \Downarrow min{si,\omega i}.

It is interesting to note that if d\Uparrow \infty 1 \downarrow 2 (and hence si = 1 for all i \rightarrow {1, . . . , k}), then
Theorem 5.7 gives Theorem 5.3. Similarly, if si \simeq = 0 for all i\rightarrow {1, . . . , k} and si \downarrow 2 for at least
one i, then Theorem 5.7 becomes Theorem 5.5.

Lemma 5.1 suggests that the variety of sizes of the recovery sets plays an important role in
shaping the service rate region. By taking into account the indices i for which the recovery sets
all have the same size, we obtained the following result. Note that this exactly measures the
contribution of the indices for which the recovery sets have the same size and thus improves
upon Theorem 5.7. The proof is a simple extension of Theorem 5.7, and we omit it here.

Theorem 5.8. Let d\Uparrow be the minimum distance of the dual of the code generated by G and
let si denote the number of systematic nodes for the ith object, for 1\rightarrow {1, . . . , k}. Let
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THE SERVICE RATE REGION POLYTOPE 571

µi =
1

|Rmin

i (G)|\infty si

\Biggr) 

R\updownarrow Rmin
i (G)

|R| \Downarrow =1

|R| for i\rightarrow {1, . . . , k},

J = {i\rightarrow {1, . . . , k} | all R \rightarrow Rmin

i (G) with |R| \simeq = 1 have the same cardinality}.

Then for all \omega \rightarrow \#(G) we have

n\downarrow 
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0, i/\updownarrow J

(min{si,\omega i}+max{2, d\Uparrow \infty 1}max{0,\omega i \infty si}) +
\Biggr) 

i\updownarrow {1,...,k}
si=0, i/\updownarrow J

2\omega i

+
\Biggr) 

i\updownarrow {1,...,k}
si=0, i\updownarrow J

µi\omega i +
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0, |Rmin

i (G)|=si

si +
\Biggr) 

i\updownarrow {1,...,k}
si \Downarrow =0, i\updownarrow J

(µi\omega i \infty (1\infty µi)min{si,\omega i}) .

In the next example, we show that Theorem 5.8 can be sharper than Theorem 5.7 for
some service rate regions.

Example 5.9. Let k= 3, n= 6, q= 3, and

G :=

\Biggl\lfloor 

\Biggr\rfloor 
0 1 1 2 1 2
1 2 2 2 1 1
0 0 0 1 2 2

\Biggl\lceil 

\Biggr\rceil \rightarrow F3\uparrow 6

3
.

Following the notation of Theorem 5.8 we have d
\Uparrow = 2, (µ1, µ2, µ3) = (2,3,11/4), (s1, s2, s3) =

(0,1,0), and J = {1,2}. Figure 4 depicts the service rate region \#(G) and the outer bounds
given by Theorems 5.7 and 5.8.

5.2. Optimization approach. In this subsection, we use the theory of knapsack polytopes
(recall Definition 4.9) to derive an outer bound for the allocation and service rate region
polytopes and the bound corollaries. Most notably, we obtain upper bounds for the quantities\Big\backslash 

i\updownarrow I \omega i, for any given index set I \updownarrow {1, . . . , k}. These quantities are of interest in practice

\omega 2

\omega 1

\omega 3

Theorem 5.7
Theorem 5.8
!(G)

Figure 4. Service rate region and outer bounds for Example 5.9.
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because they correspond to the cumulative numbers of users interested in some (sub)sets of
stored objects. Observe that when I = {1, . . . , k}, then

\Big\backslash 
i\updownarrow I \omega i represents the total number

of users in the system. In this subsection, we also illustrate how to apply our bounds in some
examples and plot the output.

Notation 5.10. Let R be a G-system and m(R) = |R1|+ · · ·+ |Rk|. We define the integer
vector

y(R) = (|R| : i\rightarrow {1, . . . , k}, R \rightarrow Ri)\rightarrow Zm(R)

\downarrow 0
,

where we take the same order as in Definition 2.1. Note that all the entries of y(R) are
positive since recovery sets are nonempty by definition.

We can now state the main result of this section, which gives an infinite number of half-
spaces that contain the allocation polytope, one for each vector c\rightarrow Rm(R).

Theorem 5.11. Let R be a G-system, m=m(R), and let c\rightarrow Rm. Define y= y(R) and let
\varphi : {1, . . . ,m}\nwarrow {1, . . . ,m} be any permutation such that

c\varpi (1)

y\varpi (1)
\downarrow · · ·\downarrow 

c\varpi (m)

y\varpi (m)

.

Define J = {j | y\varpi (1) + · · ·+ y\varpi (j) >n}. If J = \Leftarrow , then let r=m+ 1, \leftharpoonup = 0, and \varphi (m+ 1) = 0.
If J \simeq = \Leftarrow , then let r=min(J) and \leftharpoonup = (n\infty 

\Big\backslash r\Rightarrow 1

j=1
y\varpi (j))/y\varpi (r). Then for any x\rightarrow A(R) we have

cx
\searrow \Downarrow 

\Biggl\lfloor 

\Biggr\rfloor 
r\Rightarrow 1\Biggr) 

j=1

c\varpi (j)

\Biggl\lceil 

\Biggr\rceil + c\varpi (r) \leftharpoonup , where c\varpi (m+1) = 0.(5.3)

Before proving the theorem, we state an immediate consequence for the max-sum capacity
of the service rate region. The result is obtained by taking c= (1, . . . ,1), allowing us to use a
more e!cient notation.

Corollary 5.12. Let R be any G-system with the property that \#(R) =\#(G). Let y= y(R)
and reorder its components nondecreasingly obtaining a vector ŷ. Suppose ŷ1 + · · ·+ ŷm > n,
where m=m(R), and let r=min{j | ŷ1 + · · ·+ ŷj >n}. We have

\omega (G)\Downarrow r\infty 1 +
n\infty 

\Big\backslash r\Rightarrow 1

j=1
ŷj

ŷr
.

We give an example illustrating how to apply Corollary 5.12.

Example 5.13. Let G be as in Example 4.14, with n = 4, and R = Rmin(G). We have
y = y(R) = (1,3,1,3,1,3). As in Corollary 5.12, we construct ŷ = (1,1,1,3,3,3) and obtain
\omega (G)\Downarrow 10/3. It can be checked that \omega (G) = 3.

Proof of Theorem 5.11. Let P = {x \rightarrow [0,1]m(R) | y(R)x\searrow \Downarrow n}, which is a relaxed
knapsack polytope. Let \leftharpoondown = max{cx\searrow | x \rightarrow P}. We have the inclusion A(R) \updownarrow P ; hence
max{cx\searrow | x \rightarrow A(R)} \Downarrow \leftharpoondown . We apply a classical result by Dantzig [9] (the case where J = \Leftarrow 
requires a separate treatment, but we omit it here), which states that a point x̂\rightarrow P attaining
the maximum \leftharpoondown is given by
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THE SERVICE RATE REGION POLYTOPE 573

x̂j =

\Biggl\{ 
\Biggr\} \Biggr\} \Biggr\} \Biggl\langle 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rangle 

1 if 1\Downarrow j \Downarrow r\infty 1,
n\infty 

\Big\backslash r\Rightarrow 1

j=1
y\varpi (j)

y\varpi (r)
if j = r,

0 otherwise.

The result follows by computing µ= cx̂
\searrow .

As another corollary of Theorem 5.11, we obtain a result that gives an infinite number of
half-spaces in which the service rate region \#(R) is contained. Each half-space is obtained by
choosing a di""erent vector b in the statement.

Corollary 5.14. Let R be a G-system and let b\rightarrow Rk. Let m=m(R), m0 = 1, and mi = |Ri|
for all i \rightarrow {1, . . . , k}. Define c \rightarrow Rm(R) by setting cj = bi whenever mi\Rightarrow 1 + 1 \Downarrow j \Downarrow mi.
Construct a permutation \varphi and define r, \leftharpoonup , and \varphi (m+ 1) if necessary, as in Theorem 5.11.
Then for all \omega \rightarrow \#(R) we have

b\omega 
\searrow \Downarrow 

\Biggl\lfloor 

\Biggr\rfloor 
r\Rightarrow 1\Biggr) 

j=1

c\varpi (j)

\Biggl\lceil 

\Biggr\rceil + c\varpi (r) \leftharpoonup .

By specializing the previous result to vectors b \rightarrow {0,1}k one can obtain upper bounds
for partial sums of the form

\Big\backslash 
i\updownarrow I \omega i, where I \updownarrow {1, . . . , k} and \omega \rightarrow \#(R). In particular, one

can obtain an upper bound for the max-sum capacity \omega (G). We conclude this section by
illustrating how Corollary 5.14 can be applied and the type of results it gives.

Example 5.15. Consider the service rate region of Example 1.11, depicted in Figure 1(b).
By applying Corollary 5.14 for all b\rightarrow {0,1}3 we obtain the bounding polytope for the service
rate region, and we depict it in Figure 5 as well as with \#(G).

The following example shows that applying Corollary 5.14 not only with 0-1 vectors can
give a strictly better bound than only applying it with 0-1 vectors.

Example 5.16. Let

G=

\Biggl[ 
1 0 1 1 0 0 1 1
0 1 0 0 1 1 1 2

\Biggr] 
\rightarrow F2\uparrow 8

3
.

\omega 2

\omega 1

\omega 3

Figure 5. Service rate region and bounding polytope for Example 5.15.
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574 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

\omega 1

\omega 2

Figure 6. The service rate region and the bounding polytopes for Example 5.16.

The service rate region \#(G) is the purple region in Figure 6. By applying Corollary 5.14
for all b \rightarrow {0,1}2, one gets the light blue region in Figure 6. For a better approximation of
the service rate region, also depicted in Figure 6, we can use Corollary 5.14. For example, by
applying said corollary with b= (3,2) and b= (3,5), in addition to the 0-1 vectors b\rightarrow {0,1}2,
one gets the gray region in Figure 6.

6. Systematic MDS codes. This section is entirely devoted to the service rate region
\#(G), when G is an MDS matrix; see Appendix B for the definition of MDS matrix. We focus
on the volumes of these service rate regions for k \rightarrow {2,3} and on their max-sum capacities.

Recall that in the case where G is a systematic MDS matrix and n\downarrow 2k, the service rate
region \#(G) is known and given by the set

\Bigg/ 
(\omega 1, . . . ,\omega k)\rightarrow Rk

\downarrow 0

   
k\Biggr) 

i=1

 
min{\omega i,1}+ k ·max{0,\omega i \infty 1}

 
\Downarrow n

\right] 
;(6.1)

see Remark 5.4. The description in (6.1) is however inconvenient for computing the volume
of \#(G), which is one of the goals of this section. Therefore, our first move is deriving a more
convenient description.

Notation 6.1. Given a vector \omega \rightarrow Rk, let \rightharpoonup (\omega ) \rightarrow Zk be the vector with \rightharpoonup (\omega )i = 1 if \omega i < 1
and \rightharpoonup (\omega )i = k if \omega i \downarrow 1. Moreover, we let

\omega <1 = {i\rightarrow {1, . . . , k} | \omega i < 1}.

The following lemma gives a di""erent representation of the service rate region of a sys-
tematic MDS matrix G with n\downarrow 2k. In its statement, we use Notation 6.1.

Lemma 6.2. Suppose G is a systematic MDS matrix and n\downarrow 2k. We have

\#(G) =
 
\omega \rightarrow Rk

\downarrow 0

   \rightharpoonup (\omega )\omega \searrow \Downarrow n+ (k\infty 1)(k\infty |\omega <1|)
 
.(6.2)

Proof. Let \omega \rightarrow \#(G). By (6.1), we have
\Big\backslash k

i=1

 
min{\omega i,1}+ k ·max{0,\omega i \infty 1}

 
\Downarrow n. That

is,

\Biggr) 

i\updownarrow \varrho <1

\omega i + (k\infty |\omega <1|) +

\Biggl\lfloor 

\Biggr\rfloor 
\Biggr) 

i\updownarrow {1,...,k}\\varrho <1

k\omega i

\Biggl\lceil 

\Biggr\rceil \infty k(k\infty |\omega <1|)\Downarrow n.
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THE SERVICE RATE REGION POLYTOPE 575

The latter inequality can be rewritten as \rightharpoonup (\omega ) · \omega \searrow \Downarrow n+ (k \infty 1)(k \infty |\omega <1|). This shows the
inclusion \updownarrow in (6.2). The other inclusion follows by reversing all the passages, and we omit
the details.

We can now compute the volume of the service rate region of an MDS matrix for k \rightarrow {2,3}
and n\downarrow 2k. We start with the case k= 2.

Theorem 6.3. Let G \rightarrow F2\uparrow n
q be a systematic MDS matrix. Suppose n \downarrow 4. Then we have

vol(\#(G)) = n2
+4n
8

.

Proof. By Lemma 6.2, \#(G) is defined by the following five equations:

\omega 1 + \omega 2 \Downarrow 
n+ 2

2
, 2\omega 1 + \omega 2 \Downarrow n+ 1, \omega 1 + 2\omega 2 \Downarrow n+ 1, \omega 1 \downarrow 0, \omega 2 \downarrow 0.

It is not hard to check that the vertices of \#(G) are the points

(0,0),
 
1,

n

2

 
,

 
n

2
,1
 
,

\Biggl[ 
n+ 1

2
,0

\Biggr] 
,

\Biggl[ 
0,

n+ 1

2

\Biggr] 
.

The volume (i.e., the area) can now be computed using elementary methods.

We can compare Theorem 6.3 with a replication system generated by a matrix with the
same parameters.

Proposition 6.4. Suppose that G\rightarrow Fk\uparrow n
q is a replication matrix. We have

n\infty k+ 1\Downarrow vol(\#(G))\Downarrow 
  

n

k

 k
 
.

The lower bound can be attained by some G and the upper bound can be attained by some G

if k= 2.

Proof. Let ji denote the number of columns of G multiples of the standard basis vector
ei, for i\rightarrow {1, . . . , k}. Each ji is a positive integer since G is full rank. By Proposition 4.8, the
volume of \#(G) is

 k
i=1

ji. We get the desired upper bound by the arithmetic versus geometric
mean inequality. The lower bound can be attained by taking j1 = n \infty k + 1 and ji = 1 for
i \rightarrow {2, . . . , k}. When k = 2, the upper bound can be attained by taking j1 \rightarrow {\Rightarrow n/2\Uparrow , \in n/2\ni }
and j2 = n\infty j1.

Note that Proposition 6.4 shows that one can find a replication matrix G\rightarrow F2\uparrow n
q for n\downarrow 5

whose service rate region’s volume is strictly larger than the volume of an MDS matrix of the
same size.

We now turn to the case k= 3 and n\downarrow 6, computing the volume of the service rate region
corresponding to an MDS matrix G \rightarrow F3\uparrow n

q . The computation is more involved than in the
2-dimensional case.

Theorem 6.5. Let G\rightarrow F3\uparrow n
q be a systematic MDS matrix and suppose n\downarrow 6. We have

vol(\#(G)) =
n
3 + 18n2 + 54n\infty 18

162
.

Proof. Define the function f(z) =min{z,1}+3max{0, z\infty 1}. Using Lemma 6.2 it can be
seen that \#(G) is the set of 3-tuples (\omega 1,\omega 2, z) that satisfy the inequalities
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576 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

\Biggl\{ 
\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggl\langle 

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\rangle 

\omega 1 + \omega 2 \Downarrow n\infty f(z), (\bigtriangleup )
3\omega 1 + \omega 2 \Downarrow n\infty f(z) + 2,

\omega 1 + 3\omega 2 \Downarrow n\infty f(z) + 2,

3\omega 1 + 3\omega 2 \Downarrow n\infty f(z) + 4, (\bigtriangleup \bigtriangleup )
\omega 1,\omega 2, z \downarrow 0.

Observe moreover that the maximum value z can take is (n+2)/3. This value can be attained
by taking \omega 1 = \omega 2 = 0 in the above system. We have

f(z) =

\Bigg/ 
z if 0\Downarrow z \Downarrow 1,

3z \infty 2 if 1\Downarrow z.

It can be checked that (\bigtriangleup \bigtriangleup ) is more restrictive than (\bigtriangleup ) for z \Downarrow n/3, while (\bigtriangleup ) is more restrictive
than (\bigtriangleup \bigtriangleup ) otherwise. Moreover, when z \downarrow (n + 1)/3, all inequalities except for (\bigtriangleup ) and the
nonnegativity of \omega 1, \omega 2, and z can be disregarded. This tells us the shape of the “slices” of
\#(G) for a given value of z. We summarize this discussion in Table 1 and Figure 7.

The areas of the slices can be easily computed and therefore the volume of \#(G) can be
computed by integration over z. This approach is mathematically justified, for example, by
[5, Theorem 2.7]. The desired formula follows from

Table 1

z Figure y x \omega \varepsilon 

0\rightarrow z \rightarrow 1 7(b) (0, n\uparrow z+2
3 ) (0, n\uparrow z+2

3 ) (1, n\uparrow z+1
3 ) (n\uparrow z+1

3 ,1)

1\rightarrow z \rightarrow n
3 7(b) (0, n\uparrow 3z+4

3 ) (0, n\uparrow 3z+4
3 ) (1, n\uparrow 3z+3

3 ) (n\uparrow 3z+3
3 ,1)

n
3 \rightarrow z \rightarrow n+1

3 7(b) (0, n\uparrow 3z+4
3 ) (0, n\uparrow 3z+4

3 ) (n\uparrow 3z + 1,1) (1, n\uparrow 3z + 1)
n+1
3 \rightarrow z \rightarrow n+2

3 7(c) (0, n\uparrow 3z + 2) (n\uparrow 3z + 2,0) — —

(a) The typical service rate re-
gion of a systematic MDS ma-
trix G \rightarrow F3\rightarrow n

q for n \uparrow 6.

y

x

\omega 

\varepsilon 

\vargamma 1

\vargamma 2

(b) The slice of the service rate
region of a systematic MDS
matrix G \rightarrow F3\rightarrow n

q , n \uparrow 6, for
z \downarrow (n+ 1)/3.

y

x
\vargamma 1

\vargamma 2

(c) The slice of the service rate
region of a systematic MDS
matrix G \rightarrow F3\rightarrow n

q , n \uparrow 6, for
(n+ 1)/3 \downarrow z \downarrow (n+ 2)/3.

Figure 7. The service rate region and its slices for the proof of Theorem 6.5.
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THE SERVICE RATE REGION POLYTOPE 577

vol(\#(G)) =

 
1

0

\Biggl[ 
1

18
z
2 \infty n+ 4

9
z +

n
2 + 8n+ 4

18

\Biggr] 
dz

+

 n/3

1

\Biggl[ 
1

2
z
2 \infty n+ 6

3
z +

n
2 + 12n+ 24

18

\Biggr] 
dz

+

 
(n+1)/3

n/3

\Biggl[ 
\infty 3

2
z
2 + (n\infty 2)z +

n
2 \infty 4n\infty 8

6

\Biggr] 
dz

+

 
(n+2)/3

(n+1)/3

\Biggl[ 
9

2
z
2 \infty (3n+ 6)z +

n
2 + 4n+ 4

2

\Biggr] 
dz

and tedious but straightforward computations.

Out of curiosity, we point out that Theorem 6.5 can also be derived by the well-known
triangulation method for computing the volume of a polytope using the volume of simplices;
see [8]. For the polytope of Theorem 6.5 the formalization of this approach is rather involved,
which is why we proceeded by integration.

We also notice that a general lower bound for vol(\#(G)) where G is an MDS matrix can
be obtained by Proposition B.3. Any k columns can be used to recover any data object. Thus,
(n/k)ei \rightarrow \#(G), which implies that the simplex with these vertices is contained in the service
rate region. Therefore, vol(\#(G))\downarrow (n/k)k/k!.

In the second part of this section, we investigate other parameters of the service rate regions
of systematic MDS matrices. We first observe that Corollary 5.12 implies the following.

Corollary 6.6. Let G\rightarrow Fk\uparrow n
q be a systematic MDS matrix. We have \omega (G)\Downarrow k+ n\Rightarrow k

k .

Proof. Following the notation of Corollary 5.12, we have m = k
  n\Rightarrow 1

k

 
+ 1

 
and ŷ =

(v1, v2), where v1 = (1, . . . ,1)\rightarrow Rk and v2 = (k, . . . , k)\rightarrow Rm\Rightarrow k. Moreover,

r=min{j | ŷ1 + · · ·+ ŷj >n, 1\Downarrow j \Downarrow m}= k+ \Rightarrow (n\infty k)/k\Uparrow + 1.

We then obtain the desired result by applying Corollary 5.12:

\omega (G)\Downarrow k+ \Rightarrow (n\infty k)/k\Uparrow +
n\infty 

\Big\backslash r\Rightarrow 1

i=1
ŷi

ŷr
= k+

n\infty k

k
.

We will now prove that systematic MDS matrices achieve the bound of Corollary 6.6 with
equality in the case n\downarrow 2k. We start by introducing some objects that we will need to prove
the result.

Notation 6.7. Let a, b \rightarrow Z such that 2 \Downarrow a < b. Assume q > b and let \varpi be a primitive
element of Fq. Define the matrix

G
a,b
\varsigma =

\Biggl\lfloor 

\left\{ \left\{ \left\{ \Biggr\rfloor 

1 1 1 · · · 1
1 \varpi \varpi 

2 · · · \varpi 
b\Rightarrow 1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 \varpi 
(a\Rightarrow 1)

\varpi 
2(a\Rightarrow 1) · · · \varpi 

(b\Rightarrow 1)(a\Rightarrow 1)

\Biggl\lceil 

\right\} \right\} \right\} \Biggr\rceil 
\rightarrow Fa\uparrow b

q .
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578 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

Note that having q > b is necessary and su!cient for the columns of Ga,b
\varsigma to be pairwise

distinct. Su!ciency can be seen by considering the second row of Ga,b
\varsigma and the fact that the

multiplicative order of \varpi is q \infty 1. Necessity follows from the fact that if q \Downarrow b then at least
one of the columns of Ga,b

\varsigma indexed by {2, . . . , b} is equal to the first column. Moreover, the
matrix G

a,b
\varsigma is a generator matrix of a Reed–Solomon code [24], which is a type of MDS code;

see [21].

Lemma 6.8. Following Notation 6.7, let R=Rmin(Ga,b
\varsigma ). The following hold.

1. Let i\rightarrow {1, . . . , a} and R\updownarrow {1, . . . , b}. Then R \rightarrow Ri if and only if |R|= a.
2. Let \varepsilon \rightarrow {1, . . . , b}. We have

|{R \rightarrow Ri | i\rightarrow {1, . . . , a}, \varepsilon \rightarrow R}|=
\Biggl[ 
b\infty 1

a\infty 1

\Biggr] 
.

Proof. We first observe that the second part of the lemma follows from the first and the
fact that

{S \updownarrow {1, . . . , b} | |S|= a, \varepsilon \rightarrow S}=
\Biggl[ 
b\infty 1

a\infty 1

\Biggr] 
for all 1\Downarrow \varepsilon \Downarrow b.

To prove the first part, let G = G
a,b
\varsigma . Suppose that R \rightarrow Ri and let us prove |R| = a. We

first show that |R| \Downarrow a. Assume towards a contradiction that |R| > a. By Proposition B.3,
there exists R

\nearrow \updownarrow R such that |R| = a and R
\nearrow \rightarrow Ri, which contradicts the fact that R is

i-minimal. We now show that |R|\downarrow a. Towards a contradiction, assume |R|= c < a. Because
of the structure of G, we can assume without loss of generality i = a and R = {1, . . . , c}.
We will prove that R /\rightarrow Ra, which is a contradiction. That is equivalent to showing that
ea /\rightarrow \nearrow G\omega | \varepsilon \rightarrow {1, . . . , c}\searrow , which can be seen from the fact that the matrices

\Biggl\lfloor 

\left\{ \left\{ \left\{ \Biggr\rfloor 

1 1 1 · · · 1
1 \varpi \varpi 

2 · · · \varpi 
c\Rightarrow 1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 \varpi 
(a\Rightarrow 1)

\varpi 
2(a\Rightarrow 1) · · · \varpi 

(c\Rightarrow 1)(a\Rightarrow 1)

\Biggl\lceil 

\right\} \right\} \right\} \Biggr\rceil 
and

\Biggl\lfloor 

\left\{ \left\{ \left\{ \Biggr\rfloor 

1 1 1 · · · 1 0
1 \varpi \varpi 

2 · · · \varpi 
c\Rightarrow 1 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 \varpi 
(a\Rightarrow 1)

\varpi 
2(a\Rightarrow 1) · · · \varpi 

(c\Rightarrow 1)(a\Rightarrow 1) 1

\Biggl\lceil 

\right\} \right\} \right\} \Biggr\rceil 

have di""erent ranks. For the other direction, assume |R| = a. Since G is an MDS matrix,
we have R \rightarrow Rall

i (G) by Proposition B.3. To see that R \rightarrow Ri it is enough to show that all
elements of Ri have cardinality a, which we proved already in the first part of the proof.

Note that the second property of the previous lemma states that each column index of
G

a,b
\varsigma participates in

 b\Rightarrow 1

a\Rightarrow 1

 
recovery sets of the system R(Ga,b

\varsigma ).

Theorem 6.9. Let (\omega 1, . . . ,\omega a) \rightarrow Ra
\downarrow 0

. Following Notation 6.7, if \omega 1 + · · ·+ \omega a \Downarrow b/a, then

(\omega 1, . . . ,\omega a)\rightarrow \#(Ga,b
\varsigma ).

Proof. Let R=Rmin(Ga,b
\varsigma ). For all i\rightarrow {1, . . . , a} and R \rightarrow Ri, let

\omega i,R =
\omega i b
a

 = \omega i
a

b

1
 b\Rightarrow 1

a\Rightarrow 1

 .
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THE SERVICE RATE REGION POLYTOPE 579

We now show that the constraints in Definition 1.4 hold. Constraint (1.3) holds by definition.
Constraint (1.1) is satisfied because

\Biggr) 

R\updownarrow Ri

\omega i,R = \omega i
a

b

1
 b\Rightarrow 1

a\Rightarrow 1

 |Ri|= \omega i
a

b

1
 b\Rightarrow 1

a\Rightarrow 1

 
\Biggl[ 
b

a

\Biggr] 
= \omega i

for all i \rightarrow {1, . . . , a}, where the fact that |Ri|=
 b
a

 
follows from the first part of Lemma 6.8.

By the second part of Lemma 6.8, constraint (1.2) reads as

\Biggl[ 
b\infty 1

a\infty 1

\Biggr] a\Biggr) 

i=1

\omega i
a

b

1
 b\Rightarrow 1

a\Rightarrow 1

 \Downarrow 1,(6.3)

which holds by the theorem’s assumption \omega 1 + · · ·+ \omega a \Downarrow b/a, since

\Biggl[ 
b\infty 1

a\infty 1

\Biggr] a\Biggr) 

i=1

\omega i
a

b

1
 b\Rightarrow 1

a\Rightarrow 1

 =
a

b
(\omega 1 + · · ·+ \omega a)\Downarrow 

a

b

b

a
= 1.

We can now show that systematic MDS matrices with n \downarrow 2k achieve the bound of
Corollary 6.6 (cf. [2]).

Theorem 6.10. Suppose n \downarrow 2k. If G \rightarrow Fk\uparrow n
q is a systematic MDS matrix, then \omega (G) =

k+ n\Rightarrow k
k .

Proof. All systematic MDS matrices with n \downarrow 2k have the same service rate region; see
Remark 5.4. Therefore it su!ces to prove the result for G= [Idk |Gk,n\Rightarrow k

\varsigma ] \rightarrow Fk\uparrow n
q , where Idk

is the k\uparrow k identity matrix over Fq and G
k,n\Rightarrow k
\varsigma is as in Notation 6.7.

The fact \omega 1 + · · · + \omega k \Downarrow k + (n \infty k)/k follows from Corollary 6.6. Let \omega i,{i} = 1 for all

i\rightarrow {1, . . . , k}, and observe that ((n\infty k)/k,0, . . . ,0)\rightarrow \#(Gk,n\Rightarrow k
\varsigma ) by taking a= k and b= n\infty k

in Theorem 6.9. Then ((n\infty k)/k+ 1,1, . . . ,1)\rightarrow \#(G) by the definition of G.

We conclude this section by noting that Corollary 6.6 is not necessarily met with equality
when n < 2k, or if G is not systematic. For the case where n < 2k, see, for instance,
Example 5.13. For the case where n\downarrow 2k and G is a nonsystematic MDS matrix, consider

G=

\Biggl[ 
2 1 3 4
1 2 3 5

\Biggr] 
\rightarrow F2\uparrow 4

7
.

Then \omega (G) = 2< 3.

Appendix A. Polytopes. In this appendix, we collect some background material about
polytopes and their properties. More details can be found in standard references; see, e.g.,
[19, 26, 32].

We start by recalling that a polyhedron is a set of the form P = {x \rightarrow Rm | Ax\searrow \Downarrow b
\searrow },

where A \rightarrow R\varepsilon \uparrow m, \vargamma ,m \downarrow 1, b \rightarrow R\varepsilon , and \Downarrow is applied componentwise. Such a set P is called
a polytope if it is bounded. A fundamental result on polyhedra states that every polytope is
the convex hull of a finite set of points. For a (possibly infinite) set S \updownarrow Rm, we let conv(S)
denote its convex hull, where conv(\Leftarrow ) = \Leftarrow .
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580 G. N. ALFARANO, A. B. KıLıÇ, A. RAVAGNANI, AND E. SOLJANIN

Theorem A.1 (see e.g. [14]). Let P \updownarrow Rm be a polytope. Then a finite set S \updownarrow Rm exists,
such as P = conv(S).

A vertex of a polytope P \updownarrow Rm is an element v \rightarrow P with v /\rightarrow conv(P \ {v}). The set of
vertices of P is denoted by |(P). Note that if P = conv(S) is a poltyope, then |(P)\updownarrow S. Thus
P = conv(|(P)). Moreover, a nonempty polytope has at least one vertex.

We recall the following crucial property of vertices.

Proposition A.2. Let P = {x \rightarrow Rm | Ax\searrow \Downarrow b
\searrow } be a polytope, with A \rightarrow R\varepsilon \uparrow m. Let v be

a vertex of P. Then there exists I \updownarrow {1, . . . , \vargamma } such that rank(A[I]) = m and {v} = {x \rightarrow 
Rm |A[I]x\searrow = b[I]\searrow }, where A[I] and b[I] are obtained from A and b by deleting the rows and
components (respectively) not indexed by I.

The previous result remarkably shows that rational polytopes have rational vertices (i.e.,
with rational entries). Recall that a polyhedron of the form {x\rightarrow Rm |Ax\Downarrow b

\searrow } with A\rightarrow Q\varepsilon \uparrow m

and b\rightarrow Q\varepsilon is called rational. Then Proposition A.2 combined with Gaussian elimination leads
to the following result.

Corollary A.3. A rational polytope has rational vertices.

We conclude this appendix by recalling that a polytope P \updownarrow Rm is down-monotone if x\downarrow 0
for all x\rightarrow P and for all y \rightarrow Rm and x\rightarrow P with 0\Downarrow y\Downarrow x we have y \rightarrow P . All polytopes in this
paper are down-monotone.

Appendix B. Error-correcting codes.

Definition B.1. An [n,k]q (error-correcting) code is a k-dimensional Fq-linear subspace
C \Downarrow Fn

q . We call n the length of C. A matrix G \rightarrow Fk\uparrow n
q whose rows span C is called a

generator matrix for C. The [n,n\infty k]q code C\Uparrow = {x \rightarrow Fn
q | xy\searrow = 0 for all y \rightarrow C}\Downarrow Fn

q is the
dual of C.

The error correction capability of C is measured by a fundamental parameter defined as
follows.

Definition B.2. The Hamming weight of a vector x \rightarrow Fn
q is the integer wtH(x) = |{i | xi \simeq =

0}|. The minimum (Hamming) distance of a code C \Downarrow Fn
q is d

H(C) = min{wtH(x) | x \rightarrow C,
x \simeq = 0}.

This paper mainly focuses on [n,k]q codes with k+ d\infty 1 = n. Such codes are called MDS
(maximum distance separable). A full rank matrix that generates an MDS code is called
an MDS matrix. These matrices are known to exist only over su!ciently large finite fields
(q \downarrow n\infty 1 su!ces). Determining for which field sizes MDS matrices exist has been an open
problem since 1955; see [27]. We conclude with the following handy characterization of MDS
matrices. The proof can be found in [21, page 318].

Proposition B.3. Let G\rightarrow Fk\uparrow n
q be a matrix. Then G is an MDS matrix if and only if every

k columns of G are Fq-linearly independent.
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