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Abstract. We investigate the properties of a family of polytopes that naturally arise in connection with a prob-
lem in distributed data storage, namely service rate region polytopes. The service rate region of a
distributed coded system describes the data access requests that the underlying system can support.
In this paper, we study the polytope structure of the service rate region with the primary goal of
describing its geometric shape and properties. We achieve this by introducing various structural pa-
rameters of the service rate region and establishing upper and lower bounds for them. The techniques
we apply in this paper range from coding theory to optimization. One of our main results shows
that every rational point of the service rate region has a so-called rational allocation, answering an
open question in the research area.
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Introduction. Distributed storage systems split data across servers to provide access ser-
vices to multiple, possibly concurrent, users. The simplest way to reliably handle concurrent
requests is to replicate data according to their popularity; see, for instance, [23, 28]. Unfortu-
nately, this method can be expensive in terms of storage. Moreover, predicting how the interest
in data changes is not always easy. For these reasons, erasure-coding has gained attention as
a form of redundant storage; see, e.g., [10] and references therein.

Recent work establishes the concept of service rate region as an essential measure of the
efficiency of a distributed coded system that should be considered in the system’s design
phase; see [1, 2, 4, 16, 17, 18]. To understand this metric, consider distributed systems in
which & data objects are stored, using a linear [n, k], error-correcting code across n servers,
each with the same capacity u € R. The service rate region of the distributed coded system is
the set of all request rates (A, ..., \;) € R¥ that the system can simultaneously handle. Such
a distributed system is defined by a full rank k x n matrix G, and its service rate region is a
convex polytope in R”.
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Previous work in the area focuses on characterizing the service rate region of a distributed
coded system and finding the optimal strategy to split the rate requests across the servers to
maximize the region; see, e.g., [2]. The service rate region has been characterized for binary
simplex codes and two classes of mazimum distance separable (MDS) codes: (1) systematic
MDS codes when n > 2k and (2) MDS codes with arbitrary length and dimension that do
not permit any data objects decoding from fewer than k stored objects; see again [2] and
references therein.

A combinatorial approach to the service rate region has been introduced in [16], establish-
ing and using the equivalence between the service rate problem and the well-known fractional
matching problem on hypergraphs. In the same work, the authors showed that the service rate
problem generalizes, in a precise sense, batch, private information retrieval (PIR), and switch
codes; see [11, 12, 15, 25, 29, 30] for the details and background material about these classes of
codes. In [17], the service rate regions of the binary first-order Reed—Muller codes and binary
simplex codes have been determined using a geometric approach. In [3], coding-theoretic tools
have been used to identify a polytope that contains the service rate region, giving an outer
bound for it.

Contributions. In contrast with previous approaches, this paper focuses on describing
the polytope structure of the service rate region and its geometric properties, such as its
volume. Key tools to achieve this goal are outer bounds for the service rate region polytope,
which we obtain by applying methods ranging from coding theory to convex geometry.

We also propose a discretized notion of service rate region that arises naturally in the
integer allocation model. We prove that the discretized notion returns precisely the ratio-
nal points of the originally proposed (continuous) notion. When investigating the connection
between the allocation and the service rate region polytopes, we show that every rational
point of the region has a rational allocation. The last part of the paper focuses on the service
rate regions of systematic MDS matrices, for which we compute, for example, the volume in
dimensions 2 and 3.

The rest of the paper is organized as follows: Section 1 introduces access models and
states the service rate problem. Section 2 is devoted to the various representations of the
service rate region polytope. In section 3, we discretize the concept of service rate region,
also showing that rational points in the region have rational allocation. In section 4, we
introduce and study the rth max-sum capacity and the system’s volume. Section 5 is devoted
to proving different outer bounds on the service rate region. Section 6 focuses on systematic
MDS codes. Elementary background on polytopes and error-correcting codes is provided in the
appendices.

1. System model and problem formulation. We consider a distributed service system
with n identical nodes (servers). Each node has two functional components: one for data
storage and the other for processing download requests posed by the system users. This
section establishes the notation, defines distributed service systems and their service rate
regions, and states the problems this paper addresses.

Throughout the paper, ¢ denotes a prime power, and F, is the finite field with ¢ elements.
We work with integers n > k > 2. All vectors in what follows are row vectors unless otherwise
stated.
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1.1. Storage model. We consider a coded, distributed data storage system where k ob-
jects (elements of F,) are linearly encoded and stored across n servers. Each server stores
precisely one element of F,. Therefore, the coded system is specified by a rank k matrix
Ge F’;X", which we call the generator matriz of the system. If (x1,...,xx) € F’; is the k-tuple
of objects to be stored, then the jth server stores the jth component of the encoded vector

(z1,...,7%) G €FY.

Note that, by definition, the n servers store linear combinations of the data objects rather
than just copies of them. The latter storage strategy is called (simple) replication.

Following the coding theory terminology [21], we say that the matrix G is systematic if its
first k columns form the identity k x k matrix. If the vth column of G is a nonzero multiple of
the standard basis vector e;, then we say that v is a systematic node for the ith data object.
If every v € {1,...,n} is a systematic node, then we say that G is a replication matriz. Note
that a replication matrix describes a system where each object is stored as it is (up to nonzero
multiples).

Notation 1.1. To simplify the statements throughout the paper, without loss of generality,
we work with a fixed matrix G € F’gx" of rank k. We denote by G¥ the vth column of G and
assume that none of its columns is the zero vector.

Since n > k, we may be able to recover each object from different sets of servers, which
motivates the following definitions and terminology.

Definition 1.2. Let R C {1,...,n} be such that e; € (G" |v € R) and (G” | v € R) is the
Fy-span of the columns of G indexed by R. Then R is called a recovery set for the ith object.
Forie{l,...,k}, let

RM(G):={RC{l,....,n}|e; e (G"|vER)},

where superscript “all” indicates that R?H(G) contains all the recovery sets for the ith object.

Since G has rank k by assumption, we have R¥(G) # () for all i € {1,...,k}. Moreover,
R# 0 for all i € {1,...,k} and R € R¥(G). We continue by formalizing the concept of a
recovery system.

Definition 1.3. A (recovery) G-system is a k-tuple R = (R1,...,Ri), with R; C R¥(G)
and R; 0 for alli e {1,...,k}.

1.2. Service and access models. We adopt two service models and refer to them as the
queuing and the bandwidth models. They are based on two common ways of implementing
resource sharing by incoming data access requests. In the queueing model, the requests to
download from a node are placed in its queue. Each node can serve on average u requests per
unit of time. To maintain the stability of each queue, the total request arrival rate at each
node must not exceed its service rate p.

In the bandwidth model, each node can concurrently serve multiple data access requests.
When each node has an I/O bus with a finite access bandwidth W bits/second and a download
requires streaming at a fixed bandwidth of b bits/second, a node can simultaneously serve up
to p = [W/b] number of requests. In both cases, we refer to p as the server’s capacity
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(formal definitions will be given later). In the queuing model, requests to download object
¢ arrive at rate \; € R>g. In the bandwidth model, A; is the number of object i requests
simultaneously in the system. In both models, \; g is the portion of ); assigned to be served
by the recovery set R € R;. We refer to aset {\; | R€R;,i=1,...,k} as a request allocation.

1.3. Normalization and integrality. We can normalize all request allocation values and
rates by dividing them by the node service capacity p. In this case, all normalized request
rates \; and the numbers in {\;r | R € Ry, © € {1,...,k}} are multiples of 1/u. Since in
the bandwidth model, these numbers count requests, their normalized versions are integer
multiples of 1/u. Furthermore, there are practical scenarios wherein each served request oc-
cupies the entire bandwidth of the server it is accessing (e.g., streaming from low-bandwidth
edge devices). In such cases, A; are integers, and \; g are binary numbers. In other practical
scenarios, a user can simultaneously download data from multiple nodes at a fraction of its
bandwidth from each, and the assumption that \; r is integer multiples of 1/ can be relaxed.

1.4. Service rate region and problem formulation. We are interested in characterizing
the k-tuples (A1,...,A\g) € R* of rate requests that the data storage system can support. The
set of such tuples is formally defined as follows, yielding to the notion of the service rate region
of a distributed storage system.

Definition 1.4. Let R = (R1,...,R) be a G-system. The service rate region associated
with R and p is the set of all (\1,...,\x) € R¥ for which there exists a collection of real
numbers

{Nglie{l,... .k}, RER;}

with the following properties:

(1.1) > Nir=\i for 1<i<k,
RER,;
k
(1.2) ZZ)\i,Rguforlgvgn,
=1 RER;
VER
(1.3) Air>0 for 1<i<k, RER,;.

A collection {\i r} that satisfies properties (1.2) and (1.3) above is called a feasible allo-
cation for the pair (R,u). The service rate region associated with R and u is denoted by

A(R, 1) CR*.

Observe that the service rate region of a G-system is independent of the ordering of the
recovery sets in each R;.

Remark 1.5. Tt turns out that A(R,u) is a down-monotone polytope; see Theorem 2.3
below and Appendix A for the definitions. We will elaborate on this when introducing the
allocation polytope in section 2.
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The service rate region of a G-system R may not change if we select a suitable subset
of the recovery sets, which allows us to reduce the number of variables and inequalities in
Definition 1.4. We start with the following observation, whose proof is simple and therefore
omitted.

Proposition 1.6. Suppose that R = (R1,...,Ri) and R' = (R},...,R},) are G-systems with
RLCR; forallic€{1,...,k}. Then A(R,u) 2 A(R',p). In particular, A(R, ) C A(R™M(G), u)
for any G-system R.

The service rate region A(R(G),u) does not change when we select from R*(G) the
recovery sets that are minimal with respect to inclusion, in the following precise sense.

Definition 1.7. A set R € R is called i-minimal if there is no R' € R¥(G) with R’ C R.
We let R™™(G) be the G-system defined, for all i, by

RMN(GY):={Re RM(G) | R is i-minimal}.
The proof of the following result is not difficult and is therefore left to the reader.
Proposition 1.8. We have A(R™™(G), ) = A(RY(G), ).

Remark 1.9. Tt immediately follows from the definitions that A(R,u) = pA(R,1) for any
G-system R, where uA(R,1) ={pA | A€ A(R,1)}. In what follows, we will often assume =1
without loss of generality.

The following symbols will further simplify the statements in what follows.

Notation 1.10. For a G-system R = (R1,...,Ry) we let A(R) = A(R,1). We also write
MG, 1) = ARMG), ) = AR™™NG),p), where the latter equality follows from Proposi-
tion 1.8. Finally, we set A(G) =A(G,1).

We conclude with an example illustrating the concepts introduced in this section.

Ezample 1.11. Consider the matrices

101 1 1001 01
Gl:(o Lo 0>eng4, Go={0 10 1 2 2| €cFE
001111
The corresponding service rate regions are depicted in Figure 1. For the matrix G5 we have

RMN(Gy) = {{1},{5,6},{2,3,4},{2,4,5},{3,4,6},{2,3,6},{3,4,5}},
R3™(G2) = {{2},{3,5}, {4,6}.{1,3,4},{1,4,5},{1,3,6}},
RE™(Ga) ={{3},{2,5},{1,2,4},{1,4,6},{1,2,6},{1,4,5}}.
Moreover, for all i € {1,2,3} we have R ={R C {1,...,6} | S C R for some S € RI"(Gy)}.

Finally, to see that, for example, the point P = (3/2,3/2,1/2) belongs to A(G2), we can
consider the feasible allocation given by

1 if R={1}, 1 if R={2},
= e 1/2 it R={3},
/\1,R: 1/2 lfR:{5,6}, )\2,R: 1/2 lfR:{3,5}, )\3,R: .
. . 0 otherwise.
0 otherwise, 0 otherwise,
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A3
A
2 y o=
1
A1 3
3 A1~
(a) A(Gy), Example 1.11. (b) A(G2), Example 1.11.

Figure 1. The service rate regions of the systems in Example 1.11.

It is easy to see that the collection {\; g} satisfies the properties (1.1)—(1.3) for (R™2(G2),1).

This paper mainly describes the geometric properties of the service rate region A(R,p).
Most of our results hold for an arbitrary G-system R, although our main focus is on A(G).

2. The service rate region and the allocation polytopes. This section describes the
polytope structure of the service rate region associated with an arbitrary G-system R. We
also illustrate how the geometric structure has implications for the allocation of users in the
corresponding system. For these purposes, viewing the service rate region as the image of a
higher dimensional polytope under a linear map is often convenient; we call this the allocation
polytope.

Definition 2.1. Let R = (Rq,...,Rk) be a G-system, m; = |R;| for i € {1,...,k}, and
m(R) =mi+---+my. The allocation polytope of (R, 1) is the set of (N r|i€{1,...,k}, R€
R;) that satisfy the inequalities (1.2) and (1.3). We denote the allocation polytope by

A(R, 1) CR™R),

We also let A(G) = A(RM(G)) = A(R™Y(Q)), where the latter identity can be shown similarly
to Proposition 1.8.

We now show that the allocation polytope is indeed a polytope, and we state its connection
with the service rate region. We will use the following fact, which easily follows from the
definition of a convex hull combined with Theorem A.1 and the observations right after it.

Lemma 2.2. Let P CR™ be a polytope and let f:R™ — RF be a linear map. Then f(P) is
a polytope and |(f(P)) € f(I(P)).
The connection between the allocation polytope and the service rate region is described

by the next result, which also summarizes some properties of these two regions. In particular,
we are interested in maps of the form given in Theorem 2.3.

Theorem 2.3. Let R be a G-system and let m(R) be as in Definition 2.1. The following
hold.
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1. We have f(A(R,p)) = A(R, i), where f:R™R) S RF is the linear map defined by

f:A:(Ai,R\z'e{L...,k},ReRi)H(Z ARs Y /\kﬁ).

ReERy RERy
2. A(R,p) and A(R, ) are down-monotone polytopes.

Proof. The fact that A(R,p) is the image of A(R, ) under f easily follows from Defi-
nitions 1.4 and 2.1. We now establish the second part of the statement. The set A(R, )
is a polyhedron by definition. Its boundedness can be shown as follows. Summing all the
inequalities in (1.2), we get Zle > rer, Mi.r <np. Using \; g >0 for all pairs (i, R), we get
that any A € A(R, ) satisfies

k k
M2<Y 0> Narl=> ) Air<np,
i=1 RER, i=1 RER;
where [|A||2 is the 2-norm of X\. The fact that A(R,u) is bounded follows from Lemma 2.2
and the boundedness of A(R,u). Finally, it is not hard to directly check that the polytopes
A(R,p) and A(R, 1) are down-monotone. [ ]

We now turn to the natural question of describing the vertices and the points of the service
rate region with rational entries. We will use the connection between the service rate region
and the allocation polytope to answer these questions.

We note that a linear map f : R™ — R¥ is called rational if its matrix concerning
the canonical basis has rational entries. The next result follows from Proposition A.2 and
Corollary A.3.

Lemma 2.4. Let P CR™ be a rational polytope and f:R™ — R* be a rational linear map.
Then f(P) is a polytope whose vertices have rational entries.

The following result will be crucial to qualitatively describe the connection between the
allocation polytope and the service rate region.

Lemma 2.5. Let P C R™ be a rational polytope, and let f:R™ — R* be a rational linear
map. We have f(PNQ™) = f(P)NQ*.

Proof. The inclusion C is immediate. To prove the other inclusion, we let y € f(P) N QF.
Write f = (f1,..., fx), where f; : R™ — R. We need to show that there exists z € PN Q™
with f;(z) = y; for all 4 € {1,...,k}. Since P is rational, P = {z € R™ | AzT < b}
for some A € Q™™ and b € Q. We append to A and b a total of 2k rows, of which k
are for the inequalities {f;(x) < y; | i = 1,...,k} and the other k are for the inequalities
{—filx) < —y; |i=1,...,k}. Let A’ and b’ denote the resulting matrix and vector, of size
(¢ 4 2k) x m and length ¢ + 2k, respectively. Then, by definition, P’ = {x ¢ R™ | Az T <b'T}
is a polyhedron. Note that we need to prove that P’ N Q™ # (). We first observe that P’ is
bounded because P’ C P and P is bounded. Moreover, P’ is rational because A’ and b’ have
rational entries (here, we use the fact that y has rational entries and f is a rational map).
Moreover, P’ is nonempty because y € f(P) by assumption, which implies the existence of
z € P with f(z) =y, i.e., of z € P’. Then P’ has at least one vertex x and that vertex must
have rational entries by Corollary A.3. Thus P/ N Q™ # (), as desired. [ |
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We are now ready to state the main result of this section (note that the properties of the
statement only hold for p=1).

Theorem 2.6. Let R be a G-system. The following hold.
1. The vertices of A(R) have rational entries.
2. A(R)NQF = f(A(R)NQF), where f is defined as in Theorem 2.3.

Proof. The vertices of A(R) have rational entries because of Theorem 2.3 and Lemma 2.4.
The second part of the statement follows by combining Theorem 2.3 with Lemma 2.5. u

Note that property 2 of Theorem 2.6 implies that every rational point of the service rate
region has a feasible rational allocation; see Definition 1.4. This fact, which does not appear
to be obvious, is important from the application point of view in the sense of subsection 1.3.

3. The integer allocation model. In this section, we consider practical scenarios, de-
scribed in section 1.3, wherein each server has a specific bandwidth, and each served request
occupies the entire bandwidth when served, i.e., the A\; g’s are constrained to be either 0 or
1. We define the service rate region for this model and show how it relates to the model we
considered in the previous section.

Assume we use the system s € Z>1 times, each time with possibly different allocation. Let
a;(R) be the number of times that recovery set R € R; is used to recover the ith object within
the s uses of the system. Then the number of times the ith object is recovered is equal to
Ai = per, @i(R). This motivates the following definitions.

Definition 3.1. Let R be a G-system. An R-allocation is a k-tuple of functions a =
(a1,...,01), where a; : Ry — N for all i € {1,...,k}. The service rate of « is the vector
Ma)=(A1,..., ) €NF where

Ai = Z ai(R) forallie{l,... k}.

Forve{l,...,n} we define

k
5(R,a) =Y > 6,(R)ai(R) where 6,(R) =

21 Ber, 0 otherwise.

{1 ifvER,

In Definition 3.1, the quantity J,(R,«) represents the number of times server v is con-
tacted.

Definition 3.2. Let R be a G-system. The one-shot service rate region of R with capacity
s €Z>1 is M(R,s) ={A(a)/s | a an R-allocation, 6,(R,a) < s for 1 <v <n}. The rational
service rate region of R is the set

AUR)= | M(R,s9).

S€EL>1

In this section, we will show the following “topological” connection between the rational
service rate region and the service rate region as defined in section 1.
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Theorem 3.3. Let R be a G-system. The following hold.
1. A%(R)=A(R)NQF.
2. A(R) = AQ(R), where the latter is the closure of AQ(R) with respect to the Euclidean
topology in R¥.

Remark 3.4. Before proving Theorem 3.3, we stress that it is particularly relevant for the
practical scenarios described in section 1.3, which may require that allocations be integer or
rational. It shows that (1) the rational points in the service rate region can be achieved with
rational allocations, and (2) all points can be achieved by averaging over multiple system uses.

We will use the following result in the proof of Theorem 3.3.

Lemma 3.5. Let P C R™ be a down-monotone polytope. Then P = PNQ™, where the
latter is the closure of PN Q™ for the Euclidean topology.

Proof. The inclusion P N Q™ C P holds because P is closed and Q™ = R™, which implies
PNQm CPNQm=PNR™=7P. For the other inclusion, we will prove that for all z € P
and all € >0 we have B.(z) NP NQ™ # 0, where B.(z) is the ball of radius ¢ centered at x.
This implies P C P N Q™ using, for example, [22, Theorems 17.5 and 20.3]. Fix any x and &
as above. Write x = (z1,...,2my) € R™. Since Q is dense in R, for every i € {1,...,m} there
exists y; € Q with z; —e/m < y; <x;. Since P is down-monotone, we have y = (y1,...,ym) € P.
The fact that y € B:(x) NP N Q™ now follows from

m
lz = ylly <lle—yll, = (zi—y:) <m-e/m=¢,
i=1
We used the standard notation for the p-norm in R¥. |

Proof of Theorem 3.3. The second part of the statement follows from the first part in
combination with Lemma 3.5. Therefore it suffices to establish the first part.

Let A € A%(R). There is an s € Z>; and an R-allocation « such that sA = \(a) =
(A,..., ) € sA1(R,s) and 6,(R,a) < s for all v € {1,...,n}. Note that A € QF. We will

show that the set
{a’iR) | ie{l,...,n}, RGRZ}

satisfies properties (1.1), (1.2), and (1.3). By definition, for 1 < ¢ < k we have \;/s =
> Rrer, @i(R)/s. Moreover, the condition §,(R,a) < s can be rewritten as

k
Z Z ai(R)gl for1<v<n.

i-1 RerR,  °
vER
Finally, o;(R)/s > 0 for all i € {1,...,k} and all R € R;. We therefore conclude that
A€ A(R) NQF; hence A%(R) C A(R) NQF.

To prove the other containment, let A € A(R)NQ*. By Theorem 2.6, we have A(R)NQF =
f(A(R)NQF), where f is defined as in Theorem 2.3. In particular, there exist rational numbers
{MreQ|ie{l,....k}, R € R;} that satisfy properties (1.1)-(1.3) of Definition 1.4. By
definition, A\; g = u; r/Vi.R, Ui r,Vir €N, and v; g > 0 for all i € {1,...,k} and R € R;.
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Let s :=lem(v; g | i € {1,...,k}, R € R;), so that s\ = (s)1,...,s\;) € N¥. We claim that
sA € sA1(R,s). Now for 1 <i <k, define o;(R) = s\; r; note that «; always maps to N by the
construction of the number s. Then for 1 <i <k we have s\; =) p.r. a;(R), from which we

conclude that o= (a1,...,qx) is an R-allocation. Furthermore, for v € {1,...,n} we have
k k k
ETAIS 5D SYTCINTIID 35 SPNTED Sb S U
i=1 RER,; i=1 RER; i=1 RER
ve ve

where the second equality follows from the definition of ¢, (R) and the last inequality follows
from (1.2). This shows that s\ € sA1(R,s), and equivalently A € A1(R,s); hence A € A%(R),
as desired. m

We conclude this section with an example illustrating Theorem 3.3.

Ezample 3.6. Let

(1 0 1 1 2%4
G._(O 11 2>6F3 .

Consider the G-system R = R™(G) = (R1,Ra), where Ry := {{1},{2,3},{2,4},{3,4}} and
Ro:={{2},{1,3},{1,4},{3,4}}. The corresponding service rate region is depicted in Figure 2,
along with the point P =(4/3,2/3).

We have P € A(R)NQ? and P € A{(R,3); i.e., P can be achieved in three uses of the
system. An example of an R-allocation, in the sense of Definition 3.1, is given by

a1:R1—N ag:Rog— N
{1} —2 {2} —1
{2,3} 1 {1,3} 0
{2,4} —0 {1,4}—1
{3,4} —1 {3,4} =0

We have 01(R,a) = ai1({1}) + a2({1,4}) = 3, 02(R, ) = a1({2,3}) + a2({2}) = 2,
I03(R,a) = a1({2,3}) + a1({3,4}) = 2, 04(R,a) = a1({3,4}) + a2({1,4}) = 2. Moreover,
Y Rrer, @1(R)=4 and ) p.p as(R) =2, showing that (4,2) € A1(R,3).

A2
2.5

A1
2.5

Figure 2. Service rate region for the G-system in Example 3.6 and the point P =(4/3,2/3).
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4. Fundamental parameters of the service rate region. This section introduces some
fundamental parameters of the service rate region that describe its “shape.” We then study
them by applying various techniques. The results are aimed at describing how the algebra of
the underlying matrix G determines the geometry of the service region polytope A(G,u). To
simplify the notation (and without loss of generality), we assume p = 1. We start by recalling
two types of elementary polytopes.

Definition 4.1. Let h,§ € R>g. The h-hypercube in R¥ is the convex hull of the set {x €
]R’io | x; €{0,h} for 1 <i<k}. We say that h is the size of the hypercube. The é-simplex in
R is the convex hull of the set {de1,...,dex}, where e; is the ith standard basis vector of Flg.
Again, we say that § is the size of the simplex.

We will introduce the first set of parameters for the service rate region. Other parameters
will be introduced later.

Definition 4.2. Let R be a G-system. We let:

k
A"(R) = max {Z A | Ae A(R)} , [rth max-sum capacity]
=1
AR) =AM (R), [max-sum capacity]

Af(R) =max{z e R|ze; € A(R)} for1<i<k,

A (R)=max{\;(R) |1 <i<k}.
Furthermore, we denote as follows the largest size of a hypercube and a simplex contained in
the service rate region:

h(R)=max{z€R|(z,...,z) e A(R)},
J(R)=min{\(R)|1<i<k}.
When R = R¥M(G) or R = R™¥(G), we simply write \"(G), \(G), \:(G), \*(GQ), h(G), and
4(G).
The next example shows that, in general, a point achieving the max-sum capacity will not
achieve the rth max-sum capacity for r > 1.

Ezample 4.3. Consider the service rate region of Example 3.6, depicted in Figure 2. One
can show that A\(G) is achieved by (1,2) and (2,1). On the other hand, A2(G) = 6.25 > 5 =1+4
is achieved by (2.5,0) and (0,2.5).

We start with a result showing how the parameters h(R), A\(R), and §(R) relate to each
other.

Proposition 4.4. Let R be a G-system. We have

h(R) Smin{)\(km,é(R)}.

Proof. We first show that h(R) < A(R)/k. Suppose that h(R) > A(R)/k. By definition,
we have (h(R),...,h(R)) € A(R). Therefore
AR)

A(R) 2 h(R)k > ==k = A(R),
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which is a contradiction. For the second part of the proof, assume that h(R) > §(R). Then, by
the definition of 6(R) there must exist at least one element of the set {h(R)e; |1 <i<k} C Flg
that does not belong to A(R). This contradicts the definition of h(R). [ |

Remark 4.5. The bound of Proposition 4.4 is met with equality for the service rate region
depicted in Figure 1(a). However, the bound is not sharp in general. Consider, for instance,
the service rate region A(G) for

G =

10
0 1 c T34,
00

o O O =
— =

Note that (0,0, 1), (0,1,0),(1,0,1), (2,1,
and 0(G) =1.

In the next example, we show that the values 6(R) and A(R)/k are not comparable in
general, showing that taking the minimum in the bound of Proposition 4.4 is indeed needed.

) € A(G). It can be shown that h(G) = 0.5, A\(G) =3,

Ezample 4.6. For the service rate region of Example 3.6, we have 6(G) = 2.5 > 1.5 =
A(G)/2. However, for the service rate region of Figure 1(b) we have §(G) =1<2=X(G)/2.

The quantity A\?(R) has a precise geometric significance; it gives the smallest sphere wedge
that contains the service rate region. To illustrate how A\?(R) relates to the other fundamental
parameters, we will use an argument based on the Bhatia—Davis inequality [7] from statistics.
Note that the following bound is sharp for the G-system of Example 4.18 below.

Theorem 4.7. Let R be a G-system. We have

N(R) < %/\*(R)A(R) + (A(f))g.

Proof. Let Aj\ € A(R) achieve \2(R). We apply the Bhatia-Davis inequality [7] to the
coordinates of A, obtaining

1 k 1 k 1 1 Ek 2
/\2 A > N 3 3 \
- - < iy =7 )\ % a ' k2 4
3 AH(@?%;C% kg) (kz& 1‘51%{“)”2(- AZ>
k k 2
k_]. R 1 ~ ]. N
<|—— ' *E, ' k2 '
—< k %%“Z}) k 1)+k2 (ZA>

< <k;1)\*(R)> (li)\(R)j + %/\(R)Q.

Since A achieves A2(R) by assumption, we can rewrite the inequality we just obtained as
follows:

Multiplying both sides by & gives the desired result. |

Another natural parameter of the service rate region is its volume. Recall that the volume
of a convex polytope P is the Lebesgue measure [20] of its interior, which we denote by vol(P).
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Distributed service systems strive to support the data download of simultaneous users whose
numbers and interests vary over time. The larger the service rate region volume, the larger
the number of different user-number configurations the system can serve.

Computing the volume of a polytope is a difficult task in general [13]. However, some
cases are relevant for our purposes, where simple observations give a closed formula for the
volume of the service rate region.

Proposition 4.8. Suppose that G is a replication matrix; see page 3 for the definition. We
have

k
vol(A(G)) = H {1 <v <n|the vth column of G is a nonzero multiple of e;}|.
i=1
Proof. It is easy to see that the service rate region A(G) is a hyperrectangle in R*, where
each edge has a length equal to the number of times the corresponding standard basis vector
appears as a column in G. The A(G) volume is then determined as the quantity in the
statement. |

In Theorem 6.5 we will give a closed formula for the volume of A(G), when G generates
a 3-dimensional MDS code of length at least 6. The result is embedded in section 6, which is
devoted to the service rate region of systematic MDS codes.

We now compute the volume of the allocation polytope of a replication system, showing
in particular that the volume of the allocation polytope does not determine the volume of the
service rate region. Intuitively, this follows from the fact that the volume of the allocation
polytope is multilinear in the coordinates corresponding to the same object, whereas the
volume of the service rate polytope is linear in their sum. We introduce a class of polytopes
that will be used later in section 5

Definition 4.9. A polytope of the form P = {x € [0,1]™ | yzT < n} CR™, where n and m
are positwe integers and y € RYy is a vector, is called a relaxed knapsack polytope in R™.

The volume of a relaxed knapsack polytope as in Definition 4.9 is known to be

(11) wl(P)= s S () gta

ze{0,1}NP
where wt(z) is the number of nonzero entries of x and g(z) =n—>_.", y;x; for all z € R™; see
e.g., [6]. Using the above formula for the volume and some elementary generating functions
theory, we compute the volume of the allocation polytope of a replication matrix.

Proposition 4.10. Suppose that G is a replication matriz. We have vol(A(G)) = 1.

Proof. Tt is not hard to see that A(G) ={z €[0,1]" | z1+ -+ x, <n}, which is a relaxed
knapsack polytope obtained for m = n and y = 1" = (1,...,1). Therefore, using (4.1) and
denoting by [2"]S(x) the coefficient of 2™ in a power series S (x), we compute

vol(A(G)):% 3 (—I)Wt(x)(n—(xl—i-...—i—xn))”:% S~ (- wh(z)"
“ze{0,1}n " ze{0,1}n
:l - - in_in n _ - Y n xne(n—i)x:xn e — 1) =
i V= () = 0 ()t = e =,
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where all passages easily follow from binomial theorem and the Taylor expansion of the expo-
nential function. u

Note that even though the volume of the allocation polytope is the same for every repli-
cation matrix, the volume of the service rate region is not a constant; see Proposition 4.8.

Throughout this section, we focus on the connection between the parameters of A(G) and
those of the error-correcting code generated by G; see Appendix B for some coding theory
background.

We start by recalling the following result from [2], whose statement relies on interpreting
the columns of G as points of the finite projective space PG(k — 1,q); see [31] for a general
reference. This can be done because, as stated in Notation 1.1, none of the columns of G is
the zero vector.

Proposition 4.11. Let A€ A(G) and let I C{1,...,k} be an index set. Let H be a hyperplane
of PG(k —1,q) not containing any of the standard basis vectors e;, fori € I, and let S denote
the multiset of columns of G in PG(k —1,q). We have

el
where S\ H is the multiset of points obtained from S after removing all the points contained
i H, counted with their multiplicity.

The following lemma is well known and can be shown by considering the columns of G as
a multiset of points in PG(k — 1,¢), which are not all contained in a hyperplane since G has
rank k by assumption.

Lemma 4.12. Let S be the multiset of the columns of G, viewed as projective points in
PG(k—1,q). Let d be the minimum distance of the code generated by G. Then every hyperplane
of PG(k—1,q) contains at most n—d points of S, and there exists a hyperplane of PG(k—1,q)
which contains exactly n — d points of S.

We can also apply Proposition 4.11 to show a connection between the minimum distance
of the code generated by GG and the largest simplex contained in the service rate region.

Corollary 4.13. Let d denote the minimum distance of the code generated by G. We have
[0(G)] <d.

Proof. Let i €{1,...,k} be fixed and let H C PG(k — 1,¢q) be a hyperplane that does not
contain e;. By applying Proposition 4.11 with I = {i} and A =0(G)e; € A(G), we have

5(G)<|S\H|=n—|SNH|

where S is the multiset of columns of G. We can follow the same reasoning for every <. Since
every hyperplane H does not contain some e;,

d=n—max{|SNH|: HCPG(k—1,q), H hyperplane},

and 0(G) <|S\ H|, we conclude that [6(G)] <d. [ ]
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The bound of Corollary 4.13 is met with equality by some matrices G, as the following
example illustrates.

Example 4.14. Let
1 001
G=|0 1 0 1|eFy
0 011

It can be easily seen that 2e¢; € A(G) for i € {1,2,3}, and therefore §(G) = 2.

In the last part of this section, inspired by the coding theory literature, we introduce the
notion of availability for the matrix G. We then describe the role this notion plays in shaping
the geometry of the service rate region.

Definition 4.15. Suppose that G is systematic. We say that G has availability t € Z>¢ if
R(G) contains t + 1 pairwise disjoint sets for all i € {1,...,k}.

The following result easily follows from the definitions.

Proposition 4.16. Suppose that G is systematic and has availability t. Then (t+1)e; € A(G)
forallie{l,...,k}. In particular, |6(G)] >t+ 1.

By combining Corollary 4.13 with Proposition 4.16 we obtain the following result.

Corollary 4.17. Suppose that G is systematic and has availability t. Let d denote the mini-
mum distance of the code generated by G. We have d >t + 1.

We conclude this section with an example where Proposition 4.16 and Corollary 4.17 are
sharp.

Ezample 4.18 (the simplex code). Let

1001101
G=|0 1010 1 1|eF>.
0010111

Then G has availability 3 and Proposition 4.16 is sharp in this case. Note that G is the
generator matrix of one of the best known error-correcting codes, namely the simplex code;
see, e.g., [21].

5. Outer bounds. In this section, we derive outer bounds for the service rate region A(G)
as bounding polytopes P O A(G). We apply methods from coding theory and optimization,
dedicating a subsection to each of the two approaches. We illustrate how to apply the bounds
with examples and comment on their sharpness.

5.1. Coding theory approach. We start with a simple result that can be easily obtained
by summing the inequalities that define the allocation polytope, namely the constraints in
(1.2) for 1 <v<n.

Lemma 5.1 (total capacity bound). Let R be a G-system and let {\j r} be a feasible allo-
cation for (R,u); see Definition 1.4. We have
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k

(5.1) Z Z |R|\i.r < pn.

i=1 RER,;
The following result links the size of the recovery sets of a G-system to the parameters of
the (dual of the) error-correcting code generated by G.

Proposition 5.2. Suppose that G is systematic. Let d denote the minimum distance of the
dual of the code generated by G. For all i € {1,...,k} and R € R¥(G) we have R = {i} or
|R| > d* —

We now establish the first outer bound of this section.

Theorem 5.3 (dual distance bound). Suppose that G is systematic. Let d* denote the

minimum distance of the dual of the code generated by G. If (A1,..., x) € A(G), then
k

> (min{As, 1} + (d* — 1) max{0, A — 1}) <n.
i=1
Proof. Let (A1,...,A\;) € A(G) and let {\; g} be a feasible allocation for (R,1). By
Proposition 5.2 we have |R| > d+ — 1 for every i € {1,...,k} and R € R¥(G) with R # {i}.
We can therefore rewrite the left-hand side of (5.1) as follows:

ZA{Z}+Z Z |R’)\zRZZ)\{}+ Z Z AzR

1= lRGRﬂl = lRGRa“
R;é{z} Ri{}
k
= ZA @A =0 (=)
=1

(5.2) = (dt-1) Z \i — (d+—2) ZAW}.
=1 =1

Since G has no all-zero column, we have d- > 2. Therefore, using the fact that Aigiy <
min{\;,1} for all ¢, we can further say that the right-hand side of (5.2) is at least

k k k
—D> A= (@t =2)> min{A, 1} =) (min{X;, 1} + (d* — 1) max{0,\; — 1}),
=1 =1 =1

which, combined with (5.1), gives the statement. [ |

Remark 5.4. It follows from [4] that the dual distance bound of Theorem 5.3 is sharp if G
is a systematic MDS matrix and n > 2k; see Appendix B for the definition of an MDS matrix.
The bound can be sharp also for systematic matrices G € ]F’;X” that generate an MDS code
and have n < 2k. This is the case of the matrix G of Example 4.14.

It turns out that Theorem 5.3 is not particularly effective for systems that mainly imple-
ment replication, i.e., for matrices GG that are very similar to a replication matrix. We obtain
the following result by considering the number of systematic nodes for each object. Since the
proof is similar to the one of Theorem 5.3, we omit it here.
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Theorem 5.5. Suppose that G is systematic and let s; denote the number of systematic
nodes for the ith object, fori € {1,...,k}. If (A1,...,\x) € A(G), then
k
Z(min{)\i, sit+2max{0,\; — s;}) <n.
i=1

The outer bounds Theorems 5.3 and 5.5 are not generally comparable, as the following
example illustrates.

Example 5.6. An example where Theorem 5.3 outperforms Theorem 5.5 is given by the
region in Example 4.14. By Remark 5.4, the bound of Theorem 5.3 gives the exact service
rate region. This automatically outperforms the bound of Theorem 5.5 as (d* — 1) =3 > 2.
Now consider the service rate region of Example 1.11 depicted in Figure 1(b). The bounding
polytopes given by Theorems 5.3 and 5.5 are depicted in Figure 3, showing that Theorem 5.5
outperforms Theorem 5.3 in that case.

The next result is a hybrid between Theorems 5.3 and 5.5, in the sense that it takes into
account both the minimum distance of the dual of the code generated by G and the number
of systematic nodes.

Theorem 5.7. Let d* be the minimum distance of the dual of the code generated by G and
let s; denote the number of systematic nodes for the ith object, for i € {1,...,k}. For all
(A,---, Ak) € A(G) we have

Z (min{s;, \;} + max{2,d*+ — 1} max{0, \; — s;}) + Z 2 <n.
ie{l,....k} ie{l,....k}
$;7#0 $;=0
Proof. Let (A1,..., ;) € A(G) and let {\; g} be a corresponding feasible allocation. Write
R for R™(G). By Proposition 5.2 and the fact that d* = 2 if there exist two columns of G
that are linearly dependent, we obtain

A2
4
[ Theorem 5.3
[ Theorem 5.5
95 I AG)
1 (3,1)
A1
3354

Figure 3. The service rate region of Example 1.11, Figure 1(b), is an example where the bound of Theorem
5.5 gives a better approximation than the bound of Theorem 5.3.
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Z Z ’R|>\27RZ Z Z )\i7R+maX{2,dL — 1} Z >\i,R

ie{l,...,k} RER ie{l,...,k} | RER RER
520 \|IR[=1 |RI£1

+ > D> 2n

ie{l,....k} RER

si=0

Therefore,

2. D IRir

ie{l,....k} RER

> > D> hig+ Y |max{2d -1} | M= D> e ||+ D 2n

i€{l,...k} RER i€{l,....k ReR ie{l,...k
{si;ﬁo }\Rlzl {si;ﬁo / |R|=1 {sizo I
> > max{2,d" —1}\ — (max{2,d" —1} 1) D min{s; \;}
ie{l,....k} 1e{l,....k}
sL;«éO 81750
LY o
ie{1,....k}
Si:D
= Z (min{s;, \;} + max{2,d> — 1} (\; — min{s;, \;})) + Z 2\
€{1,...,k} €{1,....k}
81750 Sri:()
= Z (min{s;, \;} + max{2,d* — 1} max{0, \; — s;}) + Z 2\,
e{l,....,k} ie{1,....k}
Si;éo SiZO

where the first inequality follows from Definition 1.4, and the second follows from the inequality

Z Air <min{s;, A\ }.

|R|=1 [ |

It is interesting to note that if d* — 1 > 2 (and hence s; = 1 for all i € {1,...,k}), then
Theorem 5.7 gives Theorem 5.3. Similarly, if s; #0 for all i € {1,...,k} and s; > 2 for at least
one 7, then Theorem 5.7 becomes Theorem 5.5.

Lemma 5.1 suggests that the variety of sizes of the recovery sets plays an important role in
shaping the service rate region. By taking into account the indices i for which the recovery sets
all have the same size, we obtained the following result. Note that this exactly measures the
contribution of the indices for which the recovery sets have the same size and thus improves
upon Theorem 5.7. The proof is a simple extension of Theorem 5.7, and we omit it here.

Theorem 5.8. Let d* be the minimum distance of the dual of the code generated by G and
let s; denote the number of systematic nodes for the ith object, for 1€ {1,... ,k}. Let
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1
pi=———— Y |R| forie{l,...,k},

(&) =i RER™™(G)
|R|#1
J={ie{l,....k}|all R€ R™(G) with |R| #1 have the same cardinality}.
Then for all X € A(G) we have

n > min{s;, \; +max{2,d" -1 max{0,\; — s;}) + 2
> (min{si, A} {2, :

1€{1,...,k} i€{1,...,k}
Sl§£0,Z¢J si:0,i¢J
+ D i+ > sit Y (midi— (1—p)min{s;, Ai}).
e{l,....k} ie{l,....,k} ie{l,....k}
8;=0,i€J 5,70, |RP™(G)|=s; 5:7#0,i€J

In the next example, we show that Theorem 5.8 can be sharper than Theorem 5.7 for
some service rate regions.

Ezample 5.9. Let k=3, n=6, ¢=3, and

01
G=|1 2
0 O

SN =

2 1 2
2 1 1| eFs,
12 2

Following the notation of Theorem 5.8 we have d- =2, (1, pi2, pu3) = (2,3,11/4), (s1,52,53) =
(0,1,0), and J = {1,2}. Figure 4 depicts the service rate region A(G) and the outer bounds
given by Theorems 5.7 and 5.8.

5.2. Optimization approach. In this subsection, we use the theory of knapsack polytopes
(recall Definition 4.9) to derive an outer bound for the allocation and service rate region
polytopes and the bound corollaries. Most notably, we obtain upper bounds for the quantities
> icr N, for any given index set I C {1,...,k}. These quantities are of interest in practice

A3

[ Theorem 5.7
] Theorem 5.8
1 AG)

-———

- Ao

A1 v

Figure 4. Service rate region and outer bounds for Example 5.9.
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because they correspond to the cumulative numbers of users interested in some (sub)sets of
stored objects. Observe that when I = {1,...,k}, then ) ._; \; represents the total number
of users in the system. In this subsection, we also illustrate how to apply our bounds in some
examples and plot the output.

Notation 5.10. Let R be a G-system and m(R)=|Ri|+ --- + |Ry|. We define the integer
vector

y(R)=(|R| :i€{l,...,k}, RER,) eZ§5R>,

where we take the same order as in Definition 2.1. Note that all the entries of y(R) are
positive since recovery sets are nonempty by definition.

We can now state the main result of this section, which gives an infinite number of half-
spaces that contain the allocation polytope, one for each vector ¢ € R™(R).

Theorem 5.11. Let R be a G-system, m=m(R), and let c€ R™. Define y=y(R) and let

m:{1,...,m}—{1,...,m} be any permutation such that
(1) > Cn(m) _
Yr(1) Yr(m)

Define J ={j | yr() + -+ Yr) >n}. If J=0, then let r=m+1, 0 =0, and 7(m + 1) =0.
If J#0, then let r =min(J) and o = (n — Z;;% Yr(j))/Yr(r)- Then for any x € A(R) we have

r—1

(5.3) ca' < Zcﬂ(j) + Cr(ry 0, Where Cr(mi1) =0.
=1

Before proving the theorem, we state an immediate consequence for the max-sum capacity

of the service rate region. The result is obtained by taking ¢ = (1,...,1), allowing us to use a
more efficient notation.

Corollary 5.12. Let R be any G-system with the property that A(R) = A(G). Let y=y(R)
and reorder its components nondecreasingly obtaining a vector §. Suppose 41 + -+ + Gm >N,
where m=m(R), and let r =min{j | g1 +---+9; >n}. We have

r—1
n—>y 9
)\(G)Sr—l—l—ﬂ.
Yr

We give an example illustrating how to apply Corollary 5.12.

Erample 5.13. Let G be as in Example 4.14, with n = 4, and R = R™"(G). We have
y=y(R)=(1,3,1,3,1,3). As in Corollary 5.12, we construct § = (1,1,1,3,3,3) and obtain
A(G) <10/3. It can be checked that A\(G) = 3.

Proof of Theorem 5.11. Let P = {z € [0,1]™®) | y(R)z" < n}, which is a relaxed
knapsack polytope. Let 8 = max{cz' | x € P}. We have the inclusion A(R) C P; hence
max{cr' |z € A(R)} < 3. We apply a classical result by Dantzig [9] (the case where J = ()
requires a separate treatment, but we omit it here), which states that a point & € P attaining
the maximum § is given by
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1 if1<j<r—1,
r—1
N n— i1 Yn(
&= 2_j=1Yx(j) ifi=r
Yr(r)
0 otherwise.
The result follows by computing p=ci ' . |

As another corollary of Theorem 5.11, we obtain a result that gives an infinite number of
half-spaces in which the service rate region A(R) is contained. Each half-space is obtained by
choosing a different vector b in the statement.

Corollary 5.14. Let R be a G-system and let b€ RF. Let m =m(R), mg =1, and m; = |R;|
for all i € {1,...,k}. Define ¢ € R™R) by setting c; = b; whenever m;_1 +1 < j < m;.
Construct a permutation = and define r, o, and m(m + 1) if necessary, as in Theorem 5.11.

Then for all A € A(R) we have

r—1
T
b’ < E Cr(5) + Cr(r) O-
Jj=1

By specializing the previous result to vectors b € {0,1}* one can obtain upper bounds
for partial sums of the form ), ; A;, where I C {1,...,k} and A € A(R). In particular, one
can obtain an upper bound for the max-sum capacity A(G). We conclude this section by
illustrating how Corollary 5.14 can be applied and the type of results it gives.

Ezample 5.15. Consider the service rate region of Example 1.11, depicted in Figure 1(b).
By applying Corollary 5.14 for all b € {0,1}® we obtain the bounding polytope for the service
rate region, and we depict it in Figure 5 as well as with A(G).

The following example shows that applying Corollary 5.14 not only with 0-1 vectors can
give a strictly better bound than only applying it with 0-1 vectors.

Ezample 5.16. Let
/101100 1 1) _ _oxs
G_<0100111>€F3'

[\]

Figure 5. Service rate region and bounding polytope for Example 5.15.
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A2

A

Figure 6. The service rate region and the bounding polytopes for Example 5.16.

The service rate region A(G) is the purple region in Figure 6. By applying Corollary 5.14
for all b € {0,1}2, one gets the light blue region in Figure 6. For a better approximation of
the service rate region, also depicted in Figure 6, we can use Corollary 5.14. For example, by
applying said corollary with b= (3,2) and b= (3,5), in addition to the 0-1 vectors b € {0,1}2,
one gets the gray region in Figure 6.

6. Systematic MDS codes. This section is entirely devoted to the service rate region
A(G), when G is an MDS matrix; see Appendix B for the definition of MDS matrix. We focus
on the volumes of these service rate regions for k € {2,3} and on their max-sum capacities.

Recall that in the case where G is a systematic MDS matrix and n > 2k, the service rate
region A(G) is known and given by the set

k
(6.1) {(Al,...,Ak) eRE, ‘ Z(min{)\i,l}—i—k-max{o,)\i - 1}) gn};
=1

see Remark 5.4. The description in (6.1) is however inconvenient for computing the volume
of A(G), which is one of the goals of this section. Therefore, our first move is deriving a more
convenient description.

Notation 6.1. Given a vector A € R¥, let x(\) € ZF be the vector with x(\); =1 if \; < 1
and xX(A); =k if \; > 1. Moreover, we let

)\<1:{i€{1,...,k}’)\i<l}.

The following lemma gives a different representation of the service rate region of a sys-
tematic MDS matrix G with n > 2k. In its statement, we use Notation 6.1.

Lemma 6.2. Suppose G is a systematic MDS matriz and n > 2k. We have
(6.2) AG) = {AeREy | x(W)AT <nt (k= 1)k = At }

Proof. Let A€ A(G). By (6.1), we have Zle <min{)\i, 1} + k- max{0,\; — 1}) <n. That

is,

SN+ k—al+ > kN | —k(k—|Aal) <n
€A 1€{1,....k P\ <1
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The latter inequality can be rewritten as x(\) - AT <n+ (k —1)(k — |A<1]). This shows the
inclusion C in (6.2). The other inclusion follows by reversing all the passages, and we omit
the details. |

We can now compute the volume of the service rate region of an MDS matrix for k € {2, 3}
and n > 2k. We start with the case k= 2.

Theorem 6.3. Let G € szn be a systematic MDS matriz. Suppose n > 4. Then we have
vol(A(G)) = E4n,
Proof. By Lemma 6.2, A(G) is defined by the following five equations:
n+ 2

A+ A < 5 2M + A2 <n+1, AMF220<n+1, A1 >0, Ao > 0.
It is not hard to check that the vertices of A(G) are the points

on (12 () () (1)

The volume (i.e., the area) can now be computed using elementary methods. [ |

We can compare Theorem 6.3 with a replication system generated by a matrix with the
same parameters.

Proposition 6.4. Suppose that G € IF’;X” s a replication matriz. We have
k
n—k+1§vdmanh;MZ)J

The lower bound can be attained by some G and the upper bound can be attained by some G

ifk=2.

Proof. Let j; denote the number of columns of G multiples of the standard basis vector
e;, for i € {1,...,k}. Each j; is a positive integer since G is full rank. By Proposition 4.8, the
volume of A(G) is Hle Ji- We get the desired upper bound by the arithmetic versus geometric
mean inequality. The lower bound can be attained by taking j; =n —k+ 1 and j; = 1 for
i€42,...,k}. When k =2, the upper bound can be attained by taking j; € {|n/2],[n/2]}
and jo =n — J1. |

Note that Proposition 6.4 shows that one can find a replication matrix G € ngn forn>5
whose service rate region’s volume is strictly larger than the volume of an MDS matrix of the
same size.

We now turn to the case kK =3 and n > 6, computing the volume of the service rate region
corresponding to an MDS matrix G € IFZX”. The computation is more involved than in the
2-dimensional case.

Theorem 6.5. Let G € Fg’xn be a systematic MDS matriz and suppose n > 6. We have

B n3 + 18n2 + 54n — 18
N 162 '

Proof. Define the function f(z)=min{z,1}+3max{0,z—1}. Using Lemma 6.2 it can be
seen that A(G) is the set of 3-tuples (A1, A2, 2) that satisfy the inequalities

vol(A(G))
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(A +Xo <n— f(2), (%)
3N+ X <n-—f(z)+2,

A 43X <n—f(z)+2,

M +3N<n—f(z)+4, (xx)
(A1, A2, 2> 0.

Observe moreover that the maximum value z can take is (n+2)/3. This value can be attained
by taking A1 = A9 =0 in the above system. We have

z if 0<2<1,
f(z)_{?,zz if 1<z

It can be checked that (*#) is more restrictive than (x) for z <n/3, while (x) is more restrictive
than (**) otherwise. Moreover, when z > (n + 1)/3, all inequalities except for () and the
nonnegativity of A1, A9, and z can be disregarded. This tells us the shape of the “slices” of
A(G) for a given value of z. We summarize this discussion in Table 1 and Figure 7.

The areas of the slices can be easily computed and therefore the volume of A(G) can be
computed by integration over z. This approach is mathematically justified, for example, by
[5, Theorem 2.7]. The desired formula follows from

Table 1
z Figure y x «@ 53
0<z<1 7(b) (0, =5*2) (0, =5*2) (1, =51 ("=, 1)
1<z<3 7(b) (0,25 (0, B=548) (1, =542 (=5
< 7(b) (0, n=3zt1) (0,2=3241)  (n—32+41,1) (1,n—3z+1)
<< 7)) (0,n—3z+2) (n—3z+2,0) — —

A2 A2

SN RN

R . M
X a

(a) The typical service rate re-
gion of a systematic MDS ma-
trix G € ]ngn for n > 6.

(b) The slice of the service rate
region of a systematic MDS
matrix G € ]ngn, n > 6, for
z<(n+1)/3.

(c) The slice of the service rate
region of a systematic MDS
matrix G € ngn, n > 6, for
(n+1)/3<z<(n+2)/3.

Figure 7. The service rate region and its slices for the proof of Theorem 6.5.
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L7 n+4 n’48n+4
1(A = —2 - d
vol(A(Q)) /0 <1SZ 9 z+ 13 > z

n/3 /1 6 21120+ 24
+/ (2_n+ +n+ nt )dz
1

2° ~ 3~ 18
(n+1)/3 2 Ay
+ / (—3z2+(n—2)z+nng> dz
n/3 2 6
(n+2)/3 244 4
+ / (922—(3n+6)z—|—n+n+> dz
(n+1)/3 \2 2
and tedious but straightforward computations. |

Out of curiosity, we point out that Theorem 6.5 can also be derived by the well-known
triangulation method for computing the volume of a polytope using the volume of simplices;
see [8]. For the polytope of Theorem 6.5 the formalization of this approach is rather involved,
which is why we proceeded by integration.

We also notice that a general lower bound for vol(A(G)) where G is an MDS matrix can
be obtained by Proposition B.3. Any k£ columns can be used to recover any data object. Thus,
(n/k)e; € A(G), which implies that the simplex with these vertices is contained in the service
rate region. Therefore, vol(A(G)) > (n/k)* /k!.

In the second part of this section, we investigate other parameters of the service rate regions
of systematic MDS matrices. We first observe that Corollary 5.12 implies the following.

Corollary 6.6. Let G € ]FZX" be a systematic MDS matriz. We have \(G) <k + ”T_k

Proof. Following the notation of Corollary 5.12, we have m = k ((";1) + 1) and y =
(v1,v9), where v1 = (1,...,1) € R¥ and vy = (k, ..., k) € R™~*. Moreover,

r=min{j|g1+---+7y;>n, 1<j<m}=k+[(n—k)/k|+1.

We then obtain the desired result by applying Corollary 5.12:

MG) <k + | —k)/kj+im—k+n_k
= " 0 ko m

We will now prove that systematic MDS matrices achieve the bound of Corollary 6.6 with
equality in the case n > 2k. We start by introducing some objects that we will need to prove
the result.

Notation 6.7. Let a,b € Z such that 2 < a <b. Assume q > b and let a be a primitive
element of Fy. Define the matriz

1 1 1 .. 1
1 leY a? . ab~1

Gy = . . . , . e F2xb.
1 ale=D 201 o-D(a-1)
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Note that having ¢ > b is necessary and sufficient for the columns of G%? to be pairwise
distinct. Sufficiency can be seen by considering the second row of G%® and the fact that the
multiplicative order of v is ¢ — 1. Necessity follows from the fact that if ¢ < b then at least
one of the columns of G%° indexed by {2,...,b} is equal to the first column. Moreover, the
matrix ngb is a generator matrix of a Reed—Solomon code [24], which is a type of MDS code;
see [21].

Lemma 6.8. Following Notation 6.7, let R = Rmin(GZ’b). The following hold.
1. Leti€{l,...,a} and RC{1,...,b}. Then RE€R; if and only if |R| = a.
2. Letve{l,...,b}. We have

b—-1
|{R€Ri|i€{1,...,a},V€R}|:<a_1).

Proof. We first observe that the second part of the lemma follows from the first and the
fact that
b‘i) for all 1 <v <b.

{SC{1,...,b}||S|=a, veS}= <a

To prove the first part, let G = ngb. Suppose that R € R; and let us prove |R| =a. We
first show that |R| < a. Assume towards a contradiction that |R| > a. By Proposition B.3,
there exists R’ C R such that |R| = a and R’ € R;, which contradicts the fact that R is
i-minimal. We now show that |R| > a. Towards a contradiction, assume |R| = ¢ < a. Because
of the structure of G, we can assume without loss of generality ¢ = a and R = {1,...,c}.
We will prove that R ¢ R,, which is a contradiction. That is equivalent to showing that
eq & (G” |ve{l,...,c}), which can be seen from the fact that the matrices

11 1 .. 1 11 1. 1 0

1 o a? . a1 1 « a? ‘e a1 0
and

1 al=) g2@-1) . gle=D(a-1) 1 ol 21 .. gleD-1) 1

have different ranks. For the other direction, assume |R| = a. Since G is an MDS matrix,
we have R € R¥(G) by Proposition B.3. To see that R € R; it is enough to show that all
elements of R; have cardinality a, which we proved already in the first part of the proof. H

Note that the second property of the previous lemma states that each column index of

G&P participates in (ail) recovery sets of the system R(Gg’b).

Theorem 6.9. Let (A1,...,Aq) € R<,. Following Notation 6.7, if Ay + - + A < b/a, then
(A, Aa) € A(GED).
Proof. Let R =R™n(G%%). For all i € {1,...,a} and R€R;, let
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We now show that the constraints in Definition 1.4 hold. Constraint (1.3) holds by definition.
Constraint (1.1) is satisfied because

a 1 a 1 b
NR=Ni— 7=~ |Ril| =Xi - —— <>:>\i
2 A= ey =2 e

RER,

for all i € {1,...,a}, where the fact that |R;| = (Z) follows from the first part of Lemma 6.8.
By the second part of Lemma 6.8, constraint (1.2) reads as

(63) (.21) >oh

We can now show that systematic MDS matrices with n > 2k achieve the bound of
Corollary 6.6 (cf. [2]).

Theorem 6.10. Suppose n > 2k. If G € IF’;X” is a systematic MDS matriz, then \(G) =
k4 22k

Proof. All systematic MDS matrices with n > 2k have the same service rate region; see
Remark 5.4. Therefore it suffices to prove the result for G = [Id;, | GE™ "] e F’;x”, where Idy
is the k x k identity matrix over F, and G5k is as in Notation 6.7.

The fact Ay + -+ A < k+ (n — k)/k follows from Corollary 6.6. Let A; ;3 = 1 for all
ie{1,...,k}, and observe that ((n—k)/k,0,...,0) € A(GE" %) by taking a =k and b=n—k
in Theorem 6.9. Then ((n —k)/k+1,1,...,1) € A(G) by the definition of G. [ |

We conclude this section by noting that Corollary 6.6 is not necessarily met with equality
when n < 2k, or if G is not systematic. For the case where n < 2k, see, for instance,
Example 5.13. For the case where n > 2k and G is a nonsystematic MDS matrix, consider

(20103 4\ o
G_<1 2 3 5>6F7 '

Then A(G) =2< 3.

Appendix A. Polytopes. In this appendix, we collect some background material about
polytopes and their properties. More details can be found in standard references; see, e.g.,
[19, 26, 32].

We start by recalling that a polyhedron is a set of the form P = {x € R™ | Az" < b},
where A € R&*™ ¢.m > 1, b € R, and < is applied componentwise. Such a set P is called
a polytope if it is bounded. A fundamental result on polyhedra states that every polytope is
the convex hull of a finite set of points. For a (possibly infinite) set S C R™, we let conv(S)
denote its convex hull, where conv()) = 0.
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Theorem A1 (see e.g. [14]). Let P CR™ be a polytope. Then a finite set S C R™ exists,
such as P = conv(S).

A vertex of a polytope P C R™ is an element v € P with v ¢ conv(P \ {v}). The set of
vertices of P is denoted by |(P). Note that if P = conv(S) is a poltyope, then |(P) C S. Thus
P =conv(|(P)). Moreover, a nonempty polytope has at least one vertex.

We recall the following crucial property of vertices.

Proposition A.2. Let P = {x € R™ | Az" <b'} be a polytope, with A € R™. Let v be
a vertex of P. Then there exists I C {1,...,0} such that rank(A[I]) = m and {v} = {x €
R™ | A[I)z" =b[I]"}, where A[I] and b[I] are obtained from A and b by deleting the rows and
components (respectively) not indexed by I.

The previous result remarkably shows that rational polytopes have rational vertices (i.e.,
with rational entries). Recall that a polyhedron of the form {z € R™ | Az <b"} with A € Q™
and b € Q' is called rational. Then Proposition A.2 combined with Gaussian elimination leads
to the following result.

Corollary A.3. A rational polytope has rational vertices.

We conclude this appendix by recalling that a polytope P C R™ is down-monotone if x > 0
for all z € P and for all y € R™ and x € P with 0 <y < we have y € P. All polytopes in this
paper are down-monotone.

Appendix B. Error-correcting codes.

Definition B.1. An [n, k], (error-correcting) code is a k-dimensional Fy-linear subspace
C < Fy. We call n the length of C. A matriz G € F’;X" whose rows span C is called a
generator matrix for C. The [n,n — k], code C+={z €Fy |zy" =0 for ally € C} <FI is the
dual of C.

The error correction capability of C is measured by a fundamental parameter defined as
follows.

Definition B.2. The Hamming weight of a vector x € Fy is the integer wtH(z) = |{i | z; #
0}. The minimum (Hamming) distance of a code C < Fy is d1(C) = min{wtt(z) | z € C,
x#0}.

This paper mainly focuses on [n, k], codes with £+ d —1=mn. Such codes are called MDS
(maximum distance separable). A full rank matrix that generates an MDS code is called
an MDS matriz. These matrices are known to exist only over sufficiently large finite fields
(¢ > n — 1 suffices). Determining for which field sizes MDS matrices exist has been an open
problem since 1955; see [27]. We conclude with the following handy characterization of MDS
matrices. The proof can be found in [21, page 318].

Proposition B.3. Let G € ]F];X” be a matriz. Then G is an MDS matriz if and only if every

k columns of G are Fy-linearly independent.
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