
On the Parameters of Codes for Data Access
Altan B. Kılıç→, Alberto Ravagnani→, Emina Soljanin†

→Department of Mathematics and Computer Science, Eindhoven University of Technology, the Netherlands
†Department of Electrical & Computer Engineering, Rutgers University, U.S.A.

{a.b.kilic, a.ravagnani}@tue.nl, emina.soljanin@rutgers.edu

Abstract—This paper studies two crucial problems in the
context of coded distributed storage systems directly related to
their performance: 1) for a fixed alphabet size, determine the
minimum number of servers the system must have for its service
rate region to contain a prescribed set of points; 2) for a given
number of servers, determine the minimum alphabet size for
which the service rate region of the system contains a prescribed
set of points. The paper establishes rigorous upper and lower
bounds, as well as code constructions based on techniques from
coding theory, optimization, and projective geometry.

I. INTRODUCTION

Storage layers provide data access services for executing
applications. Thus, a computing system’s overall performance
depends on its underlying storage system’s data access perfor-
mance. Modern storage systems replicate data objects across
multiple servers. An object’s replication degree corresponds
to its expected demand. However, the access request volume
and data object popularity fluctuate in practice. Redundancy
schemes that combine erasure coding with replication can
support such scenarios better than replication alone.

Storage servers can handle access requests up to a specific
maximal service rate. The service rate region of a redundant
storage scheme is a recently introduced performance metric
notion [1]; see also [2] and references therein. It is defined
as a set of all data access request rates that the system
implementing the scheme can support.

Two main problem directions are associated with distributed
storage access: 1) For a given (implemented) redundancy
scheme, we ask what its service rate region is. 2) For a given
(desired) service rate region, we ask which redundancy scheme
has the service rate region that includes the desired one with
some optimal cost or some required properties. Many other
related problems are briefly outlined in [2, Sec. VIII], most
notably performance analysis of storage schemes.

The service rate region is a new concept and the subject of
several recent papers [1]–[5]. This work has answered some
questions in the above directions, primarily for selected binary
codes or systems storing two data objects. The main difference
between this collection of papers and nearly all recent work
on coded distributed storage is that it primarily addresses
the external uncertainty in the storage systems (download
request fluctuations) rather than the internal uncertainty (e.g.,

A.B.K. is supported by the Dutch Research Council through grant
VI.Vidi.203.045. A. R. is supported by OCENW.KLEIN.539, VI.Vidi.203.045,
and by the Academy of Arts and Sciences of the Netherlands. E. Soljanin’s
work was in part supported by NSF Award CIF-2122400.

straggling) in operations of the system itself (see, e.g., [6]–
[12]). A related line of work concerning external uncertainty
considers systems with uncertainty in the mode and level of
access to the system [13], [14].

This paper addresses a problem within the second main
direction mentioned above: designing codes for a given service
rate region. It focuses on scenarios when a set of the points in
the region is provided and asks the following two questions:

1) How many servers do we need if the field size is fixed?
2) What is the minimum field size for a code over a fixed

number of servers (i.e., code length)?
Both questions are essential in practice. The first question
concerns systems with computational complexity (field size)
limits, and we want to minimize the number of servers. The
second question is relevant when the number of servers is
limited, and we want to minimize the field size to reduce the
computational complexity. The first problem was studied in
[15]. The second problem has not been studied before.

The rest of the paper is organized as follows: Sec. II formu-
lates the problem. Sec. III, presents two general approaches to
attack the problems of the paper. Sec. IV is devoted to bounds
and existence results. Sec. V shows some applications of the
paper’s results. Because of space constraints, most proofs are
omitted and will appear in an extended version of this work.

II. SERVICE RATE REGION AND PROBLEM STATEMENT

In this section, we establish the notation, define the service
rate region of distributed data storage systems, and present
the parameters that are the subject of the two main problems
addressed in this paper. For a standard reference on coding
theory, we refer to [16].

Notation 1. Throughout the paper, P denotes the set of prime
powers, Fq denotes a finite field of size q with q → P . Unless
otherwise stated, all vectors in the paper are column vectors,
and ei → Fk

q
is the i-th standard basis vector for i → {1, . . . , k}.

We consider a distributed storage system with n → Z→k

identical servers where k → Z→2 distinct data objects (elements
of Fq) are stored on the servers. Each server stores an Fq-linear
combination of the k objects. Therefore, the system can be
specified by a matrix G → Fk↑n

q
, called the generator matrix

of the system. Each column of G corresponds to a server.
More precisely, if u = (u1, . . . , uk) is the tuple of objects to
be stored, then the ω-th column of G stores the ω-th coordinate
of u · G for ω → {1, . . . , n}. If a column of G is a non-zero

819979-8-3503-8284-6/24/$31.00 ©2024 IEEE

2
0

2
4

 I
E

E
E

 I
n

t
e

r
n

a
t
io

n
a

l
S

y
m

p
o

s
iu

m
 o

n
 I

n
fo

r
m

a
t
io

n
 T

h
e

o
r
y
 (

IS
IT

)
|

 9
7

9
-8

-3
5

0
3

-8
2

8
4

-6
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IS

IT
5

7
8

6
4

.2
0

2
4

.1
0

6
1

9
2

8
8

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 28,2025 at 19:36:16 UTC from IEEE Xplore. Restrictions apply.

scalar multiple of one of the standard basis vectors, it is called
a systematic server. Otherwise, it is called a coded server.

Notation 2. In the sequel, G denotes a k↑ n matrix over Fq

of rank k. We assume that G has no zero column. The list
of columns of G is denoted by col(G), and the ω-th column
of G is denoted by G

ω .

In our model, each server can simultaneously process the
data access requests with a cumulative serving rate of at
most one. A demand vector is a k-tuple of nonnegative real
numbers (ε1, . . . ,εk). The assumption that G has no zero
column makes sense since a server storing the zero linear
combination is useless. The restriction on the capacity of the
servers (each server has capacity 1) implies that the system
cannot “support” any demand vector. When a server reaches
its capacity, other servers need to be contacted to serve users.
The next definition formalizes these concepts.

Definition 1. For each i → {1, . . . , k} we construct sets Ri(G)
as follows. A set R ↓ {1, . . . , n} is in Ri(G) if:

• ei → ↔Gω | ω → R↗Fq , and
• there is no R

↓ ⊋ R with R
↓ → Ri(G).

The elements of Ri(G) are called the (minimal) recovery sets
for the i-th object. A demand vector (ε1, . . . ,εk) is supported
by the system (or supported by G) if there exists real numbers

(εi,R → R→0 | i → {1, . . . , k}, R → Ri(G))

with the following properties:





∑

R↔Ri

εi,R = εi for i → {1, . . . , k},

k∑

i=1

∑

R↔Ri
ω↔R

εi,R ↘ 1 for ω → {1, . . . , n}.

(1)

(2)

Lastly, the service rate region of the system generated by G

is defined as

!(G) := {ε → Rk | ε is supported by G} ↓ Rk
.

The constraints in (1) ensure that the demand vector is served,
and those in (2) guarantee that the servers are not overloaded.

Example 1. Let

G =




1 0 0 1
0 1 0 1
0 0 1 1



 → F3↑4
2 .

We have Ri(G) = {{i}, {1, 2, 3, 4} \ {i}} for i → {1, 2, 3}.
The service rate region !(G) is depicted in Figure 1. As an
example, we have (1.4, 0.6, 0.6) → !(G) by letting

ε1,R =

{
1 if R = {1},
0.4 if R = {2, 3, 4},

εi,R =

{
0.6 if R = {i},
0 otherwise,

for i → {2, 3} in Definition 1.

Note that the service rate region in Example 1 is a polytope.
Recall that a polytope P ↓ Rk is called down-monotone

ε2

ε1

ε3

Fig. 1: The service rate region for Example 1.

if 0 ↘ x ↘ y and y → P imply x → P . The service rate region
is always a convex, down-monotone polytope. Therefore, we
will call it the service rate region polytope of the matrix G,
see [17]. Recall that any convex polytope is the convex hull
of its vertices (see [18] for more on polytopes). Therefore, we
have the following list of observations.

Proposition 1. Let S ↓ Rk
and G → Fk↑n

q
be a full-rank

matrix. We have

1) S ↓ !(G) implies conv(S) ↓ !(G), where conv(S) is

the convex hull of the points of S,

2) conv(S) = conv(S↓) where

S
↓ = {s↓ → S | s↓ /→ conv(S \ {s↓}}.

Notation 3. In the sequel, S ↓ Rk will always denote a
nonempty set in reduced form. Following the notation of
Proposition 1, we call S↓ the reduced form of S.

In practice, we expect to know the demand vectors, and one
needs to design systems (i.e., G) whose service rate region
polytopes contain these demand vectors. Many systems can
be chosen (see, for instance, Figure 2), and the most efficient
one will be selected (here “efficiency" depends on the needs
of the user). To this end, we study the following parameters,
whose importance has been explained in Sec. I.

Definition 2. When q is fixed, we define

nq(S) = min
{
n → Z→k | ≃G → Fk↑n

q
with S ↓ !(G)

}

and when n is fixed, we define

qn(S) = min
{
q → P | ≃G → Fk↑n

q
with S ↓ !(G)

}
.

The quantity nq(S) is a performance metric, and the min-
imum in its definition always exists since we can always use
replication, resulting in many servers (n) compared to the
optimal value nq(S).

Example 2. Let S = {(1, 1), (2, 0)}. We have n2(S) = 3.
There are different polytopes !(G) that contain conv(S)
with G → F2↑3

2 , see Figure 2 for three of them.

While the number nq(S) always exists, the existence
of qn(S) is not guaranteed.

Example 3. Let S = {(2, 1), (1, 2)}. We have n2(S) = 4.
The following argument shows that q3(S) does not exist.
Regardless of the field size, one needs to fully use at least

820Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 28,2025 at 19:36:16 UTC from IEEE Xplore. Restrictions apply.

2

2

ε1

ε2

(a) G1 =

(
1 0 1
0 1 1

)

1

2

(2, 1)

ε1

ε2

(b) G2 =

(
1 0 1
0 1 0

)

1

2

(1, 1)

ε1

ε2

(c) G3 =

(
1 1 1
0 0 1

)

Fig. 2: Set S = {(1, 1), (2, 0)} is in !(Gi) for i → {1, 2, 3} and !(G3) = conv(S). Set conv(S) is shown in (a) and (b) with
a different color. Observe that 1) any code whose service rate region contains the points in S must contain the minimal region
shown in (c), and 2) regions that are proper supersets of the minimal are achievable without enlarging the field size.

three servers for only one of the points in S. However, the
servers used for the first point cannot support the remaining
point. Therefore, there must be at least 4 servers.

III. METHODS AND TOOLS

We now propose a characterization of nq(S) that will allow
us to apply mixed integer optimization to compute it.

Remark 1. Let q → P . Thus, q = p
r for some prime p

and positive integer r. Let z denote a root of an irreducible
polynomial in Fp[x] of degree r in Fq . We represent Fq as Fr

p

using the function g : Fq ⇐ Fr

p
, where g(zj↗1) = er+1↗j for

all j → {1, . . . , r}. For h → Fq , let h → {0, . . . , q ⇒ 1} be the
integer whose p-ary expansion is equal to g(h). We then have
Zq = {0, 1, . . . , q ⇒ 1} = {h | h → Fq}.

Let 0k be the all-zeros vector in Zk

q
. We denote by vj →

Zk

q
\0k the vector corresponding to the q-ary expansion of the

integer j → {1, . . . , qk ⇒ 1}. Lastly, for all vj → Zk

q
\ 0k, we

construct vj → Fk

q
\ 0k such that the i-th coordinate of vj is

equal to h → Fq when the i-th coordinate of vj is h → Zq for
each i → {1, . . . , k}.

We also define following two sets:

D(H) =

{
d →

{
1, . . . ,

q
k ⇒ 1

q ⇒ 1

}
: ud → PG(k ⇒ 1, q) \H

}
,

I(H) = {i → {1, . . . , k} : ei → PG(k ⇒ 1, q) \H}.

for a hyperplane H of PG(k⇒1, q). In words, D(H) and I(H)
are the set of projective points and standard basis vectors that
do not lie on H , respectively.

Using the representation of Remark 1 we get the following:

Proposition 2. We have

nq(S) = min

{
q
k↗1∑

j=1

nj | there exists a matrix G

over Fq with k rows, |{ω | Gω = vj}| = nj

for all j, and S ↓ !(G)

}
.

We continue by translating the concept of recovery sets
under the representation of Remark 1.

Definition 3. Let i → {1, . . . , k}. A set T ↓ {1, . . . , qk⇒1} is
called a recovery set for the i-th object if ei → ↔vj | j → T ↗Fq

and there is no T
↓ ⊋ T with ei → ↔vj | j → T

↓↗Fq . We
denote the set of recovery sets of the i-th object by Ti. Note
that |Ti| = |Tj | for all i, j → {1, . . . , k}.

We illustrate the concepts introduced in Remark 1 and
Definition 3 with an example.

Example 4. Let k = 2 and q = 3. Then v1 = (0, 1), v2 =
(0, 2), v3 = (1, 0), v4 = (1, 1), v5 = (1, 2), v6 = (2, 0),
v7 = (2, 1), v8 = (2, 2). Moreover, we have

T1 = {{1, 8}, {2, 8}, {3}, {1, 4}, {2, 4}, {5, 8}, {1, 5},
{2, 5}, {4, 5}, {6}, {7, 8}, {1, 7}, {2, 7}, {4, 7}},

T2 = {{1}, {2}, {3, 8}, {3, 4}, {5, 8}, {3, 5}, {4, 5},
{6, 8}, {4, 6}, {5, 6}, {7, 8}, {3, 7}, {4, 7}, {6, 7}}.

The following result gives a sufficient condition for a
demand vector to be supported under the terminology of
Remark 1. It can be applied to compute nq(S) for any
set S of finite cardinality using, for instance, mixed integer
optimization; see [19]. Any feasible solution of the program
gives an upper bound on nq(S).

Theorem 1. Assume that there exists a collection of non-

negative integers nj for j → {1, . . . , qk ⇒ 1} and a collection

of non-negative real numbers {ϑi,T | i → {1, . . . , k}, T → Ti}
with the following properties:






∑

T↔Ti

ϑi,T = εi for 1 ↘ i ↘ k,

k∑

i=1

∑

T↔Ti
j↔T

ϑi,T ↘ nj for 1 ↘ j ↘ q
k ⇒ 1.

(3)

(4)

There exists a system with n =


q
k↗1

j=1 nj servers that supports

(see Definition 1) the point (ε1, . . . ,εk) → Rk
.

821Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 28,2025 at 19:36:16 UTC from IEEE Xplore. Restrictions apply.

The conditions in Theorem 1 can be regarded as constraints
of an optimization problem that minimizes the number of
servers of a system such that the system supports the given
list of demand vectors. We illustrate how to treat two demand
vectors with an example focusing on a particularly tractable
input set for convenience of exposition. This illustrates how
Theorem 1 is applied.

Example 5. Let a, b → Z with a ⇑ b > 0, and S =
{(a, 0), (0, b)}. We want to compute n2(S) using Theorem 1
combined with optimization. We have v1 = (0, 1), v2 = (1, 0),
v3 = (1, 1), T1 = {{1, 3}, {2}}, and T2 = {{1}, {2, 3}}. By
applying Theorem 1 to both demand vectors in S we obtain
that n2(S) equals the optimal value of the following integer
linear optimization program (ILP). Here we slightly abuse the
notation (instead of following the notation of Theorem 1) to
emphasize which variable of ILP contributes to which point
of S:

minimize n1 + n2 + n3

subject to s
1
1,{1,3} + s

1
1,{2} = a,

s
2
2,{1} + s

2
2,{2,3} = b,

s
1
1,{1,3} ↘ n1, s

1
1,{2} ↘ n2, s

1
1,{1,3} ↘ n3,

s
2
2,{1} ↘ n1, s

2
2,{2,3} ↘ n2, s

2
2,{2,3} ↘ n3,

s
1
1,{1,3}, s

1
1,{2}, s

2
2,{1}, s

2
2,{2,3} → R→0,

n1, n2, n3 → Z→0.

We now point out a key observation on the role of the
number of coded servers, namely n3. We must have n3 ↘ n1

and n3 ↘ n2. This follows from the fact {3} /→ T1 ⇓ T2,
but {1, 3} → T1 and {2, 3} → T2. Since a ⇑ b by assumption,
one can further assume that n2 ⇑ n1 ⇑ n3. Thus, the problem
reduces to:

minimize n1 + n2 + n3

subject to n2 + n3 ⇑ a,

n1 + n3 ⇑ b,

n2 ⇒ n1 ⇑ 0,
n1 ⇒ n3 ⇑ 0,
n1, n2, n3 → Z→0.

One feasible solution is

(n1, n2, n3) = (⇔b/2↖, a⇒ ↙b/2∝, ↙b/2∝).

Therefore, we have n2(S) ↘ ⇔a+ b/2↖. We will later show
that n2(S) ⇑ ⇔a+ b/2↖ by Theorem 4, which in turn proves
that n2(S) = a+ ⇔b/2↖.

The following result uses projective points and has been
proven in [15] for q = 2 with slightly different notations. We
state it here for arbitrary q. The proof is essentially the same.
We will apply later in Theorem 4 to derive a lower bound
on nq(S) for some sets S with a particular structure.

Theorem 2. Let S = {s1, . . . , sm} ↓ Rk
. Let G → Fk↑nq(S)

q

and let H be a hyperplane of PG(k ⇒ 1, q). Following the

notation of Remark 1, if |{ω | Gω = vd}| = nd, then

∑

d↔D(H)

nd ⇑

max

 ∑

i↔I(H)

s
t

i
: 1 ↘ t ↘ m


.

IV. UPPER AND LOWER BOUNDS

This section focuses on bounds, existence results, and the
interplay of the two parameters introduced in Definition 2.

We start with the simplest possible case, |S| = 1. Here,
we have to cover a single demand vector and determine the
minimum number of servers and field size for which this is
possible.

Proposition 3. Let s → Rk

→0 and S = {s}. For any q, we have

nq(S) =
k∑

i=1

⇔si↖ .

Furthermore,

qn(S) =

{
does not exist if n <


k

i=1 ⇔si↖ ,
2 otherwise.

The case where |S| = 2 is significantly more involved
then |S| = 1 and it will appear in the extended version of
this work. We continue with general upper and lower bounds
on nq(S) for a set S of any cardinality.

Theorem 3. Let S = {s1, . . . , sm} ↓ Rk
. We have

ϖ(S) ↘ nq(S) ↘ ϱ(S),

where

ϖ(S) = max

{
k∑

i=1


s
t

i


| 1 ↘ t ↘ m

}
,

ϱ(S) =
k∑

i=1

max
{

s
t

i


| 1 ↘ t ↘ m

}
.

Obtaining bounds on qn(S) appears to be more difficult,
in general, than obtaining bounds on nq(S). The quantities
introduced in Theorem 3 can, however, be used to prove non-
existence results on qn(S).

Proposition 4. The quantity qε(S)(S) never exists if |S| > 1
(and S is in reduced form). In particular, following the

notation of Theorem 3, if |S| > 1 then nq(S) ⇑ ϖ(S) + 1
for any q.

In the remainder of this section, we focus on sets of the
form S = {Xiei | 1 ↘ i ↘ k}, for a given vector X → Rk

→0.
Note that the convex hull of such a set S is a simplex polytope
in the positive orthant, one of the best-known polytopes.

The next result establishes a lower bound for the quan-
tity nq(S), which explicitly depends on the underlying field
size q. Its proof uses Theorem 2, which we stated as a
preliminary result in Sec. III.

Theorem 4. Let (Xi)ki=1 be a non-increasing sequence of

non-negative integers and let S = {Xiei | 1 ↘ i ↘ k}. For

all q, we have

nq(S) ⇑


k∑

i=1

q
1↗i

Xi


.

822Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 28,2025 at 19:36:16 UTC from IEEE Xplore. Restrictions apply.

Proof. Let

a, b


q

denote the number of b-dimensional sub-
spaces of an a-dimensional vector space over Fq for non-
negative integers a ⇑ b; see [20]. We apply Theorem 2 to all
hyperplanes of PG(k⇒ 1, q). This gives


k, k ⇒ 1


q
=


k, 1


q

inequalities, since PG(k⇒1, q) has that many hyperplanes. We
can represent these inequalities in a system

Ax ⇑ b (5)

for a matrix A of suitable size and vectors x and b of
length


k, 1


q
. Since (Xi)ki=1 is a non-increasing sequence

of integers, we have

|{d | bd = Xi}| =

k ⇒ i+ 1, 1


q
⇒

k ⇒ i, 1


q

for all 1 ↘ i ↘ k. Moreover, following the notation of
Theorem 2, each nd occurs in exactly |D(H)| inequalities.

Let Z =

k ⇒ i+ 1, 1


q
⇒


k ⇒ i, 1


q

for the rest of
the proof. Summing all the inequalities in (5) and dividing
by |D(H)| gives

nq(S) ⇑
1

|D(H)|

k∑

i=1

Z⇔Xi↖ =
1

|D(H)|

k∑

i=1

ZXi

=
1

k, 1

q
⇒

k ⇒ 1, 1


q

k∑

i=1

ZXi

= X1 +
q ⇒ 1

qk ⇒ qk↗1

k∑

i=2

ZXi

= X1 +
X2

q
+ . . .+

Xk

qk↗1
.

Taking the ceiling, we bound on the integer nq(S).

When q = 2, we can establish an upper bound for nq(S),
where S has the same properties stated in Theorem 4. The
proof of the following result is constructive and will appear in
the extended version of this work because of space constraints.

Theorem 5. Let (Xi)ki=1 be a non-increasing sequence of

non-negative integers and S = {Xiei | 1 ↘ i ↘ k}. We have

n2(S) ↘
k∑

i=1


Xi

2i↗1


.

By combining Theorems 4 and 5 we obtain the following
result for the case q = 2.

Corollary 1. Let (Xi)ki=1 be a non-increasing sequence of

non-negative integers and let S = {Xiei | 1 ↘ i ↘ k}. Then


k∑

i=1

Xi

2i↗1


↘ n2(S) ↘

k∑

i=1


Xi

2i↗1


.

Note that the lower and upper bounds of Corollary 1 coin-
cide when 2i↗1 divides Xi for all i → {2, . . . , k}. Moreover,
if Xi = 2k↗1 for all i → {1, . . . , k}, then the well-known
binary simplex code (of length 2k ⇒ 1) attains n2(S).

V. APPLICATIONS AND EXAMPLES

We provide evidence of how the established results can be
applied in concrete scenarios. The proofs of the results in
this paper use different techniques, which capture different
mathematical properties of the quantities nq(S) and qn(S).
As a natural consequence, the results perform best when
combined. For instance, Theorem 3 together with Proposition
4 can be used to compute the value of nq(S) in some cases.

Example 6. Let S = {(2.5, 1), (1, 2)}. Following the notation
of Theorem 3, we have ϖ(S) = 4 and ϱ(S) = 5. There-
fore, 4 ↘ nq(S) ↘ 5. The number q4(S) does not exist for
any q → P by Proposition 4. Thus nq(S) has to be equal to 5
for every q → P .

A general observation is that bounds on nq(S) that depend
on q automatically give information on qn(S). That is the case
of Theorem 4, which implies the following result.

Corollary 2. Let (Xi)ki=1 be a non-increasing sequence of

non-negative integers and let S = {Xiei | 1 ↘ i ↘ k}. For

any n → Z→k s.t. qn(S) exists, we have

qn(S) ⇑
X2

n⇒X1
.

Proof. Let n → Z→k s.t. qn(S) exists. By Theorem 4, we have

n ⇑
k∑

i=1


q
1↗i

Xi


⇑ X1 +

X2

q
,

yielding the result.

Even though Corollary 2 is a quite coarse approximation of
Theorem 4, it provides very good bounds in some instances.

Example 7. Let S = {(100, 0), (0, 99)}. Corollary 2
gives q100(S) ⇑ 99 which implies that q100(S) ⇑ 101
since it must be a prime power. It can also be checked
that n2(S) = 150 in this example.

We conclude the paper by showing that Corollary 2 can
actually be met with equality for some parameter sets.

Example 8. Let S = {(2, 0), (0, 2)} and n = 3. Then
Corollary 2 implies that q3(S) ⇑ 2 and it is met with equality,
since S ↓ !(G) for

G =


1 0 1
0 1 1


→ F2↑3

2 .

CONCLUSIONS AND FUTURE WORK

We addressed the problem of computing the minimum num-
ber of servers and minimum alphabet size to support a demand
vector for the service rate region problem. We proposed a
method to obtain the exact values of the first parameter based
on optimization. We then established upper and lower bounds
for both parameters, studied their interplay, and discussed their
sharpness. Future work includes sharpening the bounds and
investigating more general sets of demand vectors than those
considered in this paper.

823Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 28,2025 at 19:36:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Aktaş, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L.
Matthews, C. Mayer, and E. Soljanin, “On the service capacity region
of accessing erasure coded content,” in 2017 55th Annual Allerton Conf.

on Communication, Control, and Computing (Allerton’17), 2017.
[2] M. Aktaş, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service rate

region: A new aspect of coded distributed system design,” IEEE Trans.

on Information Theory, vol. 67, no. 12, pp. 7940–7963, 2021.
[3] F. Kazemi, E. Karimi, E. Soljanin, and A. Sprintson, “A combinatorial

view of the service rates of codes problem, its equivalence to fractional
matching and its connection with batch codes,” in 2020 IEEE Interna-

tional Symposium on Information Theory (ISIT), 2020.
[4] F. Kazemi, S. Kurz, and E. Soljanin, “A geometric view of the service

rates of codes problem and its application to the service rate of the first
order reed-muller codes,” in 2020 IEEE International Symposium on

Information Theory (ISIT), pp. 66–71, 2020.
[5] G. N. Alfarano, A. Ravagnani, and E. Soljanin, “Dual-code bounds on

multiple concurrent (local) data recovery,” in 2022 IEEE International

Symposium on Information Theory (ISIT), pp. 2613–2618, 2022.
[6] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”

in Proceedings of the Allerton Conference on Comm., Control and

Computing, pp. 326–333, Oct. 2012.
[7] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä,

and A. Scheller-Wolf, “Reducing latency via redundant requests: Exact
analysis,” in Proceedings of the ACM SIGMETRICS, Jun. 2015.

[8] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?,” IEEE Transactions on Communications, vol. 64, no. 2,
pp. 715–722, 2016.

[9] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchan-
dran, “Ec-cache: Load-balanced, low-latency cluster caching with online
erasure coding,” in USENIX Symposium on Operating Systems Design

and Implementation (OSDI), (Savannah, GA), pp. 401–417, 2016.
[10] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Speeding up distributed machine learning using codes,” IEEE Trans-

actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.
[11] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” in Advances

In Neural Information Processing Systems, pp. 2100–2108, 2016.
[12] A. Mallick, U. Sheth, G. Palanikumar, M. Chaudhari, and G. Joshi,

“Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-
Vector Multiplication,” in ACM Sigmetrics 2020, May 2020.

[13] P. Peng, M. Noori, and E. Soljanin, “Distributed storage allocations for
optimal service rates,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6647–
6660, 2021.

[14] P. Peng and E. Soljanin, “On distributed storage allocations of large
files for maximum service rate,” in 56th Annual Allerton Conference on

Communication, Control, and Computing, Allerton 2018, Monticello, IL,

USA, October 2-5, 2018, pp. 784–791, IEEE, 2018.
[15] F. Kazemi, S. Kurz, E. Soljanin, and A. Sprintson, “Efficient storage

schemes for desired service rate regions,” in 2020 IEEE Information

Theory Workshop (ITW), 2021.
[16] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes, vol. 16. Elsevier, 1977.
[17] G. N. Alfarano, A. B. Kılıç, A. Ravagnani, and E. Soljanin, “The service

rate region polytope,” to appear in SIAGA, 2024.
[18] G. M. Ziegler, Lectures on polytopes, vol. 152. Springer Science &

Business Media, 2012.
[19] A. Schrijver, Theory of linear and integer programming. John Wiley &

Sons, 1998.
[20] G. E. Andrews, The theory of partitions. No. 2, Cambridge university

press, 1998.

824Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 28,2025 at 19:36:16 UTC from IEEE Xplore. Restrictions apply.

