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—— Abstract

In recent years, quantum computing involving physical systems with continuous degrees of freedom,
such as the bosonic quantum states of light, has attracted significant interest. However, a well-defined
quantum complexity theory for these bosonic computations over infinite-dimensional Hilbert spaces
is missing. In this work, we lay the foundations for such a research program. We introduce natural
complexity classes and problems based on bosonic generalizations of BQP, the local Hamiltonian
problem, and QMA. We uncover several relationships and subtle differences between standard
Boolean classical and discrete-variable quantum complexity classes, and identify outstanding open
problems. Our main contributions include the following:

1. Bosonic computations. We show that the power of Gaussian computations up to logspace
reductions is equivalent to bounded-error quantum logspace (BQL, characterized by the problem
of inverting well-conditioned matrices). More generally, we define classes of continuous-variable
quantum polynomial time computations with a bounded probability of error (CVBQP) based
on gates generated by polynomial bosonic Hamiltonians and particle-number measurements.
Due to the infinite-dimensional Hilbert space, it is not a priori clear whether a decidable upper
bound can be obtained for these classes. We identify complete problems for these classes, and we
demonstrate a BQP lower bound and an EXPSPACE upper bound by proving bounds on the
average energy throughout the computation. We further show that the problem of computing
expectation values of polynomial bosonic observables at the output of bosonic quantum circuits
using Gaussian and cubic phase gates is in PSPACE.

2. Bosonic ground energy problems. We prove that the problem of deciding whether the
spectrum of a bosonic Hamiltonian is bounded from below is co-NP-hard. Furthermore, we show
that the problem of finding the minimum energy of a bosonic Hamiltonian critically depends on the
non-Gaussian stellar rank of the family of energy-constrained states one optimizes over: for zero
stellar rank, i.e., optimizing over Gaussian states, it is NP-complete; for polynomially-bounded
stellar rank, it is in QMA; for unbounded stellar rank, it is RE-hard, i.e., undecidable.
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1 Introduction

Many quantum mechanical systems, such as spin systems, are effectively described using
discrete variables and are captured using qubits or qudits. The standard model of quantum
computation is formulated based on such discrete degrees of freedom [37]. However, quantum
variables such as the position, momentum, or amplitudes of electromagnetic fields are
continuous. These degrees of freedom are described mathematically using infinite-dimensional
Hilbert spaces. Continuous-variable systems are also present in many fundamental problems
in theoretical physics, such as the solution to energy levels of a molecular system, quantum
field theories, or exotic quantum states of matter such as Bose—Einstein condensates.

Continuous-variable quantum architectures have recently been used in practical quantum
computing implementations, with several leading quantum error-correction schemes being
fundamentally infinite-dimensional [20, 21]. Several important physical frameworks for
quantum computing, such as quantum photonic processors, are based on continuous-variable
degrees of freedom. These architectures have recently been demonstrated at scales sufficient
to solve computational sampling problems that are believed to exceed the power of classical
computations [46, 34].

What are the fundamental computational limitations and power of quantum degrees of free-
dom? This question is the subject of quantum complexity theory [44]. The standard quantum
computing model and quantum complexity theory are formulated using discrete-variable
quantum degrees of freedom over finite-dimensional Hilbert spaces. Several complexity
classes have been defined to capture the computational power associated with these quantum
degrees of freedom. One can define various natural models of quantum computations, such as
adiabatic computation, quantum circuits, topological quantum computation, or measurement-
based quantum computing, and all of these variants have been proven to have power equal
to the computational complexity class BQP, which captures the power of polynomial-size
quantum circuits in deciding logical statements with a small probability of error. Another
important complexity class that captures the complexity of estimating the energy levels of a
quantum physical system is QIMA, which can be viewed as a quantum generalization of NP
and, in particular, MA as the randomized generalization of NP. Due to a seminal result
of Kitaev [28] (and many follow-up works, e.g., [29]), the problem of estimating the ground
state energy of a physical system up to inverse-polynomial additive error (known as the local
Hamiltonian problem) is complete for QMA. In fact, the local Hamiltonian problem can be
viewed as the quantum generalization of the canonical constraint satisfaction problem over
the Boolean hypercube, which is itself complete for NP. In recent years, the relationship
between these complexity classes and standard complexity classes such as polynomial time
P, polynomial space PSPACE, nondeterministic polynomial time NP, #P (corresponding
to counting the number of solutions to constraint satisfaction problems), PP (the class of
problems that are solvable on a probabilistic Turing machine with probability of error < 1/2)
have been extensively studied. All of these complexity classes are contained in the class of
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Figure 1 Known relations between complexity classes used in this work. If a line connects
complexity class C; to Ca, with C; being on the right of Cs, it is implied that Co C C;.

P

problems solvable in exponential space EXPSPACE, itself included in the set of recursively
enumerable languages RE. The known relationships between these complexity classes are
illustrated in Figure 1.

What are the basic relationships between the power of computations using bosonic
continuous-variables over infinite-dimensional Hilbert spaces and these standard discrete-
variable complexity classes over finite-dimensional ones? As it turns out, one can ro-
bustly encode discrete-variable computations into infinite-dimensional Hilbert spaces. For
instance, Knill, Laflamme and Milburn showed that one can simulate arbitrary discrete-
variable quantum computations using linear optics, particle-number measurements and
feed-forward [32], i.e. adapting the computation based on the result of intermediate meas-
urements, while Gottesman, Kitaev and Preskill gave a protocol to encode a qubit into the
continuous degrees of freedom of a quantum harmonic oscillator in a fault-tolerant way [20];
the latter is among the leading proposals for reaching fault-tolerance in continuous-variable
quantum architectures. As a consequence of these results, BQP can be robustly simulated
using continuous quantum degrees of freedom. However, a formal complexity theory of
bosonic computations is still missing.

In the continuous-variable setting, a model of quantum computation was first proposed
by Lloyd and Braunstein [33]. In this model, the state of a quantum system evolves
according to Hamiltonians, which are finite-degree polynomials in canonical continuous-
variable (unbounded) operators such as the position operator X and the momentum operator
P. These operators have fundamentally different mathematical properties from their discrete-
variable counterparts. For instance, for any pair of discrete-variable operators acting on a
finite-dimensional Hilbert space, A and B, Tr([A, B]) = 0, it is well known that [X, P] =41,
which is not trace-class (i.e., does not have finite trace). The operators X and P have
unbounded spectra with respective formal eigenbases |z) ,x € R such that X |z) = z|z), and
|p),p € R such that P |p) = p|p), which are related to each other by a Fourier transform
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|z) oc [ € |p) dp, with their inner product giving Dirac delta functions (z|z') = §(z — 2’),
to be interpreted in the sense of distributions. Another striking example of the peculiarities
of infinite dimensions comes from quantum states such as (v6/7) >, <, £ |n), which are
normalized but have infinite energy with respect to the harmonic oscillator Hamiltonian
X2 + P2. Yet another famous example, known as Tsirelson’s problem, is that the tensor
product and the commuting operator formulations of quantum mechanics are equivalent in
finite dimensions but not in infinite dimensions, because of complexity-theoretic reasons in
particular [24].

Due to such nontrivial features, standard quantum complexity results in the discrete-
variable setting, such as the Solovay—Kitaev theorem [31], do not have a clear counterpart
in the continuous case. In particular, if one defines continuous-variable analogs of standard
discrete-variable quantum computational complexity classes BQP and QMA,, does it lead
to relationships similar to the discrete-variable case?

Beyond its fundamental relevance, developing such a complexity-theoretic foundation for
continuous quantum degrees of freedom would widen our horizon of knowledge in several
ways. Firstly, it would help us to understand the computational power of continuous quantum
degrees of freedom for real-world applications. Many physical architectures that are promising
candidates for realizing a full-fledged universal discrete-variable quantum computer, such
as photonic systems, superconducting qubits, and acoustic modes like phonons, are, in fact,
inherently continuous. Developing a fundamentally continuous language for studying these
systems could be essential to fully utilize the potential of such quantum computational
devices, e.g., to devise fast compilation strategies [40] or performing Hamiltonian simulation
with optimal constants [39].

Secondly, it touches on fundamental questions in theoretical physics. For instance, a
standard approach to understanding continuous systems is to discretize them to a certain
precision. We face an immediate question: can we reduce the study of these systems by
approximating them with discrete variables, or are continuous-variable systems fundamentally
distinct and require their own separate formulation? Theoretical physics provides some
evidence for the latter. For instance, the renormalization group provides insight that the
fundamental behavior of a physical system can vary significantly at different scales of precision.
Or, in quantum field theory, one needs to impose energy cut-offs to avoid divergences in the
computation of scattering amplitudes. Computational complexity studies the fundamental
limits of finding reductions between two models, and we believe that tools from this framework
would play a fundamental role in studying reductions between discrete and continuous degrees
of freedom.

In this paper, we lay the groundwork for a computational complexity theory for quantum
continuous variables. We formulate several Boolean quantum computational complexity
classes based on continuous-variable bosonic generalizations of BQP and QMA. We study
the relationship between these and their discrete-variable counterparts, highlight their
fundamental similarities and differences, and identify outstanding open problems.

2 Main models and results

A bosonic quantum state can be described using a vector in the infinite-dimensional Hilbert
space of square-summable complex sequences ¢?(C) which we refer to as a bosonic mode or a
qumode. Let H,, = ¢?(C®") be the tensor-product space of n bosonic modes. We consider
bosonic computations based on Hamiltonians H acting on H,, that are polynomials of degree
d in the canonical operators X and P. Commonly known as position and momentum
operators, they satisfy the canonical commutation relations

[Xa, Py) = i0apl, [Xa,Xp]=0, [P.,FP]=0. (1)
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Figure 2 Relations between complexity classes and computational problems proven in this paper
and described below, up to logspace reductions on the left and polynomial-time reductions on the
right. If a line connects two complexity classes, it is implied that the one below in the diagram is
included in the one above. If a line connects a problem to a complexity class, it is implied that the
problem is in that class if it is below, and hard for that class if it is above. Square brackets indicate
specific choices of non-Gaussian gates, where X® and &, are polynomial Hamiltonians of degree
3, while 7, ® 7 is a polynomial Hamiltonian of degree 4. The other inclusions are given by the
corresponding theorems or trivial from the definitions of the classes.

Polynomial Hamiltonians are ubiquitous in quantum physics and allow us to describe most
existing models of bosonic quantum computations. The spectrum of such Hamiltonians
is a subset of the reals, which can be discrete (e.g., for X2 + P?), continuous (e.g., for
X) or both. In our presentation, we always distinguish between the cases of Gaussian
Hamiltonians (polynomials of degree d < 2), which are typically less powerful, and non-
Gaussian Hamiltonians (polynomials of degree d > 2).

We will often make use of the particle number operator (or simply, number operator)
defined in terms of the position and momentum operators by,

2 2
N X Pl @)
2

where N |n) = n|n) for the Fock basis states |n). The number operator plays a key role in
our analysis as it quantifies the quanta of excitation, or ’particles,” in a bosonic mode. In
terms of the energy of a bosonic state, we often refer to the average particle number, which
corresponds to the expectation value ().

2.1 Structure and summary of results

The structure of the full version of the paper [8] is as follows. After preliminary background
in Section 2, we first consider Boolean complexity classes based on bounded-error continuous-
variable quantum computations in Section 3 (Gaussian) and Section 4 (non-Gaussian). These
contributions are summarised in Figure 2.
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We define a complexity class corresponding to the power of Gaussian dynamical com-
putations (GDC) with logspace preprocessing. We prove that the power of this model
is equivalent to the complexity class BQL corresponding to quantum logspace (See
Theorem 3.1 in [8]). A complete problem for this class is inverting well-conditioned
matrices [16, 42]. This can be viewed as a continuous-variable version of a result by
Aaronson and Gottesman [2], which places the problem of simulating Clifford circuits in
the complexity class ®L (a complete problem for this class is computing the determinant
over the finite field Z, [12]).

We then define bounded-error quantum computations using gates generated by polynomials
in the bosonic position and momentum operators (CVBQP). In this model, we sample the
output of the quantum computation in the particle number basis (eigenstates of X2 + P?).
We show that a specific instance of this class contains BQP (Theorem 4.1 in [8]) and that
continuous-variable quantum computations using only Gaussian and cubic phase gates
(generated by X?) can be strongly simulated in EXPSPACE when no energy upper
bound is assumed (Theorem 4.2 in [8]). We explain why proving a stronger upper bound
of PSPACE or even PP as in the discrete-variable case (if true) would require nontrivial
ideas. Finally, we give a polynomial-time parallel algorithm for computing output
continuous-variable observable expectation values of such computations (Theorem 4.7
in [8]), which is in PSPACE by standard results [43]. We explain in Section 4.3.3
of [8] that the EXPSPACE and PSPACE results for particle-number measurements
v.s. continuous-variable observable measurements are due to fundamental computational
differences in Schrodinger v.s. Heisenberg dynamical evolution in continuous-variable
systems. We conjecture that a strong simulation of the former model is strictly more
difficult in terms of computational complexity.

Next, we consider ground state energy problems and Boolean non-deterministic quantum
complexity classes in Section 5. These contributions are summarised in Table 1:

We show that deciding the boundedness of the ground state energy is in P for Gaussian
Hamiltonians (Theorem 5.1 in [8]) and co-NP-hard for constant-degree polynomial
Hamiltonians (Theorem 5.2 in [8]). Furthermore, we give an efficient classical algorithm
for verifying the boundedness of the ground state energy of a subclass of Hamiltonians of
degree d = 4 via a reduction to a classical sum-of-squares method (Proposition 5.4 in [8]).

We study the continuous-variable local Hamiltonian problem (CVLHdS) of estimating
the lowest energy of a bosonic Hamiltonian of degree d in the position and momentum
operators over a set of states S. For Gaussian Hamiltonians, we show that this problem is
in P whenever the set S contains the set of Gaussian states (Theorem 5.1 in [8]). For non-
Gaussian Hamiltonians, we prove that the complexity of this problem critically depends
on the stellar rank r, a measure of the non-Gaussian character of a continuous-variable
quantum state [9, 10]. In order to simplify the presentation of the second result below, we
rely on a mathematical conjecture (Conjecture 2 in [8], for which we provide numerical
evidence), which allows us to parametrize the relevant family of states one optimizes over
using simple constraints on the energy (average particle number):

For r = 0 (corresponding to optimization over Gaussian states) with at most exp(n) :=

nOM

e energy (average particle number), we prove that the problem is NP-complete

using a reduction from deciding when a matrix is not copositive (Theorem 5.3 in [8]).
When energy and stellar rank are both at most poly(n) := n®®, we prove that the
problem is in QMA (Theorem 5.4 in [8]). The same proof technique also shows that
for arbitrary = and at most exp(n) energy (average particle number), the problem is in
NTIME (n®"), where NTIME (t) is the class of problems that are solvable by a
nondeterministic Turing machine that runs in time O(t) on each branch.
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For r = oo with no energy bound, using an observation of [30], we encode the solution
to Hilbert’s tenth problem in the ground state of a Hamiltonian. As a consequence,
the problem is RE-hard (undecidable) when we assume no bound on the stellar rank
(Theorem 5.6 in [8]).
Finally, we introduce a continuous-variable version of QMA, based on a CVBQP verifier
(CVQMA). We give preliminary ideas for relating the complexity of the continuous-
variable local Hamiltonian problem to this class, based on a continuous-variable analog of
Kitaev’s history state construction [29, 28].

Table 1 Computational complexity of the Hamiltonian boundedness problem and the continuous-
variable local Hamiltonian problem for Gaussian and non-Gaussian polynomial bosonic Hamiltonians
over n modes. Seox(pl) denotes the set of states with constant stellar rank with at most exponential

energy (average particle number) and S§§||yy the set of states with polynomially bounded stellar rank

and energy. Note that Theorem 5.4 and Theorem 5.5 of [8] rely on Conjecture 2, for which we
provide numerical evidence. For all non-Gaussian results, assuming a degree d = 4 is sufficient
except for the undecidability result where we show that d = 8 is sufficient (for d = 4, the problem is
QMA-hard as a consequence of [11]).

Ground state problems Gaussian Hamiltonians Non-Gaussian Hamiltonians
HBound € P (Theorem 5.1 in [8]) co-NP-hard (Theorem 5.2 in [8])
CVLH over &5 € P (Theorem 5.1 in [8]) NP-complete (Theorem 5.3 in [8])
CVLH over 87 € P (Theorem 5.1 in [8]) € QMA (Theorem 5.4 in [8])
CVLH over S € P (Theorem 5.1 in [8])
€P( [81)

poly
€ NTIME(n°™) (Theorem 5.5 in [8])
CVLH Theorem 5.1 in [8 RE-hard (Theorem 5.6 in [8])

3 Details of the contributions

In what follows, we detail our contributions and provide some intuition. All definitions and
results are stated informally and we refer to [8] for formal statements and proofs.

Gaussian computations

Let us first consider the power of bounded-error quantum computations using polynomial
Hamiltonians of degree at most 2. The unitary gates generated by such Hamiltonians are
known as Gaussian gates. It is well-known that Gaussian gates are efficiently simulatable
in polynomial time P when acting on Gaussian states [4], i.e., states that may be obtained
from the vacuum using Gaussian gates [17], together with Gaussian measurements, i.e.,
projection onto Gaussian states. We define a model of Gaussian computations as follows (see
Definition 3.1 of [8] for a formal statement):

» Definition 1 (Gaussian dynamical computations, informal). Gaussian dynamical computation
(GDQC) is the class of problems that can be solved by evolving input Gaussian states via
logspace uniform quadratic Hamiltonians for polynomial time, followed by measuring a single
mode in the position basis (see Section 2.53.3 of [8] for more details about the formalism,).
The computation accepts if the measured outcome has a value greater than a fized constant b
and rejects if it is below a fized constant a.

GDC allows evolving a quantum state according to different Gaussian Hamiltonians
one after the other, so long as the total time and number of Hamiltonians do not exceed
a polynomial bound. Gaussian computations are known to be continuous-variable analogs
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of the so-called Clifford computations in the discrete-variable case. Clifford computations
are also known to be classically simulatable in polynomial time, by the Gottesmann—Knill
theorem [19]. In [2], Aaronson and Gottesman showed that one can actually simulate Clifford
computations (i.e., sample from one qubit) in the complexity class @L, which is believed to
be strictly contained in P. Performing linear algebra (such as computing the determinant)
over Zs is a complete problem for this class. It is natural to ask whether a continuous-variable
analog of this result holds. Our first result resolves this question in the affirmative (see
Theorem 3.1 in [8] for a formal statement):

» Theorem 2 (The computational power of Gaussian dynamics, informal). The power of
Gaussian computations up to logspace reductions is captured by bounded-error quantum
logspace (BQL) and, equivalently, the problem of inverting a well-conditioned matriz.

The proof is based on the symplectic formulation of Gaussian operators [17].

Recently and independently, in [3], it was shown that simulating a particular class of
gate-based Gaussian computations over exponentially many modes is BQP-complete. Recall
that approximate matrix inversion is a BQP-complete problem when the matrix under
consideration is sparse and well-conditioned [14]. Although our models and results are
technically different, both reveal a strong connection between Gaussian computations and
linear algebra.

Bounded-error continuous-variable quantum polynomial time (CVBQP)

Arguably, there are many ways one can define a continuous-variable version of BQP based
on how computation is being performed. We consider bosonic computations using gates
generated by polynomials of constant degree in the position and momentum bosonic operators,
which are ubiquitous in quantum physics, with particle-number measurements. We define
gate set-dependent classes (see e.g., Definition 3 below) and investigate the computational
power of these models for different choices of gate sets. In particular, we show that bosonic
computations based on specific gates generated by degree-4 and 2-local Hamiltonians can
perform universal (discrete-variable) quantum computation on an input vacuum state and
without requiring feed-forward of measurement outcomes (see Theorem 4.1 of [8]). Interestingly,
the equivalence between these different continuous-variable classes is unknown, in part due
to the delicate features of unbounded operators such as those pointed out in the introduction.
Some of these relationships, such as the fast compiling of polynomial-degree Hamiltonians
into Gaussian and cubic phase gates, are outstanding open questions; see, e.g., [40, 27].

We then consider bosonic computations based on a family of circuits generated by cubic
phase gates e’ °
P. Notably, this gate set is believed/conjectured to be universal for the set of unitaries

and Gaussian gates e'’, where H is a quadratic Hamiltonian in X and

generated by arbitrary polynomials over an arbitrary number of modes [40, 27|, a claim that
was proven in a controllability sense in [45]. Due to [20], this computational model, when
equipped with the ability of performing Gaussian measurements and feed-forward, is capable
of performing universal (discrete-variable) quantum computation, when complex input states
known as Gottesman—Kitaev—Preskill states are available.

Gaussian gates are closed under multiplication, which is one way we can understand the
classical simulation of Gaussians. The single-mode Gaussian dynamics can furthermore be
understood via specific integrable classical equations of motion (known as Calogero-Moser
dynamics) [10]. However, once we add higher-degree gates to the gate set, the operators
generated by the resulting gates generate a vastly larger set of operators, and the single-mode
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dynamics becomes chaotic [33, 45]. Define CVBQP[X?] as the class of decision problems
that are solvable using quantum circuits based on Gaussian and cubic phase gate sets (see
Definition 4.4 of [8] for a formal definition):

» Definition 3 (CVBQP[X?], informal). CVBQP[X?] is the class of decision problems
that are solvable with a bounded probability of error by applying a polynomial-time uniform
sequence of Gaussian and cubic phase gates to the vacuum state and measuring the number
of particles at the end, with the promise that the energy (average particle number) at the
output is polynomially bounded.

We show that, in between the computation, the energy of states prepared from the vacuum
by polynomial-time sequences of Gaussian and cubic phase gates is upper bounded by a

doubly-exponential function of the number of gates and modes (see Proposition 4.3 of [8]).

The reason for such drastic energy growth in the system is that consecutive application of
cubic and Gaussian gates can lead to repeated squaring of basic observables. This, in turn,
leads to an upper bound of EEXP on the strong simulation (computing output amplitudes
up to exponential precision) of CVBQP|[X?] when the final measurement is made in the
computational basis. We then apply standard depth reduction techniques to bring the
complexity down to EXPSPACE (see Theorem 4.2 of [8] for a formal statement):

» Theorem 4 (Upper bound on the computational power of Gaussian and cubic phase gates,
informal). Bosonic computations consisting of Gaussian and cubic phase gates on input
vacuum and measurement in the Fock basis can be strongly simulated in EXPSPACE.

This theorem assumes no energy upper bound for each of the computational steps. When
introducing an energy (average particle number) upper bound of E* in the above result, we
note that the space complexity of the classical simulation in the single-mode case scales as
O(log(E")).

Next, we focus on the problem of computing expectation values at the output of
CVBQP|[X?] circuits for a low-degree observable O (see Definition 4.7 and Theorem 4.7
of [8] for formal statements):

» Theorem 5 (The computational complexity of bosonic expectation values, informal). The
problem of computing expectation values of low-degree observables for states prepared by
applying Gaussian and cubic phase gates to the vacuum can be solved in PSPACE.

Proof sketch. Let W; := U;---U; where the unitary gates {U; },_,.,, selected from the
Gaussian and cubic-phase gateset, are sequentially applied to a vacuum state. Suppose that
WZ-X1W; takes the form O; = Zu Lo, XHPY. Here we used the multi-index notations
= (p1, - ) € Z7 and X# = X} ... Xtn Let Ojyq = UH_lOiUiTH be the value after
the application of the next gate. We can write O;41 = Zu,v aM’V(UiXUiT)“(UiPUiT)”. If

U,+1 is a Gaussian gate, then the degree of X and P in O; will be the same as that of O;41.

However, if U; 1 is a cubic phase gate, then the degree of O, is at most twice the degree of
O;. That is because of the unitary evolution due to the cubic-phase gate U; PU l-T =P+c X2,
where c is a constant. As a result, the degree of O is at most 27. We note that coefficients
involving the expansion of O into a normal form may be doubly exponentially large. Hence,
the naive brute-force approach runs in exponential space. To bring the complexity upper
bound down to PSPACE, we give a polynomial-time parallel algorithm using exponentially
many processors. Standard results in computational complexity imply a PSPACE upper
bound (see, for instance, [43]). We further show that the upper bound remains true for the
multimode case, using the fact that the only multimode operators we need to add are the
so-called two-mode SUM gates. <
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We emphasize that the standard relationships outlined in Figure 1 indicate a PP upper
bound on BQP. Proving a EXPSPACE upper bound on CVBQP[X?3] (outlined in The-
orem 4) already utilizes nontrivial tools, and we do not know if a stronger upper bound such
as PP would hold in this case based on current techniques. Indeed, from the previous proof
sketch, a remarkable feature of the cubic phase gate becomes apparent: starting with a single
position operator X and applying 7' cubic phase gates interleaved with suitable Gaussian
gates (the Fourier gate ei%(X2+P2), mapping X to P and P to —X), one can perform repeated
squaring, i.c., obtain an observable of the form o X2" + --- after T rounds . This implies
that doubly exponentially large numbers may naturally arise after polynomially many gates
in the continuous-variable setting, in stark contrast with the discrete-variable setting.

The boundedness problem

Next, we aim to study the complexity of estimating the ground state energy of a bosonic
Hamiltonian. Due to the infinite-dimensional setting, however, the spectrum may be un-
bounded. Hence, we first formulate and study the problem of deciding whether a bosonic
Hamiltonian has a bounded ground state energy (see Definition 5.3 of [8] for a formal
definition). Note that this problem is equivalent to deciding whether a bosonic Hamiltonian
has a bounded spectrum, by checking boundedness of the ground energy for H and —H.
The spectrum of any Hamiltonian that is a polynomial of odd degree (such as X or X3 or
X2P + PX?, etc.) is not bounded, as can be seen by computing the expectation value for
an arbitrary coherent state (eigenstates of the operator X + iP), so we focus on polynomial
Hamiltonians of even degree.

It turns out that the quadratic (Gaussian) case is solvable in polynomial time via a
reduction to the problem of deciding whether a polynomial-size matrix, which may be
computed efficiently from the coefficients of the Hamiltonian, is positive semi-definite (see
Theorem 5.1 of [8]).

In the non-Gaussian case, we prove that the problem is significantly harder, even for
degree-4 Hamiltonians (see Theorem 5.2 of [8] for a formal statement):

» Theorem 6 (Complexity of the boundedness problem, informal). The problem of deciding
whether the spectrum of a bosonic Hamiltonian with degree 4 is bounded is co-NP-hard .

Proof sketch. The proof proceeds via reduction from matrix copositivity, which is the
problem of deciding, given M € R"™*", whether (z| M |z) > 0 for all |z) € RY, with
non-negative entries. This problem is known to be co-NP-complete [36]. |

How hard is it to find a witness for the boundedness of the ground state energy? From
the above, if we could find it in polynomial time in general, then we would at least collapse
co-NP to P, which is highly unlikely. However, we may find a procedure to achieve this goal
at least in some instances. This is what we do next, based on a sum-of-squares technique.

Consider a polynomial Hamiltonian in the form H = ZW/EZSL %h,“,{X“, P¥}, where we
used multi-index notation (in Lemma 5.2 of [8] we show that any polynomial Hamiltonian
can be brought to this form with real coefficients h,, € R). The classical polynomial

pr : R?” — R corresponding to H is defined as
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! We thank Francesco Arzani for pointing out this fact.
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We prove the following (see Proposition 5.4 of [8] for a formal statement):

» Proposition 7 (Checking boundedness for degree-4 Hamiltonians, informal). Let H be a
bosonic Hamiltonian of degree 4. If py is a sum-of-squares polynomial, then the spectrum of
H is bounded from below by an efficiently computable constant.

As a result, a sum-of-squares approach provides a sound algorithm for deciding bounded-
ness of the ground state energy of polynomial Hamiltonians in the d = 4 case, meaning that
if we find a valid sum-of-squares decomposition for pg, then H is bounded, but if pg is not a
sum-of-squares that does not imply unboundedness for H. Since the degree of py is constant,
one can look for a sum-of-squares decomposition by running a polynomial-time semi-definite
program [38]. Note that if py is not a sum of squares and we conjugate H by a Gaussian
unitary U (which does not change the degree of H) and try again, we may find a different
valid witness for boundedness.

The continuous-variable local Hamiltonian problem

We consider the case of general polynomial Hamiltonians and define the continuous-variable
local Hamiltonian problem as follows (see Definition 5.2 of [8] for a formal definition):

» Definition 8 (The continuous-variable local Hamiltonian problem, informal). Let S C H be
a subset of continuous-variable quantum states. The continuous-variable local Hamiltonian
problem CVLH% is the problem of estimating the lowest energy of a poynomial Hamiltonian
H of degree d over the set S.

Note that the name local for this problem comes here from the fact that any polynomial
Hamiltonian of degree d is at most d-local by definition.

For Gaussian Hamiltonians, our solution to the boundedness problem also provides a
polynomial-time algorithm to estimate the ground state energy, thus placing the continuous-
variable local Hamiltonian problem CVLH3, for Gaussian Hamiltonians in P (see Theorem 5.1
of [8]).

For non-Gaussian Hamiltonians, in the case of states with bounded particle number, a
result of [11] proves that the problem of estimating the ground state energy of the Bose—
Hubbard model at finite (polynomial) number of bosons is QM A-complete. This Hamiltonian
is of the form Hpy =1-3, ; A; azaj +J >, Ni(N; — 1), where N = (X? + P? —1)/2
and a = (X +iP)/v/2, and where A; ; is the (4, j)-th entry of the adjacency matrix of an
undirected graph. Note that the Hamiltonian Hyy, conserves the number of particles, and
hence, this operator may be thought of as a finite-dimensional Hamiltonian. In particular,
denoting by H,, the set of states with less than n particles, this shows that CVLH;Z_LH is
QMA-hard already for d = 4 (and thus CVLH3, as well).

In general, the complexity of the problem for non-Gaussian Hamiltonians depends
significantly on the complexity of the set of states one optimizes. Following [9, 10], we
consider the stellar rank of a quantum state as a parameter for specifying this set of states
(see Section 2.3 of [8] for a brief review of the stellar rank). In short, to any continuous-variable
quantum state [¢)) over n modes, one can associate a holomorphic function F@Z :C" = C.
When this holomorphic function can be decomposed as a product of a polynomial P and a
Gaussian G, i.e., FQZ(zl, <o zn) = P21, ,2n)G(21, - , 2n), the degree of the polynomial
P defines the stellar rank r of |[¢)). Otherwise, the stellar rank is infinite. When r = 0, we
obtain the set of all Gaussian states, which can be produced by Gaussian gates applied to
the vacuum state. The stellar rank can be finite (e.g., the stellar rank of n indistinguishable
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particles is n). It can also be infinite, e.g., a1 |h1) + ag |1)2) for Gaussian states [1);) , [t)2)
(a1,as € C). We further constrain the energy of these states with respect to the number
operator N (see Definition 5.5 of [8] for a formal definition).

For zero stellar rank, we show (see Theorem 5.3 of [8] for a formal statement):

» Theorem 9 (Lowest energy over Gaussian states, informal). The problem of estimating the
lowest energy of an n-mode polynomial bosonic Hamiltonian of constant degree over the set
Sy® of states of stellar rank 0 (Gaussian states) with energy (average particle number) at
most exp(n) is NP-complete.

Proof sketch. NP-hardness comes from a reduction from matrix non-copositivity (rather
than matrix copositivity for Theorem 6). To place the problem in NP, note that the
expectation value of a constant-degree polynomial Hamiltonian over a Gaussian state with
energy at most exp(n) may be computed efficiently, so the NP witness is a description of the
Gaussian state of lowest energy. <

For logarithmically and polynomially-bounded stellar ranks, we show (see Theorem 5.4
of [8] for a formal statement):

» Theorem 10 (Lowest energy over bounded stellar rank, informal). The problem of estimating
the lowest energy of an n-mode polynomial bosonic Hamiltonian of constant degree over the
set S of states of stellar rank r = poly(n) with energy (average particle number) at most
poly(n) is in QMA (this result holds up to Conjecture 2 of [8]).

Proof sketch. To place the problem in QMA,, we use the fact that any state of finite stellar
rank is related by a Gaussian unitary G to a state of bounded particle number |¢) [10]. This
allows us to efficiently rewrite the optimisation in terms of a (sparse) finite-dimensional
Hamiltonian, once the Gaussian unitary corresponding to the lowest energy state is known.
The QMA witness is then given by a classical description of that Gaussian unitary G
provided in the computational basis, together with a finite-dimensional state |¢) that is the
ground state of the finite-dimensional Hamiltonian, such that G |c) is the lowest energy state
of the original Hamiltonian.

When the stellar rank is logarithmically bounded instead, |c) has an efficient classical
description and the witness can be made fully classical. |

Finally, we consider the general case of unbounded stellar rank, with no restrictions on
the set of states over which the optimisation takes place, and we show (see Theorem 5.6
of [8] for a formal statement):

» Theorem 11 (The complexity of the continuous-variable local Hamiltonian problem, informal).
The problem of estimating the ground energy of a polynomial bosonic Hamiltonian of constant
degree is undecidable. This problem is already undecidable for d = 8.

Proof sketch. The proof of this result proceeds via a reduction from Hilbert’s tenth problem
(a Niillstellensatz problem over the integers) due to [30], combined with the fact that there
exist explicit undecidable polynomial equations over non-negative integers of degree 4 and a
constant number of unknowns [25]. <

Continous-Variable Quantum Merlin Arthur games

Finally, we introduce a continuous-variable analog of QMA (see Definition 5.1 of [8] for a
formal definition):
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» Definition 12 (Continuous-variable quantum Merlin-Arthur, informal). CVQMA is the class
of decision problems, for which a solution encoded in a continuous-variable quantum state
can be verified efficiently by a CVBQP machine.

Motivated by the relationship between the local Hamiltonian problem and QMA in the
discrete-variable case based on Kitaev’s history state construction [28], we aim to connect the
class CVQMA to the continuous-variable local Hamiltonian problem. We give the basis for
a continuous-variable history state construction providing such a connection (see Section 5.3
of [8]), and identify the challenges associated with such a construction.

4  Qutlook

The study of continuous-variable quantum computations may have various interactions with
the foundations of computational complexity, computability, and quantum mechanics, which
we discuss in the next section. After that, in Section 4.1.1, we list several open questions.

4.1 Discussion
Energy of continuous-variable computations

One of the key insights of this work is that by alternating Gaussian and cubic phase gates, the
average energy of the system — even for a single mode — can grow to be doubly exponential
in the number of cubic phase gates used in the circuit. This observation suggests that strong
simulation (calculating each amplitude individually) of continuous-variable quantum systems
could be significantly more challenging than for discrete-variable ones, potentially being hard
for complexity classes like PSPACE or even EXPSPACE. This suggests that on top of
time and space complexity, energy plays a significant role in the computational power of
bosonic systems.

In practical physical experiments, the energy must be supplied by the experimentalist,
requiring a physical definition of computational cost that accounts for time, space, and energy.
Specifically, if one is willing to expend up to E* units of energy, our results show that a single
mode can be simulated within SPACE(O(log £*)). This highlights a trade-off between time,
space, and energy, which we believe deserves a thorough examination. Understanding time,
energy, and space tradeoffs for multimode systems equipped with multi-mode non-Gaussian
gates is an interesting open question.

In our definition of CVBQP, we enforce the “promise” that the quantum state in the
beginning and the end has limited energy, as measured by the average particle number, but
it may take any value in between. A natural question to ask is: is the power of this model
the same as the one where we impose restrictions on average energy at any point during
the computation? See Figure 3 for a visual depiction. We can ask a similar question about
classical continuous (time and/or space) models of computation where we are promised that
the system’s state is effectively discrete (e.g., a two-level system) at the beginning and the
end. Still, the system can utilize its continuous degrees of freedom in between to an arbitrary
precision. Is the power of this hypothetical model the same as digital computation? We
first note that without such promise in the beginning, it is not clear how one can program
such a system, and without the promise on the energy in the end, no physically viable
device would be able to measure the quantum state. Even if we assume the existence of
such a hypothetical device, it is not difficult to approximately predict the output of such a
hypothetical device (we output random numbers because, at high energy, no concentration
of measure is expected).
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We may face the objection that assuming no mechanism to bound energy (e.g., dissipation),
this promise is unreasonable because we cannot verify it. We first note that it is not difficult
to come up with trivial examples that satisfy such a promise. Consider the unitary UUT
where U |0) has high energy. Clearly, UU' has bounded energy at the beginning and the
end and very high energy in between. Second, promises that are possibly difficult to verify
are common in quantum complexity theory, e.g., promise on the gap of a Hamiltonian or
promise that a BQP computation either accepts with probability > 2/3 or < 1/3. We have
a similar scenario for the energy promise.

As a thought experiment, assume we have a fragile quantum processing device that
breaks if it holds more than Ny particles. Now, we design a quantum experiment such that
the system (on average) has < Ny particles at the beginning and the end but may (on
average) have > Ny particles in a way that many of the computational paths involve < Ny
particles and many involve > Ny. In the end, we measure the device’s output and measure
< Ny particles. Do we measure the device to be broken or unbroken? This is similar to the
Schrodinger’s cat (or Wigner’s) paradox. In the mentioned thought experiment, the device
played the cat’s role. In other words, if the device’s condition (i.e., broken or unbroken)
is determined only at the time of measurement, then CVBQP with mild (or no) energy
restriction in between might be a plausible model. Otherwise, if broken paths are forbidden,
then CVBQP with energy bound on the entire computation path is a more reasonable
model from a physical standpoint. We note that in an actual experiment, energy is pumped
from an outside source, and the closedness of the experiment is only an approximation.

Connections with the extended Church—Turing thesis

Our result leaves open the possibility that CVBQP ¢ BQP; due to doubly exponential
growth of energy in between computations, such a separation is plausible. What would that
imply about the nature of computation in the physical world? If CVBQP is a plausible
model for computation in the physical world, then CVBQP ¢ BQP seems to imply a
contradiction to the extended Church Turing Thesis. But how realistic is CVBQP as a
model of computation? In particular, how should one determine the energy cap in between
the computations? Consider scattering amplitude for quantum field theories, where the
specific amplitude sets the number of particles at the beginning and the end, and still,
fluctuations in the vacuum may lead to many particle creations, and annihilations can occur
in between. Are bounds on the fluctuations of the vacuum (see, for instance, [18]) such that
the computational complexity of scattering amplitudes do not exceed that of BQP? Are
there computational phase transitions depending on ~; and 57

What can we say about noisy systems? Suppose we define DissCVBQP(vy1,72) as a
dissipated model where we have a mechanism that pumps bosons into the system with rate
~v1 and another mechanism that bosons are emitted to the environment with rate v5. How
does the power computational complexity of DissCVBQP(71,72) depend on v and 27
Can we show for physically relevant parameters the power of this model is BQP-complete?

Logarithmic number of cubic phase gates

Standard results in the discrete-variable model of quantum computing (e.g., [7]) imply that
starting with a computational basis, discrete-variable quantum circuits with a logarithmic
number of T" gates and polynomially many Clifford gates can be efficiently strongly simulated
on classical computers. Can we prove a similar result for continuous-variable systems, i.e.,
can we show that starting from the vacuum state, a polynomial-size quantum circuit with a
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Energy

time

Figure 3 Energy bound conditions for quantum computations. The red curve depicts a system
that is promised to have low energy at the beginning and the end of the computation, but may
have arbitrary high energy in between. The blue curve depicts a model where we impose energy
restrictions at any point during the computation.

logarithmic number of cubic phase gates can be simulated on a classical computer? Based
on our results, the best upper bound we could prove for this problem was PSPACE. We
furthermore note that, due to repeated squaring of energy, the “effective dimension” that the
quantum system explores is exponential even if the circuit has, at most, a logarithmic number
of cubic phase gates. Based on this intuition, we conjecture that (noiseless) continuous
variable quantum circuits with a logarithmic number of cubic phase gates cannot be simulated
efficiently on a classical computer.

Noiseless model as a foundation to study noisy systems

Even though a realistic model for the experimental implementation of bosonic computations
is a dissipative (or noisy) model, noise models are various, and by understanding the
computability limits of the noiseless system, one can gain a reliable foundation to study
computational complexity after imposing different restrictions on the model. A similar
approach has been pursued for computational complexity in the discrete-variable domain
where we define BQP as an idealized noiseless quantum computing model and pin down its
computational complexity. We then use this foundation to study the model’s different variants
and restrictions. For instance, we know that computing the amplitudes of a noiseless quantum
circuit is #P-complete. Obviously, this result is not directly relevant to understanding the
cost of simulating practical problems. However, this observation has been utilized via tools
in computational complexity to lay the foundations for demonstrating quantum speedup
in noisy or restricted models such as Boson Sampling [1]. Moreover, we describe a way to
encode BQP computations in bosonic subspaces (see Theorem 4.1 of [8]) relying on the
Solovay—Kitaev theorem [13], but this result does not appear to be robust to noise, because
the noise may induce leakage to unbounded regions of state space where the theorem no longer
holds. This motivates further study of robust quantum computations in continuous-variable
systems.
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Truncating CV systems using the stellar rank

Standard approaches to describe continuous-variable quantum systems using a finite number
of variables include (i) truncating their infinite-dimensional Hilbert space, which amounts to
restricting to bounded particle-number supports, or (ii) keeping track only of the covariance
matrix and displacement vector of the state. These have immediate shortcomings: (i) is
not stable under Gaussian evolutions, which may be thought of as computationally easy [4],
and truncating a Gaussian state usually makes it non-Gaussian; (ii) only faithfully describes
Gaussian computations.

Our results suggest that the stellar rank may be a meaningful approach for describing
continuous-variable quantum systems, in particular for studying ground state problems for
continuous-variable systems [41]. Informally, the stellar rank combines both approaches (i)
and (ii), as states of finite stellar rank can always be expressed as (mixture of) Gaussian
unitary operators acting on (core) states of finite support.

4.1.1 Open questions

Since the aim of the present work is to lay foundations for a theory of bosonic quantum
complexity, it naturally leads to many open questions, some of which we list in the following:

1. The most immediate open question from this work is whether we can bring the EX-
PSPACE upper bound on CVBQP to smaller complexity classes such as PSPACE or
even PP. What about lower bounds? Due to the doubly exponentially large dimension-
ality of the effective Hilbert space, it is natural to conjecture that strong simulation of
CVBAQP is hard for a complexity class such as PSPACE (or even EXPSPACE) which
is believed to be strictly larger than PP. Such a result would be important evidence that
CVBQP may surpass the power of BQP.

2. A related question is: what energy bound on CVBQP makes it equal to BQP? In an
actual physical computation (such as a bosonic system subject to dissipation), one would
expect that the energy stays polynomially bounded. Is it the case that CVBQP =
BQP under the promise that the energy stays polynomially bounded throughout the
computation? Can we prove that a variant of CVBQP subject to dissipation is equivalent
to BQP?

3. It is usually assumed in the continuous-variable quantum information literature that a
single non-Gaussian gate together with all Gaussian ones is sufficient to perform “universal”
quantum computations. However, this notion of universality is somewhat restricted, as it
relates to the ability to approximate evolutions generated by polynomial Hamiltonians [33].
In particular, is the cubic phase gate (for instance) and Gaussian gate set universal, in
the sense that any state can be reached to arbitrary precision from the vacuum state
using unitary gates from this set? See [45] for a formal statement of this open problem,
and [35] for an example of a continuous-variable gate set satisfying this property.

4. In the discrete-variable setting, the computational power of quantum circuits is essentially
independent of the choice of universal gate set. Is it also the case in the continuous-variable
setting? If so, can a continuous-variable Solovay—Kitaev theorem [31, 13] be derived for
these gates? See [5] for such a result in the case of Gaussian gates. This also relates to
the existence of fast compilation algorithms for bosonic gates [40, 26, 27].

5. What is the precise complexity of the Hamiltonian spectrum boundedness problem? We
prove co-NP-hardness and conjecture hardness for co-QMA. Can we show co-QMA is
an upper bound? We describe a sound algorithm for verifying boundedness in the d = 4
case. Do similar results exist for d > 47
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After possible conjugations with arbitrary unitary matrices, can we write a Hamiltonian
as a sum-of-squares of other Hamiltonians (c.f. [23])?7 We have obtained partial results in
this direction for degree-4 polynomial bosonic Hamiltonians.

We can define families of Hamiltonians with a ground state of a given exact or approximate
stellar rank r. Is there a procedure to decide the opposite? L.e., given the description of
the Hamiltonian and an approximation parameter, decide whether it has an approximate
ground state of stellar rank < 7.

Our results indicate if we minimize the energy of a continuous-variable Hamiltonian over
an ensemble with polynomially bounded energy (particle number) and stellar rank =, then
for r = poly(n) it is contained in QMA. Can we show that these containments are tight?
What about r = exp(n) and higher particle numbers? Proving such results would involve
continuous-variable versions of Kitaev’s history state [29, 28] in the continuous-variable
setting. This construction would involve nontrivial ideas, which we leave for future work.
What is the complexity of the continuous-variable local Hamiltonian problem for other
natural families of continuous-variable quantum states? For instance, the family of
quantum states that are superpositions of poly(n) Gaussians? This class of states has
recently been considered in the context of classical simulation of bosonic computations,
leading to the introduction of the continuous-variable notion of Gaussian rank [15, 22],
akin to the discrete-variable notion of stabilizer rank [7]. Note that the stellar rank for
such states is typically infinite.

What is the complexity of deciding whether the spectrum of a polynomial bosonic
Hamiltonian has a continuous part or if is it discrete? When it is discrete, is CVLH
RE-complete?

Bosonic quantum computations also provide a natural setting for generalizing classical

complexity theory over the reals (e.g., in the Blum—Shub—Smale model [6]) to the quantum
case, given that bosonic Hamiltonians may have a continuous spectrum. We expect that
most of our results should have counterparts over the reals.
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