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ABSTRACT Inspired by biological processes, neuromorphic computing leverages spiking neural networks
(SNNi5s) to perform inference tasks, offering significant efficiency gains for workloads involving sequential
data. Recent advances in hardware and software have shown that embedding a small payload within each spike
exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
To scale neuromorphic computing to larger workloads, split computing—where an SNN is partitioned
across two devices—is a promising solution. In such architectures, the device hosting the initial layers must
transmit information about the spikes generated by its output neurons to the second device. This establishes
a trade-off between the benefits of multi-level spikes, which carry additional payload information, and
the communication resources required for transmitting extra bits between devices. This paper presents the
first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level
SNNs. We propose digital and analog modulation schemes for an orthogonal frequency division multiplexing
(OFDM) radio interface to enable efficient communication. Simulation and experimental results using
software-defined radios reveal performance improvements achieved by multi-level SNN models and provide
insights into the optimal payload size as a function of the connection quality between the transmitter and
receiver.

INDEX TERMS  Graded spikes, multi-level spikes, neuromorphic wireless communications, neuromorphic
computing, spiking neural networks.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION
URRENT learning algorithms, computing primitives,
and hardware platforms such as GPUs are widely
expected to soon fall short in supporting scalable, energy-
efficient artificial intelligence (AI) models, especially for
edge deployments [1]. This motivates the ongoing explo-
ration of alternative computing paradigms, including in-
memory computing [2], neuromorphic computing [3], [4],
and quantum computing [5], [6]. Advances in computing
technologies are bound to affect a range of fields from the

sciences [7] to engineering [8]. This work studies some of the
implications of the emergence of neurormorphic computing
for telecommunications engineering [9], [10], [11], [12], [13],
[14], [15], [16].

As communication networks become increasingly soft-
warized [19], spiking neural networks (SNNs) present a
promising option as co-processors for wireless transmitters
and receivers, as explored in [13] and [15]. Neuromorphic
computing, therefore, can play an important role in enabling
advanced communication functionalities. Conversely, com-
munication networks can support the development of
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FIGURE 1. (a) Neuromorphic wireless split computing architecture based on multi-level SNNs: Spikes
exchanged between a transmitter and a receiver over a wireless channel include a payload of m bits.

(b) While the accuracy of a centralized implementation increases monotonically with the spike payload m
[17], [18], in the presence of communication constraints there is generally an optimized value of m that
balances the informativeness of each spike with the reduced accuracy of higher-rate transmission.

distributed computing architectures grounded in neuro-
morphic principles. In these architectures, communication
protocols must be tailored to the unique nature of infor-
mation exchanged between SNN neurons. Unlike conven-
tional multi-bit clocked messages, spiking neurons encode
and transmit information through the timing of individual
spikes.

While SNNs can reduce the energy consumption for cer-
tain workloads [20], large-scale tasks requiring deeper SNN
architectures may still prove too demanding in terms of
energy and memory for mobile devices [21]. In these settings,
split computing — where the computational workload is
distributed across multiple devices — is promising solution.
In particular, in [22], the authors demonstrated that split-
ting a deep SNN architecture across multiple edge devices
reduced inference latency by 60.7% and the overall energy
consumption per device by 27.7%. However, partitioning an
SNN across multiple devices requires the devices to share
timing information to maintain the integrity of the neural
computations [9], [10], [12], [16], [23], [24], [25].

As shown in Fig. 1(a), in this paper, we focus on a
basic distributed computing architecture [26] consisting of
an SNN split between two devices, which are connected
over a wireless channel. The transmitter-side SNN processes
sequential data captured by a neuromorphic sensor, such
as an event-driven camera [27], [28], [29], [30]. SNNs can
natively process event-driven data via spiking neurons. The
receiver-side SNN uses the received radio signal to produce a
final inference decision. For example, in the set-up shown in
Fig. 1, the transmitter’s sensor observes hand gestures, which
are estimated at the receiver side.

Conventional SNNs represent information solely in the
timing of spikes. However, digital neuromorphic chips, such
as Intel’s Loihi 2 supports multi-level, or graded, spikes with
minimal additional energy cost [17], [18] (see Sec. II-B for
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further details). Multi-level spikes encode information both
in the timing of the spikes and in their amplitude. There
is evidence that biological brains may also leverage spike
amplitude variability to encode additional information [31].
As illustrated in Fig. 1(a), multi-level spikes are assigned
a payload of m bits, while conventional spike carry m =
0 additional bits of information. SNNs with multi-level spikes
have been shown to improve the accuracy of conventional
SNN deployments, particularly when the number of timesteps
available for inference is limited [32], [33], [34].

In a split computing architecture, the introduction of
multi-level spikes creates the challenge of transmitting a
larger amount of information per spike on the wireless
interface. As illustrated in Fig. 1(b), while in a centralized
implementation, larger values of payload size m are generally
beneficial in terms of inference accuracy, in a split computing
system, an excessively large payload size can cause a per-
formance degradation due to the lower fidelity of higher-rate
transmissions on wireless channels. This work addresses this
inherent tension by investigating the design of both analog
and digital transmission schemes for neuromorphic wireless
split computing systems with multi-level spikes.

B. RELATED WORK

1) NEUROMORPHIC WIRELESS SPLIT COMPUTING
Neuromorphic wireless split computing was first studied
in [9], in which single-link neuromorphic sensing and com-
puting were integrated with ultra-wideband (UWB) trans-
mission to enable edge-based remote inference. This work
was then extended in [10] to a multi-device scenario with
frequency-selective channels, demonstrating IR transmis-
sion’s compatibility in multi-device environments. In [12],
wake-up radios were incorporated into the system to further
reduce the overall energy consumption of the system.
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The work reported in [24] analyzed how spike losses affect
the inference accuracy and total neural activity when consid-
ering a distributed wireless SNN implementation. Another
reference [14] studied a distributed system of edge nodes,
each containing a subset of spiking neurons, that commu-
nicate with an access point via wireless channels using
frequency division multiple access (FDMA) by allocating
different frequency bands to different nodes.

A neuromorphic integrated sensing and communications
system was studied in [11], in which an SNN was deployed at
the receiver to decode the transmitted information and detect
the possible presence of a target simultaneously.

There have been also several reported prototypes for
neuromorphic split computing. The transmission model
in [35] utilized neuromorphic principles, implemented on
Intel’s Loihi chip combined with software-defined radio
(SDR) hardware, to build a full-stack neuromorphic wire-
less communication system that considers both orthogonal
frequency division multiplexing (OFDM) and UWB trans-
mission. Another work [36] experimentally demonstrated
a communication approach for large-scale wireless asyn-
chronous microsensor networks, enabling the transmission
of binary events from thousands of local nodes with high
spectral efficiency and low error rates.

2) MULTI-LEVEL SNNs

A few studies have contributed to advances in multi-level
SNNs in centralized implementations. For example, refer-
ence [34] proposed a multi-bit transmission mechanism that
expands spike representation from a single bit to multiple
bits, enriching the information content per spike. In [37],
a ternary spiking neuron was introduced to increase infor-
mation capacity while retaining event-driven, addition-only
processing advantages. Additionally, reference [38] designed
a spiking neuron that activates integer values during training
and maintains spike-driven behavior by extending virtual
time-steps during inference for object detection tasks.

C. MAIN CONTRIBUTIONS
This paper investigates for the first time neuromorphic
wireless split computing with multi-level SNNs. Unlike con-
ventional neural networks, SNNs are sequential models, pro-
cessing and transmitting information over time. Furthermore,
they use timing information for inter-neuron communication,
producing temporally sparse signals. This is fundamentally
different from the dense and continuous representations of
inter-neuron signals in artificial neural networks (ANNSs). For
these reasons, SNNs require separate designs and evaluations
as compared to conventional neural networks [10], [12].
Previous works [9], [10], [11], [12], which focused on
conventional SNNs, adopted a UWB interface due to its
low power consumption and compatibility with spike-based
transmission. In contrast, in this paper we adopt the standard
OFDM interface, which provides a more flexible modula-
tion scheme to accommodate multi-level spikes and is more
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widely applicable and available. In particular, OFDM facil-
itates prototyping using conventional SDR platforms, such
as the Universal Software Radio Peripheral (USRP) [39].
We design and evaluate both digital and analog modulation
schemes, which are tested via simulation and via an experi-
mental platform.

Overall, the main contributions of this paper are summa-
rized as follows.

o We study for the first time a neuromorphic wireless
split computing architecture based on multi-level SNNs.
Unlike conventional SNNs with binary spikes, multi-
level SNNs are able to process richer information by
assigning a multi-bit payload to each spike.

o We detail digital and analog transmission schemes that
leverage the sparsity of inter-neuron signals in SNNs,
and adapt to the dynamic output of spikes produced over
time. The proposed digital modulation scheme is based
on the address-event representation (AER) of multi-
level spikes [17], [18]. In this implementation, spike
addresses and payloads are channel-encoded and modu-
lated on OFDM symbols. If the number of information
bits exceeds the available capacity — which is more likely
to occur for a larger value of the payload size m —
spikes are dropped, causing a potential decrease in accu-
racy. Upon channel decoding, the transmitted spikes are
reconstructed at the receiver and fed to the receiver-side
SNN to produce the final inference decision.

o We also detail an analog implementation whereby each
output neuron of the transmitter-side SNN is assigned
to a fixed subset of OFDM subcarriers and the spikes
payloads are transmitted via pulse-amplitude modula-
tion (PAM) on all the assigned subcarriers. This way, the
addresses are implicitly transmitted via the location of
the PAM symbols across the subcarrier indices. While no
spikes are dropped as long as the number of subcarriers
is large enough, analog transmission may degrade the
quality of the reconstructed spikes due to the reliance of
repetition coding.

o We evaluate the performance of the proposed neuro-
morphic wireless split computing architecture based on
multi-level SNNs both via simulations and via a basic
prototype using a neuromorphic camera [40] and USRP
boards.

D. ORGANIZATION

The remainder of the paper is organized as follows. Section II
presents background information about multi-level SNN.
Section III describes the neuromorphic wireless split com-
puting system with multi-level spikes under study, while
the proposed digital and analog transmission schemes are
described in Section IV. Section V explains neuromorphic
receiver processing, including channel estimation, equaliza-
tion, and decoding SNN processing. Experimental setting
and results are described in Section VI. Finally, Section VII
concludes the paper.
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FIGURE 2. Neuromorphic wireless split computing with multi-level spikes: (a) An SNN is split into an
encoding SNN and a decoding SNN, which are connected over a wireless channel following a spilt
computing architecture. (b) Unlike prior works [9], [10], [11], [12], the SNNs implement spiking
neurons that communicate using multi-level spikes [17], [18], adopting a multi-level leaky
integrate-and-fire (M-LIF) neuron model. (c) The output of the encoding SNN is transmitted using
either analog or digital modulation. In the analog implementation, each output neuron of the
encoding SNN is assigned separate OFDM subcarriers. In contrast, in the digital implementation,
the AER protocol is used to embed information about the neurons’ identities. Overflow bits that do
not fit the allocated OFDM symbols are discarded.

Il. MULTI-LEVEL SPIKING NEURAL NETWORKS

As illustrated in Fig. 2, this paper studies a neuromor-
phic wireless split computing system that leverages spiking
neuronal models with multi-level, or graded, spike. In this
section, we describe first the conventional SNN model based
on leaky integrate-and-fire (LIF) neurons (see, e.g., [41],
[42]), and then cover the generalized SNN model with
multi-level LIF (M-LIF) neurons [17], [18]. The following
section will present the proposed split computing architecture
based on SNNs with M-LIF neurons.

A. CONVENTIONAL LEAKY INTEGRATE-AND-FIRE
NEURON

A conventional LIF neuron accumulates stimuli over time,
using an internal state known as membrane potential, and
emits a spike once its membrane potential exceeds a certain
threshold. LIF neurons can be arranged into arbitrary archi-
tectures, and they have been used to implement models such
as multi-layer perception transformers [43] and state-space
models [44]. In this work, we consider an arbitrary layered
architecture, in which each neuron i in layer / generates a
spike at time ¢ if the local membrane potential th, ; passes the
threshold thhr. Accordingly, the output of the LIF neuron i in
layer / at time ¢ is given by

. l I
?f thi = Vt}lr’
if Vz,i > Vipe

0 (no spike),

1 (spike), M

Lo
St,i -
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The membrane potential th’ ; is updated via the leaky integra-
tor dynamics

th,i = 5Vrl—1,i(1 - Stl—l,i) +Ztl,i’ @)

where 0 < § < 1 represents the decay factor, and Ztl’i
denotes the input current from the pre-synaptic neurons in
the previous, (I — 1)-th, layer. By (2), if the neuron i at layer /
spikes at time t — 1, i.e., if Stlfl i= 1, the membrane potential
is reset at time 7.

Given the vector Sffl collecting all the binary outputs
{Stl;]}i produced in the (I — 1)-th layer, the input current
vector Zﬁ, collecting the currents {Ztl’i},- feeding into each
neuron i in layer /, is given by the linear combination

z =w'si-1 3)
where W is weight matrix between the (I — 1)-th and the /-th
layer.

Evaluating (3) requires one accumulate operation per
spike, whose energy cost we denote as E,.

B. LEAKY INTEGRATE-AND-FIRE NEURON WITH
MULTI-LEVEL SPIKES

Spikes emitted in a conventional LIF-based SNN carry infor-
mation only via their firing time ¢ defined as in (1). A more
general model, implemented in neuromorphic chips, such as
Intel’s Loihi [17], allows each spike to carry m additional bits
of information. According to Fig. 2, a multi-level, or graded,
spike is assigned a payload containing m bits of information.
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In this way, when m = 0, a graded spike reduces to the spike
produced by conventional LIF models.

As reported in [17] and [18], digital neuromophic chips
such as Intel’s Loihi 2 permit spikes to carry integer-valued
payloads with marginal additional energy cost. This is due to
several architectural optimizations:

o Efficient spike processing: Digital chips commonly
use the AER protocol for communications between
cores [17]. Each AER packet contains address bits, and
the few additional bits required to transmit the spike
payload — typically less than 8 bits — yield a marginal
increase the overall communication cost.

o Optimized synapse processing: As discussed in [45],
incoming spikes can be mapped to lists of synapse
weights that are accumulated for consumption in the
next time step. This approach allows for the efficient
processing of multi-level spikes without significantly
increasing computational complexity.

o Peripheral modifications: The overhead to generate
multi-bit spikes after multiply-accumulate (MAC) oper-
ations primarily involves modifying the sense amplifier
and ADC [46]. This overhead scales linearly, contrast-
ing with the quadratic scaling of the number of MAC
operations being performed.

Like LIF neurons, multi-level LIF (M-LIF) neurons pro-
duce a spike any time the membrane potential crosses a
threshold. However, the payload of the spike produced by an
M-LIF neuron contains a payload of m bits, which is obtained
by quantizing the membrane potential at the time of spiking.

To elaborate, consider a neuron i in layer / of an arbitrary
layered architecture, whose membrane potential is denoted
by th’i. The output Stl’i associated with neuron i in layer / at
time ¢ is given by [33]

I 0 (no spike), if th i < thhr,
St i [ Ql(vtl,i)’ [ (4)

if v, > V.
where Q(-) is an m-bit quantizer. By (4), a spike contains m
bits given by the quantization level QI(VZ{ ;). We specifically
adopt the clipped uniform quantizer

Q'(V!) = min(l!V! 2|, 2"y € (1,---, 2"}, (5)

where | -] is the floor operation, and ol €0, )isa per-layer
trainable scaling factor. The integer (5), which ranges in
the interval {1,...,2™}, is the payload of a spike, which
corresponds to m bits.

Evaluating the input currents (3) requires the evaluation
of a multiply-and-accumulate operation per spike, with the
multiplication involving an m-bit number. The energy con-
sumption for this operation can be modeled as

Enac(m) = (1 + y(m — 1)Eq,, (6)
where y € [0, 1]is a technology-dependent parameter. When
y = 0, the hardware optimizations mentioned above are

maximally efficient, making m-bit synaptic operations as
costly as withm = 1, 1.e., E;;qc = Eq4c. In contrast, when y =
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FIGURE 3. Surrogate derivative (8) used for training SNN models
with M-LIF neurons (m=2and T =1).

1, the energy overhead reflects a basic shift-and-accumulate
implementation, which entails an energy cost that is m times
that of a single accumulate operation, e.g., Ey,qc(m) = mE,.

C. TRAINING MULTI-LEVEL SNN MODELS

In this work, we assume the availability of a pre-trained
multi-level SNN model, which is split between encoder and
decoder as discussed in the next section. Training of the
multi-level SNN is achieved using backpropagation via a
surrogate gradient that provides a smooth approximation for
the hard quantization function in (5) [47], [48], [49].

To address the non-differentiability of (4), we first recall
the surrogate gradient method used in [47], which applies to
a conventional LIF model (1). This method approximates the
derivative of the neuron’s output Sl{t in (1) with respect to
membrane potential th’i as

as!,
— & I" max (O, 1-—
BVM

1 I
Vt,i - Vthr

). o

where I' > 0 is a hyper-parameter. The equation (7) replaces
the true derivative of the output (1) — a Dirac delta function
at threshold thhr — with a triangular function centered at the
threshold V/{ . with height I.

To extend this approach to the M-LIF model (4), we first set
for simplicity the threshold as 1/a/2”. Then, the derivative of
the neuron’s output is approximated as shown in Fig. 3 as

Pmax (0,1 |V, 2" = 1)), if V], < ﬁ
oS, |1 if allzm <V, < %
8th’i Iyl Am m

rmax (0,1 - [o'v/ 27 = 27]),

O T
itv, ;> o o
®
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As illustrated in Fig. 3, the discontinuous, impulsive, deriva-
tives, associated with the multi-level spikes (4) Stl’l. are
approximated in a manner that extends (7) via a piece-wise
function [48], [49].

Ill. NEUROMORPHIC WIRELESS SPLIT COMPUTING
WITH MULTI-LEVEL SPIKES

In this section, we describe the neuromorphic split computing
system under study. In order to accommodate a multi-bit
spike payload, as well as to facilitate prototyping using SDR
technology, we adopt an OFDM radio interface in lieu of the
UWB modulation considered in prior works [9], [10], [11],
[12].

A. NEUROMORPHIC WIRELESS SPLIT COMPUTING

As illustrated in Fig. 2(a), we consider a neuromorphic wire-
less split computing system in which an SNN consisting of
M-LIF neurons is split between a single-antenna transmitter
(Tx) and a single-antenna receiver (Rx). The SNN is trained
to solve an inference problem based on data captured by a
neuromorphic sensor, such as a dynamic vision sensor (DVS)
camera [40] at the Tx. Based on the SNN split, the Rx makes
the final inference decision by using the wireless signals
received from the Tx. Practical examples of applications of
this architecture were presented in [36] and [50], including
brain-computer interfaces and biomedical devices.

Neuromorphic sensors generate a spike whenever a rele-
vant event is detected, such as a significant change in pixel
brightness. Spikes produced by the sensor are often graded,
e.g., indicating the sign of the reported change with a one-bit
payload [40].

As illustrated in Fig. 4, we adopt a discrete-time model,
where time is divided into sensing slots indexed by inte-
gerst = 1,2, ... Each slot corresponds to the time period
over which the neuromorphic sensor accumulates informa-
tion before reporting the presence or absence of events, along
with the corresponding payloads.

Accordingly, at the end of each sensing period ¢, the neu-
romorphic sensor at the Tx produces a D x 1 vector X; =
[X:.1, ..., X:.p]" representing multi-level spikes produced by
each of the D elements of the sensor. For example, a DVS
camera produces D signals, each corresponding to one pixel.
Each entry X; ; represents the presence (X;; > 0) or absence
(X:,; = 0) of a spike. When a spike is present, the payload
X;i€{l,...,2™} encompasses m bits.

The spiking signal X; recorded by the neuromorphic sensor
is processed by the encoding SNN. Unlike prior works [9],
[10], [11], [12], the encoding and decoding SNNs in the
proposed system are capable of processing and producing
multi-level spikes with m bits. Specifically, as introduced in
the previous section, we consider arbitrary layered architec-
tures consisting of M-LIF neurons for both the encoding and
decoding SNNGs.

Denote by M the number of neurons in the last layer of the
encoding SNN, and by $; = [S:.1, St,2, . .., St.m] the vector
of graded spikes produced by the output layer of the encoding
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FIGURE 4. Timeline of the proposed neuromorphic wireless split
computing system. Time is discretized into sensing slots
t=1,2,...,T, corresponding to the time period over which the
neuromorphic sensor accumulates information before reporting
the presence or absence of events, along with the correspond-
ing payloads. The spikes produced at time slott — 1 are
processed by the Tx, and the outputs of the encoding SNNs are
transmitted over the air using NOFPM OFDM symbols to the Rx
during the following, t-th, sensing slot. The decoding SNN at
the Rx then processes the received signals to produce an
inference decision. Each sensing time step t is typically much
longer than the duration of an OFDM symbol.

SNN, with S;; € {0,1,...,2"} forall i € {1,...,M]}.
The multi-level spikes S; generated by the encoding SNN are
modulated by the transmitter onto a baseband signal that is
transmitted over a wireless channel using OFDM. Using the
received signals, the decoding SNN at the Rx produces the
final inference decision.

B. OFDM TRANSMISSION OF MULTI-LEVEL SPIKES

As illustrated in Fig. 4, a fixed number N9"PM of OFDM
symbols is available in each sensing slot 7 to transmit infor-
mation about the previous slot # — 1. The duration of each
sensing slot is typically sufficient to accommodate a large
number of OFDM symbols, and we assume that the wire-
less interface is used for other devices and/or services when
not occupied by the Tx. For instance, a DVS camera has
a typical sensing period of 130 ms [51], while an OFDM
symbol for a 5G wireless link with a bandwidth 20 MHz
takes 38.09 us.

Each OFDM symbol consists of N D 4 NP gubcarriers,
with NP data subcarriers and N pilot subcarriers. We denote
the subset of data subcarriers as A”” and the subset of pilot
subcarriers as NP, with IN?| = N? and IN?| = N”.

Assuming that the cyclic prefix (CP) of each OFDM
symbol is no shorter than the discrete delay spread of the
multi-path channel, the n-th received OFDM symbol at sens-
ing time period ¢ is given by [52]

yi =Hix] +w}, 9)

where the diagonal channel matrix H} collects on its main
diagonal the channel frequency responses across all the
subcarriers; x} is the n-th frequency-domain OFDM sym-
bol encompassing both the pilot signals and the payload
of the multi-level spikes for slot + — 1; and w} is a
noise vector, with independent and identically distributed
(i.i.d.) complex Gaussian elements having zero means and
variances Ny.
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IV. DIGITAL AND ANALOG TRANSMISSION OF
MULTI-LEVEL SPIKES

In this section, we present digital and analog modulation
strategies for encoding multi-level spikes at each sensing
time slot. We begin by introducing pilot transmission, which
enables channel estimation for OFDM symbol equalization.
Next, we discuss two different types of power constraints,
and, finally, we detail the digital and analog modulation
schemes.

A. PILOT TRANSMISSION

To enable the receiver to perform effective channel estimation
and equalization for both analog and digital modulation, the
Tx sends pilot symbols {xf }ienr, known to the Rx, at a given
power level P on designated pilot subcarriers indexed by
the integers i € N'F. As discussed in the next section, the pilot
subcarriers serve as references to obtain a channel estimate,
which is leveraged for the equalization of data symbols.

B. POWER CONSTRAINTS

At each sensing slot 7, the graded spikes S,_; are mod-
ulated into symbols {)cf,i}l-e a0 transmitted on the subset
NP of data subcarriers in each OFDM symbol indexed as
n = 1,2,...,N9FPM We consider two types of power
constraints on the data subcarriers.

1) AVERAGE PER-SYMBOL POWER CONSTRAINT

The average per-symbol power constraint limits the overall
power used for transmission across all data subcarriers in a
given OFDM symbol. Denoting the collection of N” symbols
transmitted on all data subcarriers of the n-th OFDM symbol
at sensing slot ¢ by x}, this constraint is given by

1
2

WHX;ZH < P, (10)
where P""** represents the maximum allowable average trans-
mission power per data subcarrier. This constraint ensures
that the total transmitted power remains within acceptable
limits, helping to control energy consumption and interfer-
ence.

2) PEAK POWER CONSTRAINT

While the average per-symbol power constraint (10) allows
for adaptive power allocation among data subcarriers, in prac-
tice, the Tx has a maximum power limit that cannot be
exceeded for each subcarrier. To address this type of con-
straint, we also study a peak power requirement, which
restricts the maximum power transmitted on each data sub-
carrier to a fixed value P i.e.,

ey 1 < P (1)

for each subcarrier i. This peak power constraint helps
maintain the peak-to-average power ratio (PAPR) within
reasonable bounds, thereby mitigating potential issues like
amplifier non-linearities, which can adversely affect signal
quality and system performance [52].
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3) DYNAMIC POWER CONSTRAINTS
Under either constraint (10) or (11), the total maximum power
allocated at each slot ¢ remains the same, i.e.,
1 NOFDM
NDNOFDH Z} ] 1* < P (12)
n=

Accounting for the sequential nature of processing in SNNs,
we also explore dynamic power allocation strategy across
different sensing slots. Specifically, denoting as P, the power
allocated in slot ¢, we impose the total power budget con-
straint

T

1

o 2 P = P (13)
t=1

across T time slots. This enables the dynamic allocation of
transmit power levels P; over the time index ¢. Within each
slot ¢, the power constraints (10) or (11) is enforced with the
power P; in lieu of P"*.

C. DIGITAL MODULATION OF MULTI-LEVEL SPIKES
For digital modulation, we adopt a standard AER protocol to
encode the multi-level spikes [53]. Accordingly, each graded
spike S;; > 0 at time ¢ is associated with an AER packet
containing the address of the i-th spiking output neuron,
as well as with the payload of m bits. The address of the i-
th output neuron is encoded into [log,(M)] bits, as there are
M possible spiking neurons at the output layer. Hence, The
resulting AER packet contains [log,(M)] 4 m bits.
Following the timeline in Fig. 4, the AER packets cor-
responding to all spikes generated at each sensing slot t —
1 from the output layer of the encoding SNN are encoded
and modulated using N°PM OFDM symbols at sensing slot
t. The N9FPM gymbols must thus ideally encode a number of
AER packets equal to Zfi 1 1(St—1,; > 0). This yields a total
of

M
BT = ([logy(M)]1 +m) D L(S;—1;>0)  (14)
i=1
bits to be transmitted. However, due to the varying level of
sparsity of the output neurons at different times ¢t — 1, the
allocated OFDM symbols may be insufficient to deliver all
these bits. In particular, using a binary channel code with rate
0 < r < 1 and a modulation scheme with 28 constellation
points, the number of bits that can be transmitted by the Tx
to the Rx is BOfPM = NOFPMND Ry
If the spiking signals of the output neurons are sparse
enough, so that the number of bits BtTOT does not exceed the
capacity B?FPM of the available OFDM symbols, all the AER
packets are encoded for transmission. Otherwise, the largest
subset S; of AER packets is selected so as to guarantee the
condition ([log,(M)] 4+ m)|S;| < BOPM _ The subset S, is
selected uniformly at random among the Zf‘i 1 1(Si—1,i > 0)
AER packets. Note that, in case the output signals are very
sparse, i.e., if B,T"T < BO9FDM | some subcarriers remain
unused.
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D. ANALOG MODULATION OF MULTI-LEVEL SPIKES

As discussed in the previous subsection, digital modula-
tion represents each multi-level spike using an AER format,
requiring additional bits to specify addresses, as well as
redundant bits for channel coding. In contrast, as detailed
next, analog modulation directly maps the multi-level spikes
onto a set of PAM symbols. These PAM symbols are then
loaded onto the OFDM symbols by mapping subcarriers to
output neurons of the encoding SNN, without the need for
addressing or coding overhead.

With analog modulation, each of the M output neurons of
the encoding SNN is assigned to a subset of data subcarriers
in the OFDM symbols corresponding to the current time slot
t. We denote the mapping between neuron i and a subset of
subcarriers NP(i) € NP. The subsets N°(i) are disjoint,
so that each subcarrier is uniquely assigned to one neuron.
This requires the assumption NPNOFPM > M Moreover,
each set N (i) contains [NPNOFPM /p17 subcarriers.

Each multi-level spike S;; > 0 from output neuron i at
sensing slot ¢ is mapped into a 2"-PAM symbol, which is
transmitted on all subcarriers in subset A/2(i). The transmis-
sion of the same symbol on multiple subcarriers amounts to a
form of repetition coding. In contrast, if there is no spike, i.e.,
if S, ; = 0, the corresponding subcarriers in subset \* D(i) are
idle. Therefore, sparser spiking signals entail a larger number
of unused subcarriers.

V. NEUROMORPHIC RECEIVER PROCESSING

In this section, we describe the processing applied by the
receiver for both digital and analog modulation schemes.
The receiver first estimates the channel using standard signal
processing methods, allowing for equalization of the received
symbols. Once equalization is complete, the receiver demod-
ulates the data symbols to estimated multi-level spikes, which
are then passed to the decoding SNN to make the final infer-
ence decision.

A. CHANNEL ESTIMATION

Denote by h} = [Ht’fl, e, Ht’fNJrN,,]T the diagonal elements
of the frequency-domain channel matrix H} in (9). Note that
th,i corresponds to the channel gain for the i-th subcarrier
in the n-th OFDM symbol at time ¢. Following the standard
aAl[n)proach [52], the receiver first estimates the channel vector
h, on the pilot subcarriers. Based on these estimates, the
channel gains for the data subcarriers are determined via
interpolation [54].

Specifically, the receiver extracts from the received signal
y/ in (9) the received pilot symbols yf’n = {y:” Jienr. The
channels on the pilot subcarriers are estimated using the least
squares (LS) method. The resulting estimated channel ﬁ? ; for

pilot subcarrier i € A'F of the n-th OFDM symbol is given by

n.
hro= (15)

N
t,i

>
<
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where xi ; is the known pilot symbol transmitted at time ¢ on
pilot subcarrier i € N'F.

With the estimated channels {fz’: Jienrr on the pilot sub-
carriers for each n-th OFDM symbol, the channel response
on the data subcarriers is estimated via linear interpola-
tion. To elaborate, write the set of pilot subcarriers N L
{it, i, ...,ip} C {1,2,...,N + NP} and assume pilots
are interleaved with data subcarriers. For a data subcarrier
i € NP, we find the largest pilot subcarrier ip < iand the
smallest pilot subcarrier ip41 > i, where i, < i < ip11. The
estimated channel response for the data subcarrier i € NP at
time ¢ is then given by

[ —
+ (). (16)
Ip+1 — Ip

B. EQUALIZATION

After obtaining the channel estimate, zero forcing (ZF) equal-
ization is applied to mitigate the effect of the channel on the
received symbols. Specifically, the equalized data symbol for
the i-th data subcarrier in the n-th OFDM symbol at sensing
slot ¢ is given by the ratio

R = % (17)
1,1

For both digital and analog modulation, each equalized
symbol fct" ; is demodulated into one of the 28 constellation
points using maximum likelihood detection. This detection
involves selecting the constellation point that is closest to the
equalized symbol in terms of Euclidean distance, ensuring
that the received symbol is mapped to its most likely trans-
mitted value.

1) DIGITAL IMPLEMENTATION

For the digital implementation, each equalized symbol fct" ;18
demodulated into one of the 25 constellation points, resulting
in a B-bit sequence. The bits from all data subcarriers over
NOFPM OFDM symbols form a total of NOFPM NDB bits.
These bits are then processed through channel decoding to
reconstruct the estimated AER packets.

Each estimated AER packet contains a payload of m
bits and an address i, which are mapped to the estimated
multi-level spike 3’,, ;- If no multi-level spike is detected for
a neuron #, the neuron’s input is set to S’t,i = 0, indicating no
activity. This results in a vector S't = [3},1, 3},2, e, S‘LM]T
of estimated spikes, which serves as the input to the decoding
SNN.

2) ANALOG IMPLEMENTATION

In the analog implementation, the [NPN ?FPM /)7 equalized
subcarriers corresponding to the same symbol are averaged
to enhance signal quality. After averaging, the symbols are
demodulated by using maximum likelihood detection to
determine the most likely value from a 28-level PAM con-
stellation. The demodulated PAM symbols are then mapped
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to the estimated multi-level spikes, resulting in the vector
St = [S:1,8:2, -+, S,,M]T of estimated spike activities of
the M input neurons for the decoding SNN.

C. DECODING SNN PROCESSING

The estimated spikes S't = [S’,’],S’,’z, R S,,M]T, derived
from either analog or digital modulations, are processed by
the decoding SNN. For a classification task, the decoding
SNN has C output neurons, with each output neuron repre-
senting a specific class.

Focusing on classification, this work uses a membrane
potential-based decision rule for classification [55]. Follow-
ing this approach, the classification decision is determined by
identifying the output neuron that has the highest integrated
membrane potential over all sensing slotst = 1, ..., T. The
decision rule can be expressed mathematically as

T
& = argmaxicq1....cy D, Vi (18)

=1

where V;; represents the membrane potential of the i-th
output neuron at sensing slot 7.

VI. SIMULATION RESULTS AND EXPERIMENTS

In this section, we report results from simulations and
real-world experiments with the main aim of investigating the
potential advantages of multi-level spikes in neuromorphic
wireless split computing.'

A. SETTING
1) INFERENCE TASK
The system is configured to classify event-based inputs,
captured by a neuromorphic vision sensor. Specifically,
we consider the standard DVS128 Getsure dataset [S51], which
consists of data logged by a DVS camera for a duration of
6 seconds when presented one out of 11 possible gestures
[56]. An SNN with M-LIF neurons having five convolutional
layers followed by four fully connected layers is pre-trained
by using the approach discussed in Sec. II-C. We split
the network, configured as 2C4-64C3-128C3-128C3-128C3-
128C3-AP2-FC512-FC256-FC128-FCl11, at the first fully
connected (FC) layer. In this notation, C denotes a convo-
lutional layer, and AP is the average-pooling layer, with the
numbers before and after each layer description specifying
the number of input channels and kernel size, respectively.
The first six layers form the encoding SNN, while the remain-
ing layers constitute the decoding SNN. Accordingly, the
encoding SNN’s output layer contains M = 512 neurons.
We train different SNN models for different pairs (7', m)
consisting of number T € {2, 4, 6, 8, 10} of sensing slots and
payload size m € {0, 2, 4, 6, 8}.

To define the sensing slots, each original recording from
the DVS camera is divided into four segments of 1.3 seconds
each. Each segment is further divided into 10 frames, each of

ICode is available at https://github.com/kclip/neurocomm-msnn

510

duration 130 ms, with each frame representing a single sens-
ing slot. The events within each sensing slot are accumulated
and directly fed to the first layer of the SNN. For each sensing
slot, each neuron in the hidden layer can emit at most one
multi-level spike.

2) SIMULATION SETTING
In the simulation results, the number of OFDM symbols
per sensing slot is set to N9"PM = 5 and each OFDM
symbol consists of N? = 512 data subcarriers and N* =
75 pilot subcarriers. Pilot symbols are interleaved with data
subcarriers, so that a pilot is placed every 8 data symbols.
We consider a five-path frequency-selective channel, where
each path amplitude follows a Rayleigh distribution with the
same average power so that the average channel norm equals
1. The signal-to-noise ratio (SNR) is defined as the ratio of the
peak or average per-subcarrier symbol power P over the
noise power, i.e., SNR = P"% /Nj. If not stated otherwise,
the average SNR is set to 25 dB.

We also consider dynamic power allocation strategies with
a exponentially decreasing power

Pr=a- b, (19)

where b determines the exponential decay rate of allocated
power, and a is a scaling factor selected to ensure the power
constraint (13). The rationale for considering this type of
power allocation is that errors made in earlier sensing slots
may have a cascading effect, causing further degradation
compared to errors affecting later slots.

For digital transmission, we use quadrature phase shift key-
ing (QPSK) modulation, providing B = 2 bits per subcarrier,
along with low-density parity-check (LDPC) coding with rate
r = 1/2 using the implementation in Nvidia’s Sionna [57].
After channel estimation, equalization and demodulation,
the bit sequence is decoded using the belief propagation
algorithm provided in [57]. As detailed in Sec. V-B.1, the
recovered bit stream is mapped to the AER packets, and
the corresponding multi-level spikes are fed to the decoding
SNN.

For analog transmission, as presented in Sec. IV-D, each
m-bit multi-level spike is quantized into one of the 2" PAM
constellation points, with the absence of a spike for a neuron
corresponding to idle subcarriers. Specifically, each output
neuron of the encoding SNN is mapped to one subcarrier in
each OFDM symbol. Thus, each PAM symbol is transmitted
NOFDM times. The received OFDM symbols are equalized
and averaged before being demodulated into PAM symbols.
Finally, the demodulated PAM symbols are mapped back to
multi-level spikes.

3) EXPERIMENTAL SETTING

To validate the proposed system in a real-world scenario,
we implement the proposed end-to-end neuromorphic wire-
less remote inference system using USRP SDRs [58].
As illustrated in Fig. 5, one USRP board is configured as the
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FIGURE 5. The experimental setup includes a DVS sensor,

a transmitter and a receiver. The screen visualizes the
event-based input of the DVS sensor (left), along with the
corresponding received OFDM signal at the receiver and the
gesture type detected by the decoding SNN (right).

Tx connected to the DVS camera, while the other USRP board
serves as the Rx.

We set up the radios to exchange one frame per sensing
slot of 130 ms. To permit synchronization of the receiver,
we assume the transmission of digital pilot signals by follow-
ing the standard implementation detailed in [59]. Each frame
consists of a known preamble for synchronization, followed
by NOFPM OFDM symbols with NP = 512 data subcar-
riers and N¥ = 75 pilot subcarriers as for the simulations
described above. The carrier frequency is set to 3.58 GHz,
with the gain configured to 50 dB, and both the transmit
and receive rates set to 10° symbols per second. With these
choices, an OFDM symbol lasts for 0.714 ms, which is sig-
nificantly shorter than the duration of a single sensing slot.

The distance between the transmitter and receiver was set
to approximately 1 meter in an indoor environment with a
line-of-sight (LoS) path, ensuring minimal external interfer-
ence. The system bandwidth is determined by the sampling
rate of 1 MHz, with the active subcarriers spanning an
effective bandwidth of approximately 0.7 MHz. The signal-
to-noise ratio (SNR) at the receiver was observed to be
approximately 30 dB. Note that since the USRP is an uncali-
brated device, the configured gain value does not correspond
to an exact transmit power level [58].

As mentioned, we select the pre-trained SNN models
fixed as a function of the parameters 7' and m through-
out this section. However, as we will detail, we found that
this approach does not work well with analog modulation
when implemented using SDRs. Therefore, for analog trans-
mission, we also considered fine-tuning the encoding and
decoding SNNss to the given deployment via end-to-end train-
ing with measured channels. To this end, we first measure
a set of 10,000 channel samples via the receiving USRP
board. These samples are then used to simulate channel
transmission during fine-tuning. In order to differentiate the
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FIGURE 6. Accuracy versus number of sensing slots T for a
centralized implementation of a conventional SNN classifier
with m = 0-bit payloads, as well as for multi-level SNN
classifiers with m = 2, 4, 6, 8-bit payloads.
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FIGURE 7. Energy consumption for a conventional SNN (m = 0)
and for multi-level SNNs (m = 2, 4, 6, 8) compared to an ANN
with the same architecture. The parameter y reflects the
hardware efficiency in processing multi-level spikes, with

y = 0 corresponding to a maximally efficient system. The test
accuracy is reported in parenthesis.

quantization error loss through the PAM modulation map-
ping producing the transmitted symbols, we approximate
the underlying quantizer via a temperature-scaled softmax
function as in [60].

B. RESULTS

1) NOISELESS CHANNEL

To start, Fig. 6 illustrates the accuracy performance of the
pre-trained SNN model as a function of the number 7' of
sensing slots in a fully centralized implementation. This
performance serves as a benchmark for the wireless split com-
puting system to be investigated next. Increasing 7 enhances
the informativeness of the input by extending the sensing
period. Accordingly, the accuracy of the SNN classifier
increases with the input duration 7.

The figure compares results obtained with SNN models
processing multi-level spikes with a different size m of the
spike payload in bits. Compared to the conventional SNN
model with m = 0, multi-level spikes consistently achieve
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FIGURE 8. Accuracy versus SNR for the neuromorphic wireless
split computing architecture for analog and digital transmission
schemes and: (a) per-block power constraint, and (b) peak
power constraint (simulation, T = 4).

higher accuracy, particularly at earlier sensing slots. For
example, at T = 4, the conventional SNN model reaches
an accuracy of 92.33%, while a multi-level SNN with m =
2 attains 94.70% and m = 8 yields an accuracy of 96.40%.
In contrast, for 7 = 10, the conventional SNN achieves an
accuracy of 97.54%, which is similar to the result obtained
in [61] using parametric LIF neurons, while a multi-level
SNN achieves 98.30%.

The outlined performance gains attained with multi-level
spikes may not be retained in a wireless split architecture due
to an inherent trade-off between the number of transmitted
bits and the accuracy of the decoded bits. To illustrate the
potential benefits of multi-level spikes in this context, based
on Fig. 6, in the following we set T = 4, adopting the
corresponding pre-trained SNNs models for different values
of m.

To assess inference energy consumption, following [62],
we count the number of accumulate operations carried out by
the SNN, and adopt the model (6) described in Section II-B
with E,. = 0.1 pJ [63]. For comparison, in a manner similar
to [10], we also consider the performance of an ANN with
the same architecture of the SNN with a ReLU activation
function and with a softmax output layer. The ANN is trained
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FIGURE 9. Accuracy versus payload size m for the
neuromorphic wireless split computing architecture for analog
and digital transmission schemes, using different number of
OFDM symbols and: (a) per-block power constraint, and

(b) peak power constraint (simulation, T = 4).

on the same data. The ANN takes the same input of the
SNN at each sensing slot ¢, and makes a final decision by
selecting the index with the highest average output of the
softmax output layer over T slots. The energy for multiply-
and-accumulate operations for the ANNSs is set to Epqe =
3.2 pJ[63].

Fig. 7 illustrates that increasing the number of bits m
from O to § leads to a modest increase in energy consumption,
while yielding a substantial accuracy increase from 92.33% to
96.40%. In all cases, the energy consumption remains lower
than that of the ANN model. Furthermore, the lower accuracy
of the ANN model is due to its lack of a memory mechanism
for temporal processing.

2) SIMULATION RESULTS

We first analyze the impact of the average SNR in Fig. 8 for
both analog and digital modulation schemes with NOFPM —
2 OFDM symbols under a per-block power constraint and
a peak power constraint. A conventional SNN with analog
modulation provides the best performance at lower SNR
levels, especially under an average power constraint. In fact,
a peak power constraint limits the power that can be used per
spike, while an average power constraint makes it possible
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FIGURE 10. Accuracy versus SNR for the neuromorphic wireless
split computing architecture for analog and digital transmission
schemes using: (a) per-block power constraint, and (b) peak
power constraint (simulation, m = 2 and T = 4). For both types
of power constraints, we consider time-uniform power
allocation, as well as decreasing power allocation schemes as
in (19) with different exponential decay rates b.

to allocate power by leveraging the sparsity of the spiking
signals. At higher SNRs, it becomes essential to rely on
muti-level spikes. In general, increasing the SNR calls for
the selection of a larger value of m. This is aligned with
the performance of the centralized implementation shown in
Fig. 6.

The optimal value of the payload size m generally depends
on the SNR, on the modulation schemes, and on the available
spectrum, which is controlled by the number of OFDM sym-
bols NFPM To elaborate on this, Fig. 9 presents the accuracy
as a function of the bit width m when the SNR is fixed at
25 dB, while varying also the number of OFDM symbols.
The results indicate that for both modulation schemes, there
is an optimal value of m that strikes the best balance between
increased inference accuracy and decreased transmission reli-
ability caused by a larger value of m.

In this regard, digital modulation is more sensitive to a
decrease in spectral resources, showing a significant accuracy
drop when m > 2 and N OFDM  _— 1 as limited resources
force some of the spikes to be discarded. However, when
the number of OFDM symbols is sufficiently large, such as
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FIGURE 11. Comparison between analog and digital
transmission schemes for the neuromorphic wireless split
computing architecture. (a) Accuracy versus payload size m
with NOFDM — 2 and (b) accuracy versus number of OFDM
symbol NOFDM per sensing slot with payload size m = 6 (USRP
implementation, T = 4).

NOFPM — 5 allowing most spikes to be transmitted, digital

modulation can better capitalize on an increasing value of
m. Under either power constraint, analog modulation also
benefits from an increase in the number of OFDM symbols
NOFPM ‘becoming more robust through repetition coding.

Fig. 10 presents the accuracy performance as a function
of SNR for analog and digital transmission schemes under
different power allocation strategies withm = 2 and T = 4.
The results show that the decaying power allocation strategy
in (19) can outperform fixed power allocation with a suitably
chosen decay rate b, here b = 1.4. This validates that errors
occurring in earlier sensing slots can have a cascading effect,
leading to larger degradation compared to those in later slots.
However, an excessively large value of b, here b = 100, can
underperform uniform power allocation.

3) EXPERIMENTAL RESULTS

We now turn to the results obtained from the real-world exper-
iments with USRP radios. Fig. 11(a) presents the accuracy
versus the number of bits m for NOFPM = 2. As discussed,
for the analog implementation, we show the performance
with pre-trained models, as well as with end-to-end (E2E)
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fine-tuning with measured channels. As seen in the simu-
lation in Fig. 9, there exists an optimal value of m for all
schemes. Furthermore, the figure highlights the importance
of incorporating channel data in the optimization of a deploy-
ment that relies on analog transmission.

Fig. 11(b) shows the accuracy versus the number of OFDM
symbols, N OFDM_ for m = 6 bits, focusing on E2E fine-
tuning for analog transmission. It is observed that digital
modulation requires a sufficiently large number of OFDM
symbols in order not to be limited by the accuracy degradation
caused by spikes being dropped at the transmitter. In contrast,
analog transmission can obtain the best performance even
with only one OFDM symbol.

VIl. CONCLUSION

In this paper, we have studied a neuromorphic wireless
split computing architecture that leverages multi-level SNNs.
Multi-level SNN models are known to achieve higher accu-
racy than conventional SNNs, especially in the presence of
strict constraints on the sensing period. However, in a split
computing system, these gains may be offset by the chal-
lenges of exchanging multi-level spikes between the SNN
models deployed across two separate devices. To address this
problem, we have developed digital and analog modulation
schemes optimized for an OFDM radio interface. Simulations
and experiments with software-defined radios have accord-
ingly revealed optimal configurations in terms of the size of
the spike payload for both analog and digital transmission
schemes. Analog transmission was seen to perform better at
lower SNR levels and for smaller payload sizes, while digital
transmission was seen to be more effective at higher SNR
levels and for larger payloads. Finally, experimental results
have demonstrated the need for channel-specific fine-tuning
of the SNN models for analog transmission. Future work may
consider extensions to multi-terminal settings [10], the use
of UWB for short-range low-power communications, and the
problem of dynamic power optimization across sensing slots,
e.g., via reinforcement learning.
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