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Abstract—Neuromorphic computing leverages the sparsity of
temporal data to reduce processing energy by activating a small
subset of neurons and synapses at each time step. When deployed
for split computing in edge-based systems, remote neuromorphic
processing units (NPUs) can reduce the communication power
budget by communicating asynchronously using sparse impulse
radio (IR) waveforms. This way, the input signal sparsity trans-
lates directly into energy savings both in terms of computation
and communication. However, with IR transmission, the main
contributor to the overall energy consumption remains the power
required to maintain the main radio on. This work proposes a
novel architecture that integrates a wake-up radio mechanism
within a split computing system consisting of remote, wirelessly
connected, NPUs. A key challenge in the design of a wake-up
radio-based neuromorphic split computing system is the selection
of thresholds for sensing, wake-up signal detection, and decision
making. To address this problem, as a second contribution, this
work proposes a novel methodology that leverages the use of a
digital twin (DT), i.e., a simulator, of the physical system, coupled
with a sequential statistical testing approach known as Learn
Then Test (LTT) to provide theoretical reliability guarantees.
The proposed DT-LTT methodology is broadly applicable to
other design problems, and is showcased here for neuromorphic
communications. Experimental results validate the design and
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the analysis, confirming the theoretical reliability guarantees
and illustrating trade-offs among reliability, energy consumption,
and informativeness of the decisions.

Index Terms—Neuromorphic computing, spiking neural net-
works, wake-up radios, neuromorphic wireless communications,
reliability.

I. INTRODUCTION
A. Context and Motivation

EUROMORPHIC processing units (NPUs), such as In-
Ntel’s Loihi or BrainChip’s Akida, leverage the sparsity
of temporal data to reduce processing energy by activating a
small subset of neurons and synapses at each time step [1], [2].
This mechanism implements spike-based signaling, whereby
information is exchanged in the timing of the synaptic activa-
tion. The opportunistic activation of neurons and synapses dis-
tinguishes NPUs from conventional deep learning accelerators
such as graphical processing units (GPUs) or tensor processing
units (TPUs), making NPUs particularly attractive for time-
series data.

As illustrated in Fig. 1, when deployed for split computing
in edge-based systems [3], [4], remote NPUs, each carrying
out part of the computation, can reduce the communication
power budget by communicating asynchronously using sparse
impulse radio (IR) waveforms [5], [6], [7], a form of ultra-
wide bandwidth (UWB) spread-spectrum signaling. After ex-
tensive research activity in the early 2000s (see, e.g., [8]),
UWRB has recently re-emerged as a prominent solution for low-
power, low-range connectivity. For example, Apple has incor-
porated a UWB radio in the most recent iPhone models, from
iPhone 11 onwards, for precision ranging [9]. Furthermore, the
IEEE 802.15.4z standard includes the items Enhanced UWB
Physical Layers (PHYs) and Associated Ranging Techniques
which cover the reliability, accuracy, and security of UWB com-
munications [10]. Additionally, several high-profile academic
proposals have advocated for the use of impulse radio in next-
generation wireless interfaces [11].

Using IR waveforms, the input signal’s sparsity, which
depends on the semantics of the information processing
task, translates directly into energy savings both in terms of
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Fig. 1. In this work, we propose a low-power wake-up radio aided wireless
split computing system, which operates through the following steps. (i) Signal
detection at the Tx: the sensor captures a time-series data w for L™?* time
steps, containing meaningful information from an unknown time 5%27% for a
duration of LS. A change detector is applied simultaneously to determine
whether the sensed sequence contains a signal of interest. (ii) Wake-up signal
transmission: If a signal of interest is detected at some specific time, the
wake-up Tx and encoding SNN are turned on, and a WUS is transmitted
by the wake-up Tx. (iii) Data transmission: after a ﬁxed delay following
the transmission of the WUS, the input signal {ul}l Jstart is processed by
the encoding NPU, and the output spikes are modulated using impulse radio
(IR) and transmitted over the wireless channel to the main Rx. (iv) Wake-up
signal reception and activation of the main radio: the WUS is detected by the
wake-up Rx, leading to the activation of the main Rx. (v) Decision Making:
upon waking up of the main Rx, the NPU at the receiver side processes the
signal received by the main Rx to make an inference decision. Our goal is
to optimize the threshold applied by signal detection, WUS detection, and
decision making in order to provably control the average loss of the decision
to a predetermined level, while minimizing the overall energy consumption.

computation and communication. This property has been lever-
aged in recent works such as [12] and [13] for innovative
applications including the sensing of peripheral nerves and
brain-computer interfaces. Both references above present hard-
ware validations of the concept, with [13] reporting on a testbed
involving 78 sensors (see also the news story').

However, the power savings afforded by sparse transmitted
signals are limited to the transmitter’s side, which can transmit
impulsive waveforms only at the times of synaptic activations.
The main contributor to the overall energy consumption re-
mains the power required to maintain the main radio on [14],
[15], [16]. To address this architectural problem, as seen in
Fig. 1, this work proposes a novel architecture that integrates
a wake-up radio mechanism within a split computing system
consisting of remote, wirelessly connected, NPUs.

Wake-up radios introduce a low-cost radio at the transmitter
and at the receiver. The wake-up transmitter monitors the sensed
signals, deciding when to transmit a wake-up signal (WUS) to
the receiver. The wake-up receiver operates at a much reduced
power as compared to the main receiver radio, and its sole
purpose is detecting the WUS. Upon detection of the WUS, the
main radio is activated [14], [15], [17], [18], [19].

A key challenge in the design of a wake-up radios is the
selection of thresholds for sensing and WUS detection, and
decision making. A conventional solution would be to calibrate
the thresholds via on-air testing, trying out different thresholds

"https://spectrum.ieee.org/brain-machine-interface- 2667619198
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via testing on the actual physical system. On-air calibration
would be expensive in terms of spectral resources, and there
is generally no guarantee that the selected thresholds would
provide desirable performance levels for the end application.

To address this design problem, as illustrated in Fig. 2, this
paper proposes a novel methodology that leverages the use of
a digital twin, i.e., a simulator, of the physical system, coupled
with a sequential statistical testing approach that provides the-
oretical reliability guarantees [20], [21].

B. Related Work

Neuromorphic communications: Neuromorphic communica-
tion, introduced in [5], integrates event-driven principles from
neuromorphic computing into wireless communication systems
for efficient sensing, communications, and decision-making.
Reference [6] presented an architecture for wireless cognition
that incorporates neuromorphic sensing, processing, and IR
communications for multiple devices, leveraging time hopping
for asynchronous multi-access. Motivated by the potential of IR
for radar sensing [22], reference [7] introduced a neuromorphic
integrated sensing and communication system, which targets
simultaneous data transmission and target detection. In [23],
a neuromorphic computing-based detector was implemented
at a satellite receiver, whose goal was to detect Internet-of-
Things signals in the presence of significant uplink interference.
A hardware implementations of the system introduced in [6]
was detailed in [13], showing the potential of the approach to
scale to thousands of nodes. The solution presented in [13]
leveraged energy harvesting.

Decentralized implementations of NPUs were studied in
[24], while assuming conventional digital communications.
A corresponding optimal resource allocation problem was in-
vestigated in [25].

Impulse radio for neuromorphic communications: IR has
been proposed for wireless communication of digital packets
between SNN chips in [26], and for transmitting time-encoded
analog signals, similar to those measured by neuromorphic
sensors, for biomedical applications in [27]. Additionally, a
combination of neuromorphic sensing, time-based computing,
and IR has been utilized in [28] to implement a consensus
method based on device-to-device local communications for
computing the maximum of scalar observations. In [5], [6],
IR waveform were used to modulate the spiking signal for
wireless transmission.

Wake-up radio: Wake-up radios can reduce energy consump-
tion in wireless communication systems by keeping the main
receiver radio off until an incoming signal of interest is detected
[14]. In 3GPP Release 18, two wake-up receiver (WUR) archi-
tectures are introduced, using either a radio frequency envelope
detector or an on-chip local oscillator approach [17]. The first
type of architecture is characterized by low complexity, low
cost, and extremely low energy consumption. In contrast, the
second architecture requires more complex components, like
on-chip local oscillators. This results in higher energy consump-
tion, but the benefits include better sensitivity and robustness
to interferers.
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Hyperparameters optimization is carried out by leveraging a dataset D of data examples, as well as access to a simulator of the channel implemented

in a digital twin. The simulator produces channel variables h with a distribution p(h) that is generally mismatched with respect to the true distribution p(h).
In a first phase, the digital twin uses the simulator to pre-select a subset A of candidate hyperparameters A. In a second phase, on-air calibration leverages
transmission on the actual system (physical twin) to identify a solution A* that is guaranteed to satisfy the constraint in (25).

For the design of WUS, two main candidates in 3GPP
Release 18 are on-off keying (OOK)-based WUS and
OFDM-based WUS [17]. The OFDM-based signal structure
does not require significant changes on the transmitter, while
OOK-based WUS is an attractive choice for receivers with low
complexity.

Wake-up radios have been integrated into a number of wire-
less systems. For example, in [29], a multi-access protocol was
introduced that facilitates fully asynchronous communication
among network devices, while reference [30] focused on WURs
for wireless local area networks. Reference [15] proposed a
neuromorphic enhanced WUR, tailored for brain-inspired ap-
plications using OOK-modulated WUSs.

Digital twins for wireless communication: Digital twinning
is currently viewed as a promising enabling tool for the design
and monitoring of next-generation wireless systems implement-
ing machine learning modules [31]. For example, reference [32]
proposed a Bayesian framework for the development of a DT
platform aimed at the control, monitoring, and analysis of a
multi-access communication system. The papers [33] and [34]
proposed the use of digital twinning for the design of beam
prediction and localization, respectively.

Guaranteed reliability for machine learning in wireless
communications: Conformal prediction (CP) uses past ex-
perience to determine precise levels of confidence in new
predictions [35]. This approach guarantees that, with a specified
confidence level, future predictions will fall within the predic-
tion regions, thereby providing reliable estimates of uncertainty.
For the application of CP to wireless communication, [36]
applied CP to the design of Al for communication systems in
conjunction with both frequentist and Bayesian learning, focus-
ing on the key tasks of demodulation, modulation classification,
and channel prediction.

Learn then Test (LTT) is a framework for the selection of
hyperparameters in pre-trained machine learning models that
satisfy finite-sample statistical guarantees [21]. Like CP and
conformal risk control (CRC), it relies on the use of calibration
data, but it does not require the monotonicity assumption of
CRC. As a result, it applies to more general settings, such
as problems with multiple hyperparameters. Being a generic
framework, LTT requires a dedicated effort to be tailored to a
specific problem setting. To the best of our knowledge, ours is
the first work that proposes a methodology for the application
of LTT to the design of communications system.

Regarding the comparison with artificial neural networks
(ANNS) in the context of wireless communication, reference

TABLE I
POWER CONSUMPTION FOR SPLIT COMPUTING STRATEGIES OPERATING ON
TEMPORALLY SPARSE SIGNALS, E.G., FOR MONITORING APPLICATIONS

Scheme L?w .LOW
(Communication/Computation) Transmit-Power | Receive-Power
Duty Cycle Duty Cycle
frame-based/ANNs X X
event-driven/SNNs [5], [6], [37] v X
event-driven/SNNs with wake-up v v
radio (this work)

[5] has shown that split computing based on SNNs and
impulse radio can outperform frame-based ANN-based solu-
tions, thanks to the benefits of event-driven communication
and processing. Reference [6] extended these benefits to multi-
device scenarios, for which impulse radio transmission can
facilitate energy-efficient multi-access protocols. This was also
verified experimentally by [13] using a testbed involving 78
sensors, built to operate according to the principles of neuro-
morphic communications. Against this background, our work
offers additional energy saving advantages on top of those
already reported in these papers by implementing a wake-up
radio receiver.

C. Main Contributions

The contribution of this paper is twofold. First, as shown in
Fig. 1, we introduce a low-power wake-up radio aided neuro-
morphic wireless split computing architecture, whose goal is
to carry out a remote inference task in an energy efficient way.
Second, we propose a novel design methodology that combines
LTT with digital twinning. This methodology, dubbed DT-LTT,
enhances the spectral efficiency of a direct application of LTT
[21] via a digital twin-based pre-selection of candidate thresh-
olds for sensing, detection, and decision making. The main
contributions of this paper are summarized as follows.

Architecture: We introduce a wake-up radio aided neuro-
morphic wireless split computing architecture, which combines
the energy savings resulting from event-driven computing at
the transmitter and receiver, as well as from IR transmission,
with the energy savings made possible at the receiver via the
introduction of a WUR. We summarize the merits of different
split computing schemes in Table I, highlighting the capacity
of the architecture proposed in this work to attain low energy
consumption duty cycle at both transmitter and receiver via the
introduction not only of IR at the transmitter but also of a WUR
at the receiver.
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As illustrated in Fig. 1, in the proposed architecture, the NPU
at the transmitter side remains idle until a signal of interest
is detected by the signal detection module. Subsequently, a
WUS is transmitted by the wake-up transmitter over the channel
to the wake-up receiver, which activates the main receiver.
The IR transmitter modulates the encoded signals from the
NPU, and sends them to the main receiver. The NPU at the
receiver side then decodes the received signals and make an
inference decision.

Digital twin-aided design methodology with reliability guar-
antees: In order to select the thresholds used at transmitter
and receiver for sensing, WUS detection, and decision mak-
ing, we propose a novel design methodology that integrates
the LTT framework [21] with digital twinning. The proposed
methodology, dubbed DT-LTT, is of broader interest as it can
be applied to any communication system requiring the selection
of hyperparameters via on-air transmission.

To explain, consider any setting that requires the selection
of hyperparameters affecting the operation of a wireless link,
here the mentioned thresholds. A direct application of LTT [21]
would sequentially test candidate hyperparameters via the esti-
mation of the target performance metrics through transmissions
on the wireless channel. This way, the designer would be limited
to testing a few candidate hyperparameters, given the limited
availability of spectral resources.

To reduce the spectral overhead caused by hyperparameter
calibration, we propose executing LTT through digital twin-
ning. Specifically, the digital twin is leveraged to pre-select
a sequence of hyperparameters to be tested using on-air cali-
bration via LTT. The proposed DT-LTT calibration procedure
is proved to guarantee reliability of the receiver’s decisions
irrespective of the fidelity of digital twin and of the data dis-
tribution. Indeed, the fidelity of the digital twin only affects
the energy consumption and the informativeness of the output
produced by the calibrated system. In this regard, the proposed
method also supports the optimization of a weighted crite-
rion involving energy consumption and informativeness of the
receiver’s decision.

Numerical evaluations: Extensive numerical results are pro-
vided that demonstrate the advantages of the proposed digital
twin-based design approach.

D. Organization

The remainder of the paper is organized as follows. Sec-
tion III presents the system model for the proposed wake-up ra-
dios assisted neuromorphic split computing system. Section IV
describes the neuromorphic receiver processing with wake-up
radio and the problem of interest, while the reliable hyper-
parameters optimization algorithm is proposed in Section V.
Experimental setting and results are described in Section VI.
Finally, Section VII concludes the paper.

1I. BACKGROUND

In this section, we provide background material that will
be used in this work to introduce the proposed neuromorphic
split computing system. Specifically, we first review reliable
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decision-making via prediction sets and CP [35]; and then we
discuss hyperparameter optimization via multiple hypothesis
testing [21].

A. Reliable Decision-Making via Prediction Sets

Reliable decision-making in machine learning requires not
only accurate predictions but also a quantification of the un-
certainty associated with the predictions. Conventional mod-
els often provide point predictions, which, while useful, fail
to convey the uncertainty inherent in the model’s decision-
making process. This subsection reviews CP as a statistical
method to calibrate prediction sets to ensure finite-sample
coverage guarantees.

In classification problems, a machine learning model is
trained to map an input w into one out of a discrete set
{1,...,C} of class labels. The goal is to predict the most likely
class ¢ given a new input u, along with a confidence score.
It is well known that machine learning models, particularly
with larger and potentially more accurate architectures, tend
to be overconfident, offering an unreliable estimate of their
uncertainty [38], [39], [40].

CP addresses this limitation by providing a set of possible
outcomes C that are statistically likely to contain the true class
label ¢ with a specified confidence level 1 — «, i.e.,

Pr(ceC)>1-a. (1)

CP leverages the scores s. associated by the underlying model
to each class c. Scores s. are assumed here to be negatively
oriented, i.e., they are smaller for classes on which the model
is most confident. An example is given by the standard log-
loss [41]. Given the scores s,. for all classes ¢ € {1, ...,C}, CP
constructs the predicted set by including all classes whose score
is below a threshold A4 as

C={ce{l,...,C}:s. <}, )

where the threshold A4 is obtained based on a held-out calibra-
tion set. As detailed in Section IV-C, in this work, we treat the
threshold A as one of the hyperparameters to be optimized by
the system.

B. Reliable Hyperparameter Optimization via
Multiple-Hypothesis Testing

In this subsection, we introduce LTT, a reliable hyperpa-
rameter optimization framework based on multiple-hypothesis
testing. Consider a machine learning model whose operation is
controlled by a hyperparameter vector A, such as the learning
rate for fine-tuning or the temperature in generative models
[42]. LTT searches through a pre-defined set of candidate hyper-
parameter vectors A = {1, A2,..., Az} to produce a subset
of hyperparameters that are guaranteed to control the risk of
the system.

To elaborate, define as R(A) a population risk measure that
we wish to control, such as the probability of a classification
error. LTT associates with each candidate hyperparameter A; €
A, with 5 =1,...,|Al, the null hypothesis

H(Aj) : R(Nj) > a, 3)
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where « is the maximum tolerated risk. Accordingly, the null
hypothesis 7{(\;) posits that hyperparameter A; is unreliable.
Rejecting this hypothesis hence entails a decision that hyperpa-
rameter A; is reliable, in the sense that it meets the reliability
condition R(A;) < a.

The goal of LTT is to identify a subset A**' C A of hyperpa-
rameter vectors such that the condition

PrIA e A™ st RA) >a] <1 -6 “4)

is satisfied for some target outage probability 4. Accordingly,
the identified set of hyperparameters A™! contains no unreliable
hyperparameter A with probability at least 1 — 4.

LTT relies on the evaluation of a p-value p(X;) for each
null hypothesis 7{(\;) [43], and hence for each candidate hy-
perparameter A;. To this end, an empirical estimate R(\;) of
the risk R(\;) is obtained by using existing data or real-world
testing. The p-value measures the probability of obtaining an
estimate at least as small as R()\j) when assuming the validity
of the null hypothesis #(A;) that the hyperparameter X; is
not reliable. The p-values are then combined using methods
for the control of the family-wise error rate (FWER) such as
Bonferroni or fixed sequence testing. In this work, we will
leverage fixed sequence testing, which tests hyperparameters
sequentially. As further detailed in Section V-C, the testing
order is ideally selected to consider hyperparameters in order
of decreasing expected reliability.

III. SYSTEM MODEL

As shown in Fig. 1, we consider an end-to-end neuromorphic
remote inference system, in which the receiver (Rx) collects
information from a device in order to carry out a semantic task,
such as segmentation.

At the device, also referred to as transmitter (Tx), the sensor
monitors the environment continuously to detect the start of a
signal of interest. When the Tx detects a semantically relevant
signal, the wake-up Tx is turned on to transmit the WUS,
and the encoding NPU is also activated to process the input
signal. The output of the NPU is buffered, and subsequently
modulated and transmitted by the IR Tx after a given delay.
Upon detecting the WUS, the wake-up Rx activates the main
Rx, which starts receiving after a given delay. The received
signal is then processed by a decoding NPU, which produces a
final decision.

In this way, the proposed architecture combines the energy
savings resulting from event-driven computing at Tx and Rx,
as well as from IR transmission, with the energy savings made
possible at the Rx via the introduction of a WUR.

We observe that, throughout this study, the presence of NPUs
at the transmitter and receiver is accounted for by considering
neural models that are suitable for implementation on neuro-
morphic hardware. This is detailed in the next section, and it
follows the approach adopted in most works in the field such
as [6], [44]. Note that libraries such as Intel’s Lava also simulate
the operation of NPUs by implementing suitable spiking neural
models. We leave it as future work to present a full imple-
mentation integrating software-defined radios, neuromorphic
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hardware, and neuromorphic sensors (see also [13], [45] for
some initial work in this direction).

A. Sensing Model

We assume that the relevant discrete-time signal captured by
the sensor has a duration of L8 samples, with each sample u;
being a D-dimensional vector. The duration L# is assumed
to be known and deterministic. The signal of interest is se-
mantically associated with label information c. We assume that
the labels take values in a finite discrete set, but extensions
to continuous quantities are direct. Furthermore, the signal is
produced by an information source after a random delay of
[s*a1% time instants. Specifically, during an initial random period
of [ — 1 samples, the device observes a signal containing
semantically irrelevant information, e.g., noise. The samples of
the signal of interest is presented to the device starting at time
[stat Subsequently, the device again records irrelevant signals.

The sensor is active for a period of time equal to L™a* > [si&
samples. The choice of L™?* entails a trade-off between energy
consumption and probability of fully observing the signal of
interest of duration L.

The sensed samples u; forl =1, 2, .. ., are processed contin-
uously by a signal detector at the Tx to determine an estimate
[5%7% of the time [5*2**, The signal detector updates a cumulative
sum statistic \S; at each time [ using the current sample u; via
an algorithm such as QUSUM [46] or non-parametric change
detection [47]. A change is detected at time [ if the statistics .S
exceeds a threshold A%, i.e., S; > A®, and thus the wake-up Tx
and encoding NPU are activated at time
{51 > N}, 5)

lstart — min
le{1,...,Lmax}

where the threshold A® is subject to optimization.

B. Neuromorphic Encoding

Upon activation of the wake-up Tx at time [5%** in (5), an
OOK-based WUS is transmitted for duration of L™ time steps.
Following standard practice [14], as shown in Fig. 3 (top panel),
data is then transmitted L9 time steps after the end of the
WUS by IR Tx. The delay L9 accommodates channel delay
spread, detection time of the wake-up Rx, as well as the wake-
up latency of the main Rx [14].

The encoding NPU processes samples u; starting from time
[sart For each time instant [ e [[start| [max] — [start [start
1,..., L™ the encoding NPU produces an NT x 1 vector

x; = foe(u) (6)

from its N'T readout neurons. In (6), the vector ¢ is the param-
eter vector of the encoding NPU. The output spiking vectors x;
for [ € [[start [;max] are buffered and transmitted in a first-in-
first-out manner starting at time /52" + L% + L4 i.e., after the
transmission of the WUS and the delay L9.

C. IR Transmission Model

The wake-up Tx is equipped with one antenna, while the
IR transmitter has N' antennas. Both transmitters adopts
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Fig. 3. Illustration of the working flow of the Tx and Rx. (a) WUS and data
transmission: the WUS is sent by the wake-up Tx once the signal of interest
is detected at time [3*27t, followed by the transmission of the pilot and the
data after L4 delay. (b) Correct wake-up: the wake-up receiver detects the
WUS at time [9°* and activates the main receiver. The main receiver takes
swake time to be fully activated. Importantly, the wake-up time of the main
receiver precedes the commencement of data transmission. (c) Delayed wake-
up: in this scenario, the main receiver wakes up after the data transmission
has initiated, leading to data loss.

IR to modulate their respective transmitted signal s,,(¢) and
{sL(t)}f\LTl Note that this is not a requirement for the wake-up
radio, and is assumed here to facilitate a low-complexity im-
plementation. Bandwidth expansion, leveraging time hopping
(TH) [16], is utilized to manage interference between antennas
of the transmitting device during data transmission.

Accordingly, each time step [ of the sensed signal u; com-
prises L > 1 chips on the radio channel, with each chip having
a duration of T, seconds. Consequently, each time step [ spans
LPT. seconds, and hence LP is referred to as bandwidth ex-
pansion factor. The bandwidth expansion factor LP serves as
a tradeoff between latency and interference mitigation. Using
TH, each ith antenna modulates the corresponding mth entry
of vector z; in (6) using random time shifts across the L chips
of the Ith time period. This introduces temporal separation to
reduce interference.

1) WUS Transmission: To elaborate, the antenna at the
wake-up Tx modulates the OOK-based WUS using IR at each
time step [ € [[3art, [start 4 [% _ 1], The OOK-based WUS
Sw(t) is defined as [16]

jetart | pw g

>

j:istart

Sy (t) = ay ot — jLPTL), (7

where 2 represents the jth OOK symbol in the set {0, 1}, and
¢(t) denotes the OOK pulse waveform with bandwidth 1/7..
The WUS sy (t) is received over a multi-path fading channel
impulse response h.,, (t) by the wake-up Rx as

w(t) = sy (t) * hy(t) + 2(t), (8)

where * denotes the convolutional operation and z(t) is the
white Gaussian noise with noise power Ny.

2) Pilot Transmission: As shown in Fig. 3(a), following a
pre-introduced delay of LY after the WUS transmission, the
IR transmitter is activated. To facilitate the main receiver’s
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adaptation to the frequency-selective channel conditions, the
IR transmitter transmits pilots prior to the data transmission.
The pilot symbols sent from the ith antenna have a length of
LP and are defined as

l”start+Lw+Ld LLP1

>

j:[stal't+Lw+Ld

¢t — jLPT. — ¢} Te),  (9)

where C?,i €{0,1,...,LP — 1} is an integer for the jth pilot
symbol transmitted from the 7th antenna, representing the TH
position within LP chips. The pilot is transmitted over the multi-
path fading channel impulse response h; ,,(t), and is received
at the nth receive antenna as
NT
OR() = 37 P(8) % hin(t) + 2 (D),

i=1

(10)

where z,(t) represents the white Gaussian noise at the nth
receive antenna.

3) Data Transmission: Data transmission commences once
all pilot symbols have been transmitted. Each ith antenna
at the IR transmitter modulates entry z;; of the vector
@ = (211,20, xr)7 in (6) at time [ € [ + LY 4+ L4 4
LP, ..., ™3] into a continuous-time signal s;(t), e.g., using
Gaussian monopulses, and TH as

[ max

>

j:istart +Lw+Ld +LP

si(t) = zji- ¢t — jLPT. — ¢;;Te), (11)

where ¢;; is a random integer between 0 and LY — 1, repre-
senting TH position for the ¢th antenna at the jth time step.

The modulated signal s;(¢) is then transmitted over the multi-
path fading channel impulse response h; ,,(t) to the Rx, where
the received signal at the nth receive antenna is obtained as
the superposition

NT

Un(t) = 5i(t) * hin(t) + 2 (t).

i=1

12)

Note that this assume the delay L to be longer than the channel
spread to avoid interference with the WUS.

IV. NEUROMORPHIC RECEIVER PROCESSING WITH A
WAKE-UP RADIO

To save energy at the Rx, instead of keeping the main radio
on continuously, the proposed system incorporates an ultra low-
power wake-up Rx that monitors the ambient radio frequency
(RF) environment and listens for the WUS via the received
signal (8). This approach allows the Rx to remain in a low-
power state for extended periods, activating the main radio only
when a WUS is detected. In this section, we start by introducing
the WUS detection process operated by the wake-up Rx, and
then we describe how the main Rx operates after it has been acti-
vated. Finally, we mathematically formulate the design problem
of interest, which consists of minimizing the main Rx power
consumption and the informativeness of the inference while
guaranteeing the desired level of reliability for the decision
made at the Rx.
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A. WUS Detection

The wake-up Rx is always on, and it applies a correlator to
detect the WUS sy () in (7) from the received signal w(t) in
(8) [14]. This is done via matched filtering, i.e., by evaluating
the convolution between w(t) and the complex conjugate of the
WUS s, (t) as

“+oo
dr)= [ vt - nat (13)
and by detecting the WUS at time 7 if the absolute value of the
matched filter output d(7) in (13) is larger than some threshold
A, de.,
9t = min

= LPT) > A"
le[l,“,,Lmax]ﬂd(l e)| > AV},

(14
with threshold A" being subject to optimization. As a result, the
wake-up time of the main Rx is given by [9¢t + §vake  where
gwake < 14 denotes the time required by the main Rx to be
turned on upon the reception of WUS.

The main Rx does not miss the start of the data packet (see
Fig. 3(b)) as long as we have the inequality

Zdet + 5wake < lAstart S+ LY+ Ld. (15)

Otherwise, the wake-up Rx misses at least some of the trans-
mitted samples (Fig. 3(c)).

B. Main Radio Processing

The main radio is equipped with N® antennas, and it stays
idle until time [d¢t 4 gwake, Upon waking up, the main receiver
samples the received pilot signals {vP(¢) nN:Rl and the received
data signals {vn(t)}nj\f1 at each time [, obtaining discrete-
time pilots v = [v7,,..., v} yx] and discrete-time data v; =
[vi,1,...,v; yr], respectively. Here, the nth element represents
the collection of signals by the nth antenna for LP chips at time
Lie, vy, ={vh(iT.)}jez, and vy, = {5 (§T¢) } jez,» Where
I = {(l - 1)Lb +1,... ,ZL(,}.

1) Pilot Processing via Hypernetwork: A hypernetwork is
a type of neural network that generates the weights for another
neural network, which can enhance the adaptability of the other
neural network to the channel conditions [6]. The target network
in our setting is the decoding NPU.

Provided that the main radio has woken up in time, we
assume knowledge of the time of arrival of the pilots. Accord-
ingly, we begin by collecting all the received pilot symbols as
vP = {vf}iijzjf:;vL:;de_l To process the received pilot,
we implement a pre-trained hypernetwork parameterized by 1,
such as a deep neural network (DNN). This hypernetwork takes
the pilot vP as input, and produces a vector w as

w = fy(vP),

in which each element is a scaling factor for each neuron in
the decoding NPU. Effectively, the hypernetwork subsumes
the task of channel estimation by directly mapping pilots to
receiver’s parameters.

Specifically, the vector w is composed of IN; sub-vectors as
w={wi,...,wp,}, where Ny is also the number of layers

(16)
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in the decoding NPU. Each element w, has a length equal to
the number of neurons in layer s of the decoding NPU. Thus,
~d
the weight matrix 8, for layer s in the decoding NPU can be
adjusted by the hypernetwork as
~d
0% =0, - diag{w,}, (17)

where diag{w,} is a diagonal matrix with main diagonal given
by the vector wg. We collect the updated weights of the decod-
ing NPU as 0% = {69, ..., O?Vd}.

2) Information Decoding: The data signal v; is fed to the
NPU, which produces a C' x 1 vector
(18)

T, = fga (V1)

via C readout neurons. At the final time L™, the output of the

decoding NPU is first processed to yield a decision variable. As

a typical example, the C' x 1 spike count vector 7 is obtained
. . Lmax

by first summing up all output signal {r}" ; det 4 gwate (TOM the

C readout neurons as

max

E .

1’ =]det fgwake

r=

19)

Focusing on a classification problem, the decoding NPU
applies softmax function to the spike count vector 7 to obtain a
probability vector p = [p1, ..., pc]. A score is assigned to each
class c using the log-loss as s. = — log(p.). The final decision
is constructed in the form of a decision set that includes the
classes whose scores are smaller than a given threshold A9,
i.e., [48]

C={c:s.<\}. (20)

The use of a decision set supports reliable decision making,
whereby the size of the decision set C can be determined as
a function of the uncertainty of the decision [21], [49]. This
way, in contrast to standard methods such as top-k prediction,
the size |C| of the set is adapted to the difficulty of the input,
providing a means to control the expected loss and to quantify
the uncertainty.

C. Design Problem

Overall, the decision vector 7 in (19) produced by the de-
coding NPU at the receiver depends on the fading channels
and noise experienced by WUS transmission as per (8) and by
data transmission as per (12). We denote collectively all noise
and channel variables as h. While the variables in vector h
cannot be controlled, the system can tune the hyperparameters
A= [\, A%, \d], dictating the threshold A\* for input signal
detection at the Tx as in (5); the threshold AW for WUS de-
tection at the wake-up Rx as in (14); and the threshold A4 for
prediction (20).

As the predicted set C in (20) depends on the input data u,
the channel variables h, and the hyperparameter vector A, we
will explicitly denote it as C(u, h, X). To define the problem of
optimizing the hyperparameters A, we introduce a loss function
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£(c,C(u, h, X)) capturing the discrepancy between the true tar-
get variable ¢ and the estimate C(w,h, X). The corresponding
expected loss is defined as

LX) =E[¢(c,C(u,h, A))], 21)

where the expectation is taken with respect to the data distribu-
tion p(u, ¢) of the input-output pair (u, ¢), as well as over the
distribution p(h) of the channel variables h.

Given pre-trained encoding and decoding NPUs, we wish
to find hyperparameters A that minimize the average energy
consumption E(\) at the Rx main radio and the size of the
predicted set C(u,h, ), while controlling the expected loss
L(A) at some predetermined level « € [0, 1]. Note that the focus
on energy consumption of the main radio at the Rx is justified
by the fact that it is typically the most significant contributor to
the overall energy expenditure at the Rx [15].

The average energy E(\) consumed by the Rx main radio
is evaluated as

E(X) = PO (L™ — E[[%"(u,h,\)] — 6" + 1), (22)

with P°" being the per-time-step energy consumed by the main
radio when it is on, and the expectation is computed with respect
to the data distribution of the input « and the distribution of vec-
tor h. In fact, as illustrated in Fig. 3, the Rx main radio is on for
Lmax _ [det(y h X) — §¥ake 4 1 The notation [ (w,h, )
is introduced in (22) to highlight the dependence of the detec-
tion time [4°* on input u, channel h, and hyperparameter A.

A smaller energy consumption (22) can be obtained by wak-
ing up the main radio later, i.e., by maximizing the expected
value E[[9¢¢ (w4, h, \)], but this generally comes at the cost of
an increased average loss L(A). To assess the informative-
ness of the predicted set C(u, h, A), we evaluate the average
set size as

I(X) = E[|C(u, b, A)]], (23)

where the expectation is taken with respect to the data distribu-
tion of the input w and the distribution of vector h.

Overall, the design problem of interest is formulated as the
constrained minimization

mini}{nize E(X) +~1(X)

subject to L(A) < a, (24)

where v > 0 is a weight factor determining the relative priority
between the energy consumption E(X) and the set size I(A),
while the parameter o > 0 specifies the desired reliability level,
with a smaller « indicating a stricter reliability requirement.
Regarding the choice of parameter v in (24), note that there
is generally a tension between energy E(\), and set size I(\).
In fact, reducing the set size I(\), while maintaining the desired
target reliability o, generally requires a larger energy expendi-
ture E(N).

V. DT-LTT: HYPERPARAMETERS OPTIMIZATION FOR
ENERGY-EFFICIENT RISK CONTROL

As discussed in the last section, the goal of this work is to
introduce a methodology for the selection of hyperparameters
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A by addressing problem (24). In this section, we describe the
proposed solution based on digital twinning and LTT [21], a
method recently introduced in statistics.

A. Digital Twin-Based Optimization

Addressing problem (24) is made complicated by the fact
that we do not assume knowledge of the distribution p(u, ¢)
of each data pair (u, ¢), consisting of sensed signal u and label
¢, and we also do not have access to the distribution p(h) of the
channel variables h. To obtain information about the data distri-
bution p(u, ¢), we make the common assumption that a dataset
D ={(up, cn)},l,LD:‘1 is available, where each pair (u,,c,) of
signal u,, and label c,, is generated in an independent and iden-
tically distributed (i.i.d.) manner from the distribution p(u, ¢).
Note that each pair is thus produced under an independent chan-
nel realization from distribution p(h). Furthermore, to facilitate
the collection of information about the distribution p(h) of the
channel variables, we assume access to a simulator in a digital
twin of the system. As illustrated in Fig. 2, the simulator can
produce samples h from a distribution p(h) that is generally
different from the true distribution p(h). The fidelity of the
simulator depends on how similar the distribution p(h) and
p(h) are.

With this information, DT-LTT aims at solving a relaxation
of problem (24), in which the constraint is required to be sat-
isfied with a user-determined probability 1 — § with § € (0, 1).
The resulting problem is defined as

mini/\mize E(X) +~vI(X)

subject to Pr [L(A) <a] >1-4, (25)

where the probability Pr|[-] is taken with respect to the random
realization of the dataset D and the channel h. Note that the
probability in (25) cannot be evaluated given that the distribu-
tion p(u, ¢) and p(h) are unknown.

B. Digital Twin-Based Pre-Selection of Candidate Solutions

In order to address problem (25), we follow a two-stage
approach illustrated in Fig. 2. In the first phase, the digital twin
pre-selects a subset A of candidate hyperparameter vectors A.
The pre-selected candidates in set A are then tested in the fol-
lowing phase of on-air calibration to identify a hyperparameter
vector A* that provably satisfies the constraint in (25). Reducing
the size of the candidate solutions via the use of the digital twin
supports a more efficient use of the physical channel resources
during on-air calibration, as fewer options need to be evaluated
using transmission on the wireless channel.

Atatechnical level, as detailed in the Appendix, the proposed
approach leverages the freedom in the LTT scheme reviewd
in Section II to choose any fixed sequence of hyperparameter
vectors for testing of the reliability condition (25). Our proposed
method, DT-LTT, determines the sequence of hyperparameter
vectors by leveraging a digital twin model.

To start, the dataset D is randomly partitioned into two sub-
sets, namely the dataset DP7 to be used with the simulator pro-
duced by the digital twin and the dataset D' to be leveraged
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Tlustration of the proposed DT-LTT design strategy: during the first phase of pre-selection, the digital twin determines a subset of candidate

hyperparameters that yield estimated ZPT(X) 4+ yIPT(X) and loss LPT(A) on the Pareto frontier. Then, during on-air calibration, the physical twin
transmits on the actual channel to test the candidates in set A sequentially, stopping when the estimated loss crosses a threshold ¥(a, d). The solution
A* is then obtained by choosing the value of X that yields the minimum estimated objective ETT(X) 4+ ~IPT(X), while guaranteeing the inequality

LPT(X) < 9(a, 6).

for on-air calibration in the physical system. To carry out the
pre-selection of a subset A of hyperparameter, the digital twin
addresses the multi-objective problem

minimize {LPT(N), EPT(A) +4IPT (W)}, (26)
where the objectives LPT(X), EPT(X) and I°PT(X) are em-

pirical estimates obtained at the digital twin for the expected
loss [41]

;1P
IPT(A) = 0T Z 0(c,C(un, by, N)), (27
the average energy consumption
EDT (}\)
1 |DDT‘
— pon <Lmax_ |DDT‘ Z cht(un’ h”“ A)—éwakC—Fl ’
n=1
(28)
and the average set size
1 |,DDT‘
T = Z 1C(n, B, V). (29)

|DPT]

The empirical estimates (27), (28) and (29) are obtained
by using the dataset DPT and transmission simulated using
channels h,, ~ p(h) generated by digital twin. As shown in
Fig. 4, the digital twin uses an arbitrary multi-objective op-
timization algorithm to identify a discrete subset A of val-
ues of the hyperparameter A such that the resulting estimates
(ﬁDT(A), EPT(X) +~IPT (X)) lie on the Pareto front of the
set of achievable values for the pair (LPT(X), EPT(X) +
~vIPT(X)). Mathematically, each vector X included in the can-
didate set A satisfies the condition

#N such that LPT(X) < LPT(A) and

EPT(N) +4IPT(N) < EPT(AN) +~41PT (X)) (30)

that no other hyperparameter A’ improves both empirical loss
and empirical energy consumption plus the weighted set size.

C. On-Air Calibration

Given the pre-selected candidate solutions in set A, on-air
calibration aims at selecting a value X that approximately solves
problem (26), ensuring the validity of the reliability constraint
in (25). To this end, the solutions in set A are first ordered with
respect to the loss value LPT(X) in (27) as

LPT () < LPT(X) < ... < LPT (). (31)

On-air calibration evaluates the solutions in set A in the or-
der A1, A, ..., selecting a value A™ that is guaranteed to sat-
isfy constraint (25), while reducing as much as possible the
weighted sum of energy consumption and set size.

For any hyperparameter \; being tested, using transmission
on the actual physical channel, the physical twin evaluates
empirical expected loss

D7
A 1
LPT(AJ-):W > lle,Clun, hn, X)), (32)
n=1
the empirical energy consumption
IDPT)
1 .
PT n max det
EFT(N) = P° (L —Wz;lle(umhm)\j)
_ swake
0 + 1) (33)
and the empirical set size
DPT‘
PT(;) = |DPT\ Z C(wn, i, A (34)

by transmitting on actual channel realizations h,, ~ p(h). Note
that the channel realization h,, is not known and not required
to evaluate the estimates (32), (33) and (34). The estimates
(32), (33) and (34) are evaluated successively for the candidate
solutions A1, Ao, ..., until a stopping criterion is satisfied.
Specifically, as illustrated in Fig. 4, the evaluation of candi-
date solutions A1, A, . .. stops at the first value 55'°P for which
the estimated loss LPT (X e ) in (32) exceeds the threshold

—1n(d)

w(a75)=a— W’ (35)
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Algorithm 1: Digital Twin-Based Learn-then-Test
(DT-LTT) Calibration

1. Initialization: Dataset DPT, dataset DFT, risk
tolerance « € [0, 1], and error level § € [0, 1]

Digital Twin-based Pre-selection of Candidate
Solutions:

2: Using the simulated channel h~ p(fl), identify a subset
A of the candidate solutions A such that each A € A
returns estimates (LPT(X), EPT(A) +~vIPT(X)) in
(27), (28) and (29) on the Pareto frontier.

On-Air Calibration:

3: Order the solutions in set A as
LPT(A) < LPT(Ag) <... < LPT(A ).

4: for j=1,2,...,|A| do

5. Estimate expected loss I:PT(Aj), energy consumption

EPT(X;) and set size IFT(X;) in (32), (33) and (34)
using the actual channel h ~ p(h).
6: if j=1and L*T(\;) > ¥(a,0)

7 Set A* = [\* =00, A = 00, A4 = o0|T (secure
solution).

g: elseif j>1and LFT(\;) > ¥(a,0)

9: Set A* using (37).

10 end if

11: end for

which is a function of the dataset size \DPT , of the target
expected loss « in (25), and of the probability bound ¢ in (25).
For the optimal hyperparameter A* to be well defined, one
needs to ensure the condition

LFT (A1) < ¢(a, 0).

(36)

If condition (36) is not met, the decoding NPU makes a secure
decision by including all classes in the predicted set C in (20),
while saving energy by keeping the main receiver off. This
amounts to the choice A* = [A\® = 00, \W = 00, A4 = 0] 7.

Assuming that such value exists, finally, the selected value
A" is obtained by choosing the value A; with j € {1,..., j5*P}
that returns the smallest estimated sum EPT(X;) +~IPT();),
ie.,

A* =N, with 7% = argmin  {EYT(A\) + 47T (A\)}).
JE{L,...,gstor}
(37
The overall proposed calibration procedure is described in
Algorithm 1. As proved next, by the properties of LTT [21],
DT-LTT guarantees the constraint (25) irrespective of the true,
unknown, distributions p(u, ¢) and p(h), and irrespective of the
fidelity of the digital twin.
Theorem 1 (Reliability of DT-LTT): By setting the hy-
perparameter vector A* as in Algorithm 1, DT-LTT satisfies
the inequality

Pr[L(A")<a]>1-94 (38)

holds for any realizDaTtions of dataset DPT, simulated chan-
nels {h,, ~ ;5(h)}ID |

n=1 >

with probability in (38) evaluated with
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respect to the randomness of the dataset DP' and the true
PT
channels {h,, Np(h)}LD:1 3
Proof: The proof is provided in the Appendix. O

VI. EXPERIMENTS

In this section, we present numerical results that validate the
proposed design and analysis.

A. Setting

To test the proposed DT-LTT calibration method, we consider
a neuromorphic wireless communication link over a multi-path
fading channel, whose goal is to support reliable image classifi-
cation at the receiver. The transmitter is equipped with N1 = 10
antennas, each modulating the spiking signal produced by the
corresponding neuron of the encoding NPU, while the receiver
has N® = 2 antennas. All antennas share the same multipath
delays, with delay of the ¢th path equal to the ith chip time.
The signal-to-noise ratio (SNR) per time step is defined as the
ratio of the transmission power, which is assumed to be the same
for WUS, pilots, and data transmission, over the noise power.
We set the SNR to 10 dB.

As in [6], the encoding NPU is a fully-connected SNN fea-
turing one hidden layer comprising 600 neurons and an output
layer with 10 neurons, while the decoding NPU is designed
as an SNN with a single hidden layer containing 200 neurons
and an output layer consisting of 10 neurons, each represent-
ing one of the 10 classes. The hypernetwork is implemented
as an ANN with two hidden layers, containing 800 and 500
neurons, respectively.

Unless stated otherwise, the maximum observation period
for each data w is L™ = 60 time steps, with the duration for
the signal of interest fixed at L*'® = 40. During this period,
we repetitively present an input image to be classified for 40
time steps. The initial time [5**'* is determined by drawing
from a discrete uniform distribution in the set {1, L™ —
L8}, Subsequently, the initial [5*3"* and the last L™2* — [5'& —
[s*ar time samples of w are generated independently using a
Bernoulli distribution.

To implement the QUSUM algorithm, the irrelevant signals
are modelled as Bernoulli i.i.d. samples with probability p"©ise,
while relevant signals are also modelled as Bernoulli i.i.d.
variables with a spiking probability p*'¢ estimated from the
training data.

For IR transmission, the duration of the WUS is set to LY =
2, and the duration for the pilot is also set to L? = 2. The delay
added by the transmitter is LY = 3 time steps, and the wake-up
time §"2k¢ = 2. The power for keeping the main radio on is set
to a normalized value P°" = 1.

Decision are made via set prediction as in (20), and the loss
function ¢(c,C) is a 0-1 loss that indicates whether the true label
¢ is included in the predicted set C or not, i.e., {(c,C) = 1(c ¢
C), where 1(-) is an indicator function. Accordingly, the average
loss represents the probability of miscoverage for the decision
set C. To evaluate the informativeness of the set prediction,
we also compute the normalized average set size |C|/C' of the
prediction set [50].
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Since our focus is on the optimization of the thresholds,
rather than on training, we adopt pre-trained SNNs. Pre-
training, testing, and calibration use the N-MNIST dataset, a
neuromorphic dataset that comprises 60,000 training samples
and 10,000 test samples. Each sample in the dataset represents
a handwritten digit ranging from 0 to 9, and is presented as
a 34 x 34 pixel image. We partition the training dataset by
drawing 6, 000 samples for the dataset DPT and 6, 000 samples
for the dataset DT, with the remaining data points used for pre-
training. Pre-training is done in an end-to-end manner without
considering the wake-up radio as in [6].

B. Benchmarks

For comparison, we consider the following benchmarks. For
all the schemes using LTT, the grid contains all threshold tuples
(A5, A% A with A3 € {0,1,...,4}, AV € {0.1,0.2,...,0.6},
and M\ € {1,3,...,9}.

e Conventional neuromorphic wireless communications:
The conventional system is designed without signal detec-
tion and wake-up radio modules, which amounts to setting
the corresponding thresholds as A*> =0 and A" = 0. With
this conventional setup, the NPUs are continuously on.
Furthermore, rather than relying on the proposed adaptive
set prediction strategy, in this conventional strategy, the
NPU at the receiver side applies top-2 prediction to gen-
erate a prediction set, which is constructed by including
the top two predicted classes with the highest spike count
in the output vector (19).

e LTT: To evaluate the performance of a basic version of
the LTT algorithm, we consider a scheme that implements
LTT without the use of digital twinning. This approach
follows Algorithm 1, with two caveats: (7) the step 1 of pre-
selection via a digital twin is not carried out; and (ii) the
number of on-air calibration transmissions, i.e., the num-
ber of iterations of the for cycle in line 4 of Algorithm 1,
is limited by the average number of Pareto points in set
A used by the proposed DT-LTT scheme. This way, the
use of spectral resources for calibration is not increased as
compared to DT-LTT. Note that this modification violates
the assumptions in Theorem 1, and thus this scheme may
not satisfy the reliability condition (38). This approach
uses a fixed test sequence within the mentioned grid of
hyperparameters considering first all option with the high-
est threshold, and then exploring other options decreasing
first A* € {0,1,...,4}, then AW € {0.1,0.3}, and finally
A e {1,5,9}.

e DT-LTT with an always-on main radio: We also consider
an always-on variant of DT-LTT, which keeps the main
receiver radio on for all time instants. In this case, the
hyperparameter vector A to be optimized contains only
the threshold A° for signal detection and the threshold
A for set prediction. As for LTT, we limit the number
of on-air calibration rounds to be at most equal to the
number of Pareto points in set A of DT-LTT. Furthermore,
we set AW = 0. Note that, for this strategy, the resulting
calibration output does not depend on the parameter 7,
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since the energy consumption at the receiver is constant,
irrespective of the selected hyperparameters A\® and \9.

C. High-Fidelity Digital Twin

We first consider a scenario in which the digital twin imple-
ments an accurate model of the channel so that the simulated
channel h follows the same distribution p(h) as the true channel
h. For both simulated and real channels, we adopt here the
standard 3GPP TR 38.901 channel model generated by Sionna,
an open-source library for simulating the physical layer of
wireless communication systems [51]. We use a tapped delay
line channel model from the 3GPP TR38901 specification with
six paths.

To illustrate the operation of DT-LTT, Fig. 5(a) presents
as black and red dots the expected loss and the energy con-
sumption plus the weighted set size estimated by the digi-
tal twin via (27), (28) and (29) for a given realization of
dataset DPT and realization of the simulated channels, when
the hyperparameters A are chosen within the mentioned grid
of values.

As seen in the figure, the expected loss and energy consump-
tion plus weighted set size are conflicting objectives, since no
hyperparameter vector A exists that yields simultaneously the
smallest loss and the smallest energy or the smallest set size.
The Pareto optimal points, within the set of chosen options,
are depicted as red points, constituting the set A of candidates
produced by the digital twin. During on-air calibration, the
candidates in set A are further evaluated in order of the value
of the loss estimated at the digital twin.

To elaborate, in Fig. 5(b), we show weighed sum of energy
consumption and set size estimated during on-air calibration
using one realization of the dataset DFT and channel trans-
missions for hyperparameters within the set A. As detailed in
Algorithm 1, the on-air calibration estimates the loss, energy
and set size using (32), (33) and (34), starting from the candidate
yielding the smallest value of the loss estimated at the digital
twin, and stopping once the loss estimated on the physical
system exceeds the threshold ¢)(«, d). Here we set & = 0.2 and
0 = 0.05. The final solution selected by the PT is represented
by the star. Note that the PT does not need to evaluate hy-
perparameters that result in an expected loss larger than the
threshold ¥(«, d).

In Fig. 6, we validate the reliability, energy consumption and
informativeness of the decisions produced by the calibrated sys-
tem as a function of the target miscoverage loss o with 6 = 0.05.
The ground-truth expected loss L(A™), energy consumption
E(X") and set size I(A™) are obtained by averaging over the
test set. In Fig. 6(a) and 6(b), the shaded area corresponds
to average miscoverage losses that do not satisfy the average
constraint (25). In a manner consistent with Theorem 1, we
fix a single realization of dataset DPT simulated channels at
the digital twin, and real channels, and evaluate the variability
of expected loss, energy consumption, and normalized set size
with respect to the realization of dataset DFT. Specifically,
each box spans the interquartile range of the corresponding
random quantity, with a line indicating the median, while the
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estimated at the digital twin using dataset DPT and channel simulators via (27), (28) and (29), with each point corresponding to the evaluation of a
hyperparameter A in a grid of options. The red points represent the selected candidates, which lie on the Pareto frontier A. (b) On-air calibration: expected
loss LET(X) versus weighted sum EPT(X) 4+ ~IPT(X) estimated using actual wireless transmissions with each point representing the evaluation for one
of the hyperparameters A in the set A. The star is the hyperparameter selected by on-air calibration with « = 0.2, § = 0.05, v = 10 and L™2* = 60.

whiskers extend from the box to show the overall range of the
observed values.

From Fig. 6(a) and 6(b), the conventional calibration scheme
fails to meet the reliability requirement, while the basic LTT
scheme selects conservative hyperparameters for « = 0.1, a =
0.15 and o« = 0.2, by including all classes in the predicted set,
leading to zero expected loss. In contrast, the proposed DT-
LTT schemes are guaranteed to meet the probabilistic reliability
requirement (25) as per Theorem 1. Furthermore, as the allowed
miscoverage probability «v increases, the expected loss obtained
with DT-LTT also grows accordingly.

Looking now at the bottom part of Fig. 6, it is observed
that the DT-LTT scheme with an always-on receiver is over-
conservative, yielding a large energy consumption, which does
not adapt to varying reliability requirements « (Fig. 6(c)).
This is because this scheme is not given the freedom to keep
the main radio of the receiver off in an adaptive manner.
In contrast, DT-LTT is able to adjust the energy consump-
tion to the tolerated unreliability level a, reducing the energy
consumption accordingly.

The reduction in energy consumption afforded by a larger
value of o depends on the design parameter 7, which dic-
tates the relative importance of decreasing the predicted set
size. In particular, increasing ~y cause the DT-LTT calibration
schemes to further reduce the set size as « increases, as a
smaller set can support a larger miscoverage rate «. In this
regard, for DT-LTT with v = 10, the set size initially decreases
and then increases with a. This is due to the importance at-
tributed by calibration to lowering energy consumption, which
calls for a larger predicted set to meet the reliability condition.
Conversely, with v = 20, the set size consistently decreases
with «, as the primary objective is to minimize the set size.

‘We have also carried out experiments with the DVS128 Ges-
ture dataset and the performance results are qualitatively very

similar to Fig. 6, and thus we have decided not to include them
due to lack of space.

D. Impact of Digital Twin Fidelity

In practice, the digital twin may employ simplified or approx-
imated models of the physical system due to computational lim-
itations or modeling errors. In this subsection, we evaluate the
impact of a mismatch between the ground-truth physical system
and the digital twin model. To this end, in this experiment, the
true channel is generated by using ray tracing in a street canyon
scene with cars by following Nvidia’s Sionna [51]. In contrast,
the digital twin model assumes the standard tapped delay line
channel model from the 3GPP TR38901 specification with a
variable number of paths NJ . [51]. Consequently, the digital
twin uses a mismatched simulator, which follows a statistical
model, rather than one that is adapted to the geometry under
which the real channels are generated via ray tracing. The level
of real-to-simulation mismatch can be partly controlled via
the choice of the number of paths NJ. Furthermore, we
also show the performance of DT-LTT when using a channel
model matched to the real channels. We set & = 0.2, § = 0.05,
and v = 10.

In Fig. 7, we present the expected loss, energy consumption,
and the normalized set size as a function of the number of
paths N{ 1 in the simulated channel in digital twin. As shown
in Fig. 7(a), DT-LTT ensures the reliability condition (25) ir-
respective of the fidelity of the digital twin. Furthermore, as
seen in Fig. 7(b), higher energy is required for mismatched DT
model in order to achieve the reliability condition. Finally, as
illustrated in Fig. 7(c), a richer DT model, with a larger number
of paths, supports the selection of hyperparameters that reduce
the set size, improving the informativeness of the decision at
the receiver.
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VII. CONCLUSION

This paper has introduced a novel architecture that inte-
grates wake-up radios into a split neuromorphic computing
system. A key challenge in this integration lies in determining
thresholds for sensing, WUS detection, and decision-making
processes so that the system maintains an expected decision-
making loss below a pre-defined target level. To tackle this
problem, we have proposed a digital twin-based calibration
algorithm that ensures the reliability of the receiver’s decision,
while also optimizing a desired trade-off between energy con-
sumption and informativeness of the decision. By leveraging
a digital twin of the system, the use of on-air resources for
calibration is reduced. Experimental results demonstrated the
effectiveness of the proposed algorithm, confirming the theo-
retical guarantees on reliability, which hold irrespective of the
data distribution and of the fidelity of the digital twin.

Future research may explore a hardware-based evaluation of
the proposed solution, encompassing integrated sensing, com-
putation, and communication [45]. In terms of algorithm exten-
sions, future work may consider incorporating delay-adaptive
decision making by producing an early output once the system
is confident in the inference results [48], [52].

APPENDIX
PROOF OF THEOREM 1

The reliability condition (38) is a consequence of the prop-
erties of LTT [21], which is leveraged by DT-LTT via the
Pareto testing method introduced in [20]. As detailed next,
LTT formulates the problem of hyperparameters selection in the
framework of multiple-hypothesis testing.

Consider first a single hyperparameter vector A, and define
the null hypothesis

H) :LPT (M) > a (39)
that the hyperparameter vector X does not guarantee the desired
reliability level o, where LFT(X) € [0,1] is assumed to be
bounded. Rejecting hypothesis #(\) implies that the calibra-
tion algorithms deems that the hyperparameter vector A ensures
the reliability condition LFT(\) < o in (25).

To decide whether to accept or reject the null hypothesis
H(A), one can evaluate a p-value associated with hypothesis
H(A), such as

p(A) _ 6_2‘DPT|(a_£P1‘(A))i. (40)
The quantity (40) is indeed a valid p-value for the null hypoth-
esis H(A) since the probability

Pr[p(A) < 0] <6 @1

holds for ¢ € [0, 1], with the probability Pr[-] evaluated with
respect to the distribution of dataset D*'" and the true channels

PT
{h, wp(h)}‘nD:1 " under the null hypothesis H(A). The in-
equality (41) is verified by Hoeffding’s inequality due to the
boundedness of the assumed loss [21].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Plugging (40) into (41), the inequality (41) is equivalent to
the condition Pr[LPT(A) < t(av, §)] < & for any fixed hyper-
parameter \. Therefore, if the inequality LPT(X) < (v, 8) is
verified, so is the required reliability condition (25).

The discussion so far has focused on a single hyperparame-
ter X. However, DT-LTT considers multiple hypotheses H ()
corresponding to different candidate hyperparameter vectors A.
To this end, DT-LTT follows fixed sequence testing via Pareto
testing [20]. Accordingly, the hyperparameter vectors are tested
sequentially stopping as soon as the first hyperparameter vector
A is found for which hypothesis H () is accepted. By [21,
Algorithm 1], this guarantees that all the hyperparameters as-
sociated with the rejected hypotheses ensure the reliability con-
dition LFT(X) < a with probability at least 1 — §. Finally, the
conservative hyperparameter A = [\® = 00, AW = 00, A4 = ]
also satisfies the reliability condition (25), since the predicted
set C always includes the true label, concluding the proof.
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