
State Consistent Edge-enhanced Perception for
Connected and Automated Vehicles

Can Carlak*, Bo Yu†, Fan Bai†, Z. Morley Mao*

*
University of Michigan,

†
General Motors

Abstract—Vehicle function offloading has been an active re-

search topic in the connected and automated vehicles (CAV)

domain. Mobile edge computing can execute sophisticated al-

gorithms on abundant computing resources, leading to superior

accuracy for vehicle system state estimation. On the other hand,

cellular network latency causes edge-computed information to be

obsolete.

In this paper, by focusing on camera-based object tracking

applications, we develop a novel state fusion framework that

not only achieves the benefits (enhanced detection accuracy) but

also mitigates the disadvantages (unpredictable network latency)

of edge computing. This is achieved by carefully managing the

system state consistency between the vehicle onboard system and

the remote edge system through our novel backward-and-forward
algorithms. We evaluate our system by comparing our method

with the edge-only and onboard-only counterparts through exten-

sive empirical experiments. The presented framework improves

the accuracy of camera-based perception by at least 2x compared

to traditional techniques, with an average response time of 48.13

ms (strictly less than the mission-critical latency threshold of 100

ms [1]).

Index Terms—connected vehicles, vehicle detection, edge com-

puting, vehicle-to-infrastructure, real-time latency mitigation.

I. INTRODUCTION

Modern vehicles, especially CAV, have an ever-increasing
demand for computing and storage resources. These com-
pute and storage resources are traditionally equipped on the
vehicle’s onboard computing platform, supporting resource-
demanding tasks, such as perception, mapping, localization,
and driver assistance. The onboard-only approach, nonetheless,
is becoming less sustainable due to the growing cost and
complexity of onboard hardware as well as the procreation
of vehicular applications via post-sale over-the-air (OTA)
updates. To tackle this issue, a recent research trend is to
offload automotive functions to cloud or edge computing
systems [2]–[4]. The emerging edge computing with abun-
dant compute resources is expected to maintain its presence
for automotive mission-critical applications. In the case of
camera-based vehicle perception, more sophisticated machine-
learning models can be utilized on edge-computing servers
to provide improved object detection service. This model
enhances vehicle perception without increasing the hardware
complexity on the vehicle side.

A major challenge of vehicle function offloading is the
unpredictable network latency. Using camera-based object
tracking as a use case, this process typically involves three
steps: 1) streaming vehicle sensor data to the edge via cellular
networks; 2) processing the sensor data on edge servers; and

3) transmitting the results back to the vehicle via cellular
networks. As a consequence, significant latency can arise
during this lengthy process, posing a major challenge to
mission-critical automotive applications because it may render
the system states computed by the edge servers obsolete.

To address this system state inconsistency problem, we
propose a novel state fusion framework to reconcile the two
system states (local copy vs. remote edge copy) as we offload
vehicle functions to the edge. Our design mitigates the impact
of round-trip network latency in automotive offloading cases.
The algorithm uses a state history data structure to maintain
the system states of both the onboard vehicle and remote
edge system via buffering the perception results in the past
few seconds. When edge results are received by the vehicle,
we first roll back the state history and use the edge results
to correct the estimation error in the corresponding local
state, followed by the fast-forward method to integrate up-
to-date local sensors and thus predict the best-estimated state
for the current moment. We call this backward-and-forward

algorithm.

To study the behavior of our proposed framework, we have
conducted extensive empirical experiments using real-world
5G networks and commercial edge computing environments.
Our measurement results show that perception errors resulting
from round-trip latency can be significantly reduced, through
the mitigation strategies proposed in our systems. Compared
to onboard-only and edge-only solutions, we can deliver at
least 2x better accuracy for estimating the target’s distance.
Moreover, the average system response time is kept below
50 ms regardless of underlying network latency fluctuation.
Evaluated under several network latency profiles, the proposed
system provides strictly better accuracy for camera-based
object tracking.

The major contributions presented in this paper are as
follows:

• We developed a vehicle-edge integrated system to offload
vehicle functions, and validated it with an automotive
perception application;

• We designed a state fusion algorithm to mitigate the
effects of round-trip latency from edge computing.

• We carried out extensive real-world experiments using
commercial 5G networks and cloud computing providers
to gather empirical data on edge-enhanced vehicle func-
tion offloading.

979-8-3315-1778-6/24/$31.00 ©2024 IEEE 

20
24

 IE
EE

 1
00

th
 V

eh
ic

ul
ar

 T
ec

hn
ol

og
y 

C
on

fe
re

nc
e 

(V
TC

20
24

-F
al

l) 
| 9

79
-8

-3
31

5-
17

78
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

V
TC

20
24

-F
al

l6
31

53
.2

02
4.

10
75

79
41

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 



II. EDGE-ENHANCED VEHICLE PERCEPTION SYSTEM

In this section, we present a comprehensive description
of our system architecture designed to augment vehicle per-
ceptual capabilities via edge computing. We break down the
computation phases within the perception pipeline, detailing
how each stage contributes to the refinement and enhance-
ment of sensory input for improved decision-making in edge
computing scenarios.

A. System Design

More accurate object detection algorithms can be executed
on sensor data by offloading computing to powerful edge
servers. The problem, however, is unpredictable network la-
tency from the edge and cloud services often render results
obsolete, leading to inconsistent states between local and
edge components. Ensuring the seamless operation of mission-
critical systems such as CAV demands real-time response from
computational systems. Hence, we prioritize reliable real-

time response as an important system design requirement, in
the presence of network instabilities. Furthermore, the large
amounts of sensor data generated by the dense traffic of
metropolitan cities necessitate an infrastructure capable of pro-
cessing such data efficiently. Therefore a scalable architecture
emerges as another crucial design requirement alongside real-
time responsiveness. Additionally, flexibility in data formats

and communication patterns is essential to accommodate
future advancements, allowing for the seamless integration of
additional sensor data beyond camera images. This adaptabil-
ity not only enhances current capabilities but also future-proofs
the system, ensuring its relevance and efficacy in evolving
environments.

Key Insight: Our work combines the strengths of lo-
cal/onboard perception and edge computing, aiming to balance
their benefits and limitations. On-board systems are prized for
their faster response times, as they process data internally
without the need for Internet communication. These low-
latency systems are critical for real-time responses. However,
they usually employ simpler detection algorithms leading to
less robust target detection capabilities. On the contrary, edge
servers, though suffering by network latency, offer superior

accuracy due to more sophisticated algorithms. This presents
a bottleneck since the data they produce, while more accurate,
may no longer reflect the current state of the environment by
the time they are received back by the vehicle.

Throughout this manuscript, we adopt the term world state

to describe the collective knowledge possessed by an ego vehi-
cle regarding its immediate environment. In a pragmatic sense,
the term encapsulates relevant data structures utilized for the
estimation of current spatial coordinates of the target vehicle(s)
within the vicinity. Hence, one important performance metric
for our vehicle detection and tracking system resides in the
accurate estimation of the world state while satisfying the
system requirements described in this section.

Fig. 1: Edge-enhanced vehicle perception system.

B. Data Flow and Perception Phases

Within the proposed framework, the synthesis of the world

state information is realized through the systematic processing
and refinement of historical sensor data, in conjunction with
the processing within the edge server. The subsystem at
the bottom in Figure 1 illustrates the principal components
associated with vehicle-side computing, whereas the upper
counterparts represent the edge service. To understand the
system behavior thoroughly, we start explaining how the data
flows; starting at the sensor module, wherein an onboard
camera apparatus generates image frames.

The image frames traverse two distinct paths of processing:
i) local onboard perception path, and ii) edge perception path.
In the localized onboard perception pathway, each image frame
undergoes a sequence of intermediary operations comprising
target vehicle detection, coordinate transformation, target ve-
hicle tracking via Bayesian filtering, and updating the ego
vehicle’s world state. Conversely, the secondary processing
pathway of our system involves the compression, rate control,
and transmission of data messages to an edge server via a
cellular network. The frames are decompressed and processed
by edge-perception modules for notably improved accuracy
compared to a local-only detector. Upon completion of the
edge server processing, the results accompanied by unique

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 



identifiers are relayed back to the vehicle for correlation with
locally computed counterparts. Subsequently, during the state-
fusion phase, the “backward-and-forward” (section III-B)
algorithm intelligently merges the edge-processed data and the
locally computed data, using state history. This fusion yields
superior target vehicle positioning accuracy coupled with real-
time response; conforming to our primary system requirements
in section II-A.

To address the remaining system requirements in section
II-A, each major processing block is designed and imple-
mented in the form of microservices for achieving higher
horizontal scalability, and flexibility standards: i) The Sensor
Module collects raw measurements from onboard hardware
– camera and GPS data for the scope of this work, yet
provides an extensible interface for future. ii) The Streaming
Module encodes raw frames using H264 and employs adaptive
streaming to optimize bandwidth and reduce packet loss;
thereby ensuring continuous and reliable data flow. iii) The
Communication Module implements a ZMQ [5] dealer/router
communication model providing asynchronous messaging be-
tween the vehicle and the edge server. This pattern allows
vehicles (dealer sockets) to send multiple requests before wait-
ing for replies, allowing for higher throughput and efficiency.
Also, vehicles can join and leave the network with minimal
coordination or disruption; allowing for easy scaling of the
edge-enhanced perception service, making our system highly
flexible.

C. Object Localization and World State Mapping

Upon successful object detection phase, each target vehicle
is enclosed in a bounding box with pixel coordinates in
the camera’s perspective. However, these coordinates are not
directly applicable to world state computations. Therefore, we
perform a 4-point perspective transformation that maps these
pixel coordinates onto a bird-eye view of the scene using a
transformation matrix M.

For a point P represented in pixel coordinates as p =
[x, y, 1]T , the mapping is defined using the transformation
matrix M as:

p→ = M · p

where p→ represents the corresponding point in bird’s-eye
view coordinates. The matrix M is a 3x3 matrix composed
of rotational [r1, r3]T [r2, r4]T , translational [t1, t2, 1]T , and
projectional [c1, c2, 1] components accounting for camera ori-
entation and position. This matrix provides the homography
that transforms image coordinates into a plane parallel to the
road surface:

M =




r1 r2 t1

r3 r4 t2

c1 c2 1





The components of M are calculated through a calibration
process where four points of known pixel coordinates are
mapped to their corresponding positions in the bird’s-eye view

frame. A known distance in the calibration image is also
recorded to enable the computation of real-world distances
after transformation. This process is conducted once during
the calibration phase.

Limitations and Stability: Two critical limitations of the
4-point perspective transformation are its vulnerability to z-
axis distortion and the need to re-calibrate if the camera pose
changes. Despite this, in mostly planar environments where
roads lack significant elevation changes, this method maintains
reliability in mapping positions from the camera image to
the bird’s-eye coordinate system. As our primary focus is
on the impact of network latency on perception systems
running on the edge, instead of the perception system itself,
we do not delve further into image stabilization techniques.
However, alternative methods like Structure from Motion or
SLAM (Simultaneous Localization and Mapping) could be
explored for enhancing global coordinate estimation from
camera perspectives.

III. VEHICLE STATE CONSISTENCY

In this section, we discuss the two critical components of
the vehicle hybrid perception system – state estimation and
state fusion phases, respectively.

A. State Estimation

Perspective pixel coordinates describing a bounding box
undergo transformation to a bird-eye representation, corre-
sponding to actual spatial coordinates. Nevertheless, these
coordinates are not used directly for the true location of
a target vehicle, due to the tendency of object detection
algorithms to generate false positives. Instead, they serve as
inputs to a state prediction/estimation algorithm to facilitate
a more consistent representation of the world state. For state
estimation, we employ particle filtering [6] — an approach
prevalent in robotics and other domains for localization tasks.

To employ particle filtering for target position estimation
using state variables for position and velocity in the x and
y axes, we first define the state vector and then describe the
process and measurement models.

State Vector: Let’s x be a state vector at time step k as:

xk = [xk, yk, dxk, dyk]
T

where: - xk and yk represent the target’s position on the x
and y-axis, respectively, at time step k. - dxk and dyk represent
the target’s velocity on the x and y-axis, respectively, at time
step k.

Process Model: A linear motion model with a Gaussian
process noise is assumed; therefore, the state transition matrix
can be written as:

F =





1 0 !t 0
0 1 0 !t

0 0 1 0
0 0 0 1





where !t is the time difference between the current state and
the next state.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 



Measurement Model: The measurement model describes the
relationship between the state vector and the measurements
received. We can directly measure the position (via image
pixel coordinates) but not velocity, therefore, the measurement
matrix H:

H =

[
1 0 0 0
0 1 0 0

]

The measurement equation would then be:

zk = Hxk + vk (1)

where: - zk is the measurement at time step k (it contains the
measured x and y positions). - vk is the measurement noise,
which is modeled as zero-mean Gaussian.

Step 1 - Initialization: Generate N particles {x(i)
0 }Ni=1 from

the prior distribution, which represents the initial belief about
the state of the system.

Step 2 - Prediction: For each particle, predict the next state
based on the process model:

x
(i)
k+1|k = Fx

(i)
k + ω

(i)
k (2)

where ω
(i)
k represents the process noise, which is the

stochastic disturbance that affects the state transition. It is
sampled from a Gaussian distribution.

Step 3 - Measurement Update: Once a new measurement
zk+1 is observed, the weights of each particle are updated
based on how likely the measurement is, given the predicted
state:

w
(i)
k+1 = p(zk+1|x(i)

k+1|k) (3)

The weights are determined by evaluating a Gaussian proba-
bility density function centered at the predicted measurement
for each particle.

Step 4 - Resampling: Particles with higher weights are more
likely to be selected. This step results in a new set of particles
{x(i)

k+1}Ni=1 that represent the posterior distribution reflecting
the latest measurement.

x
(i)
k p(xk|zk) =

N∑

j=1

w
(j)
k → ε(xk ↑ x

(j)
k ) (4)

Step 5 - Estimation: The estimate of the state is computed
using the particles and their weights. We use the weighted
average:

x̂k+1 =
N∑

i=1

w
(i)
k+1x

(i)
k+1 (5)

Each new sensor data triggers repeating the prediction,
measurement update, resampling, and estimation steps for each
time step. Lastly, the number of particles used can dramatically
affect the performance of the perception pipeline. Typically
using a large number of particles converges more reliably as
more distinct particles can cover a bigger area in a search
space, at a cost of slower processing. To balance accuracy
and response time, we experimentally found that around 500
particles for representing the target vehicle state, provide the
best performance.

B. State Fusion

So far, we explained how the sensor data goes through
a series of operations to synthesize the world state. In this
section, we explain state-fusion: the process of maintaining
state consistency between a vehicle perception and an outdated
edge perception. Once an edge perception result is received
asynchronously; the backward-forward algorithm is triggered
on the existing world state and newly received edge server
result.

At any given time, multiple world states are likely to be
already produced and inserted into the world states data struc-
ture by the local perception. The reasoning is that processing
camera frames in the onboard perception subsystem is much
faster than acquiring an edge server response for the same
frame due to network delay. When the corresponding analysis
from the edge is received at the vehicle, chronologically
ordered world state history is searched to find the matching
unique frame ID. Any obsolete states are discarded in the
search. Subsequently, the system restores to the exact world
state which includes the past timestamps, camera frames, and
particles: we call this operation a rollback.

After a successful rollback, we can safely update the locally
perceived past states with the robust edge perception result.
Updating a past state is similar to state estimation processes
discussed in section III-A; only this time the edge-computed
measurements are incorporated in the estimation functions.
At this point, a superior accuracy edge-computed world state
is obtained despite being outdated. Similar to a rollback
analogy but this time in the forward direction, we need to
reconstruct intermediate world states. This step is referred
to as fast-forwarding. Starting from the oldest to the most
recent state, their corresponding local measurements are fed
into state estimation. Note that, even though the prediction-
update-resampling cycle of the particle filter is supplied with
the recorded local-only data, now the starting points of the
particles are enhanced with robust edge perception. Therefore,
the reconstructed states become more reliable than the local-
only replicas at every iteration of fast-forwarding. As long
as there are intermediate states in the world states list, fast-
forwarding is applied to each sequentially. The entire state-
fusion pipeline is triggered every time new edge data is
received. A pseudo-code is given in Algorithm 1 to describe
the process.

IV. EVALUATION

We empirically assess the performance of our system by
conducting driving experiments under real network impair-
ments.

A. Experiment Environment

To deploy our edge server, we worked with one of the
major commercial services in the US: powering 8 CPUs,
56 GB memory, and 1 Nvidia Tesla T4 GPU. Given the
computing resources, we run a full YOLO [7] instance under
60 ms prediction response time with an input resolution size of
608x608, up to 35 frames-per-second (FPS). For the on-board

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Backward-Forward Algorithm
Input: edgeData: received edge perception result;

worldStates: list of chronological world states;
frameID ↓ edgeData.frameID

DiscardObsolete(worldStates, frameID)

matchState ↓ Rollback(worldStates, frameID)

if matchState ↔= null then

p ↓ matchState.particles

r ↓ edgeData.measRes // using edge

newState ↓ StateEstimator(p, r)

UpdateSt(worldStates, matchState, newState)

// Fast-forward loop

foreach state in worldStates do

p ↓ state.particles

r ↓ state.measRes // using local

newState ↓ StateEstimator(p, r)
UpdateSt(worldStates, state, newState)

system, a laptop device with a 4-core CPU (Intel Xeon E3-
1505M), 32 GB of memory, and a Nvidia Quadro M1000M 2
GB graphics card is used. By direct comparison, deploying the
full YOLO object detection model on the onboard setup yields
either an unacceptably slow performance or a “not enough
memory” exception. As expected, the highest FPS we obtained
from the onboard computing system was 3.9, along with more
than 250 ms latency. Since this performance is not practical
to be deployed in real-world scenarios, a smaller footprint
called YOLO-tiny, is preferred for our vehicular setup. With
the lighter model, the on-board detector can process camera
images up to an average rate of 10 FPS.

In order to evaluate the effectiveness of our edge-enhanced
perception, we conducted a series of driving tests using two
vehicles: the ego vehicle and the target vehicle. Both vehicles
were equipped with UBlox RTK-GPS units to obtain ground-
truth distance measurements. Additionally, the ego vehicle is
equipped with a camera, and a USB tethered mobile phone
for providing network access. The evaluation was performed
using four different datasets including a vehicle test facility,
and several driveways in Ann Arbor, Michigan. Each dataset
presents unique challenges in terms of speed, network delay,
and network stability.

Dataset-I: Both the ego vehicle and the target vehicle
approach each other at a constant speed of 25 mph. The test
was conducted on a straight test road designed for controlled
tests. The area has very good network coverage, ensuring
minimal network latency and stable connectivity throughout
the tests. The main purpose is to evaluate and compare the
initial detection distances achieved by local-only, edge-only,
and edge-enhanced methods without the confounding effects
of network impairments commonly encountered in real-world
scenarios.

Dataset-II: This dataset involves the ego vehicle chasing
the target vehicle in a residential area east of Ann Arbor. The

driving speeds reached up to 50 mph, with network delays up
to 120 ms and relatively stable connections with fewer network
fluctuations.

Dataset-III: In this dataset, the ego vehicle chased the target
vehicle along the North 23 highway and through the University
of Michigan’s North Campus in Ann Arbor. Speeds reached
up to 70 mph, with network delays extending up to 900 ms,
moderate packet loss, and frequent network fluctuations due
to high-speed cellular handovers. A GPS-based trajectory is
given in Figure 2.

Fig. 2: Trajectory of dataset-III comprising University of
Michigan North Campus and 23 North highway.

Dataset-IV: This dataset captures scenarios where the ego
and target vehicles are approaching each other from opposite
lanes on the University of Michigan’s North Campus. Speeds
reached up to 50 mph with network delays up to 1000 ms, very
high packet loss, and occasional connectivity outages due to
poor cellular coverage of a particular intersection.

B. Performance Analysis of the Edge-enhanced Perception

We define the following benchmarks:
• Edge-enhanced (EE): The proposed hybrid perception

system is employed at the vehicles; leveraging both local
and edge-computed perception via the backward-forward
state fusion.

• Edge-only (EO): Edge perception is executed without
performing latency mitigation techniques. Due to network
latency, the perceptions are outdated once received at the
ego vehicle.

• Local-only (LO): Local perception results are used with-
out edge support. Note that the vehicle is equipped with

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 



a less powerful GPU than an edge server, thus, only a
lower-quality perception is available.

• Baseline: Vehicles leverage edge-computing grade per-
ception under theoretically perfect network conditions
(with zero latency). As an offline step, the edge-
computing perception is directly applied to the traffic data
we collected; resulting an upper bound for our evaluation.

First, we assess the performance metric of vision by eval-
uating the maximum distance at which the target vehicle is
initially detected. Experiments in dataset-I shows that local-
only (LO) perception detects the target vehicle at an average
distance of 40 meters, while edge-computing methods detect it
at an average distance of 70 meters. As illustrated in figure 3,
EO and EE detection extends the maximum vision distance
ranging from 90 to 95 meters in certain cases, effectively
doubling the vision range of LO. These findings imply that
offloading camera perception tasks to the edge substantially
enhances the maximum detection distance.

Fig. 3: Dataset-I: Maximum distances of initial detection.

Under conditions of moderate speed and stable network con-
nections (dataset-II), both EE-2 and EO-2 methods performed
similarly for the bulk of our measurements. However, in the
higher error percentiles of Figure 5, EO-2 produced errors
that were 1.5 times larger than those of EE-2. This illustrates
that even minor network inconsistencies can have a significant
adverse effect on edge-only perception and tracking.

High speed and frequent cellular handovers resulted in
challenging conditions for EO. The CDF plot Figure 5 shows
that EO-3 (dataset-III) experienced at least a 2x larger error in
distance estimations in the 90th percentile and above. This gap
widened even further when network latency reached extreme
values (greater than 600 ms), highlighting EO-3’s vulnerability
under increased network stress, see Figure 4.

Dataset-IV presented the most demanding conditions, with
very high packet loss and interrupted connectivity. The vehi-
cles’ relative speeds were also higher, magnifying the negative
effects of network impairments. In this challenging scenario,
EO-4 exhibited errors at least 4x greater than EE-4 for the
highest percentiles as illustrated in Figure 5. This under-

Fig. 4: Performance under extreme RTT in Dataset-III.

lines EE’s significant advantage in compensating for network-
induced disruptions.

Fig. 5: Comparison of EE/EO-[2,3,4] in Dataset-[2,3,4].

Our comprehensive experimental evaluation, conducted
across a series of uniquely challenging datasets, highlights
the robust resilience of the proposed framework (EE) in high-
speed vehicular contexts where mobile cell coverage, real-time
performance during handovers, and network stability are criti-
cal factors. Edge-only (EO) methods consistently experienced
performance degradation under conditions of high latency and
frequent network fluctuations, while EE demonstrated supe-
rior adaptability - shown in Figure 4, effectively mitigating
these adverse effects. Meanwhile, local-only (LO) methods
exhibited faster detection times, its perception and tracking
quality was significantly inferior compared to both edge-based
techniques. Thus, our results suggest that EE is better suited
for deployment in edge computing environments characterized
by variable and often sub-optimal network conditions.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 



V. RELATED WORK

A. Edge/Cloud Offloading

Research studies [8], [9], [10], and [2] have examined the
application offloading to edge computing systems. Odessa’s
[11] method increased computer vision performance. In Ou-
tatime [12], speculative offloading achieved reduce latency.
Despite similar techniques are covered, unique challenges in
the CAV domain makes their work impractical.

[3] and [4] study offloading between multiple clients
and edge servers to perform efficient load balancing, job
scheduling, and content delivery services in the CAV domain.
[13] does adaptive offloading on computer vision applications
to cloud services from the vehicle. The study performs an
estimation of network latency to decide whether to offload
or not. Our work, however, benefits from edge computing
resources even under a high network latency profile by the
forward correction stage (state fusion). Lastly, accuracy is not
the main goal of [13], but application response time is.

B. State Consistency

Studies such as [12] [14] [15] have taken the approach
of sharing their applications’ states across their clients and
servers. In [14], the system requires sharing the internal states
of a vehicle when it switches mode by propagating the state
between a client and a cloud server. The study [15] proposed
output-driven state preservation across vehicle and edge to
balance the “accuracy vs network bandwidth” trade-off. The
key insight is to use only the pose data (output of their main
application) to reduce state complexity between vehicle and
cloud copies. On the other hand, we maintain a global state
only on the vehicle side in our system design. Therefore, the
edge is solely responsible for running a stateless perception
algorithm on the data it receives. The consistency of our
system’s state is conserved via state history, rollback and fast-
forward stages upon reception of the edge result on the vehicle.
In study [12], an edge server speculatively pre-computes data
for an improved response time and quality at the client. In
case the edge server makes an incorrect prediction, however,
a rollback mechanism is executed to revert to a sound global
state. To an extent, we have built on this idea, yet taken a
reverse direction: In our design, we leverage an edge computed
result of a near-past moment instead of a future speculation.
Moreover, we consolidate the state consistency at the vehicle
side instead of correcting at the edge as in their work.

VI. CONCLUSION

Offloading mission-critical automotive applications to an
edge computing node is not a trivial task for CAVs, because
of the technical challenge introduced by unreliable network
conditions. In our study, we concentrated on the use case
of camera-based perception and vehicle tracking, due to its
widespread adoption in the CAV domain. A novel state-
fusion system is presented to enable vehicles with limited
computational power to benefit from advanced perception
algorithms by intelligently incorporating edge-computed ve-
hicle information with on-vehicle detection data. Experiments

in a typical network with nearly 300 ms round-trip latency
show that our “edge-enhanced” perception at least doubles the
accuracy for vehicle position estimation compared to local-
only and edge-only counterparts. While providing superior
accuracy, edge-enhanced perception produces results as fast as
local-only (real-time) perception; whereas edge-only methods
drastically suffer from round-trip latency.

REFERENCES

[1] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” SIGPLAN Not., vol. 53, no. 2, p.
751–766, Mar. 2018. [Online]. Available: https://doi.org/10.1145/
3296957.3173191

[2] K. Kumar, J. Liu, Y.-H. Lu, and B. K. Bhargava, “A survey of computa-
tion offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, pp. 129–140, 2013.

[3] J. Tang, R. Yu, S. Liu, and J.-L. Gaudiot, “A container based edge
offloading framework for autonomous driving,” IEEE Access, vol. 8,
pp. 33 713–33 726, 2020.

[4] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward
efficient content delivery for automated driving services: An edge
computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, 2018.

[5] P. Hintjens, “Zeromq - the guide,” http://zguide.zeromq.org/, accessed:
[Apr 21, 2024].

[6] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” IEE Proceedings F -

Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.
[7] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal

speed and accuracy of object detection,” 2020.
[8] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

Elastic execution between mobile device and cloud,” in Proceedings

of the Sixth Conference on Computer Systems, ser. EuroSys ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
301–314. [Online]. Available: https://doi.org/10.1145/1966445.1966473

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on

Mobile Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
49–62. [Online]. Available: https://doi.org/10.1145/1814433.1814441

[10] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, “Adap-
tive offloading for pervasive computing,” IEEE Pervasive Computing,
vol. 3, no. 3, pp. 66–73, 2004.

[11] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: Enabling interactive perception applications on
mobile devices,” in Proceedings of the 9th International Conference

on Mobile Systems, Applications, and Services, ser. MobiSys ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
43–56. [Online]. Available: https://doi.org/10.1145/1999995.2000000

[12] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan,
A. Wolman, and J. Flinn, “Outatime: Using speculation to enable
low-latency continuous interaction for mobile cloud gaming,” in
Proceedings of the 13th Annual International Conference on Mobile

Systems, Applications, and Services, ser. MobiSys ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 151–165.
[Online]. Available: https://doi.org/10.1145/2742647.2742656

[13] A. Ashok, P. Steenkiste, and F. Bai, “Enabling vehicular applications
using cloud services through adaptive computation offloading,” in
Proceedings of the 6th International Workshop on Mobile Cloud

Computing and Services, ser. MCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1–7. [Online].
Available: https://doi.org/10.1145/2802130.2802131

[14] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, “Vehicle control system
coordinated between cloud and mobile edge computing,” in 2016 55th

Annual Conference of the Society of Instrument and Control Engineers

of Japan (SICE), 2016, pp. 1122–1127.
[15] K.-L. Wright, A. Sivakumar, P. Steenkiste, B. Yu, and F. Bai, “Cloud-

slam: Edge offloading of stateful vehicular applications,” in 2020

IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 139–151.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 28,2025 at 15:42:42 UTC from IEEE Xplore.  Restrictions apply. 


