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Localization from structured distance matrices via
low-rank matrix recovery

Samuel Lichtenberg and Abiy Tasissa

Abstract

We study the problem of determining the configuration of n points by using their distances to m nodes, referred to as anchor
nodes. One sampling scheme is Nyström sampling, which assumes known distances between the anchors and between the anchors
and the n points, while the distances among the n points are unknown. For this scheme, a simple adaptation of the Nyström
method, which is often used for kernel approximation, is a viable technique to estimate the configuration of the anchors and the
n points. In this manuscript, we propose a modified version of Nyström sampling, where the distances from every node to one
central node are known, but all other distances are incomplete. In this setting, the standard Nyström approach is not applicable,
necessitating an alternative technique to estimate the the configuration of the anchors and the n points. We show that this problem
can be framed as the recovery of a low-rank submatrix of a Gram matrix. Using synthetic and real data, we demonstrate that
the proposed approach can exactly recover configurations of points given sufficient distance samples. This underscores that, in
contrast to methods that rely on global sampling of distance matrices, the task of estimating the configuration of points can be
done efficiently via structured sampling with well-chosen reliable anchors. Finally, our main analysis is grounded in a specific
centering of the points. With this in mind, we extend previous work in Euclidean distance geometry by providing a general dual
basis approach for points centered anywhere.

Index Terms

Nyström method, Euclidean distance geometry, localization, graph Laplacian, dual basis.

I. INTRODUCTION

G IVEN incomplete pairwise distance information for a set of n objects, a core challenge across diverse domains [1]–[7]
is to recover the configuration of points realizing those distances, a problem known as the Euclidean distance geometry

(EDG) problem. Besides partial distance information, we frequently have additional side information in practical applications.
In particular, we may already know the full or partial pairwise distances between a small subset of the points, or the missing
distance values may exhibit a structured pattern that reflects the specific measurement protocol in use. In this paper, our focus
is centered on the scenario when these assumptions hold. We illustrate this scenario through the localization problem.

Localization is a fundamental problem in sensor networks. Given a collection of sensor nodes deployed over a certain area,
the goal of localization is to obtain the positions of the sensors while employing protocols which minimize cost and power
consumption [8]. The location data is indispensable in a variety of applications, including but not limited to geographic routing
[9], [10], environmental monitoring [11]–[13], and structural health monitoring [14]–[16]. We refer the reader to [17] for a
survey of localization algorithms. We discuss one setting of localization in which we are given the full pairwise distance matrix
between m nodes. For the remaining n sensor nodes, we are provided information in terms of pairwise distances to the m
nodes. We adopt the established terminology in localization, henceforth referring to these nodes as “anchor nodes” and “mobile
nodes” respectively.

Formally, let x1, ...xm and y1, ...,yn denote the positions of m anchor nodes and n mobile nodes respectively. Here on, we
assume the points lie in Rr, with r typically set to 2 or 3 in many applications. The underlying squared pairwise distance
matrix for the p = m+ n sensor nodes has the following form

D =

 E F

F⊤ G

 , (1)

where E ∈ Rm×m denotes the anchor-anchor squared distance matrix, F ∈ Rm×n denotes the anchor-mobile squared distance
matrix and G ∈ Rn×n is the mobile-mobile squared distance matrix. One sampling scheme is the scheme used in the Nyström
method [18], [19], where we have access to E and F but lack distance information between the mobile nodes, meaning
no entries of G are observed. We refer to this sampling model as Nyström sampling. The problem is then to estimate the
configuration of the p nodes using the distances in the blocks E and F . This setup differs slightly from the standard Nyström
problem in that D is not a kernel matrix, and not the main object we are trying to recover. However, following the analysis in
[19], this problem can be translated into a standard Nyström problem on the Gram (kernel) matrix K. Specifically, if we set
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P = [X Y ] with X = [x1,x2, ...,xm] and Y = [y1, ...,yn], the Gram matrix associated to P is defined as K = P TP and
has the following block form

K =

 XTX XTY

Y TX Y TY

 =

 A B

B⊤ C

 . (2)

Here, A ∈ Rm×m and B ∈ Rm×n are considered fully known, whereas C ∈ Rn×n is unknown. Specifically, B and A can be
derived from E and F via relationships given in [19], and then C can then be recovered via the usual Nyström method on
kernel matrices [18]. The Nyström sampling is very useful for problems with structured partial distance information, but it
requires that all distance entries of E and F are known in order to recover B. In practice, this may be restrictive or expensive
as it requires communication between a given anchor node and all mobile nodes.

In this paper, we propose a modified Nyström sampling scheme that addresses missing distances in the E and F blocks.
This approach is termed anchorless, as it does not require the positions of the anchors and could be more cost-effective than
anchor-based methods [20], [21]. The main motivation for our sampling scheme is to offer flexibility to capture the various
uncertainties in distance measurements across applications. In this context, anchors represent the subset of points for which we
have reliable pairwise distance measurements, while mobile nodes signify points where the distance measurements are more
likely to be uncertain. For example, in structure prediction, anchors could correspond to a subset of atoms in a protein region
that is easier to predict.

We now discuss theoretical analysis and algorithms related to this problem. Assuming that the entries of E and F are
sampled from the uniform or Bernoulli sampling model, one approach is to use standard matrix completion algorithms [22]–[26]
to complete E and F . However, these methods do not consider that E is a squared Euclidean distance matrix and F is a
submatrix of such a matrix, thus ignoring non-negativity and triangle inequality constraints. The studies in [27]–[29] note that
using a Gram matrix formulation offers optimal sampling complexity (number of distance entries needed for exact recovery of
the points) for the EDG problem, in contrast to a distance matrix formulation, which does not. This is due to the Gram matrix’s
structure, which is symmetric and positive semi-definite, and an essential equivalence between Gram matrices and distance
matrices [30]. Therefore, an approach would be to use the method in [28], which deals with completing a distance matrix from
randomly sampled entries. However, the random sampling in [28] is global, unlike our setting, which only samples in the E
and F blocks. Thus, the theoretical analysis in [28] is not directly applicable here. Additionally, existing works [29], [31], [32]
that consider random sampling of the distance matrix without assuming any special structure cannot be applied to our setup.

The closest work to ours is [33], which considers the problem of completing a low-rank matrix with observations restricted
to a few rows and columns. However, applying this method to a distance matrix requires integrating the properties of the
distance matrix into the optimization, which potentially could require more distance samples. One of the main motivations of
this paper is to demonstrate that, under the modified Nyström sampling scheme, the localization problem can be formulated as
a generalized matrix completion problem of the matrix [A B], which is a submatrix of K. Given that positive semidefinite
matrices arise in many applications, the problem of completing such matrices from a few of their entries has been explored
both algorithmically and theoretically [34]–[39]. While these works and our approach share the common idea of using the
Gram matrix, these works focus on completion problem from sampled entries of the Gram matrix, whereas in the problem we
consider, the measurements are based on the entries of the distance matrix.

A. Contributions

The key contributions of this paper are:
1) Modified Nyström sampling model: We propose a sampling model where distance measurements are available between

all mobile nodes and a single anchor node, meaning we have a complete row of the matrix F . We refer to this anchor
as the central node. For the other entries in E and F , we assume partial pairwise distance information. Figure 1 shows
an illustration of the sampling scheme. In our numerical experiments, the entries of E are sampled according to the
Bernoulli model. For each column of F , corresponding to a mobile node, we sample uniformly at random α entries.
The interpretation of this is that we know the distance of each mobile node to α randomly selected anchor nodes. Our
numerical experiments demonstrate that, provided well-chosen anchors and sufficient distance samples in E and F block,
we can estimate the positions of the anchors and mobile nodes efficiently.

2) Anchorless localization: Under the modified Nyström sampling model, we formulate the anchorless localization problem
as the recovery of a low-rank matrix, specifically the submatrix [AB] of K, given a subset of its expansion coefficients
in a non-orthogonal basis. The expansion coefficients depend on the observed entries of E and F . A consequence of our
derivation is that the central node in the modified Nyström sampling model is necessary to relate the observed entries of
[E ,F ] to [A ,B].

3) Centering analysis: The analysis in this paper leverages a special centering of the points. Motivated by that, we extend
previous analysis in [40] for Euclidean distance geometry by considering arbitrary centerings of the set of points.
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(1,1) block (1,2) block

(2,1) block (2,2) block

Fig. 1. Illustration of the proposed sampling model. We sample few distances from the anchor-anchor and anchor-mobile squared distance matrix. The distances
between the mobile nodes are not sampled. In addition, we assume that we know the distance of all mobile nodes from one of the anchors. Grey indicates the
distances are known in that block while white denotes the distance information is missing in that block. The red line indicates the central node from which we
know the distances to all mobile nodes. The black dots indicate observed distance entries in these blocks.

II. NOTATION

All vectors and matrices are represented in bold font. Given a vector x, its i-th entry is denoted by xi. For a matrix X ,
the (i, j)-th entry is denoted by Xi,j . The i-th row and j-th column of the matrix X are denoted by X(i, :) and X(:, j)
respectively. XI,: denotes the submatrix of X with row indices I . In a similar manner, X:,J denotes the submatrix of X with
column indices J . The identity matrix is denoted as I . Standard basis vectors and matrices are represented by ei and eα or
ei,j . I is the universal set {(i, j) : 1 ≤ i < j ≤ n} of indices. 1 is the all-ones vector and 0 is the all-zeros vector. The trace
inner product for matrices is expressed as ⟨X,Y ⟩. A ⪰ 0 denotes that A is a symmetric and positive semidefinite matrix.
The delta function δji is defined as 1 when i = j and 0 otherwise. ∥·∥∗ denotes the nuclear norm of a matrix. A† denotes
the pseudo-inverse of A. Occasionally, we may refer to a matrix block as v

(1,2)
α , representing the (1, 2) block of vα. In the

context of this work, focused on Nyström methods, matrices exclusively consist of four blocks: (1,1), (1,2), (2,1), and (2,2). If
these blocks pertain to the kernel matrix K or the squared distance matrix D, they will be assigned special names as will be
detailed in the Background section.

III. BACKGROUND

This section offers a concise overview of the Nyström method and the dual basis approach, which serve as foundational
concepts for the subsequent sections.

A. The Nyström Method for Gram Matrices

The Nyström method considers a low-rank approximation of a symmetric and positive semidefinite matrix K, which has the
block structure shown in (2). It is typically assumed that m ≪ n, and that we do not know entries of C. If rank(A) = rank(K),

then every column
[

B(:, j)
C(:, j)

]
, 1 ≤ j ≤ n, can be written as a linear combination of columns

[
A(:, i)
B⊤(:, i)

]
, 1 ≤ i ≤ m. In

other words, B(:, j) = Axj and C(:, j) = B⊤xj , for some xj ∈ Rm. This gives the equations B = AX and C = B⊤X
for some X ∈ Rm×n. If A is invertible, then we must have C = B⊤A−1B. If A is not invertible, then X = A†B provides
the least-squares solution to the first equation, and so the Nyström method sets C = B⊤A†B. This agrees with the prior
equation for C when A is invertible. If K is at most rank m and rank(A) = rank(K), then the Nyström approximation is
exact [41]. An essential problem is determining the block structure of K to ensure the Nyström method is exact. In [42], it is
noted that if A is formed by uniformly sampling the rows (and their corresponding columns) of K with replacement, the
number of rows in A, denoted as m, depends on a specific quantity known as coherence of K (see Definition 1 in [42]).

B. The Nyström Method for Distance Matrices

Suppose we have a squared distance matrix D and a kernel (Gram) matrix K with the structures shown in (1) and (2). We
presume that the partition into sub-blocks occurs within the initial m rows and columns. The objective is to recover a K that
generates D by observing only a portion of D, specifically all the entries in E and F . This is achieved by exploiting the
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connection between D and K as outlined below. For any vector s that sums to 1, the works in [43] and [44] demonstrate the
following relation between K and D:

K = −1

2
(I − 1s⊤)D(I − s1⊤). (3)

This procedure, when applied to D, is often called double-centering. Different choices of s will yield different K, but any K
obtained in this way will always reproduce D.

The equation in (3) may be expanded for the (i, j)-th entry of K as follows:

Ki,j = −1

2

(
Di,j −

N∑
q=1

sqDi,q −
N∑

p=1

spDp,j +
N∑

p=1

N∑
q=1

spsqDp,q

)
.

By choosing s to be 1/m in the initial m entries and 0 elsewhere, as described in [19], we get the following result:

Ai,j = −1

2

(
Ei,j −

1

m

m∑
p=1

Ep,j −
1

m

m∑
q=1

Ei,q +
1

m2

m∑
p=1

m∑
q=1

Ep,q

)
(4)

and

Bi,j = −1

2

(
Fi,j −

1

m

m∑
p=1

Fp,j −
1

m

m∑
q=1

Ei,q +
1

m2

m∑
p=1

m∑
q=1

Ep,q

)
. (5)

By choosing a particular centering vector s, we are able to recover the A and B blocks of K using only the E and F
blocks of D. A standard Nyström procedure for Gram matrices can then be performed to recover all of K. From the solution of
K, akin to classical multidimensional scaling [45]–[48], we can recover the configuration of points using eigendecomposition.

C. The Dual Basis Approach for Low-Rank Matrix Recovery

The matrix completion problem aims to reconstruct a low-rank matrix X based on sampled measurements ⟨X,wα⟩, where
{wα} is a set of orthogonal measurement operators [23], [24]. Orthogonality allows any X in span({wα}) to be represented
as:

X =
∑
α∈I

⟨X,wα⟩wα. (6)

In this representation, ⟨X,wα⟩ are the expansion coefficients. The matrix completion problem can equivalently be formulated
as the problem of determining a low-rank matrix X given a subset of its expansion coefficients. For instance, in the standard
matrix completion problem where only a few entries of X are observed, {wα} would be the canonical basis, and {⟨X,wα⟩}
would be the set of observed entries.

In the Euclidean distance geometry problem, each observation Di,j is related to the Gram matrix K as follows: Di,j =
Ki,i +Kj,j −Ki,j −Kj,i. For this case, the problem of completing the Gram matrix can not be represented as in (6) where the
expansion coefficients are the measurements. The main reason is that the inherent measurement operators are not orthogonal.
Alternatively, a biorthogonal dual basis can be employed, as developed in [28]. A biorthogonal dual basis is a pair of indexed
sets of linearly independent vectors {wα}, {vβ}, satisfying ⟨vα ,wβ⟩ = δα, β for every α, β. We also sometimes use the
phrase “dual basis” to refer specifically to the set {vα}, which, in finite dimension, is uniquely determined by the basis set
{wα}. When {wα} is orthogonal, then vα = wα, so a biorthogonal dual basis is a generalization of an orthogonal basis.
Biorthogonality ultimately allows one to obtain a representation of any Gram matrix K ∈ span({wα}) as:

K =
∑
α∈I

⟨K,wα⟩vα.

The paper [28] gives concrete details of how this representation is achieved and how it can be used to provide recovery
guarantees for the EDG problem. Here, we will only give a brief overview of the approach.

The dual basis approach formulates the EDG problem as a matrix recovery task using the operator basis:

wα = eα1,α1
+ eα2,α2

− eα1,α2
− eα2,α1

,

for α = (α1, α2), α1 < α2. We observe that there are L = n(n− 1)/2 basis elements, the set {wα} spans a linear subspace
S = {Z ∈ Rn×n|Z = ZT , Z ·1 = 0} of dimension L, and the measurements Di,j correspond to the inner products ⟨X,wi,j⟩.
However, since {wα} is not orthogonal, standard recovery results from the matrix completion cannot be used to prove recovery
guarantees for optimization procedures with respect to this basis. However, [28] proved guarantees when a biorthogonal dual
basis is used instead, and provided the form of the dual basis corresponding to the operator basis wα. Specifically, given
{wα}Lα=1, define the matrix H as Hα, β = ⟨wα ,wβ⟩; the set of matrices vα =

∑
β H

−1
α, βwβ then forms a dual basis to

{wα} satisfying ⟨vα ,wβ⟩ = δα, β , which is the definition of biorthogonality. Figure 2 gives concrete examples of these objects.
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w1,2 =


1 −1 0 0

−1 1 0 0
0 0 0 0
0 0 0 0

 v1,2 =
1

16


3 −5 1 1

−5 3 1 1
1 1 −1 −1
1 1 −1 −1


Fig. 2. Dual basis objects w1,2,v1,2 for n = 4.

We note that the general problem of completing a low-rank matrix given a few of its expansion coefficients in a dual basis has
been studied in [49].

In the dual basis expansion, K =
∑

α⟨K ,wα⟩vα, transforming the EDG problem into the recovery of a low-rank matrix
X of rank r, given a few of its expansion coefficients. A computational challenge associated with the dual basis approach is
determining an explicit form for vα, since the direct approach depends on inverting a matrix of size O(n2). For the EDG
problem, assuming that the points are centered at the origin, the explicit form of vα is given in [40]. This manuscript generalizes
the analysis in [40] and provides explicit forms of the basis {wα} and {vα} by considering arbitrary centerings of the points.

IV. RELATED WORK

A. CUR Decomposition

In CUR decomposition, the objective is to obtain a low-rank approximation of a matrix by utilizing selected rows and
columns of the matrix [50], [51]. Formally, let X represent the underlying matrix, with sampled row and column indices
denoted as I and J , respectively. The matrix C is constructed from the columns of X and is defined as C = X:,J . Similarly,
R is formed from the rows of X and is defined as R = XI,:. The CUR approximation of X is expressed as X̃ = CUR,
where U is the matrix that is intersection of R and C. The quality of this approximation, indicating the difference between X
and X̃ in a suitable norm, relies on the chosen sampling scheme for selecting rows and columns.

Various sampling methods and their associated approximation guarantees have been explored [52]–[58]. Addressing the
limitation of conventional CUR algorithms that assume a fully observed matrix, the authors in [59] introduce a CUR algorithm
designed for partially observed matrices. However, this method still requires observing all entries in the sampled rows and
columns. In [33], the authors propose a novel sampling model that interpolates between the uniform sampling model and CUR
sampling. Notably, this sampling model offers flexibility by not necessitating the observation of all entries in the selected rows
and columns. In the context of the problem we study in this paper, we could apply this algorithm to a partial distance matrix
(which is illustrated in Figure 1). It is important to highlight that the partial squared distance matrix has a rank of at most r+2
(compared to the rank of B which is at most r). This could imply increased sampling and potentially less favorable sampling
complexity when working in the space of distance matrices (see [27]–[29]). Additionally, it is crucial to note that the sampling
method in [33] cannot be directly applied to the Gram matrix K due to the non-preservation of the sampling structure when
mapping from a distance matrix to a Gram matrix.

Finally, it is worth mentioning that the Nyström method is a more specific instance of the CUR method, constrained to a
symmetric and positive semidefinite target matrix. For different sampling schemes for the Nyström method, we refer the reader
to [60], [61]. In contrast to the standard Nyström method, our sampling model is more flexible, as we do not assume full
knowledge of all entries of A and B, the (1, 1) and (1, 2) blocks of our Gram matrix.

B. Matrix Completion

Matrix completion is the problem of reconstructing a low-rank matrix based on a subset of its entries [22], [62]–[65].
Theoretical analyses in [66], [67] employ a convex optimization program and demonstrate that, under mild assumptions, a
p× p matrix of rank r can be successfully recovered from O(pr log2(p)) randomly sampled entries with high probability. It is
important to note that the aforementioned studies assume a uniform sampling model or Bernoulli sampling. Other works, such
as [23], [24], extend the scope to consider observations not as individual entries but as inner products of the underlying matrix
with pre-specified matrices. Consequently, one natural approach for solving the main problem in this paper is to apply the
standard matrix completion algorithms to the submatrix [E F ]. However, these methods do not leverage the fact that [E F ] is
a submatrix of an underlying squared Euclidean distance matrix. It is worth noting that there are related works addressing
similar themes to ours, such as those considering non-uniform sampling [68], matrix completion with side information [69],
and matrix completion where the cost of obtaining observations is also taken into account [68].

C. Euclidean Distance Geometry

The Euclidean Distance Geometry problem (EDG) is concerned with recovering the positions of n points in Rr based on a
few observed entries from an n×n Euclidean distance matrix [70], [71]. In the setting of the localization problem, which is the
focus of this paper, various approaches based in EDG have been explored [3], [4], [72], [73]. This paper aims to demonstrate
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that the localization problem, considering the proposed sampling model (refer to Figure 1), is a generalized matrix completion
problem. This realization leads to the development of an algorithm formulated solely in terms of the submatrix [AB]. A
similar methodology, focusing on a matrix completion approach for recovering the underlying Gram matrix, is presented in [28].
Building upon this, the work in [74] investigates a similar sampling model and proposes a convex program for recovering the
mobile nodes. It is noteworthy that, in contrast to [74], where the model assumes a complete E and the optimization involves
the full Gram matrix K, our formulation handles incomplete E and the optimization in this paper relies solely on A and B.
This approach can potentially facilitate computation for large-scale problems.

V. DUAL BASIS FORMULATION

A. Relating Columns of F and B via the Graph Laplacian

Before beginning this section, we introduce some brief preliminaries on graph Laplacians. For an unweighted graph G = (V,E)
on n vertices, where V denotes the set of vertices and E denotes the set of edges, the graph Laplacian LG ∈ Rn×n is a
symmetric matrix where LG(u, v) = −1 if (u, v) ∈ E (0 otherwise), and LG(u, u) = deg(u), the degree of u i.e., the number
of edges incident to u [75]. Of particular relevance to our discussion is the scenario when G is the complete graph Kn. In this
case, every diagonal entry of LG is n− 1, and every off-diagonal entry is −1.

Theorem 1. Let L be the Laplacian of the complete graph Km, and bj be a column of B. Define the vector f̃j as follows:
(f̃j)s = − 1

2m (Fs,j − 1
m

∑m
t=1 Es,t), for s ≤ m. Then

bj = Lf̃j .

Proof. Using (5), we express the j-th column of B as:

bj = −1

2

[ m∑
s=1

Fs,jes −

(
1

m

m∑
s=1

Fs,j

)
1−

m∑
s=1

(
1

m

m∑
t=1

Es,t

)
es +

1

m2

(
m∑
s=1

m∑
t=1

Es,t

)
1

]
.

We can further simplify the above expression as follows:

bj = −1

2

( m∑
s=1

Fs,jes −
(

1

m

m∑
s=1

Fs,j

)
1−

m∑
s=1

(
1

m

m∑
t=1

Es,t

)
es +

1

m2

( m∑
s=1

m∑
t=1

Es,t

)
1

)
= −1

2

( m∑
s=1

Fs,j(es −
1

m
1)− 1

m

m∑
s=1

m∑
t=1

Es,t(es −
1

m
1)

)
= −1

2

m∑
s=1

(
(Fs,j −

1

m

m∑
t=1

Es,t)(es −
1

m
1)

)
=

m∑
s=1

(
− 1

2

(
Fs,j −

1

m

m∑
t=1

Es,t

)( 1
m
L(:, s)

))
=

m∑
s=1

[f̃j ]sL(:, s)

= Lf̃j .

Utilizing the above claim, we quickly derive two valuable observations. It is worth noting that the Laplacian relationship is
not essential for demonstrating these corollaries; both could have been inferred directly from (5) alone, albeit with slightly
more intricate equations.

Corollary 1. Every column bj of B sums to zero.

Proof. Using the above claim, we observe that

bj = Lf̃j =⇒ b⊤j 1 = f̃⊤
j L1 = 0,

where the last equation follows from the fact that L1 = 0.

In (5), it is evident that a straightforward correspondence between an entry of B and an entry of F does not exist. Our
second observation, however, reveals a clear correspondence when differences of entries are considered instead.

Theorem 2. For i, k ∈ [1,m], we have

Bi,j −Bk,j = −1

2
(Fi,j − Fk,j) + gi,k(E),
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where gi,k(E) = 1
2m (

∑m
t=1 Ei,t − Ek,t) is a function that depends only on the E block.

Proof. First, note that Bi,j = L(i, :)f̃j and Bk,j = L(k, :)f̃j . Using these equations, Bi,j −Bk,j can be expressed as follows:

Bi,j −Bk,j = (L(i, :)−L(k, :))f̃j

= m(ei − ek)
⊤f̃j

= −1

2

(
(Fi,j −

1

m

m∑
t=1

Ei,t)− (Fk,j −
1

m

∑
t=1

Ek,t)

)
= −1

2
(Fi,j − Fk,j) + gi,k(E).

B. Dual Basis Approach for Complete E and Partially-Observed F

In this section, we consider the problem where we have complete E and partially observed F . Despite knowing the E block
completely, we note that this problem makes less stringent assumptions than knowing the positions of the anchors. In particular,
using classical MDS on E, we can only recover the configuration of the anchor nodes as opposed to absolute positions. We
refer the reader to Appendix B which discusses the case where the positions of the anchors are known. Therein, it is established
that the problem has two distinct regimes.

We now proceed to consider the localization problem for complete E and partially observed F . The simple relationship
between differences of entries in B and F in Theorem 2 leads us to propose a dual basis framework for this problem. We first
consider the case where we have complete anchor-anchor distances but partial anchor-mobile distances. Specifically, the E
block is complete and we have partially-observed entries in F . In addition, we possess complete knowledge of all the entries in
one specific row of F . Without loss of generality, let us assume this row is row m, while all other entries of F are observed
randomly. Figure 3 illustrates our sampling model.

Fig. 3. Illustration of the sampling model with complete anchor-anchor distances and partial observations for anchor-mobile distances. The distances between
the mobile nodes are not sampled. In addition, we assume that we know the distance of all mobile nodes from one of the anchors.

Then, motivated by Theorem 2, we can consider our observations to instead be

F̃i,j = −1

2
(Fi,j − Fm,j) + gi,m(E), (7)

for every i ∈ [1,m− 1]. Additionally, it is worth noting that B is characterized by (m− 1)n parameters, with a zero column
sum constraint. To recover B from the incomplete observations, we propose the following dual basis approach. First, consider
a basis wi,j = ei,j − em,j that enforces the column sum constraint. Taking an inner product with B would thus give us

⟨B, w̃i,j⟩ = Bi,j −Bm,j = F̃i,j ,

which are exactly the observations.
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Theorem 3. Let the set of matrices {w̃i,j = ei,j − em,j: 1 ≤ i ≤ (m− 1), 1 ≤ j ≤ n} be a basis of the m× n matrices with
zero column sum. Then the dual basis vectors are {ṽi,j = ei,j − 1

m1j : 1 ≤ i ≤ (m− 1), 1 ≤ j ≤ n} where 1j is a matrix of
zeros except a vector of ones at the j-th column.

Proof. We can see that the sets {w̃i,j} and {ṽi,j} both consist of (m− 1)n column-centered matrices, each of size m× n. We
will show that they are biorthogonal sets. We have w̃i,j = ei,j − em,j and ṽi,j = ei,j − 1

m1j , for 1 ≤ i < m, 1 ≤ j ≤ n. If
j ̸= l, then we see immediately that ⟨w̃i,j , ṽk,l⟩ = 0. Otherwise,

⟨w̃i,j , ṽk,j⟩ = ⟨ei,j − em,j , ek,j −
1

m
1j⟩ = δki .

Hence, ⟨w̃α, ṽβ⟩ = δβα, which establishes biorthogonality.

Here is a quick observation regarding H , the inner product matrix. Given the significant role played by the Laplacian of the
complete graph in a preceding section, it is unsurprising that the complete graph resurfaces once more.

Theorem 4. Consider the set of basis matrices {w̃i,j = ei,j − em,j (1 ≤ i ≤ (m− 1), 1 ≤ j ≤ n)}. Then their inner product
matrix H , defined by Hα,β = ⟨w̃α, w̃β⟩, has the adjacency structure of n disconnected complete graphs on m− 1 vertices
each.

Proof. We have that Hα,β = 2 if α = β, Hα,β = 1 if α and β index entries in the same column (have the same j value),
and 0 otherwise. From this we can see that each index j produces (m− 1) indices α that all have edges to each other in H
and no edges to any other index β.

C. Dual Basis Approach for Incomplete E and Partially-Observed F

In the previous section, we discussed a dual basis approach for a complete E and a partially observed F . In this section,
we consider our main sampling model, the modified Nyström model, and propose a dual basis approach to recover the
submatrix [AB] from observed distances in E and F . The fact that E is incomplete means that the term gi,m(E) in (7) is
not known. However, from the dual basis approach for EDG discussed in Section III-C, we can relate E and A. In particular,
Ei,j = ⟨A,wi,j⟩ = Ai,i +Aj,j −Ai,j −Aj,i. Then, the measurements can be written as follows:

⟨B, w̃i,j⟩ −
1

2m

m∑
t=1

(Ai,i +At,t −Ai,t −At,i) = −1

2
(Fi,j − Fm,j)−

1

2m

m∑
t=1

Em,t

D. Proposed Algorithms
Based on the dual basis formulation, we propose two algorithms for the localization problem under modified Nyström

sampling. The first algorithm considers the case where the submatrix E is complete, and we have partial distance information
for F . For this case, we consider the following convex optimization program to recover B:

minimize
Z∈Rm×n

||Z||∗

subject to Zi,j − Zm,j = −1

2
(Fi,j − Fm,j) + gi,m(E) ∀(i, j) ∈ Ω

ZT1 = 0.

(8)

In the above program, Ω denotes the set of sampled indices in the F block of the squared distance matrix D. Let B∗ denote the
optimal solution obtained from the above program. We can then estimate C using the standard Nyström method C = BT

∗ A
†B∗.

The second algorithm considers the case where both the submatrix E and F are incomplete, and we only have partial distance
information. For this case, we consider the following convex optimization program to recover A and B:

minimize
A∈Rm×m,B∈Rm×n

||[AB]||∗

subject to Bi,j −Bm,j −
1

2m

m∑
t=1

(Ai,i +At,t −Ai,t −At,i) = −1

2
(Fi,j − Fm,j)−

1

2m

m∑
t=1

Em,t ∀(i, j) ∈ Ω1

Ai,i +Aj,j −Ai,j −Aj,i = Eij ∀(i, j) ∈ Ω2.

A ⪰ 0

A1 = 0,BT1 = 0.

(9)

In the above program, the constraint A1 = 0 follows from the representation of A in the dual basis framework (see Section
III-C) and Ω1 and Ω2 denote the set of sampled indices in the E and F blocks of the squared distance matrix D, respectively.
We note that the above optimization program can also be compactly represented using a single optimization variable H = [AB],
by appropriately indexing A and B within H . Our numerical implementation will be based on this compact representation.
Let A∗ and B∗ denote the optimal solutions obtained from the above program. We can then estimate C using the standard
Nyström method C = BT

∗ A
†
∗B∗.
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Fig. 4. Recovered points P from the same distances {3, 4, 5}, but with different choices of s: (1/3, 1/3, 1/3), (1, 0, 0), and (−3, 4, 0), respectively. The
squared distances of recovered points from the origin are given by − 1

2
(s⊤Ds)1+Ds [44].

VI. DUAL BASIS CENTERED ANYWHERE

In [28], the construction of the dual basis framework assumes that the points are centered at 0. In other words, P1 = 0.
While this simplifies calculations, it is not a mandatory condition for the dual basis approach. As we have observed, there are
instances, such as in Nyström setups, where alternative assumptions about the centering of points may be necessary. Fortunately,
as shown in [43], [44], for any vector s that sums to one, we have that

P⊤P = −1

2
(I − 1s⊤)D(I − s1⊤),

where D is the squared Euclidean distance matrix associated to the set of points.
Under a choice of s, the origin of the points P becomes such that Ps = 0. Here, the vector s represents a kind of barycentric

weighting of each recovered point (as given by a column in P ). We note that the entries of s are not required to be nonnegative.
Figure 4 shows the effect of s given the set of distances {3, 4, 5}. We will show that any choice of s can be used to construct
a dual basis setup.

Theorem 5. Consider a squared Euclidean distance matrix D and a vector s such that s⊤1 = 1. Let S denote the subset
of Gram matrices X that satisfy Xs = 0. Let T denote the subspace spanned by s. A basis {wi,j}i<j of S satisfying
⟨wi,j ,X⟩ = Di,j and Xs = 0 for all i < j is given by

wi,j = aa⊤,

where

a = PT⊥(ei)− PT⊥(ej) = (ei − PT (ei))− (ej − PT (ej)) = (ei −
(si − sj)

∥s∥2
s− ej).

Proof. It can be readily verified that wi,j is symmetric and positive semidefinite. By construction, a ∈ T⊥. Therefore, any X
expanded in this basis will immediately satisfy Xs = 0. To show that we recover Di,j via inner products, we first observe that

⟨X,wi,j⟩ = ⟨−1

2
(I − 1s⊤)D(I − s1⊤),wi,j⟩ = −1

2
⟨D, (I − s1⊤)wi,j(I − 1s⊤)⟩, (10)

by using the trace form of the inner product, followed by the cyclic property of the trace. Consider now the following:

(I − s1⊤)(ei −
(si − sj)

∥s∥2
s− ej) = (ei −

(si − sj)

∥s∥2
s− ej)− (s− (si − sj)

∥s∥2
s− s) = ei − ej .

So therefore the right term in the inner product in (10) is (ei − ej)(ei − ej)
⊤. With that, we do recover the squared distance

Di,j as ⟨X,wi,j⟩.
Let W denote the L×N2 matrix of vectorized basis matrices wα and, similarly, let V represent the same for the dual

basis matrices vα. Due to biorthogonality (as elaborated in the next Claim), we have WV ⊤ = IL. As W has a right inverse,
it must be full row rank, thereby establishing that the space spanned by {wα} has dimension L as desired.
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As a remark, we observe that, when si = sj for all i, j, then we recover the form of the basis of [28]. This basis expansion
thus is a strict generalization. To complete the dual basis framework, we must also provide the dual basis vectors, and show
that our two sets of vectors comprise a biorthogonal system.

Theorem 6. Given wi,j under a choice of s such that s⊤1 = 1, the dual basis vectors are given by

vi,j = −1

2
(cd⊤ + dc⊤)

where c = (ei − si1) and d = (ej − sj1).

The proof is deferred to the Appendix.

A. Equivalence of Dual Basis Approach with Nyström

In this section, we show that we can also recover the Nyström method via a dual basis expansion of K. Recall that we have
the expansion

K =
∑
α∈I

⟨K,wα⟩vα.

By restricting the dual basis vectors to particular blocks, we thus obtain the relationships

A =
∑
α∈I

⟨K,wα⟩v(1,1)
α , B =

∑
α∈I

⟨K,wα⟩v(1,2)
α .

In what follows, for ease of notation, we define ēi and ēj as follows:

ēi ≡ ei −
1

m
1

ēj ≡ ej −
1

m
1.

Under Claim 2.2, for a Nyström choice of s, we have that

vi,j = −1

2


ēiēj

T + ēj ēi
T if i < j ≤ m

ēiēj
⊤ + ej ēi

⊤ if i ≤ m < j

eie
⊤
j + eje

⊤
i if m < i < j

We see then that v(1,1)
i,j is the zero matrix if m < j, and v

(1,2)
i,j is the zero matrix if m < i < j. Therefore we have

A =
∑

i<j≤m

⟨K,wα⟩v(1,1)
α

=
∑

i<j≤m

Ei,jv
(1,1)
i,j

= −1

2

∑
i<j≤m

Ei,j

[
ēiēj

⊤ + ēj ēi
⊤
]

= −1

2

( m∑
i=1

m∑
j=1

Ei,j ēiēj
⊤
)
,

where the last equality follows since Ei,i = 0. Looking at a particular index (s, t), we have that

As,t = −1

2

( m∑
i=1

m∑
j=1

Ei,j(δ
s
i −

1

m
)(δtj −

1

m
)⊤
)

= −1

2

( m∑
i=1

m∑
j=1

Ei,j(δ
s
i δ

t
j − δsi

1

m
− δtj

1

m
+

1

m2
)

)

= −1

2

(
Es,t −

1

m

m∑
j=1

Es,j −
1

m

m∑
i=1

Ei,t +
1

m2

m∑
i=1

m∑
j=1

Ei,j

)
.
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The B block is a little trickier since we have to only consider the terms of vi,j that appear in the (1, 2) block.

B =
∑

i<j≤m

⟨K,wα⟩v(1,2)
α +

∑
i≤m<j

⟨K,wα⟩v(1,2)
α

=
∑

i<j≤m

Ei,jv
(1,2)
i,j +

∑
i≤m<j

Fi,jv
(1,2)
i,j

= −1

2

( ∑
i<j≤m

Ei,j

[
(ei −

1

m
1)(− 1

m
1)⊤ + (ej −

1

m
1)(− 1

m
1)⊤

]
+

∑
i≤m<j

Fi,j

[
(ei −

1

m
1)e⊤j

])

= −1

2

( m∑
i=1

m∑
j=1

− 1

m
Ei,j ēi(1)

⊤ +
∑

i≤m<j

Fi,j

[
ēie

⊤
j

])
.

A particular choice of index s, t yields

Bs,t = −1

2

( m∑
i=1

m∑
j=1

Ei,j(−δsi
1

m
+

1

m2
) +

∑
i≤m<j

Fi,j(δ
s
i δ

t
j −

1

m
δtj)

)

= −1

2

(
Fs,t −

1

m

m∑
i=1

Fi,t −
1

m

m∑
j=1

Es,j +
1

m2

m∑
i=1

m∑
j=1

Ei,j .

)
So we recover A and B only in terms of E and F , with exactly the same relationship as in the Nyström method.

VII. RESULTS

In this section, we test Algorithm 2 on both synthetic and real datasets. To solve Algorithm 2, we use CVX [76], [77]. The
specific solver we used is Mosek 10.2.1 [78]. For both experiments, our sampling scheme for the distance matrices we generate
is as follows. Initially, the last row of E and F are fully sampled, corresponding to the central node. The remaining distance
entries in E block are sampled according to the Bernoulli sampling model, with each entry having a probability of γ being
selected, and where γ ∈ [0, 1]. Note that the diagonal entries of E, which are all zero, are assumed to be known as E is a
valid distance matrix. For each column of F , besides its m-th entry, we sample α− 1 entries uniformly at random without
replacement. We adopt this strategy to study the effect of samples in E vs. samples in F , and because we empirically observed
that recovery for low rank depends much more on the entries in F .

A. Experiments on Synthetic Data

For the synthetic experiments, we set n = 500,m = 50, r = 2, and generate a matrix P of (m+ n) random points in R2,
where each coordinate has an i.i.d standard normal distribution. We then subtract off the mean of the first m points (to reproduce
the centering in [19], which our dual basis assumes holds). From these points P , we produce a squared distance matrix D.

We complete the [AB] block of the Gram matrix P⊤P using a single convex optimization program (Algorithm 2) that
merges the constraints from both the dual basis and semidefinite constraint on the E → A block as well as the constraints
arising from the dual basis we introduced in this paper for the F → B block. We then use the standard Nyström method to
produce an estimate for the full Gram matrix, and do a truncated eigendecomposition and Procrustes analysis to produce an
RMSE that compares our estimate against the original points P .

For each choice of γ and α, we calculate the mean and standard deviation of the RMSE across 25 trials. We attempted
to compare with a standard SDP to solve for X from D, but the semidefinite constraint in such a problem involves a much
larger matrix (m+ n)× (m+ n) vs m× (m+ n), so the memory and time requirements quickly became intractable, requiring
several hundreds of GB of memory in CVX to run a single trial for sizes of n over 200.

TABLE I
SYNTHETIC EXPERIMENT RESULTS.

γ (sampling rate in E) α (samples in each F column) Average RMSE Standard deviation

0.5 10 1× 10−11 1× 10−11

0.3 10 2.2× 10−3 9.1× 10−3

0.1 10 1.9× 10−3 5.7× 10−3

0.0 10 6.04× 10−4 2.8× 10−3

0.5 8 9.3× 10−3 2.04× 10−2

0.5 5 2.3× 10−1 7.11× 10−2
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B. Experiments on Real Data

For our real data experiments, we evaluate our main algorithm, Algorithm 2, on protein data identified as 1PTQ. The protein
data is obtained from the Protein Data Bank [79]. 1PTQ has 402 atoms and we select m = 20 anchors uniformly spaced within
the range [1, 402]. It is worth noting that, in practice, more refined methods for selecting anchors can be employed, using
domain knowledge. We then run Algorithm 2 and assess the quality of the resulting numerical solution using the root mean
square error (RMSE) between the numerically estimated protein structure and the ground truth. Since the sampling in the F
block is random, we report the average RMSE from a total of 25 trials. Table II summarizes the results of our numerical
experiments. We note that, if there are sufficient distance measurements in the F block, the structure can be estimated with
very high accuracy. In our numerical experiments, similar to the discussion in the synthetic experiments, the number of samples
in the F block influences the final RMSE significantly compared to the sampling rate in E. Figure 5 shows a visualization that
compares the true structure with estimated structure. The visualization was generated using the PyMOL Molecular Graphics
System [80].

It is important to recognize that a realistic sampling scheme for distances in proteins is based on the proximity of atoms
rather than uniform sampling. The numerical experiment we discussed aims to apply the proposed algorithm to real data. In
practice, implementing this approach may require an initial estimate for the target structure and a domain knowledge of which
atoms serve as reliable anchors.

TABLE II
AVERAGE RMSE AND STANDARD DEVIATION FOR DIFFERENT TOTAL NUMBERS OF SAMPLED ENTRIES PER COLUMN OF F . m IS SET TO 20 AND γ = 0.2.

α (samples in each F column) Average RMSE Standard deviation

7 1.144 7.910× 10−1

8 2.002× 10−1 3.655× 10−1

9 1.51× 10−2 4.75× 10−2

10 3.944× 10−10 8.653× 10−10

Fig. 5. Target structure 1PTQ (in green) and numerically estimated structure (in red). A realization from the experiment with γ = 0.2 and α = 6 (RMSE =
0.65).

Next, we apply our method to a larger protein identified as 1AX8 from the Protein Data Bank [79]. 1AX8 has 1003 atoms,
ignoring the hetero atoms, and we select m = 30 anchors uniformly spaced within the range [1, 1003]. Figure 6 shows one
realization of our numerical experiment, which shows that the underlying structure can be estimated exactly.

VIII. CONCLUSION

In this paper, we study the problem of determining the configuration of n points using only partial distance information
relative to m points, along with incomplete distance information between the m points. For this setup, we first establish a
connection between the distance matrix and the Gram matrix that only utilizes the observed blocks of the distance matrix. We
then demonstrate that the problem of recovering the positions can be framed as a low-rank recovery of a submatrix of the
Gram matrix. We test the proposed method on synthetic and real data, showing that it can accurately estimate the configuration
of the points given reliable anchors and sufficient distance samples. Future research will focus on quantifying “reliable anchors”
and providing theoretical guarantees for the proposed optimization.
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Fig. 6. Target structure 1AX8 (in green) and numerically estimated structure (in red). A realization from the experiment with γ = 0.2 and α = 9 (RMSE =
0.17).
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[8] J. Kuriakose, S. Joshi, R. Vikram Raju, and A. Kilaru, “A review on localization in wireless sensor networks,” Advances in signal processing and

intelligent recognition systems, pp. 599–610, 2014.
[9] K. Hao, H. Shen, Y. Liu, B. Wang, and X. Du, “Integrating localization and energy-awareness: A novel geographic routing protocol for underwater

wireless sensor networks,” Mobile Networks and Applications, vol. 23, pp. 1427–1435, 2018.
[10] X. Li, J. Yang, A. Nayak, and I. Stojmenovic, “Localized geographic routing to a mobile sink with guaranteed delivery in sensor networks,” IEEE Journal

on Selected Areas in Communications, vol. 30, no. 9, pp. 1719–1729, 2012.
[11] S. Verma, N. Chug, and D. V. Gadre, “Wireless sensor network for crop field monitoring,” in 2010 International Conference on Recent Trends in

Information, Telecommunication and Computing. IEEE, 2010, pp. 207–211.
[12] H. Liu, Z. Meng, and S. Cui, “A wireless sensor network prototype for environmental monitoring in greenhouses,” in 2007 International Conference on

Wireless Communications, Networking and Mobile Computing. IEEE, 2007, pp. 2344–2347.
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APPENDIX A
PROOF OF THEOREM 6 (ESTABLISHING BIORTHOGONALITY)

Proof. We need to show that ⟨wi,j ,vi,j⟩ = 1 and ⟨wi,j ,vs,t⟩ = 0 for (i, j) ̸= (s, t). We have three cases to check: same
indices, no indices shared, one index shared.

Case 1: Same indices. We are interested in the inner product

⟨wi,j ,vi,j⟩ = −1

2
⟨aa⊤, (cd⊤ + dc⊤)⟩

= −1

2
Trace(aa⊤(cd⊤ + dc⊤))

= −1

2

(
Trace(aa⊤cd⊤) + Trace(aa⊤dc⊤)

)
,

where we have that a = (ei − (si−sj)
∥s∥2 s− ej), c = (ei − si1),d = (ej − sj1). First we look at

a⊤c = (ei −
(si − sj)

∥s∥2
s− ej)

⊤(ei − si1)

= e⊤i ei −
(si − sj)

∥s∥2
si − e⊤j ei − si +

(si − sj)

∥s∥2
si + si

= 1,

and

a⊤d = (ei −
(si − sj)

∥s∥2
s− ej)

⊤(ej − sj1)

= e⊤i ej −
(si − sj)

∥s∥2
sj − e⊤j ej − sj +

(si − sj)

∥s∥2
sj + sj

= −1.

Therefore we have

⟨wi,j ,vi,j⟩ = −1

2

(
Trace(ad⊤)− Trace(ac⊤)

)
.

We have that

Trace(ad⊤) =
n∑

k=1

(ei −
(si − sj)

∥s∥2
s− ej)k(ej − sj1)k

=
n∑

k=1

(δki − (si − sj)

∥s∥2
sk − δkj )(δ

k
j − sj)

=
n∑

k=1

(
δki δ

k
j − δki sj −

(si − sj)

∥s∥2
skδ

k
j +

(si − sj)

∥s∥2
sksj

− δkj δ
k
j + δkj sj

)
= −sj −

(si − sj)

∥s∥2
sj +

(si − sj)

∥s∥2
sj − 1 + sj

= −1,
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and

Trace(ac⊤) =
n∑

k=1

(ei −
(si − sj)

∥s∥2
s− ej)k(ei − si1)k

=
n∑

k=1

(δki − (si − sj)

∥s∥2
sk − δkj )(δ

k
i − si)

=
n∑

k=1

(
δki δ

k
i − δki si −

(si − sj)

∥s∥2
skδ

k
i +

(si − sj)

∥s∥2
sksi

− δkj δ
k
i + δkj si

)
= 1− si −

(si − sj)

∥s∥2
si +

(si − sj)

∥s∥2
si + si

= 1,

so we conclude that

⟨wi,j ,vi,j⟩ = −1

2

(
Trace(ad⊤)− Trace(ac⊤)

)
= −1

2

(
− 1− 1

)
= 1

which is as desired.

Case 2: no index shared. Suppose that (i, j) and (p, q) have no index in common. For this case, we have that a = (ei −
(si−sj)
∥s∥2 s− ej), c = (ep − sp1),d = (eq − sq1). We see that

a⊤c = (ei −
(si − sj)

∥s∥2
s− ej)

⊤(ep − sp1) = 0

since s⊤1 = 1, and likewise a⊤d will also be zero. So the inner product ⟨wi,j ,vp,q⟩ is zero, as desired.

Case 3: one index in common. Since the matrices are symmetric, suppose without loss of generality that the first index is equal:
we consider ⟨wi,j ,vi,q⟩, j ̸= q. For this case, we have that a = (ei − (si−sj)

∥s∥2 s− ej), c = (ei − si1),d = (eq − sq1). We see
that

⟨wi,j ,vi,q⟩ = −1

2

(
Trace(aa⊤cd⊤) + Trace(aa⊤dc⊤)

)
= −1

2
Trace(ad⊤)

since j ̸= q =⇒ a⊤d = (ei − (si−sj)
∥s∥2 s− ej)

⊤(eq − sq1) = 0, and a⊤c = 1, as the analysis in Case 1 shows. We examine
the trace:

Trace(ad⊤) =
n∑

k=1

(ei −
(si − sj)

∥s∥2
s− ej)k(eq − sq1)k

=
n∑

k=1

(δki − (si − sj)

∥s∥2
sk − δkj )(δ

k
q − sq)

=
n∑

k=1

(
δki δ

k
q − δki sq −

(si − sj)

∥s∥2
skδ

k
q +

(si − sj)

∥s∥2
sksq

− δkj δ
k
q + δkj sq

)
= −sq −

(si − sj)

∥s∥2
sq +

(si − sj)

∥s∥2
sq + sq

= 0,

which shows us that the inner product is zero.

This completes all the cases, and proves that we indeed have a biorthogonal system.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3450870

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



18

APPENDIX B
LOCALIZATION PROBLEM FORMULATION GIVEN EXACT ANCHOR POSITIONS

In this section, we study the localization problem where the exact position of the anchor nodes are known, and partial
information about the distances between the anchor nodes and mobile nodes is available. We highlight two regimes of the
problem:
• Determined Regime: If we have distances from r + 1 affinely independent anchors to a mobile node, the mobile node’s

position can be localized exactly. This is similar to the trilateration method used in GPS, which determines an object’s
position based on distances from known locations. For instance, in 2D trilateration, distances to 3 non-degenerate anchors
uniquely determine the target point’s position [81]–[83].

• Underdetermined Regime: When we have distances from fewer than r+1 anchors, the problem has infinitely many solutions.
Let Ω ⊂ {(i, j)|1 ≤ i ≤ (m− 1), 1 ≤ j ≤ n} denote the set of sampled indices in the F block of the squared distance matrix.
Using our dual basis formulation, we have shown that ⟨B,wi,j⟩ = F̃i,j where F̃i,j is given in (7). The recovery problem for
B can be formulated as the following feasibility problem:

Find B ∈ Rm×n such that ⟨B, w̃i,j⟩ = Bi,j −Bm,j = −1

2
(Fi,j − Fm,j) + gi,m(E) ∀(i, j) ∈ Ω, (11)

where gi,m(E) = 1
2m (

∑m
t=1 Ei,t − Em,t) is the function that depends only on the E block. Since B = XTY , the above

problem can also be stated equivalently as follows:

Find Y ∈ Rr×n such that ⟨Y ,Xzi,j⟩ = −1

2
(Fi,j − Fm,j) + gi,m(E) ∀(i, j) ∈ Ω. (12)

In fact, (12) can be written as AΩ(Y ) = bΩ where AΩ is a linear operator. This is a linear system problem. We establish
conditions under which the linear system in (14) admits a unique solution.

Theorem 7. If we observe r+1 distance measurements in each column of F and if any r+1 anchors are affinely independent,
then (12) has a unique solution, and the mobile nodes can be localized exactly.

Proof. Given a mobile node yj , assume that we have r + 1 distances to the anchors denoted by xi1 ,xi2 , ...,xim . Note the last
anchor is xim = xm corresponding to the central node from which we know the distance to any mobile node. With that, (12)
is equivalent to solving the linear system 

xi1 − xim

xi2 − xim
...

xir − xim



(yj)1
(yj)2

...
(yj)r

 =


F̃i1,j

F̃i2,j

...
F̃ir,j

 .

The system has a unique solution if and only if the the matrix in the above linear system is invertible. We note that the r rows
of the matrix are linearly independent if and only if the r+1 anchors are affinely independent. Since this is true for any mobile
node and the r + 1 anchor nodes from which we have distance information to, the conclusion of the theorem follows.

Remark: As remarked earlier, the above theorem is equivalent to trilateration, which ensures recovery of a mobile node given
r + 1 non-degenerate anchors [81]–[83].

In the underdetermined regime, we have fewer than r+1 entries in each column of F , i.e., we know the distance of a mobile
node from fewer than r + 1 anchors. Theorem 7 does not apply in this setup, and indeed (12) admits infinitely many solutions.
To obtain a unique solution, additional assumptions on the underlying points are necessary. In this paper, we consider points
embedded in high dimensions (Rr) that are intrinsically low-dimensional (k-dimensional), with k ≪ r. Additionally, we assume
that entries of each column of F are sampled uniformly at random with replacement. We note that, under the low-dimensional
assumption of the underlying points, B is a low-rank matrix. We propose the following optimization program to estimate B:

minimize
Z∈Rm×n

∥Z∥2F

subject to ⟨Z, w̃i,j⟩ = ⟨B, w̃i,j⟩ ∀(i, j) ∈ Ω.
(13)

Alternatively, using the fact that B = XTY , we can directly estimate the positions of the mobile nodes by using the following
optimization program:

minimize
Y ∈Rr×n

∥Y ∥2F

subject to ⟨Y ,Xw̃i,j⟩ = ⟨B, w̃i,j⟩ ∀(i, j) ∈ Ω.
(14)

We note that (14) is a least squares problem, and the solution can be computed in closed form. This solution is known to be
provably low rank [84].
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