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Figure 1: Sample images generated by Stable Diffusion v1.5, fine-tuned using our proposed Di-
rect Score Preference Optimization (DSPO). DSPO aligns human preferences of images through
preference score matching, maintaining consistency with the pretraining objective. With DSPO
fine-tuning, Stable Diffusion v1.5 produces high-quality images that not only adhere more closely
to the text prompts but are also visually striking and more appealing.

ABSTRACT

Diffusion-based Text-to-Image (T2I) models have achieved impressive success
in generating high-quality images from textual prompts. While large language
models (LLMs) effectively leverage Direct Preference Optimization (DPO) for
fine-tuning on human preference data without the need for reward models, dif-
fusion models have not been extensively explored in this area. Current prefer-
ence learning methods applied to T2I diffusion models immediately adapt exist-
ing techniques from LLMs. However, this direct adaptation introduces an esti-
mated loss specific to T2I diffusion models. This estimation can potentially lead
to suboptimal performance through our empirical results. In this work, we pro-
pose Direct Score Preference Optimization (DSPO), a novel algorithm that aligns
the pretraining and fine-tuning objectives of diffusion models by leveraging score
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matching, the same objective used during pretraining. It introduces a new per-
spective on preference learning for diffusion models. Specifically, DSPO distills
the score function of human-preferred image distributions into pretrained diffu-
sion models, fine-tuning the model to generate outputs that align with human
preferences. We theoretically show that DSPO shares the same optimization di-
rection as reinforcement learning algorithms in diffusion models under certain
conditions. Our experimental results demonstrate that DSPO outperforms pref-
erence learning baselines for T2I diffusion models in human preference eval-
uation tasks and enhances both visual appeal and prompt alignment of gener-
ated images. The source code for DSPO is publicly available at the Github:
https://github.com/huaishengzhu/DSPO.

1 INTRODUCTION

Diffusion-based Text-to-Image (T2I) models have achieved remarkable success in generating high-
quality images from textual prompts (Ramesh et al., 2021; Saharia et al., 2022; Rombach et al.,
2022). These models are generally trained in a single stage, utilizing web-scale datasets of text-
image pairs and employing the diffusion objective to guide the learning process. While large lan-
guage models (LLMs) have made substantial progress in generating text that addresses a wide array
of human needs, they achieve this through a two-step process: pretraining on vast, noisy datasets
from the web, followed by fine-tuning on smaller, more specific datasets to align with user prefer-
ences (Achiam et al., 2023; Dubey et al., 2024). This fine-tuning phase refines the model’s outputs to
better meet human expectations, without significantly compromising the broader capabilities gained
during pretraining. Applying this fine-tuning approach to text-to-image models could similarly en-
hance image generation in line with user preferences—an area that, to date, has been relatively
underexplored compared to advancements in the language domain.

Several recent studies have focused on fine-tuning diffusion-based T2I models to better align with
human preferences after large-scale pretraining, which is often achieved through Reinforcement
Learning from Human Feedback (RLHF) (Black et al., 2023; Clark et al., 2023; Fan et al., 2024; Lee
et al., 2023; Prabhudesai et al., 2023; Uehara et al., 2024). These approaches typically involve fitting
a reward model to a dataset of human preferences and optimizing the diffusion model to generate
images that receive high reward scores, while avoiding significant deviation from the original model.
However, building a reliable reward model for diverse tasks poses challenges, often requiring a large
collection of images and substantial training resources (Wallace et al., 2024; Rafailov et al., 2024).

Figure 2: Win-rate (vs SD15) for DSPO and
preference learning baselines based on Aesthet-
ics reward. ”Diff.” represents ”Diffusion”.

To address this issue, several recent works (Wal-
lace et al., 2024; Yang et al., 2024; Li et al., 2024;
Gu et al., 2024) have introduced preference learn-
ing methods that eliminate the need of reward
models when fine-tuning diffusion models for hu-
man preferences inspired by the success of Direct
Preference Optimization (DPO) (Rafailov et al.,
2024). These approaches directly adapt the objec-
tives used in LLMs for human preference align-
ment to diffusion models, adjusting them to fit
the specific formulation of diffusion models. Im-
mediate adaptation results in an estimated loss on
diffusion models based on the original DPO ob-
jectives. For example, the loss of Diffusion-DPO
is upper-bounded by the original DPO loss (Wal-
lace et al., 2024). This estimation may result in suboptimal performance when fine-tuning diffusion
models for human preference alignment through empirical results, as demonstrated in Figure 2. The
figure shows results from human preference alignment experiments on three widely used datasets,
comparing DSPO with existing baselines for preference learning in T2I diffusion models.

In this paper, we introduce a new perspective about how to fine-tune diffusion models by align-
ing their output distribution with human preferences through score matching, the same technique
used in pretraining. It is known that diffusion models can be formulated as stochastic differential
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equations (SDEs) and are trained using score matching objectives, which is why they are also re-
ferred to as score functions or score models (Song et al., 2020). Based on this formulation, we
propose Direct Score Preference Optimization (DSPO), an algorithm that distills the score function
of human-preferred image distributions into pretrained score functions (diffusion models). Here,
we introduce the target human-preferred score function by combining the ground-truth score of
the data distribution with the score from a theoretical preference model, such as the Bradley-Terry
model (Bradley & Terry, 1952). To simplify this process, we incorporate the implicit reward formu-
lation from DPO, eliminating the need for additional training of the preference model. This target
score function models the image distribution aligned with human preferences, and fine-tuning the
pretrained score models to match this target guides the diffusion process toward human-preferred
outputs. Furthermore, we theoretically demonstrate that the optimization direction of this preference
score matching loss (under some conditions) is equivalent to the direction required to optimize the
RLHF objective introduced in diffusion models using reinforcement learning.

The main contributions of this paper are: (i) To the best of our knowledge, we are the first to fine-
tune diffusion models based on human preferences using a score-matching approach that aligns the
pretraining and fine-tuning objectives. This introduces a novel perspective for designing preference
learning algorithms for diffusion models. (ii) we theoretically prove that DSPO shares the same
optimization direction with RLHF objectives in diffusion models under certrain conditions. (iii)
DSPO outperforms preference learning baselines on evaluations of human preference tasks.

2 RELATED WORKS

Text-to-image Diffusion Models. Denoising diffusion probabilistic models have proven to be pow-
erful tools for generating diverse data types (Ho et al., 2020). Additionally, the sampling process of
diffusion models can be interpreted as stochastic differential equations (SDEs) and is trained using
score matching objectives based on this formulation (Song et al., 2020). These models have been
successfully applied in various fields, including image synthesis, video generation, and robotics con-
trol. Notably, text-to-image diffusion models have enabled the generation of highly realistic images
from textual descriptions, paving the way for new possibilities in digital art and design (Ramesh
et al., 2021; Saharia et al., 2022). Recent research has focused on improving the control and pre-
cision of diffusion models during the generative process. Techniques such as adapters and compo-
sitional approaches have been introduced to incorporate additional constraints and blend multiple
models, enhancing both image quality and generation control (Zhang et al., 2023; Du et al., 2023).
Additionally, classifier-based and classifier-free guidance methods have significantly advanced the
autonomy of diffusion models (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), allowing them
to generate outputs that closely align with user intentions. In our work, we adopt Stable Diffu-
sion (Rombach et al., 2022) to generate images based on specific textual prompts.

Reinforcement Learning from Human Feedback. After web-scale pretraining, large language
models are further enhanced through a two-step process: first, by supervised fine-tuning on demon-
stration data, and then by applying reinforcement learning to incorporate human feedback. Rein-
forcement learning from human feedback (RLHF) has proven to be an effective method for both im-
proving the performance of large language models and aligning them with user preferences (Akrour
et al., 2011; Christiano et al., 2017; Dubois et al., 2024; Dubey et al., 2024; Stiennon et al., 2020;
Xiao et al., 2024b;a; Xu & Zhu, 2024). However, the alignment of text-to-image diffusion mod-
els with human preferences has been significantly less explored compared to LLMs. To bridge
this gap, mutiple methods propose to apply supervised fine-tuning to improve text-to-image diffu-
sion models. These approaches curate datasets by combining several methods, including preference
models (Podell et al., 2023), pre-trained image models (Betker et al., 2023; Dong et al., 2023; Wu
et al., 2023), such as image captioning models, and filtering data with the help of human experts (Dai
et al., 2023). In the field of aligning and improving diffusion models, several studies have explored
fine-tuning these models by leveraging reward models, either by directly increasing the reward of
generated images (Clark et al., 2023; Prabhudesai et al., 2023; Hao et al., 2024) or through rein-
forcement learning techniques (Fan et al., 2024; Black et al., 2023). This process typically involves
pretraining a reward model to capture specific human preferences. However, building a reliable
reward model that accurately reflects human preferences is both challenging and computationally
intensive. Furthermore, over-optimizing the reward model can result in severe issues, such as model
collapse (Lee et al., 2023; Prabhudesai et al., 2023).
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Direct Preference Optimization. Recently, several studies have proposed methods for directly op-
timizing preferences, such as Direct Preference Optimization (DPO) (Rafailov et al., 2024). These
approaches bypass the need for a separate reward model training phase by directly fine-tuning mod-
els using preference data, often achieving better performance than RLHF-based methods (Ethayarajh
et al., 2024; Azar et al., 2024; Zhao et al., 2023; Munos et al., 2023). Inspired by the success of these
approaches, multiple recent methods directly adopt these preference learning methods originally de-
signed for LLMs to fine-tune T2I diffusion models to align with human preferencess (Wallace et al.,
2024; Yang et al., 2024; Li et al., 2024; Yuan et al., 2024; Gu et al., 2024). However, Moreover,
directly adapting these algorithms from LLM domains results in an estimated loss. For instance,
Diffusion-DPO is upper-bounded by the original DPO loss (Wallace et al., 2024). This estimation
can lead to suboptimal performance when fine-tuning diffusion models to align with human pref-
erences as shown in Figure 1 through empirical results. To address this, we propose Direct Score
Preference Optimization (DSPO), a method for fine-tuning diffusion models by aligning their output
distribution with human preferences using score matching. This approach is the first to apply pref-
erence learning from the perspective of score matching, offering a novel framework for designing
effective preference learning algorithms for diffusion models.

3 NOTATIONS AND PRELIMINARIES

Diffusion Model. Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) represent
the image generation process as a Markovian process. Starting with data x0, the forward process
gradually adds noise using a predefined variance schedule, ω1, . . . , ωT , which is defined as follows:

q (x1:T | x0) :=
∏T

t=1
q (xt | xt→1) , q (xt | xt→1) := N

(
xt;

√
1 → ωtxt→1, ωtI

)
. (1)

The training of diffusion models involves parameterizing the reverse process pω (xt→1 | xt) using a
neural network in DDPM (Ho et al., 2020), which is defined as:

pω (xt | xt+1, c) = N
(
xt;

√
εt

εt+1

(
xt+1 → ωt+1↑

1 → ε̄t+1

ωω (xt+1, c, t + 1)

)
, ϑ2

t+1
I

)
, (2)

where ϑ2
t+1

= 1→ε̄t
1→ε̄t+1

ωt+1, εt = 1 → ωt, ε̄t =
∏t

s=1
εs. Then, the evidence lower bound (ELBO)

is minimized to train the diffusion model with the following equation:

LDDPM = Ex0,t,ω

[
ϖ(t) ↓ω → ωω (xt, t)↓2

]
, (3)

where ω ↔ N (0, I), t ↔ U(0, T ), xt ↔ q (xt | x0) = N (xt;
↑

ε̄tx0, (1 → ε̄t) I), ϖ(t) is a time-
dependent weighting function and ϱ represents learnable parameters.

RLHF on T2I Diffusion Models. RLHF typically involves fitting a reward model to human pref-
erence data and then fine-tuning the generative model to maximize expected reward through rein-
forcement learning. In the reward fitting process, human preferences can be modelled using the
Bradley-Terry (BT) model (Bradley & Terry, 1952). To adapt the BT model to diffusion models, we
define the posterior of human preferences for each time step t with the following formula:

pBT

(
xw

t ↗ xl
t | c

)
= ϑ

(
r (c,xw

t ) → r
(
c,xl

t

))
, (4)

where ϑ(·) denotes the sigmoid function, c is the textual prompt, xw
t and xl

t are a pair of winning
and losing image samples at the time step t of diffusion models.

After the reward function is learned, the generative model is optimized using reinforcement learning
based on the reward feedback. By conceptualizing the denoising process of the diffusion model as a
multi-step Markov Decision Process (MDP) and following Wallace et al. (2024); Fan et al. (2024);
Yang et al. (2024); Li et al. (2024), we consider reward models at each step to define the objective:

Lrlhf = Ec↑DEpω(x0:T |c)
∑T→1

t=0
r (xt, c) → ϖDKL [pω(x0:T |c)↓pref(x0:T |c)] , (5)

where pref (x0:T ) is the learnt distribution from pretrained diffusion models, c is the textual prompt
sampled from dataset D, DKL [·↓·] represents the KL divergence between two distributions and ϖ

4



Published as a conference paper at ICLR 2025

is the hyperparameter to control the weight of this KL term. We put more details about RLHF and
modeling diffusion models as MDP into Appendix A due to space constraints.

DPO on T2I Diffusion Models. To simplify RLHF, DPO (Rafailov et al., 2024) uses the log-
likelihood of the learning policy to implicitly represent the reward function. In the context of T2I
diffusion models, the step-wise reward function for them can be defined as:

r(xt, c) = ϖ log
pω (xt | xt+1, c)

pref (xt | xt+1, c)
. (6)

Following this formulation, existing works (Wallace et al., 2024; Yang et al., 2024) adapt DPO
algorithms, which aims to optimize pω based on the BT model in Equation (4), to diffusion models
by framing them as MDPs. The objective is defined as follows:

LDi!usion→DPO = →E
[
log ϑ

(
ϖ log

pω

(
xw

t | xw
t+1

, c
)

pref
(
xw

t | xw
t+1

, c
) → ϖ log

pω

(
xl

t | xl
t+1

, c
)

pref
(
xl

t | xl
t+1

, c
)


, (7)

where
(
xw
0
,xl

0
, c
)

↔ D, t ↔ U(0, T ), xw
t,t+1

↔ p
(
xw

t,t+1
| xw

0

)
and xl

t→1,t ↔ p
(
xl

t,t+1
| xl

0

)
. To

simplify notation, we use xt to represent xw
t in the following section.
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Figure 3: The illustration of the model framework.

We introduce Direct Score Preference
Optimization (DSPO), a preference learn-
ing algorithm grounded in score match-
ing principles, tailored for fine-tuning dif-
fusion models. Our approach begins by
defining a target human-preferred score
function, which combines the ground-
truth data distribution score with a pref-
erence model. We then fine-tune the pre-
trained score models to align with this target, guiding the diffusion process toward generating
human-preferred outputs. The illustration of the model framework is displayed in Figure 3.

4.1 HUMAN PREFERENCE SCORE MODEL

In this section, we introduce the target human preference score model, which is aligned with human
preferences. Our goal is to use this target model for fine-tuning the pretrained score or diffusion
models to match the this target model. Before presenting this, we first introduce the score model
used to leverage the connection between diffusion models and score matching (Song et al., 2020).
And the corresponding score function can be derived as ↘xt log pω (xt | c). By incorporating con-
ditional constraints in T2I diffusion models, we can get the score model ↘xt log pω (xt | c,y) for
the conditional variables y. This can be derived using Bayes’ rule as follows:

↘xt log pω (xt | c,y) = ↘xt log pω (xt | c) + ↘xt log p (y | xt, c) . (8)

Based on this formulation, we can treat human-preferred properties as constrained conditions for
T2I diffusion models, which is represented by the variable y. The probability of whether the input
images p (y | xt, c) align with human preferences can be obtained using Equation (4):

p (y | xt, c) = p
(
y | xt,x

l
t, c

)
= p

(
xt ↗ xl

t | xl
t, c

)
= ϑ

(
r (c,xt) → r

(
c,xl

t

))
. (9)

By treating the variable y as human-preferred conditions, we can derive a human preference score
model. To achieve image generation based on human-preferred conditions in a training-free manner,
we can first naively train a preference model to estimate pϑ

(
xt ↗ xl

t | xl
t, c

)
. This trained model

can then be used to replace the second term in Equation (8), following the widely-used classifier
guidance method for diffusion models (Dhariwal & Nichol, 2021). However, this approach has two
major drawbacks: (i) To determine the probability of human-preferred images, pϑ, we must input xl

t
at each time step, which requires providing negative samples for every target prompt—a task that is
impractical in real-world applications. (ii) Calculating the gradient of the trained classifier increases
inference time, and training a robust classifier for all reverse steps, especially for highly noisy inputs
at the initial steps, is a significant challenge (Ho & Salimans, 2022).
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4.2 DIRECT SCORE PREFERENCE OPTIMIZATION

In this paper, we focus on a novel fine-tuning method instead of training-free method for pretrained
T2I diffusion models to better align with human preferences. Our approach ensures that the fine-
tuning objective is consistent with the objective used during the pretraining stage, unlike current
methods that adapt fine-tuning techniques from LLMs (Wallace et al., 2024; Yang et al., 2024;
Li et al., 2024), which differ from the pretraining objectives and may lead to suboptimal results.
Specifically, we propose fine-tuning the pretrained T2I diffusion model to match the target human
preference score model for each time step t introduced in Section 4.1, which is defined as follows:

min
ω

ς(t) ↓↘xt log pω (xt | c) → (↘xt log p (xt | c) + φ↘xt log p (y | xt, c))↓2
2
, (10)

where ς(t) is a time-dependent function for score matching as introduced in Song et al. (2020).
φ is used to control the weight of conditional constraints towards human preferred image genera-
tion and p (y | xt, c) = ϑ

(
r (c,xt) → r

(
c,xl

t

))
is represented as Equation (9) for human preference

conditions. To avoid training an extra probability model, we use the implicit reward r (c,xt) de-
fined in Equation (6) to replace the reward model in Equation (9). Based on the reverse process
pω (xt | xt+1, c) of T2I diffusion models in Equation (2), we can get the following reward r(xt, c):

r(xt, c) = → ϖωt+1

2 (1 → ε̄t)

εt

εt+1

(
↓ωω (xt+1, t + 1) → ωt+1↓22 → ↓ωref (xt+1, t + 1) → ωt+1↓22

)
(11)

Details about achieving this equation are put into Appendix B.1. We use the score function of
the true data distribution instead of the pretrained model pref in the second term of Equation (10)
because the pretrained model may not accurately reflect the true data distribution’s score function.
Based on Equation (11), we get the following objective after derivations on Equation (10):

min
ω

A(t)
B(t) (ωω,t+1 → ωt+1) → ϖφ

(
1 → ϑ

(
r (c,xt) → r

(
c,xl

t

))
(ωω,t+1 → ωref,t+1)

)2
2
, (12)

where A(t) = ς(t) 1

4ϖ4
t+1

εt
εt+1

ϱ2
t+1

1→ε̄t+1
, ωω,t+1 = ωω (xt+1, c, t + 1), ϖ is a hyperparameter that

determines the weight used to control the KL divergence in Equation (5), similarly for ωref,t+1 and
r(·) is defined in Equation (11). B(t) is a time-dependent parameter whose specific form is provided
in Appendix B.2 due to space constrains. Based on our empirical findings and to further simplify
the loss function, we omit B(t) in our experiment, arriving at our final objective:

Lt
DSPO

= A(t)
ωω,t+1 → ωt+1 → ϖφ

(
1 → ϑ

(
r (c,xt) → r

(
c,xl

t

))
(ωω,t+1 → ωref,t+1)

)2
2
, (13)

We set φ = 1 to avoid extra hyperparameter for fine-tuning diffusion models. The derivations are put
into Appendix B.2. Following DDPM (Ho et al., 2020) and Diffusion-DPO (Wallace et al., 2024),
we disregard A(t) and the associated parameters about εt and ωt at the beginning of Equation (13).
In our settings where only preference data are accessible, we have our following final objectives:

min
ω

E(xw
0 ,xl

0,c)↑D,t↑U(0,T ),xt↑p(xt|xw
0 ,c),xl

t↑p(xl
t|xl

0,c)L
t
DSPO

. (14)

4.3 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis about DSPO. Our analyses show the relation with
RLHF objectives on diffusion models in Equation (5). Specifically, We demonstrate that, under cer-
tain conditions, minimizing DSPO by sampling data from the trained diffusion model and distilling
the score from the reference model shares similar optimization directions with maximizing RLHF
objectives in Equation (5). Because of space constraints, all proofs are put into the Appendix C.

Next, we start by deriving an equivalent form of the RLHF objective on T2I diffusion models in
Equation (5) by rearranging the elements in this equation. We can view the RLHF objective as opti-
mizing a reverse KL-divergence between pω(·) and p↓(·) from the probability matching perspective:

Lrlhf = Ec↑DEpω(x0:T |c)

T→1∑

t=0

→ϖDKL [pω(xt | xt+1, c)↓p↓(xt | xt+1, c)] + log Z (c) , (15)

where Z (c) =


exp(
T→1

t=0
r(xt, c)/ϖ)pref(x0:T |c)dx0,T is independent of learnable parameter

ϱ and p↓(xt | xt+1, c) ≃ pref (xt | xt+1, c) e(r(xt,c))/ς. The details of derivations for this equation
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Figure 4: Reward score comparisons on all datasets for various baselines by different reward models.

are put into Appendix C.1. In the following theoretical demonstration, we show that optimizing our
DSPO shares the same optimization direction as maximizing the RLHF objective. This is achieved
by matching the hyperparameters ς(t) and φ with those in the RLHF framework.

Theorem 1 Following ς(t) = 2ϑ2
t+1

/ϖ, φ = 1/2ϖ, reward model r(·) as defined in Equation (4)
and pdata(·) as the reference model for RLHF of T2I diffusion models in Equation (15), the gradient
of DSPO objective in Equation (13) by sampling data from pω satisfies:

↘ωLrlhf = ↘ωEc↑DEpω(x0:T |c)

T→1∑

t=0

→Lt
DSPO

. (16)

Theorem 1 indicates the optimization direction for pω during intermediate steps of minimizing
LDSPO, when sampling data from pω, aligns with the direction required to maximize Lrlhf asymp-
totically, given a sufficiently large dataset. Our final optimized loss in Equation (14) is an empirical
estimate of the loss in Equation (16) on preference feedback by sampling pairs of images, xw, xl.
Moreover, we consider the reward model r(·) = pBT

(
xw

t ↗ xl
t | c

)
as defined in Equation (4),

which evaluates a pair of images based on human feedback. Alternatively, we can retain the original
reward model format, i.e. r(x), which assesses individual images rather than comparing pairs based
on human feedback. Maximizing the RLHF objective while maintaining the original reward struc-
ture is equivalent to minimizing our objective by setting p (y | xt, c) = exp (r(xt, c)/ϖ) /Z(c),
where Z(c) =


exp (r(xt, c)/ϖ) dxt, under the same condition in Theorem 1. Detailed derivation

are put into Appendix C.3. We conduct an ablation study on this approach in Section 5.3.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets and Models. We fine-tune Stable Diffusion v1.5 (SD1.5) using the DSPO objective on
image pairs based on human feedback, as described in Equation (14), following the Diffusion-DPO
approach (Wallace et al., 2024). This is done using the Pick-a-Pic v2 (Pick V2) dataset (Kirstain
et al., 2023), which contains image preference pairs for each prompt. To evaluate the model, we
use test prompts from Pick V2, the HPSV2 benchmark prompts (Wu et al., 2023), and the Parti-
Prompts dataset (Yu et al., 2022). We conduct the image editing experiment with text instructions
on InstructPix2Pix dataset (Brooks et al., 2023). The details of dataset are put into Appendix D.2.

Baselines. We evaluate the effectiveness of aligning T2I diffusion models with DSPO by comparing
the generations from our DSPO aligned model to those from other existing methods, including the
original pretrained SD1.5 or SDXL, supervised fine-tuning (SFT) approaches, Diffusion-DPO (Wal-
lace et al., 2024), MaPO (Hong et al., 2024) and Diffusion-KTO (Li et al., 2024). Note that when
training the SDXL model, the quality of training data in PickV2 is lower than that of images gen-
erated by SDXL. Therefore, we use the reference model for p(xt|c). A detailed discussion of the
training method on SDXL is provided in Appendix D.1.

Evaluation. To assess human preference alignment, we perform Text-to-image (T2I) genera-
tion and text-guided image editing. We evaluated each task with several metrics, including Pick
Score (Kirstain et al., 2023), HPSV2 (Wu et al., 2023), LAION Aesthetics Score (Schuhmann,
2022), CLIP (Radford et al., 2021), and ImageReward (Xu et al., 2024). For each reward model, we

7
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Table 1: Win-rate comparison between DSPO and other baselines versus SD1.5, evaluated on dif-
ferent reward models using prompts from the PickV2, HPSV2, and Parti-Prompt datasets (T2I Gen-
eration). For simplicity, ”Diff.” represents ”Diffusion”. Best results are highlighted in boldface.

Dataset Method Pick Score HPS Aesthetics CLIP Image Reward

PickV2

SFT 70.20 84.20 75.80 61.20 76.40
Diff.-DPO 71.60 70.20 66.20 58.80 63.60
Diff.-KTO 71.40 84.40 72.60 60.02 77.00

DSPO 73.60 84.80 76.20 61.80 78.00

Parti-Prompt

SFT 64.27 85.72 75.74 54.72 71.38
Diff.-DPO 61.18 66.48 60.42 55.45 62.19
Diff.-KTO 64.80 86.16 72.92 54.34 71.51

DSPO 65.32 87.50 76.96 54.86 71.75

HPSV2

SFT 79.03 91.97 78.56 60.47 80.78
Diff.-DPO 76.06 72.13 66.00 58.50 64.22
Diff.-KTO 79.18 92.15 77.87 59.28 81.96

DSPO 79.90 92.56 80.59 61.13 82.31

Table 2: Win-rate comparison between DSPO and other baselines versus SDXL, evaluated on dif-
ferent reward models using prompts from the PickV2, HPSV2, and Parti-Prompt datasets (T2I Gen-
eration). Note that the DSPO in this table is fine-tuned on SDXL.

Dataset Method Pick Score HPS Aesthetics CLIP Image Reward

PickV2

SFT 20.80 40.60 23.20 44.80 34.40
Diff.-DPO 75.20 76.20 54.10 59.40 65.20

MaPO 54.40 69.60 68.20 51.20 61.40
DSPO 74.00 80.00 54.20 59.60 68.60

Parti-Prompt

SFT 17.03 33.02 27.81 36.58 37.18
Diff.-DPO 65.44 74.08 56.86 60.54 66.85

MaPO 58.34 66.54 68.23 47.43 58.64
DSPO 67.46 81.80 57.84 55.02 73.47

HPSV2

SFT 18.18 45.28 26.72 39.13 47.22
Diff.-DPO 70.31 80.81 50.78 59.31 68.75

MaPO 59.62 77.90 62.31 50.90 62.09
DSPO 72.59 83.47 51.41 57.34 70.09

report both the average scores for all models and win rates between DSPO or baselines and Stable
Diffusion v1.5. For a fair comparison, we use the default hyperparameters for the T2I diffusion
model to sample images across all baselines and DSPO as used in Rafailov et al. (2024), ensur-
ing consistency in evaluation, i.e., guidance scale as 7.5 and the number of sampling steps as 50.
Note that for our evaluation experiments, we directly use the checkpoints for Diffusion-DPO and
Diffusion-KTO provided by the authors. Additionally, we train the SFT model following Diffusion-
DPO for our evaluations. We conduct five sampling runs for each algorithm using different seeds,
and the average results are reported. Implementation details of DSPO are provided in Appendix D.3.

5.2 PERFORMANCE COMPARISON ON HUMAN PREFERENCE ALIGNMENT

Table 3: Computational costs of Diffusion-DPO
and DSPO using 1 NVIDIA A100s. Training
time (“Time”) for each optimization step and peak
GPU memory without the model (“GPU Mem.”)
measured with 16 batch size and 128 accumula-
tion gradient step in fine-tuning SD15 on PickV2.

Diffusion-DPO DSPO

Time (→) 4.15 min 4.18 min
GPU Mem. (→) 60.2 60.5

We present the results of real rewards from var-
ious reward models across all datasets of T2I
generation in the Figure 4, comparing DSPO
with SFT, Diff.-DPO, Diff.-KTO, and SD1.5.
Due to space constraints, additional reward
score results (CLIP and Image Reward) are pro-
vided in Appendix E.2. The results consis-
tently show that DSPO outperforms all base-
lines. Notably, our fine-tuned T2I diffusion
model significantly surpasses the original base
model SD1.5. For example, SD1.5 achieves an

8



Published as a conference paper at ICLR 2025

Table 4: Win-rate comparison of InstructPix2Pix dataset for text-guided image editing.
Dataset Method Pick Score HPS Aesthetics CLIP Image Reward

InstructPix2Pix

SFT 57.10 66.60 73.10 48.60 61.10
Diff.-DPO 51.40 52.00 52.80 46.80 47.00
Diff.-KTO 53.60 69.20 72.20 50.00 61.00

DSPO 58.40 69.30 73.80 51.30 61.10

Table 5: Win-rate comparison between DSPO and its variant DSPO-E versus SD1.5, evaluated
across different reward models using prompts from the PickV2, HPSV2, and Parti-Prompt datasets.

Dataset Method Pick Score HPS Aesthetics CLIP Image Reward

PickV2 DSPO-E 70.20 84.00 73.20 60.60 75.80
DSPO 73.60 84.80 76.20 61.80 78.00

Parti-Prompt DSPO-E 62.86 85.31 75.91 54.81 71.69
DSPO 65.32 87.50 76.96 54.86 71.75

HPSV2 DSPO-E 75.06 91.28 77.65 59.59 80.93
DSPO 79.90 92.56 80.59 61.13 82.31

Image Reward score of only 0.018, while DSPO attains a much higher score of 0.568. Additionally,
DSPO outperforms both Diff.-DPO and Diff.-KTO, which also use preference learning algorithms.
This validates the effectiveness of our model in aligning with human preferences.

Table 1 presents the win-rate comparison of SFT, Diffusion-DPO (Diff.-DPO), Diffusion-KTO
(Diff.-KTO), and DSPO aligned SD1.5 against the original pretrained SD1.5 for T2I generation.
In general, DSPO achieves the best performance compared to recent baselines across all datasets
and nearly all reward models, demonstrating its effectiveness. Notably, DSPO significantly en-
hances alignment for the base SD1.5 model, achieving win-rates as high as 92.56% according to the
HPSV2 reward model. Furthermore, DSPO outperforms existing baselines, such as Diff.-DPO and
Diff.-KTO, which adapt algorithms from LLM domains to diffusion models, across nearly all reward
models. Specifically, DSPO achieves an absolute win-rate improvement of 16.54% and 4.04% over
Diff.-DPO and Diff.-KTO, respectively, on the Parti-Prompt dataset for the Aesthetics reward model.
This validates the motivation that matching the loss objectives during both the pretraining and fine-
tuning stages of T2I diffusion models enhances overall model performance. Table 2 presents the
results of DSPO fine-tuned on SDXL, alongside the corresponding baselines. The results demon-
strate that our models outperform the baselines across most metrics on all three datasets, further
validating the effectiveness of our approach. We also conduct memory and wall-clock experiments
in Table 3. Compared to Diffusion-DPO, DSPO shows comparable runtime and memory usage.

Table 4 presents the win-rate comparison results for the text-guided image editing task. Similarly,
DSPO outperforms all baselines across different reward models, further demonstrating its effective-
ness and potential applicability to a wide range of text-based image generation tasks.

5.3 ABLATION STUDY

We display the results of DSPO and its variant DSPO-E performance in Table 5. Specifically, as
outlined in Section 4.3, we can express p (y | xt, c) as an energy-based distribution p (y | xt, c) =
exp (r(xt, c)/ϖ) /Z(c), where Z(c) =


exp (r(xt, c)/ϖ) dxt. Optimizing this variant of DSPO

follows the same optimization direction as the RLHF objective, as demonstrated in Theorem 1
without assuming reward functions as BT models. Further details on this variant are provided in
Appendix C.3 and we denote it as DSPO-E. We observe that our models outperform the DSPO-E
variant on all datasets for all reward models, highlighting the effectiveness of using the BT model for
human preference learning, as outlined in Equation (4). Unlike DSPO-E, which relies on implicit
reward models for single images, DSPO leverages image pairs from human preference feedback,
providing richer information and enhancing overall performance.
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DSPOSFT KTODPOSD15

Figure 5: We show the images generated by different models from one prompt, which is ”Frontal
portrait of an anime girl with pink hair and sunglasses wearing a white tshirt.”.

Original SD15 SFT KTO DSPODPO

Figure 6: We show the text-guided image editing task with the prompt ”The siblings are all robots”.

5.4 QUALITATIVE ANALYSIS

Figure 5 showcase the qualitative performance of our model on T2I image generation used in this
paper. Compared to the baseline methods, DSPO exhibits a clear enhancement in image quality,
which is even more pronounced than the improvements reflected in the reward scores. Specifically,
DSPO accurately generates details such as sunglasses, pink hair, and an anime girl, while simultane-
ously creating a more visually appealing image compared to other baselines. Furthermore, Figure 6
presents the qualitative results of DSPO on text-guided image editing. In comparison to other base-
lines, DSPO not only faithfully adheres to the textual description when transforming siblings into
robots, but also generates more realistic and visually acceptable images. In summary, the advantages
of generated images from DSPO are particularly evident in key aspects such as alignment, visual
appeal, and the intricacy of details within each image. These qualitative results emphasize DSPO’s
ability to generate images that are not only contextually accurate but also visually superior to those
produced by existing models. Additional prompts and qualitative results for both of experiments are
provided in Appendix E.3 due to space constrains in the main paper.

6 CONCLUSION

In this paper, we propose Direct Score Preference Optimization (DSPO), a novel approach for fine-
tuning diffusion-based text-to-image (T2I) models by aligning their pretraining and fine-tuning ob-
jectives through score matching. By leveraging the inherent score function of diffusion models and
incorporating human preference feedback without relying on complex reward models, DSPO ad-
dresses the performance gaps observed with existing fine-tuning techniques such as Diffusion-DPO.
We theoretically demonstrate that optimizing DSPO shares the same optimization directions as op-
timizing Reinforcement Learning from Human Feedback (RLHF) objectives, ensuring the effective-
ness of the fine-tuning process. Our empirical results show that DSPO consistently outperforms
other preference learning methods, confirming its capability to enhance image generation for human
preferences. This approach offers a new direction for preference alignment in diffusion models,
bridging the gap between pretraining and fine-tuning for more user-aligned outputs.
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A OMITTED DETAILS OF RLHF ON DIFFUSION MODELS

In this section, we follow the approach of Black et al. (2023); Fan et al. (2024) to model the
diffusion reverse process under the conditional generation setting as a Markov Decision Process
(MDP), defined by M = (S,A, P, r, ↼). Specifically, ↽ represents the policy network and the
diffusion reverse chain is {xt}0t=T with length T . This MDP can be defined as:

st ↭ (c, t,xt) ↽ (at | st) ↭ pω (xt→1 | xt, c) P (st+1 | st,at) ↭
(
⇀c, ⇀t→1, ⇀xt→1

)

at ↭ xt→1 ↼0 (s0) ↭ (p(c), ⇀T , N (0, I)) R (st,at) ↭ r(xt→1, c),
(17)

where ⇀(·) is the measure delta measure and P (st+1 | st,at) is a deterministic transition. Different
from previous works, we represent each step’s reward model as r(xt→1, c). Based on this MDP, we
get the objective for RLHF diffusion models following Fan et al. (2024):

Ec↑DEpω(x0:T |c)
∑T

t=1
r (xt→1, c) → ϖDKL [pω(x0:T |c)↓pref(x0:T |c)] . (18)

For notation simplicity in the following part, we set the range of t from 0 to T → 1 and get the
following equation:

Ec↑DEpω(x0:T |c)
∑T→1

t=0
r (xt, c) → ϖDKL [pω(x0:T |c)↓pref(x0:T |c)] (19)

B DERIVATIONS IN SECTION 4.2

B.1 DERIVATIONS OF EQUATION (11)

In this section, we provide a detailed derivation of Equation (10) for the implicit reward model:

Ec↑DEpω(x0:T |c)
∑T→1

t=0
r (xt, c) → ϖDKL [pω(x0:T |c)↓pref(x0:T |c)] . (20)

Following DDPM (Ho et al., 2020), the definition of pω (xt | xt+1, c) is as follows:

pω (xt | xt+1, c) = N
(
xt;

√
εt

εt+1

(
xt+1 → ωt+1↑

1 → ε̄t+1

ωω (xt+1, c, t + 1)

)
, ϑ2

t+1
I

)

=
1

(
2↽ϑ2

t+1

)d
exp

(
→ 1

2ϑ2
t+1

xt →
√

εt

εt+1

(
xt+1 → ωt+1↑

1 → ε̄t+1

ωω (xt+1, c, t + 1)

)
2

2



(21)
where ϑ2

t+1
= 1→ε̄t

1→ε̄t+1
ωt+1 and d is the dimension of the image.

We approximate xt with its posterior mean E [xt | xt+1,x0] =


εt
εt+1

(
xt+1 → ϱt+1↑

1→ε̄t+1
ωt+1

)
.

Then, we can get the estimated pω (xt | xt+1, c) as:
ϖ

(
2↽ϑ2

t+1

)d
exp

(
→1

2

ωt+1

(1 → ε̄t)

εt

εt+1

↓ωω (xt+1, t + 1) → ωt+1↓22
)

. (22)

Therefore, the reward function r(·) = ϖ (log pω (xt | xt+1, c) → log pref (xt | xt+1, c)) can be rep-
resented as by using the estimated pω (xt | xt+1, c):

r(xt, c) = →ϖ

2

ωt+1

(1 → ε̄t)

εt

εt+1

(
↓ωω (xt+1, t + 1) → ωt+1↓22 → ↓ωref (xt+1, t + 1) → ωt+1↓22

)

(23)

B.2 DERIVATIONS OF EQUATION (12)

In this section, we provide a detailed derivation of Equation (12) for our loss:

min
ω

ς(t)

↘xt log
pω(xt | c)

pdata(xt|c)
→ φ↘xt log ϑ

(
r (c,xt) → r

(
c,xl

t

))
2

2

= ς(t)

↘xt log
pω(xt|c)

pdata(xt|c)
→ φ(1 → ϑ

(
r (c,xt) → r

(
c,xl

t

))
)↘xtr (c,xt)


2

2

.

(24)
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Then, we use the reward model r (xt, c) in Equation (11) and get the gradient of the reward:

↘xtr (xt, c) = ↘xtϖ log
pω (xt | xt+1, c)

pref (xt | xt+1, c)
. (25)

Then, we get the gradient of r(·) based on the reverse process in Equation (21):

↘xtr (c,xt) = ϖ log
pω (xt | xt+1, c)

pref (xt | xt+1, c)

= → ϖ

2ϑ2
t+1

√
εt

εt+1

ωt+1↑
1 → ε̄t+1

(ωω (xt+1, c, t + 1) → ωref (xt+1, c, t + 1)).
(26)

Using the definition of the score function which connects the score model and diffusion models as
described in Song et al. (2020), we derive the formula for the first term of Equation 24:

↘xt log
pω (xt | c)

pdata (xt | c)
= → 1↑

1 → ε̄t
(ωω (xt+1, c, t + 1) → ωt). (27)

By combining Equation (23), (27), we can obtain our final objectives:

min
ω

ς(t)

↘xt log
pω(xt | c)

pdata(xt | c)
→ φ↘xt log ϑ

(
r (xt, c) → r

(
xl

t, c
))

2

2

= min
ω

A(t)
B(t) (ωω,t+1 → ωt+1) → ϖφ

(
1 → ϑ

(
r (c,xt) → r

(
c,xl

t

)))
(ωω,t+1 → ωref,t+1)

2
2
,

(28)
where the specific value are ωω,t+1 = ωω (xt+1, c, t + 1), A(t) = ς(t) 1

4ϖ4
t+1

εt
εt+1

ϱ2
t+1

1→ε̄t+1
, B(t) =

ς(t) 1

2ϖ2
t+1


εt

εt+1

ϱt+1
↔
1→ε̄t↑

1→ε̄t+1
and similarly for ωref,t+1.

C DERIVATIONS AND PROOF IN SECTION 4.3

C.1 DERIVATION OF EQUATION (15)

In this section, we provide a detailed derivation of Equation (15). Starting from the RLHF objective
on T2I diffusion models in Equation (5), we can have the following equation:

Ec↑DEpω(x0:T |c)

T→1∑

t=0

r (xt, c) → ϖDKL [pω(x0:T |c)↓pref(x0:T |c)] (29)

The we can get the following equation:

Epω(xt|xt+1,c)r (xt, c) → ϖDKL [pω (xt | xt+1, c) ↓pref (xt | xt+1, c)] ,

= Epω(xt|xt+1,c)ϖ log e
1
ε r(xt,c) → ϖEpω(xt|xt+1,c) log

pω (xt | xt+1, c)

pref (xt | xt+1, c)

= Epω(xt|xt+1,c)ϖ log
e

1
ε r(xt,c)pref (xt | xt+1, c)

pω (xt | xt+1, c)
.

(30)

We have the analytical form of p↓ (x0:T |c) following (Wallace et al., 2024):

p↓ (x0:T |c) = pref (x0:T |c) e(
∑T→1

t=0 r(xt,c))/ς/Z(c), (31)

where Z (c) =


exp(
T→1

t=0
r(xt, c)/ϖ)pref(x0:T |c)dx0,T→1. Therefore, we can get the following

results for Equation (30):

Epω(x0:T |c)ϖ log
e

1
ε

∑T→1
t=0 r(xt,c)pref (x0:T |c)

pω (x0:T |c)

= Epω(x0:T |c)ϖ log
p↓ (x0:T |c) Z (c)

pω (x0:T |c)

= →ϖDKL [(pω(x0:T |c)↓p↓(x0:T |c)] + ϖ log Z (c) .

(32)
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We can get the DKL(·) form as follows:

DKL [(pω(x0:T |c)↓p↓(x0:T |c)] =


pω (x0:T | c) ⇐ log

pω (x0:T | c)

p↓ (x0:T | c)
dx0:T

=


pω (x0:T | c) log

pω (xT | c)
∏T→1

t=0
pω (xt | xt, c)

p↓ (xT | c)
∏T→1

t=0
p↓ (xt | xt+1, c)

dx0:T

=


pω (x0:T | c)

(
log

pω (xT | c)

p↓ (xT | c)
+

T→1∑

t=0

log
pω (xt | xt+1, c)

p↓ (xt | xt+1, c)


dx0:T

=
∑T

t=1
Epω(xt+1:T |c)Epω(x0:t|xt+1:T ,c)


log

pω (xt | xt+1, c)

p↓ (xt | xt+1, c)



=
∑T

t=1
Epω(xt+1|c)Epω(xt|xt+1,c)


log

pω (xt | xt+1, c)

p↓ (xt | xt+1, c)



=
∑T

t=1
Epω(xt+1|c)DKL [pω (xt | xt+1, c) ↓p↓ (xt | xt+1, c)]

= Epω(x0:T |c)
∑T→1

t=0
DKL [pω(xt | xt+1, c)↓p↓(xt | xt+1, c)] ,

(33)

where p↓(xt | xt+1, c) ≃ pref (xt | xt+1, c) e(r(xt,c))/ς. Finally, we can combine the above equa-
tion with Equation (29):

Lrlhf = Ec↑DEpω(x0:T |c)
∑T→1

t=0
→ϖDKL [pω(xt | xt+1, c)↓p↓(xt | xt+1, c)] + ϖ log Z (c) . (34)

C.2 PROOF OF THEOREM 1

Theorem 1. Following ς(t) = 2ϑ2
t+1

/ϖ, φ = 1/2ϖ, reward model r(·) as defined in Equation (4)
and pdata(·) as the reference model for RLHF of T2I diffusion models in Equation (15), the gradient
of DSPO objective in Equation (13) by sampling data from pω satisfies:

↘ωLrlhf = ↘ωEc↑DEpω(x0:T |c)

T→1∑

t=0

→Lt
DSPO

. (35)

First, we recognize the reverse process of diffusion models as a Gaussian process, which we denote
as pω (xt | xt+1, c) ↔ N (µ,!) for simplicity. The corresponding log pω(·) can then be defined as:

log pω (xt | xt+1) = →1

2
(xt → µ)T !→1 (xt → µ) + C, (36)

where C is a constant value and we can denote pref (xt | xt+1, c) by replacing µ with µref similarly.
log p↓ (xt | xt+1, c) can be estimated by a Taylor expansion around xt:

log p↓ (xt | xt+1, c) = log pref (xt | xt+1, c) e(r(xt,c))/ς/Z(xt+1, c)

⇒ log pref (xt | xt+1, c) + log e(r(xt,c))/ς

xt=µ

+ (xt → µref) ↘xt log e(r(xt,c))/ς

xt=µref

→ C1

= →1

2
(xt → µref)

T !→1 (xt → µref) + (xt → µref) ↘xt

r (xt, c)

ϖ
+ C2

= →1

2

(
xt → µref → !↘xt

r (xt, c)

ϖ

)T

!→1

(
xt → µref → !↘xt

r (xt, c)

ϖ

)
+ C3

= log p↓(a) + C4,a ↔ N (µref + !↘xt

r (xt, c)

ϖ
,!),

(37)
where C3 = →gT !g/2 and g represents ↘xtr (xt, c) /ϖ . We can safely ignore the constant term
C4, since it corresponds to the normalizing coefficient following Dhariwal & Nichol (2021). Then,
we can observe that p↓ (xt | xt+1, c) follows the Guassian distribution. Therefore, we can further
derive the KL divergence loss betwenn two Guassian distributions for RLHF in Equation (15):

DKL (pω(xt | xt+1, c)↓p↓(xt | xt+1, c))

=

(
µ → µref → !↘xt

r (xt, c)

ϖ

)
!→1

(
µ → µref → !↘xt

r (xt, c)

ϖ

)T

.
(38)
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We then put the expression of µ, µref and ! into the above equation:

DKL (pω(xt | xt+1, c)↓p↓(xt | xt+1, c))

=
1

2ϑ2
t+1

↓
√

εt

εt+1

ωt+1↑
1 → ε̄t+1

(ωref,t+1 → ωω,t+1) →
ϑ2

t+1

ϖ
↘xtr(xt)↓22.

(39)

We put Equation (27) into our loss function to get:

Lt
DSPO

= ς(t)


1

2ϑ2
t+1

√
εt

εt+1

ωt+1↑
1 → ε̄t+1

(ωt+1 → ωω) → φ↘xt log ϑ
(
r (xt, c) → r

(
xl

t, c
))

2

2

=
ς(t)

4ϑ4
t+1


√

εt

εt+1

ωt+1↑
1 → ε̄t+1

(ωt+1 → ωω) → 2ϑ2

t+1
φ↘xt log ϑ

(
r (xt, c) → r

(
xl

t, c
))

2

2

.

(40)
Therefore, we can observe that Lt

DSPO
= DKL (pω(xt | xt+1, c)↓p↓(xt | xt+1, c)) when ς(t) =

2ϑ2
t+1

/ϖ, φ = 1/2ϖ and we use pdata(·) as the reference model, we get the following equation:

Lrlhf = Ec↑DEpω(x0:T |c)
∑T→1

t=0
→Lt

DSPO
+ ϖ log Z (c) . (41)

Finally, it completes our proof:

↘ωLrlhf = ↘ωEc↑DEpω(x0:T |c)
∑T→1

t=0
→Lt

DSPO
(42)

C.3 DERIVATION OF LOSS WITH REWARD MODEL OF RLHF

Through the proof in Section C.2, we can easily get the conclusion that if we set p (y | xt, c) =
p (y | xt, c) = exp (r(xt, c)/ϖ) /Z(c), the direction of minimizing our proposed loss is same as
maximizing Lrlhf when the hyperparameters of both losses are properly adjusted. Specifically, we
can get the optimization objective with the above format of p (y | xt, c):

min
ω

ς(t)

↘xt log
pω(xt | c)

pdata(xt | c)
→ φ↘xtr (xt, c)


2

2

(43)

Referring to the proof in Appendix B.2 and disregarding some weighting parameters, we derive the
following equation for the energy-based classifier:

Lt
DSPO→E

= ς(t)


1

2ϑ2
t+1

√
εt

εt+1

ωt+1↑
1 → ε̄t+1

(ωt+1 → ωω) → φ↘xtr (xt, c)


2

2

= ς(t)
1

4ϑ4
t+1


√

εt

εt+1

ωt+1↑
1 → ε̄t+1

(ωt+1 → ωω) → 2ϑ2

t+1
φ↘xtr (xt, c)


2

2

(44)

Therefore, we can obtain the equivalent form of Equation (39) with ς(t) = 2ϑ(t)2/ϖ, φ = 1/2ϖ
and we use pdata(·) as the reference model. Based on this formulation, we can get the following
objective when considering r(·) as defined in Equation (11):

Lt
DSPO→E

= ς(t)

↘xt log
pω(xt|xt+1, c)

pdata(xt|xt+1, c)
→ φ↘xtr (xt, c)


2

2

= A(t) ↓ωω,t+1 → ωt+1 → φω (ωω,t+1 → ωref,t+1)↓22 ,

(45)

where A(t) = ς(t) 1

2ϖ2
t+1

εt
εt+1

ϱ2
t+1

1→ε̄t+1
, ωω,t+1 = ωω (xt+1, c, t + 1) and similarly for ωref,t+1. The

detailed derivation are the same to the derivation of Equation (12), which are shown in Section B.2.

D EXPERIMENTAL DETAILS

D.1 THE DETAILS OF TRAINING ON SDXL MODELS

Inspired by the observation from Diffusion-DPO (Wallace et al., 2024), which highlights that when
the quality of training data is lower than that of data generated by the original model, using the
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reference model becomes a preferable choice. Therefore, we incorporate the reference model in
Equation (10) and derive the following equation for training the SDXL models from Equation (12):

min
ω

A(t)↑
ϖφ



(
1 → B(t)

ϖφ
→ ϑ

(
r (c,xt) → r

(
c,xl

t

)))
(ωω,t+1 → ωref,t+1)


2

2

, (46)

where we replace the first term ωt+1 with ωref,t+1. In practical implementation, we observe that the
term (ωω,t+1 → ωref,t+1) is small, yet it significantly impacts the training speed. Additionally, using
small values of B(t)/(ϖφ) yields good performance. Therefore, to simplify the training process of
SDXL and reduce hyperparameter, we train the following loss for SDXL:

min
ω

1 → ϑ
(
r (c,xt) → r

(
c,xl

t

))2
2
. (47)

Then, we replace r (c,xt) and r
(
c,xl

t

)
as discussed in Appendix B and ignore the relevant part for

εt and ωt as the training process of diffusion models.

D.2 THE DETAILS OF DATASETS

In this section, we provide detailed descriptions of datasets:

Pick-a-Pic v2 (Pick V2) (Kirstain et al., 2023): The Pick-a-Pic dataset was developed by logging
user interactions with the Pick-a-Pic web application for text-to-image generation. It contains over
500,000 examples and 35,000 distinct prompts. Each example includes a prompt, two generated im-
ages, and a label indicating which image is preferred or if there is no significant preference (tie). The
dataset was generated using multiple backbone models, including Stable Diffusion 2.1, Dreamlike
Photoreal 2.05, and Stable Diffusion XL variants (Rombach et al., 2022), with varying classifier-free
guidance scale values (Ho & Salimans, 2022).

Parti-Prompts (Yu et al., 2022): Parti-Prompts is a comprehensive dataset consisting of over 1,600
prompts written in English, designed to evaluate and benchmark the capabilities of text-to-image
generation models. These prompts span a wide range of categories, offering a diverse set of chal-
lenges to assess model performance across various dimensions.

HPSV2 (Wu et al., 2023): The dataset includes a total of 98,807 images generated from 25,205
unique prompts. For each prompt, multiple images are generated, with one image selected by the
user as the preferred choice while the others serve as non-preferred negatives. The number of images
per prompt varies, with 23,722 prompts having four images, 953 prompts having three images, and
530 prompts having two images.

InstructPix2Pix (Brooks et al., 2023): InstructPix2Pix is a dataset designed to edit images based on
human-provided instructions. For example, with a prompt like ”make the clouds rainy,” the model
will modify the input image accordingly. It conditions its output on both the text prompt (editing
instruction) and the input image, enabling intuitive, instruction-driven image edits. We conducted
our image editing experiment on 1,000 test samples from this dataset 1.

D.3 IMPLEMENTATION DETAILS

We present implementation and setup details of DSPO in this section. For experiments, we use the
AdamW optimizer with an effective batch size of 2048 pairs, as outlined in Wallace et al. (2024).
Training is conducted on 4 NVIDIA V100 GPUs, with a local batch size of 4 pair and gradient
accumulation over 128 steps. We train at fixed square resolutions and use a learning rate 2.048·10→8,
scheduled with a 2000-step linear warmup, followed by inverse scaling (Rafailov et al., 2024). We
present the DSPO results with ϖ = 0.001. For a fair comparison, we use the default hyperparameters
for the T2I diffusion model with the image editing task with text instructions, ensuring consistency
in evaluation, i.e., guidance scale as 7.5 and the strength as 0.75. Our code of DSPO is based on the
implementation Diffusion-DPO 2.

1https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples
2https://github.com/SalesforceAIResearch/DiffusionDPO
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Table 6: Win-rate (VS SD15) comparison of PickV2 dataset for Ablation Studies.
Dataset Method Pick Score HPS Aesthetics CLIP Image Reward

PickV2
DSPO-ref 65.40 75.00 68.00 57.20 64.40

DSPO-nodup 71.20 82.60 74.00 58.60 76.60
DSPO-LoRA 68.00 79.40 74.40 60.20 70.80

DSPO 73.60 84.80 76.20 61.80 78.00

Figure 7: Reward score results for with Image Reward and CLIP models on all dataset.

E ADDITIONAL EXPERIMENT RESULTS

E.1 ADDITIONAL ABLATION STUDIES AND OTHER EXPERIMENTS

In this section, we conduct the ablation studies by using pref in Equation (10), denoted as DSPO-
ref. Additionally, since the PickV2 dataset contains many duplicate prompts, we conduct further
experiments by removing these duplicates and rerunning our model, denoted as DSPO-nodup. To
reduce memory usage and computational time, we fine-tuned SD15 using LoRA combined with
DSPO, referred to as DSPO-LoRA. The results of these three experiments are summarized in a
single table, as presented in Table 6. We get the following observation: (i) our method, which
leverages the score function of the true data distribution, outperforms the approach (DSPO-ref) that
treats the original pretrained model as the reference model. This is because the quality of images
generated by the original pretrained stable diffusion models (SD 1.5) is lower than that of the fine-
tuning dataset. As a result, using the score function of the true data distribution can produce better
outcomes; (ii) DSPO performs better compared with DSPO-nodup. It means that randomly dropping
duplicate samples without careful selection may have negatively impacted the results, potentially
leading to the loss of important information by randomly retaining only one instance of a prompt
and discarding the others; (iii) fine-tuning with LoRA enhances performance, though it slightly falls
short of achieving results similar to full parameter training. However, the performance gap between
these two methods is minimal, making LoRA a viable approach for fine-tuning large models.

E.2 ADDITIONAL REWARD SCORE RESULTS

In this section, we present additional reward score results using CLIP and Image Reward, as illus-
trated in Figure 7. Consistent with previous findings, our model surpasses all baseline methods,
further demonstrating the effectiveness of DSPO.

E.3 ADDITIONAL RESULTS FOR QUALITATIVE ANALYSIS

To further verify the effectiveness of our model, we provide more Qualitative results of Text to image
generation for different baselines in Figure 8. We list the prompts used in Figure 8 as follows:

1. Minotaur
2. a painting of a fox in the style of starry night
3. The image is a vibrant and intricate illustration of a man, with a focus on his shoulder and

head, created using inkpen and Unreal Engine technology.
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4. a portrait of young girl
5. A head shot of a pretty girl dressed in a cyberpunk version of Marie Antoinette’s rococo

style, depicted through detailed digital art and trending on Art Station.
6. Nine human faces from Neanderthal to Modern Human and beyond depict the future of

human appearance.
7. A digital painting of a young pirate with sharp features and a piercing gaze.
8. Cyberpunk cat.

Moreover, we also provide more qualitative results of the image editing task with text instructions
in Figure 9. Similarly, we list the prompts used in Figure 9:

1. make it marble
2. A fantasy landscape, trending on artstation
3. turn it into a painting
4. make it a seascape
5. make the cub a tiger
6. turn it into a computer game
7. As an oil painting

F ETHICAL STATEMENT

This study explores new algorithms to fine-tune text-to-image diffusion models for human prefer-
ence alignment. We use public data following the prior works (Wallace et al., 2024) in the field
of human preference alignment on text-to-image generation for both training and evaluation, which
can be directly downloaded from Hugging Face. Moreover, no sensitive user information is exposed,
and all experimental results are presented as aggregate statistics to maintain reproducibility without
risking information leakage. These practices comply with ethical and legal standards, ensuring a
responsible approach to AI research.
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DSPOSFT KTODPOSD15

Figure 8: Images generated by different models for various prompts which are selected from PickV2,
Parti-Prompt and HPSV2. Detailed prompts for these images are provided in Section E.3.
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Original SD15 SFT KTO DSPODPO

Figure 9: Images generated by different models for various prompts which are selected from In-
structPix2Pix of text-guided editing. Detailed prompts for these images are provided in Section E.3.
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