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Abstract—Analog and mixed-signal (A/MS) integrated circuits
(ICs) are crucial in modern electronics, playing key roles in signal
processing, amplification, sensing, and power management. Many
IC companies outsource manufacturing to third-party foundries,
creating security risks such as stealthy analog Trojans. Tra-
ditional detection methods, including embedding circuit water-
marks or conducting hardware-based monitoring, often impose
significant area and power overheads, and may not effectively
identify all types of Trojans. To address these shortcomings,
we propose SPICED, a Large Language Model (LLM)-based
framework that operates within the software domain, eliminating
the need for hardware modifications for Trojan detection and
localization. This is the first work using LLM-aided techniques
for detecting and localizing syntactical bugs and analog Trojans
in circuit netlists, requiring no explicit training and incurring
zero area overhead. Our framework employs chain-of-thought
reasoning and few-shot examples to teach anomaly detection
rules to LLMs. With the proposed method, we achieve an
average Trojan coverage of 93.32% and an average true positive
rate of 93.4% in identifying Trojan-impacted nodes for the
evaluated analog benchmark circuits. These experimental results
validate the effectiveness of LLMs in detecting and locating both
syntactical bugs and Trojans within analog netlists.

I. INTRODUCTION

Analog and mixed-signal (A/MS) integrated circuits (ICs)
play a critical role in signal processing, amplifiers, sensors, and
power management systems. Many IC companies such as Intel,
AMD, Qualcomm, and Texas Instruments opt to outsource the
manufacturing and fabrication of their analog designs to third-
party foundries to avoid expensive capital expenditures as well
as substantial costs associated with investing in manufacturing
infrastructure. The globalization of the semiconductor industry
and the outsourcing of analog ICs to third-party vendors have
introduced significant security threats. These threats notably
compromise the integrity of ICs, making them vulnerable
to analog Trojans [1] [2] [3]. A major risk arises from the
possibility of embedding stealthy Trojans that evade detection
under normal operating conditions [4] [5].

Trojans occupy minimal area footprints, enabling their easy
integration into larger, complex A/MS designs at the netlist
level, which includes multiple paths and transistor compo-
nents. These stealthy components are activated only during
specific operating bias voltages and remain dormant otherwise.
Prior work on analog Trojan detection utilizes current-sensing
amplifiers to identify Trojan activation [6]. A recent study

introduces a sensitivity analysis-based framework leveraging
analog neural twins to detect stealthy analog Trojans [7].
This approach identifies the critical paths most vulnerable to
Trojan insertion [8]. Next, circuit watermarks are embedded
to monitor deviations in these paths, triggering an alert when
a Trojan is activated. While these methods are effective in
detecting Trojans, they do not address the challenge of locating
Trojan-impacted nodes within the design netlist, a task that
becomes increasingly difficult as circuit complexity grows.

The recent advancements in Large Language Models
(LLMs) have showcased their significant capabilities across
various tasks including code generation and optimization.
Such advancements in the EDA domain naturally position
LLMs as highly potent for novel applications in A/MS design.
Traditional methods for Trojan detection, including embedding
circuit watermarks or conducting hardware-based monitoring,
frequently impose significant area and power overheads, es-
pecially in large analog designs. To address this issue, we
propose SPICED, an LLM-based framework that operates
within the software domain, thereby eliminating the need for
any hardware modifications to the analog design for Trojan
detection and localization. SPICED excels at intelligent pars-
ing and analysis of large volumes of structured data such as
SPICE netlists. In addition to Trojan localization, the proposed
LLM-based framework provides comprehensive analysis and
detailed diagnosis of the detected anomalies. By leveraging a
deep understanding of the HSPICE language, simulation logs,
and the topological structure of netlists, SPICED can not only
distinguish between Trojan-free and Trojan-inserted netlists
but also precisely identify the specific Trojan components and
the nodes affected by the Trojan. The key contributions of this
paper are as follows:
• Introduction of SPICED: Presenting SPICED, the first

LLM-based framework for Trojan detection in A/MS design
that requires no hardware modifications.

• Syntactical Bug Mitigation: Leveraging in-context learn-
ing and Chain-of-Thought (CoT) prompting to detect and
mitigate syntactical bugs in SPICE netlists.

• Precise Trojan Detection and Localization: Developing
supervised learning rules for the LLM to identify Trojan
circuits and the Trojan-affected nodes in an analog design.
The remainder of the paper is organized as follows. Section

II provides a comprehensive overview of recent work on LLM-
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TABLE I: Comparison of prior works using LLM-aided tech-
niques.

Method Domain Training- Bug Bug Trojan
Free? Detection? Fixing? Detection

[9] Digital ✗ ✗ ✗ ✗
[10] Analog ✗ ✗ ✗ ✗
[11] Analog ✓ ✗ ✗ ✗
[12] Digital ✓ ✗ ✗ ✗
[13] Digital ✗ ✗ ✗ ✗
[14] Digital ✗ ✗ ✗ ✗
[15] Digital ✓ ✗ ✗ ✗
[16] Digital ✓ ✓ ✓ ✗

SPICED Analog ✓ ✓ ✓ ✓

aided text generation and how its capability can be leveraged
for bug detection tasks in the analog domain. We provide a
detailed analysis of syntactical bug detection and correction
using LLM in Section III. Section IV presents the framework
for Trojan detection and localization using LLM involving
both CoT and few-shot prompting examples for generating
supervised learning rules. Evaluation results for SPICED with
comparisons among several LLM-aided techniques are pre-
sented in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Design Automation using LLMs

LLMs have been integrated into multiple stages of EDA,
enhancing processes from code generation and placement and
routing to security measures, thereby streamlining and im-
proving the overall design workflow. Recent work used LLM
for Verilog code generation by fine-tuning existing LLM with
Verilog datasets [9]. Fine-tuned open-source CodeGen LLM
outperformed state-of-the-art commercial LLM in generating
functionally correct designs [14]. [12] used LLM-based itera-
tive flow to design an 8-bit accumulator-based microprocessor
architecture. [11] proposed LLM for generating analog circuits
with a feedback-enhanced flow to enable self-correcting design
of analog circuits. The feedback allowed generation of circuits
without any LLM training involved. Domain-Adaptive Pre-
Training (DAPT) followed by Supervised Fine-Tuning (SFT)
of foundation LLM models enabled an assistant chatbot for
chip design [13]. [17], [18] proposed LLM-based script gen-
eration to facilitate the EDA design flow. In the context of
security, LLM is shown to be effective in structural generation
of digital Trojans [15] as well as fixing syntactical bugs in
Verilog codes [16]. These works are focused mainly on code
generation tasks and bug detection in the digital domain, as
shown in Table I.
B. Nature of Analog Trojans

An analog Trojan consists of two primary components: (1)
Trigger circuit, which is conditionally gated with an AND or
OR gate to activate the Trojan only upon specific toggling
instructions; (2) Detector circuit, which detects the charge
buildup of the capacitive component of the Trojan circuit,
and when the capacitor voltage reaches a threshold, activates
the payload. Recent work shows the impact of an analog
Trojan, namely A2 [4] that can be stealthily inserted during the
design and fabrication phases of an analog design. Due to its
small footprint, it can be maliciously inserted in unused parts

during design phase. The trigger for the A2 Trojan is software-
controlled i.e., the trigger is activated when a rare instruction
is executed. As an extension to the A2 Trojan, authors in [5]
shows the implementation of the DELTA Trojan, which uses
a glitch generator for the trigger circuit, and can be inserted
in any net of a circuit irrespective of it being rarely activated.

In [8], it has been demonstrated that A2 Trojans remain
mostly dormant due to their insertion in the less sensitive paths
of a circuit. Upon their activation, the primary output voltage
behavior is impacted, leading to significant performance degra-
dation. Therefore, it is necessary to detect and localize these
malicious circuits within the analog design netlist before the
netlist is sent to the fabrication stage.

C. Prior Work on Analog Trojan Detection

In [6], a current sensing-based circuit is inserted in a digital
design to detect analog Trojans such as A2 at run-time. A
recent work [8] demonstrates the impact of analog Trojans
(A2, DELTA, and large-delay Trojans) on A/MS designs as
well. In [8], analog neural twins are employed to identify
critical paths in an analog circuit netlist through sensitivity
analysis. After identifying critical paths, circuit watermarks are
inserted to make these paths observable at the circuit output.
Sensitizing the least sensitive paths of a circuit makes the
detection of stealthy Trojans easier. This ensures that even
if the effects of the Trojans are not captured at the primary
output of the circuit, they can still be detected through the
altered behavior of the sensitized paths.

Although [8] effectively identifies all the Trojan hotspots,
there are two significant limitations: (1) the area overhead as-
sociated with added watermarks increases with the complexity
of the analog design, and (2) the specific Trojan-inserted nodes
are not identified, i.e., localization of the detected Trojans is
not performed; this limitation makes it difficult to pinpoint
the exact nodes affected by the Trojans, making targeted
mitigation infeasible.

These limitations motivate the exploration of specialized
techniques that leverage the contextual ability of LLMs. LLMs
are vastly known for interpreting and generating texts, and are
capable of interpreting contexts across various programming
languages such as C, C++, and Python. A significant portion of
the training data for LLMs is sourced from Github repositories.
LLMs such as Llama-2 and Llama-3 are primarily trained
on Python datasets [19]. In the realm of digital design, the
availability of Verilog code in training datasets is relatively
limited compared to other programming languages [11]. The
scarcity is even more for analog design data, particularly for
the SPICE language, which has less code available in open-
source repositories. This poses a challenge for LLMs like
Llama 2 and GPT-3.5 to understand SPICE syntax comprehen-
sively. Despite these challenges, GPT-3.5 shows the capability
of understanding basic SPICE syntax and type of circuit con-
figuration being implemented in a SPICE netlist. Leveraging
LLMs for design analysis offers several advantages.
• Textual analysis capability: Aided by the right prompts,

LLMs can effectively parse simulation log files without
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a n y m a n u al i nt er v e nti o n, t h er e b y off eri n g h u g e pr o d u cti v-
it y b o ost i n t er ms of r e d u c e d e n gi n e eri n g h o urs a n d l o g
pr o c essi n g r u nti m e. L L Ms u n d erst a n d t h e t a b ul ar str u ct ur e
of l o g g e d v olt a g e a n d c urr e nt v al u es i n t h e l o gs, m a ki n g it
e asi er f or t h e m t o e xtr a ct t h e n u m eri c al v olt a g e a n d c urr e nt
d at a f or e a c h cir c uit n o d e.

• N etlist I d e nti fi c ati o n a n d B u g C o r r e cti o n : Pr e-tr ai n e d
L L Ms c a n u n d erst a n d t h e b asi c s y nt a x of S PI C E n etlists,
e n a bli n g t h e m o d els t o a n al y z e t h e n etlist str u ct ur e a n d fl a g
s y nt a x err ors.

• A n o m al y d et e cti o n : L L Ms c a n l e ar n t h e n o d e pr o p erti es
a n d i nt er- n o d e r el ati o ns hi ps d es cri b e d b y t h e n etlist t o p ol-
o g y a n d si m ul ati o n l o gs, a n d i d e ntif y a n o m al o us p att er ns
a m o n g n or m al o p er ati o n al c h ar a ct eristi cs of t h e d esi g n vi a
i n- c o nt e xt l e ar ni n g.

• Tr oj a n D et e cti o n a n d L o c ali z ati o n : E q ui p p e d wit h t h e
a bilit y t o p ars e l o gs, a n al y z e n etlists, a n d i d e ntif y o utli er p at-
t er ns, L L Ms c a n p ot e nti all y i d e ntif y Tr oj a n- aff e ct e d n o d es
w h os e v olt a g e a n d c urr e nt pr o fil es m a nif est as a n o m al o us.

• N o A r e a a n d P o w e r O v e r h e a d : L e v er a gi n g t h e c o m p ut a-
ti o n al a biliti es of L L Ms o b vi at es t h e n e e d f or a n y a d diti o n al
Tr oj a n d et e cti o n h ar d w ar e i n t h e cir c uit.

III. L L M F O R S Y N T A C T I C A L B U G D E T E C T I O N

Fi g. 1 ill ustr at es t h e pr o p os e d fl o w of g ui di n g t h e L L M
t o d et e ct a wi d e r a n g e of s y nt a cti c al b u gs w hil e r e d u ci n g t h e
li k eli h o o d of i n c orr e ctl y fl a g gi n g c orr e ct li n es as s y nt a x err ors.
N ot e t h at t his m et h o d d o es n ot i n v ol v e a n y L L M fi n e-t u ni n g;
i nst e a d, it f o c us es o n i m pr o vi n g t h e b u g d et e cti o n c a p a bilit y
of L L M t hr o u g h r e fi n e m e nt of S PI C E s y nt a x r ul es b as e d o n
r e al-ti m e f e e d b a c k. T h e st e ps i n v ol v e d ar e as f oll o ws:
1) B e gi n wit h a n i niti al s et of S PI C E s y nt a x r ul es a n d us e

t h e m t o c o nstr u ct t h e L L M pr o m pt t o i d e ntif y a n d l o c at e
s y nt a cti c al b u gs wit hi n a S PI C E n etlist (s h o w n i n Fi g. 2( a)).

2) W h e n t h e L L M i d e nti fi es t h e b u g c orr e ctl y, it s p e ci fi es
t h e t y p e of t h e d et e ct e d b u g a n d its l o c ati o n i n t h e n etlist
(s h o w n i n Fi g. 2( b)).

3) A f als e p ositi v e o c c urs w h e n t h e L L M i n c orr e ctl y i d e nti fi es

Test Pr o m pt 

( a)

B u g g y 
N etli st

Cl e a n 
N etli st

S PI C E N etli st

( b)

U p d at e d S PI C E 
s y nt a x r ul es

S PI C E N etli stTest Pr o m pt 

U p d at e S PI C E 
s y nt a x r ul es

F e e d b a c k

C orr e ct b u g 

i d e ntifi e d ?

Ye s

Pi n p oi nt b u g 
l o c ati o n

B u g fi xi n g

C orr e ct e d 
S PI C E N etli st

N o

Fi g. 1: ( a) E n h a n ci n g s y nt a cti c al b u g d et e cti o n a c c ur a c y of
L L M b y i nstr u cti o n-f oll o wi n g a p pr o a c h ( b) I d e ntif yi n g a n d
miti g ati n g b u gs i n a S PI C E n etlist.

a li n e as c o nt ai ni n g a b u g. If t h e L L M i n c orr e ctl y fl a gs a
li n e as b u g g y, t his f e e d b a c k is us e d t o m a n u all y u p d at e a n d
r e fi n e t h e s y nt a x r ul es i n t h e pr o m pt (s h o w n i n Fi g. 2( c)).

4) Aft er u p d ati n g t h e r ul es, t h e r e fi n e d pr o m pt is a p pli e d t o
t h e s a m e n etlist. T h e pr o c ess is r e p e at e d u ntil t h e n u m b er
of f als e p ositi v es is mi ni mi z e d.

We us e t h e u p d at e d s et of s y nt a x r ul es f or e v al u ati o n.
A d diti o n all y, w e pr o m pt t h e L L M t o g e n er at e a str u ct ur e d
b u g d et e cti o n r e p ort. T h e r e p ort i n cl u d es t h e f oll o wi n g it e ms:
1) List of all s y nt a cti c al b u gs i n t h e S PI C E n etlist : T h e

b u gs m a y i n cl u d e c o n n e cti o n err or ( missi n g c o n n e cti o ns
or fl o ati n g n o d es i n t h e n etlist), i ns erti o n err or ( u ni nt e n d e d
or i nt e n d e d i ns erti o n of a d diti o n al tr a nsist or c o m p o n e nts),
a n d i n c orr e ct s p e ci fi c ati o ns of p ar a m et ers.

2) L o c ati o n of t h e b u gs i n t h e S PI C E n etlist : Li n es i n t h e
S PI C E n etlist w h er e t h e b u g is l o c at e d, i n cl u di n g t h e
c o m p o n e nt or c o n n e cti o n n a m es.

3) S u g g esti o ns f or c orr e cti o n : Pr o vi d es a list of r e c o m m e n d e d
a cti o ns t o c orr e ct t h e b u gs a n d g e n er at e a r e vis e d n etlist.

I V. S U P E R V I S E D L E A R N I N G - BA S E D F R A M E W O R K U S I N G

L L M F O R T R O J A N D E T E C T I O N

W hil e S e cti o n III f o c us es o n i d e ntif yi n g a n d c orr e cti n g
s y nt a cti c al b u gs i n t h e S PI C E n etlist, t his s e cti o n a d dr ess es
f u n cti o n al b u g d et e cti o n, p arti c ul arl y t ar g eti n g a n al o g Tr oj a ns.
A Tr oj a n-i m p a ct e d n o d e is d e fi n e d as o n e of t h e cir c uit n o d es
w h er e t h e Tr oj a n is i ns ert e d or w hi c h is p art of t h e tri g g er
n o d e. Fr o m pri or w or k o n a n al o g Tr oj a n d et e cti o n [ 8] [ 6],
t h e f oll o wi n g o bs er v ati o ns ar e n ot e d r e g ar di n g t h e c urr e nt a n d
v olt a g e b e h a vi or of Tr oj a n-i m p a ct e d n o d es.
1) D e vi ati o n i n pri m ar y o ut p ut v olt a g e: As o bs er v e d i n [ 8],

w h e n a Tr oj a n is i ns ert e d i nt o o n e of t h e s e nsiti v e p at hs
of a n a n al o g d esi g n, its i m p a ct is c a pt ur e d at t h e pri m ar y
o ut p ut v olt a g e. S p e ci fi c all y, t h e o ut p ut v olt a g e e x c e e ds t h e
d esir e d s p e ci fi c ati o ns w h e n t h e Tr oj a n is a cti v at e d.

2) A n o m al o us d e vi ati o n i n cir c uit i nt er m e di at e n o d es: N o d es
i m p a ct e d b y t h e Tr oj a n, or t h e n ei g h b ori n g n o d es e x hi bit
si g ni fi c a nt d e vi ati o ns i n v olt a g e b e h a vi or w h e n t h e Tr oj a n
is a cti v at e d. T his d e vi ati o n c a n s er v e as a criti c al i n di c at or
of t h e pr es e n c e of a Tr oj a n.

3) A n o m al o us s ur g e i n M O S F E T c urr e nt: A c c or di n g t o [ 6],
u p o n Tr oj a n a cti v ati o n, s o m e M O S F E Ts wit hi n t h e a n al o g
d esi g n dr a w a s u bst a nti all y hi g h er c urr e nt. T his c urr e nt
b e h a vi or d e vi at es si g ni fi c a ntl y fr o m t h e n or m al c urr e nt
b e h a vi or o bs er v e d w h e n t h e Tr oj a n cir c uit is d or m a nt.

F or i d e ntif yi n g a n al o g Tr oj a ns a n d t h e Tr oj a n-i m p a ct e d
n o d es, w e us e d t h es e o bs er v ati o ns t o cr aft s u p er vis e d-l e ar ni n g
r ul es. We t h e n cr e at e d pr o m pts b as e d o n t h es e r ul es t o t e a c h
t h e L L M t o d et e ct a n o m ali es i n t h e c urr e nt a n d v olt a g e
si m ul ati o n l o gs. T h e si m ul ati o n l o gs ar e o bt ai n e d b y r u n ni n g
H S PI C E si m ul ati o n o n a n al o g n etlists. T h e pr o c e d ur e of
t e a c hi n g t h e s u p er vis e d l e ar ni n g a p pr o a c h (s h o w n i n Fi g. 3
( a)) t o t h e L L M is s h o w n i n Fi g. 3( b). We li n k e a c h Tr oj a n
c h ar a ct eristi c t o a s p e ci fi c s u p er vis e d l e ar ni n g r ul e as f oll o ws:

1. D e vi ati o n i n p ri m a r y o ut p ut v olt a g e
■ S u p e r vis e d L e a r ni n g R ul e 1: We cr aft pr o m pts t h at

3

A ut h ori z e d li c e n s e d u s e li mit e d t o: Ari z o n a St at e U ni v er sit y. D o w nl o a d e d o n S e pt e m b er 2 6, 2 0 2 5 at 0 3: 1 9: 0 5 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



* * R u l e s :  
1 .  E a c h  c o m p o n e n t  m u s t  h a v e  t h e  c o r r e c t  n u m b e r  o f  n o d e s  s p e c i f i e d .  
2 .  C a p a c i t o r s  h a v e  t w o  n o d e s  f o l l o w e d  b y  a  c a p a c i t o r  v a l u e .  
3 .  R e s i s t o r s  h a v e  t w o  n o d e s  f o l l o w e d  b y  a  r e s i s t a n c e  v a l u e .  
4 .  T r a n s i s t o r s  ( M O S F E T s )  h a v e  f o u r  n o d e s .  
5 .  T h e  t r a n s i s t o r  n o d e  n a m e  s h o u l d  n o t  b e  a  s p e c i a l  c h a r a c t e r .  
* * T a s k s :  
1 .  A d h e r e  s t r i c t l y  t o  t h e  a b o v e  r u l e s  w h e n  a n a l y z i n g  t h e  p r o v i d e d  S P I C E  n e t l i s t .  
2 .  L i s t  s y n t a c t i c a l  b u g s  i n  t h e  n e t l i s t .  P i n p o i n t  e x a c t  l o c a t i o n  o f  e a c h  b u g .
S P I C E  n e t l i s t :  
M 5  3  i n  0  0  P M O S  W = 1 u  L = 1 u  
M 7  1  1  V D D  V D D  P M O S  W = 1 u  L = 1 u  
M 1  1  4  7  1 2  1 2  N M O S  W = 1 u  L = 1 u  
M 6  2  2  V D D  P M O S  W = 1 u  L = 1 u  
M 3  2  4  6  6  N M O S  W = 1 u  L = 1 u  
M 4  7  1 1  3  3  N M O S  W = 1 u  L = 1 u  
M 2  6  9  3  3  N M O S  W = 1 u  L = 1 u  
R 1  7  6  1 k  
. D C  i n  0  5

( a)

L L M  r e s p o n s e :
1 .  L i n e  6 :  T h e  M O S F E T  M 4  h a s  f o u r  n o d e s  s p e c i f i e d  ( 7 ,  1 1 ,  3 ,  

3 ) ,  w h i c h  i s  i n c o r r e c t .  M O S F E T s  s h o u l d  h a v e  f o u r  d i s t i n c t  
n o d e s .  

2 .  L i n e  7 :  S i m i l a r  t o  L i n e  6 ,  t h e  M O S F E T  M 2  a l s o  h a s  f o u r  
n o d e s  s p e c i f i e d  ( 6 ,  9 ,  3 ,  3 ) ,  w h i c h  i s  i n c o r r e c t .  

3 .  L i n e  3 :  M 1  1  4  7  1 2  1 2  N M O S  W = 1 u  L = 1 u  I n c o r r e c t ,  s h o u l d  
h a v e  4  n o d e s

4 .  M i s s i n g  . E N D  s t a t e m e n t .
5 .  L i n e  9 :  T h e  . D C  s t a t e m e n t  i s  m i s s i n g  t h e  r e q u i r e d  

p a r a m e t e r s .

5 .  T h e  t r a n s i s t o r  n o d e  n a m e  s h o u l d  n o t  b e  a  s p e c i a l  
c h a r a c t e r .  
6 .  T h e  n o d e  n a m e s  c a n  b e  d i g i t s  ( e . g . ,  0 ,  1 ,  2 , . . 9 )  a s  
w e l l  a s  l e t t e r s  ( e . g . ,  A ,  B ,  C , . . Z ) .  
7 .  T h e  n o d e  n a m e s  i n  M O S F E T s  m a y  n o t  b e  u n i q u e ,  a n d  t h i s  
d o e s  n o t  i n d i c a t e  a  b u g .

( b)

( c)

Fi g. 2: ( a) A n e x a m pl e pr o m pt hi g hli g hti n g t h e S PI C E s y nt a x r ul es f or b u g d et e cti o n a n d l o c ali z ati o n ( b) L L M c orr e ctl y d et e cts
t h e b u gs i nj e ct e d i n t h e n etlist; h o w e v er, it i n c orr e ctl y fl a gs Li n es 6 a n d 7 as b u gs ( hi g hli g ht e d i n r e d) ( c) E x pli citl y u p d ati n g
t h e r ul es i n t h e pr o m pt t o r e d u c e f als e p ositi v es.

( a) ( b)

F e w -s h ot e x a m pl es C urr e nt -
si m ul ati o n l o g
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r a n g e

N o d e y
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Fi g. 3: ( a) Fl o w of s u p er vis e d-l e ar ni n g a p pr o a c h usi n g m a c hi n e l e ar ni n g ( M L) m o d els ( b) Usi n g t h e s u p er vis e d-l e ar ni n g
a n al o g y t o l o c at e Tr oj a n-i m p a ct e d n o d es usi n g L L M ( V o u t : pri m ar y o ut p ut v olt a g e, S p e c : d esir e d o ut p ut v olt a g e s p e ci fi c ati o ns,
V n o d e

i (I n o d e
i ): n o d e v olt a g e ( c urr e nt) c orr es p o n di n g t o it h i n p ut v olt a g e s a m pl e V i n

i ).

hi g hli g ht o ut p ut v olt a g es t h at e x c e e d t h e d esir e d cir c uit s p e c-
i fi c ati o ns. B as e d o n t h es e o ut p ut v olt a g es, w e as k t h e L L M t o
i d e ntif y t h e c orr es p o n di n g i n p ut v olt a g es. T h es e i n p ut v olt a g es
ar e l a b el e d as ‘ Tr oj a n- A cti v ati o n I n p uts’, w hil e i n p uts w h er e
t h e Tr oj a n is i n a cti v e ar e l a b el e d as ‘ N or m al I n p uts.’

2. A n o m al o us d e vi ati o n i n ci r c uit i nt e r m e di at e n o d es
■ S u p e r vis e d L e a r ni n g R ul e 2: Fi g. 4 s h o ws t h e v olt a g e

d e vi ati o ns i n i nt er m e di at e n o d es of a Tr oj a n-i ns ert e d cir c uit
a cr oss diff er e nt i n p ut v olt a g es a n d h o w t h eir v olt a g e d e vi ati o ns
c o m p ar e a cr oss n o d es f or a n o m al y d et e cti o n. T h e L L M i d e n-
ti fi es t h e n o d es t h at e x hi bit ( a) a si g ni fi c a nt v olt a g e d e vi ati o n
b et w e e n ‘ Tr oj a n- A cti v ati o n I n p ut’ a n d ‘ N or m al I n p ut’ r a n g es,
a n d ( b) t h e hi g h est d e vi ati o n a m o n g all t h e i nt er m e di at e
n o d es f or e a c h ‘ Tr oj a n- A cti v ati o n I n p ut’. B as e d o n t h es e
o bs er v ati o ns, t h e L L M a p pli es o n e of t h e f oll o wi n g r ul es t o
d et er mi n e t h e Tr oj a n-i m p a ct e d n o d es.
• R ul e # 1: U ni o n of n o d es i d e nti fi e d i n st e ps ( a) a n d ( b).

• R ul e # 2: I nt ers e cti o n of n o d es o bt ai n e d i n st e ps ( a) a n d ( b).
3. A n o m al o us s u r g e of M O S F E T c u r r e nt
■ S u p e r vis e d L e a r ni n g R ul e 3: We d esi g n pr o m pts

t o e x a mi n e c urr e nt si m ul ati o n l o gs a n d i d e ntif y M O S F E Ts
t h at g e n er at e u n us u al c urr e nt s pi k es u n d er ‘ Tr oj a n- A cti v ati o n
I n p uts’ c o m p ar e d t o t h e b as eli n e of ‘ N or m al I n p uts’. T h e
n o d es c orr es p o n di n g t o t h e M O S F E Ts wit h d et e ct e d c urr e nt
a n o m ali es ar e fl a g g e d as s us p e ct n o d es.

Fi n all y, c o m bi ni n g t h e a b o v e s u p er vis e d l e ar ni n g r ul es, w e
pr o m pt t h e L L M t o d et e ct t h e Tr oj a n cir c uit wit hi n a n a n al o g
n etlist a n d g e n er at e t h e fi n al s et of Tr oj a n-i m p a ct e d n o d es. T h e
s u p er vis e d l e ar ni n g r ul es ar e d e fi n e d at t h e st art of t h e pr o m pt.
N e xt, w e pr o vi d e t h e L L M wit h f e w-s h ot e x a m pl es, w h er e it
s e es a li mit e d n u m b er of e x a m pl e n etlists, l a b el e d as ‘ Tr oj a n’
or ‘ Tr oj a n- Fr e e’. A d diti o n all y, w e pr o vi d e e x pl a n ati o ns r el at e d
t o t h e s u p er vis e d-l e ar ni n g r ul es a n d t h e si m ul ati o n b e h a vi or of
c urr e nt a n d v olt a g e fr o m t h e l o g fil es t o j ustif y d e vi ati o ns t h at
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▲  D e vi ati o n at n o d e 5
◆  D e vi ati o n at n o d e 3 7
◼  D e vi ati o n at n o d e 1
●   D e vi ati o n at n o d e 7
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Fi g. 4: Volt a g e d e vi ati o n a n al ysis f or A 2 Tr oj a n-i ns ert e d n etlist
of cir c uit ‘ 6 4 2’ fr o m A M S N et [ 1 0]. Volt a g e d e vi ati o n of a
n o d e x is gi v e n b y V x

i − V x
i − 1 , w h er e i− 1 a n d i ar e c o ns e c uti v e

i n p ut v olt a g e s a m pl es. ( a) A n al y z e v olt a g e d e vi ati o n of e a c h
n o d e a cr oss t h e ‘ N or m al I n p ut’ a n d ‘ Tr oj a n- A cti v ati o n I n p ut’
r a n g es, ( b) a n al y z e v olt a g e d e vi ati o n a cr oss n o d es i n t h e
‘ Tr oj a n- A cti v ati o n I n p ut’ r a n g e. C o m bi ni n g ( a) a n d ( b), w e
o bs er v e t h at n o d e 3 7 is a Tr oj a n-i m p a ct e d n o d e.

i n di c at e p ot e nti al Tr oj a n b e h a vi or.

V. E X P E R I M E N T A L R E S U L T S

A. E x p eri m e nt al S et u p

F or b ot h b u g d et e cti o n a n d Tr oj a n d et e cti o n e x p eri m e nts,
w e e v al u at e a wi d e v ari et y of a n al o g b e n c h m ar k cir c uits t h at
ar e s el e ct e d fr o m t h e O p e n S o ur c e n etlist d at as et fr o m A M S N et
[ 1 0] a n d Git h u b [ 2 0]. T h es e cir c uits i n cl u d e diff er e nti al a m-
pli fi er, i n v ert er, O P A M P, a n d b a n d p ass filt er, t h us pr o vi di n g a
c o m pr e h e nsi v e d at as et f or e v al u ati n g b ot h s y nt a cti c al b u g a n d
Tr oj a n d et e cti o n c a p a biliti es of t h e L L M. We h a v e c o m pil e d
a t ot al of 1 8 s y nt a cti c al b u gs fr o m [ 2 1]. We c h o os e v ar yi n g
c o m pl e xit y of b u gs t o t est t h e eff e cti v e n ess of L L M i n
i d e ntif yi n g b u g-i ns ert e d S PI C E n etlists. T h e b u g c o m pl e xit y is
cl assi fi e d as: e as y, m e di u m, a n d dif fi c ult. T h e b u g b e n c h m ar k
us e d f or L L M e v al u ati o n is s h o w n i n Ta bl e II. T h e b e n c h m ar k
i n cl u d es 4 e as y, 6 m e di u m, a n d 8 dif fi c ult s y nt a cti c al b u gs t h at
c a n b e pr es e nt i n a S PI C E n etlist.

F or t h e Tr oj a n- d et e cti o n e x p eri m e nts, w e e v al u at e t h e w ell-
k n o w n a n al o g Tr oj a n e x pl or e d i n r e c e nt lit er at ur e - A 2 [ 4].
T his t y p e of Tr oj a n o c c u pi es s m all f o ot pri nt a n d h e n c e, c a n b e
e asil y e m b e d d e d i n t h e n etlist st a g e b y a n u ntr ust e d f o u n dr y.
We e m b e d A 2 i n t h e S PI C E n etlist of a n a n al o g b e n c h m ar k
cir c uit t o g e n er at e a Tr oj a n-i ns ert e d n etlist. T h e Tr oj a n is
c o nsi d er e d t o b e i nt er n all y tri g g er e d b y a n i nt er m e di at e n o d e
of t h e a n al o g d esi g n, t h us e m ul ati n g a r e alisti c att a c k s c e n ari o
s h o w n i n [ 2 2]. F or o ur e x p eri m e nts, w e us e t h e G P T- 3. 5-t ur b o
A PI. T h e e x p eri m e nts ar e c arri e d o ut o n a n N VI DI A A 1 0 0
G P U. Ta bl e III lists t h e i nf or m ati o n a v ail a bl e t o t h e L L M f or
p erf or mi n g b u g a n d Tr oj a n d et e cti o n t as ks.

B. E v al u ati o n M etri cs

We us e t h e f oll o wi n g m etri cs t o e v al u at e t h e eff e cti v e n ess
of t h e L L M i n s y nt a cti c al b u g a n d Tr oj a n d et e cti o n.
• B u g c o v er a g e (i n %): T his m etri c r e pr es e nts t h e p er c e nt a g e

T A B L E II: List of s y nt a cti c al b u gs wit h v ar yi n g c o m pl e xit y
f or e v al u ati n g L L M p erf or m a n c e.

D es cri pti o n of B u g E x a m pl e C o m pl e xit y
Missi n g n o d e of tr a nsist or M 1 2 3 0 P M O S E
Missi n g . E N D st at e m e nt N etlist wit h o ut t er mi n ati n g . E N D E

Missi n g tr a nsist or m o d el n a m e M 2 0 2 3 0 0 ( m o d el u n d e fi n e d) E
Fl o ati n g n o d e i n E

E xtr a n o d e i n tr a nsist or d e fi niti o n M 2 0 2 3 2 0 4 P M O S M
I n c orr e ct r esist or v al u e f or m at R 1 i n o ut 1 K (s h o ul d b e 1 k) M
I n c orr e ct s u b cir c uit d e fi niti o n . S U B C K T a b (i nst a n c e n a m e u n d e fi n e d) M

Missi n g c a p a cit or v al u e C 1 2 i n o ut M
I n c orr e ct us a g e of tr a nsi e nt a n al ysis .tr 1 0 0 p (si m ul ati o n d ur ati o n u n d e fi n e d) M

Missi n g v olt a g e v al u e V B 5 0 M
S p e ci al c h ar a ct ers i n n o d e n a m es M ! 2 3 5 0 0 N M O S D

I n c orr e ct . P RI N T st at e m e nt . P RI N T T R A N i n (s h o ul d b e V(i n) ) D
I n c orr e ct c urr e nt s o ur c e d e fi niti o n I b 1 0 1 M D

I n c orr e ct tr a nsist or n a m e M 1 2 3 0 0 N M O S C D
Missi n g . E N D i n s u b cir c uit S u b cir c uit wit h o ut . E N D S D

I n c orr e ct p ar a m et er d e fi niti o n . P A R A M R 1 = D
I n c orr e ct . O P TI O N S d e fi niti o n . O P TI O N P O S T (s h o ul d b e . O P TI O N S) D

Missi n g v al u e i n . D C . D C vi n 0. 1 5 ( missi n g i n cr e m e nt v al u e) D

T h e s y nt a cti c al b u gs i n t h e S PI C E e x a m pl es ar e i n di c at e d i n b ol d . Diff er e nt b u g c o m pl e xiti es
ar e i n di c at e d b y e as y ( E), m e di u m ( M), a n d dif fi c ult ( D).

T A B L E III: I nf or m ati o n pr o vi d e d t o t h e L L M f or s y nt a cti c al
b u g a n d Tr oj a n d et e cti o n t as ks.

Tas k I nf or m ati o n pr o vi d e d
B u g D et e cti o n S PI C E n etlist + s y nt a x r ul es

Tr oj a n D et e cti o n S PI C E n etlist + c orr es p o n di n g si m ul ati o n l o g fil es
( c urr e nt a n d v olt a g e) + cir c uit s p e ci fi c ati o n

of s y nt a cti c al b u gs d et e ct e d b y t h e L L M o ut of t h e t ot al
n u m b er of b u gs e m b e d d e d wit hi n a S PI C E n etlist.

• B u g r es ol v e d (i n %): It r e pr es e nts t h e p er c e nt a g e of d et e ct e d
s y nt a cti c al b u gs t h at ar e c orr e ctl y fi x e d b y L L M.

• Tr oj a n i d e nti fi e d: It i n di c at es w h et h er t h e L L M h as c orr e ctl y
d et e ct e d at l e ast o n e Tr oj a n c o m p o n e nt i n t h e n etlist.

• Tr oj a n c o v er a g e (i n %): T his m etri c c al c ul at es t h e r ati o of
t h e n u m b er of m ali ci o us c o m p o n e nts (tr a nsist or, r esist or, or
c a p a cit or) e m b e d d e d i n t h e S PI C E n etlist t h at ar e c orr e ctl y
i d e nti fi e d b y t h e L L M a n d t h e t ot al n u m b er of Tr oj a n-
i nj e ct e d c o m p o n e nts i n t h e n etlist.

• Pr e cisi o n (i n %): It i n di c at es t h e p er c e nt a g e of c orr e ctl y
pr e di ct e d Tr oj a n-i m p a ct e d n o d es o ut of all t h e pr e di ct e d
i m p a ct e d n o d es. It is d e n ot e d b y P r e ci si o n = T P

T P + F P ,
w h er e T P a n d F P i n di c at e t h e tr u e p ositi v e a n d f als e
p ositi v e c o u nts, r es p e cti v el y.

• R e c all ( %): It is i n di c at e d b y t h e p er c e nt a g e of c orr e ctl y
pr e di ct e d Tr oj a n-i m p a ct e d n o d es o ut of t h e a ct u al n u m b er of
Tr oj a n-i m p a ct e d n o d es. It is d e n ot e d b y: R e c all = T P

T P + F N ,
w h er e T P a n d F N i n di c at e t h e tr u e p ositi v e a n d f als e
n e g ati v e c o u nts, r es p e cti v el y.

C. Perf or m a n c e E v al u ati o n of G P T M o d el

1) S y nt a cti c al B u g D et e cti o n

T h e b u g d et e cti o n r es ults ar e s h o w n i n Ta bl e I V. We o bs er v e
t h at G P T- 3. 5 d e m o nstr at es hi g h er a c c ur a c y a n d br o a d er b u g
c o v er a g e a cr oss all e v al u at e d S PI C E n etlists. A d diti o n all y, t h e
pr o p os e d i nstr u cti o n-f oll o wi n g a p pr o a c h r es ults i n f e w er f als e
p ositi v es f or t h e e v al u at e d b u gs c o m p ar e d t o t h e s c e n ari o w h e n
i nstr u cti o ns w er e n ot e x pli citl y pr o vi d e d i n t h e pr o m pt.

2) F u n cti o n al B u g ( Tr oj a n) D et e cti o n

T o t est t h e i n h er e nt c a p a bilit y of L L M t o a n al y z e str u ct ur e d
pr o m pts a n d t o f urt h er i m pr o v e its a c c ur a c y t hr o u g h w ell-
cr aft e d pr o m pts b as e d o n s u p er vis e d-l e ar ni n g r ul es a n d f e w-
s h ot e x a m pl es, w e e v al u at e t h e f oll o wi n g f o ur t est c as es:
1) F S : We e v al u at e t h e L L M b y pr o vi di n g o nl y f e w-s h ot
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TABLE IV: Performance of LLMs in identifying syntactical bugs across different circuit types.
Case Circuit Type Bugs inserted Bugs Detected (%) Bug FPR (%) Bug

Coverage (%) Without With resolved (%)Easy Medium Difficult Easy Medium Difficult Instructions Instructions
1 Common source amplifier 2 5 5 100 100 80 91.6 38.8 0 100

(Resistive load)
2 Common source amplifier 3 4 6 100 75 66.7 76.9 28.5 7.1 90

(Resistive and capacitive loads)
3 NMOS Transistor 4 5 6 100 100 83.3 93.3 16.6 0 100
4 Switched capacitor 4 4 7 100 100 71.4 86.6 23.5 5.8 100
5 Inverter 4 4 7 100 75 71.4 80 14.2 0 83.3
6 Differential amplifier 3 6 8 100 100 87.5 94.1 15.7 0 81.2
7 Current mirror 4 6 8 100 83.33 75 83.3 21 6.25 86.6

(Both NMOS and PMOS)
8 Current mirror 3 5 7 100 100 71.4 86.6 18.75 0 76.9

(Differential pair)
9 OPAMP 4 5 7 100 100 100 100 31.2 6.25 87.5
10 Bandgap filter 3 6 5 100 100 80 92.8 31.5 13.3 92.3
Using a refined set of SPICE syntax rules results in a significantly lower FPR compared to the scenario when a basic set of syntax rules is prompted to the LLM.

TABLE V: Performance of LLMs in detecting analog Trojans and locating Trojan-impacted nodes for several analog designs.
Case Netlist Trojan identified? Trojan Coverage (%) Precision (%) Recall (%)

FS R RFS R∗
FS FS R RFS R∗

FS FS R RFS R∗
FS FS R RFS R∗

FS
1 642 troj 1 ✓ ✓ ✓ ✓ 57.14 14.28 100 100 67 67 100 100 67 67 100 100
2 642 troj 6 ✓ ✗ ✓ ✓ 28.57 0 100 100 43 0 100 100 100 0 100 100
3 642 troj 7 ✗ ✓ ✓ ✓ 0 14.28 100 100 0 25 67 67 0 33.3 67 100
4 642 troj 20 ✓ ✓ ✓ ✓ 71.5 57.14 100 85.7 43 12.5 100 100 67 33.3 100 67
5 642 troj 34 ✓ ✓ ✓ ✓ 42.8 42.8 100 100 100 12.5 100 67 100 33.3 100 100
6 642 troj 36 ✓ ✗ ✓ ✓ 57.14 0 100 100 43 67 100 67 33.3 67 100 100
7 642 troj 38 ✓ ✓ ✓ ✓ 57.14 14.28 100 100 50 67 67 75 67 67 67 100
8 642 troj 39 ✗ ✓ ✓ ✓ 0 28.57 85.7 85.7 0 33.3 100 100 0 33.3 100 100
9 755 troj 1 ✓ ✗ ✓ ✓ 14.28 0 100 100 50 0 100 67 33.3 0 100 100
10 755 troj 2 ✓ ✗ ✓ ✓ 14.28 0 100 85.7 43 0 75 75 67 0 100 100
11 755 troj 3 ✓ ✓ ✓ ✓ 42.8 42.8 100 85.7 43 12.5 100 67 67 33.3 67 67
12 755 troj 5 ✗ ✓ ✓ ✓ 0 42.8 71.4 100 25 12.5 100 100 67 33.3 100 67
13 755 troj 6 ✗ ✓ ✓ ✓ 0 42.8 100 100 0 40 100 75 0 67 100 100
14 755 troj 9 ✓ ✓ ✓ ✓ 57.14 57.14 100 100 50 33.3 100 100 67 33.3 100 67
15 755 troj 10 ✓ ✓ ✓ ✓ 71.4 42.8 100 100 100 25 100 75 100 33.3 100 100
16 755 troj 11 ✓ ✓ ✓ ✓ 57.14 42.8 85.7 100 71.4 0 100 100 33.3 0 100 100
17 755 troj 12 ✓ ✓ ✓ ✓ 28.57 14.28 85.7 100 50 33.3 75 75 67 33.3 67 100
18 755 troj 16 ✓ ✓ ✓ ✓ 57.14 14.28 71.4 85.7 67 0 75 100 67 0 100 100
19 755 troj 19 ✓ ✗ ✓ ✓ 28.57 0 100 100 25 0 100 100 33.3 0 100 100
20 755 troj 23 ✓ ✓ ✓ ✓ 28.57 28.57 71.4 71.4 50 33.3 75 100 67 33.3 100 100
21 755 troj 24 ✗ ✗ ✓ ✓ 0 0 100 100 0 0 75 75 0 0 100 100
22 738 troj 3 ✓ ✓ ✓ ✓ 14.28 14.28 85.7 100 67 40 100 100 67 67 67 100
23 738 troj 4 ✓ ✓ ✓ ✓ 42.8 28.57 100 85.7 67 33.3 75 100 67 33.3 67 67
24 738 troj 7 ✓ ✗ ✓ ✓ 57.14 0 100 100 25 0 100 67 33.3 0 100 67
25 738 troj 12 ✓ ✗ ✓ ✓ 57.14 0 71.4 100 67 20 100 100 67 33.3 100 100
26 738 troj 13 ✓ ✗ ✓ ✓ 57.14 0 85.7 71.4 40 0 75 75 67 0 100 100
27 738 troj 16 ✓ ✓ ✓ ✓ 28.57 28.57 85.7 71.4 40 40 100 67 67 33.3 67 100
28 738 troj 17 ✓ ✗ ✓ ✓ 71.4 0 100 85.7 0 0 75 100 0 0 100 100
29 738 troj 23 ✓ ✓ ✓ ✓ 28.57 28.57 100 100 25 33.3 100 100 33.3 33.3 100 100
30 738 troj 26 ✓ ✓ ✓ ✓ 14.28 28.57 100 85.7 40 33.3 75 100 67 33.3 100 100

Average 36.18 20.93 93.32 93.32 43.04 22.47 90.3 86.46 52.39 27.81 92.3 93.4
The proposed framework detects Trojan-impacted nodes as well as the Trojan circuit with 100% accuracy and zero false positives for the highlighted cases. Across all
evaluated scenarios, applying supervised-learning rules combined with few-shot learning yields higher average Trojan coverage, precision, and recall (marked in bold).

examples.
2) R: We provide supervised-learning rules without any few-

shot examples.
3) RFS : We provide supervised-learning rules followed by

few-shot examples such that LLM can correlate the exam-
ples with the established rules, and use these examples to
determine the Trojan-impacted nodes for a new test netlist
based on these rules.

4) R∗
FS : We incorporate Rule #2 instead of Rule #1 (see

Supervised Learning Rule 2), keeping the other rules
unchanged, followed by few-shot examples.

To increase the complexity for LLM evaluation, we scram-
bled the Trojan components and nodes within the netlist as
well as changed the parameters, such as the width-to-length
(W/L) ratios of transistors and the capacitor values. The
Trojan-inserted netlists used for the experiments are labeled as
‘netlist troj n’, where netlist is the specific circuit chosen

from the AMSNet repository [10] and n indicates the netlist
node where the Trojan payload is activated. Evaluation results
are shown in Table V. We observe that incorporating the
supervised-learning rules lead to a higher precision as well
as overall accuracy in identifying the Trojan-impacted nodes.
Additionally, the combination of few-shot examples with these
rules enables the LLM to successfully identify the Trojan
circuit in the benchmark netlists. The proposed method shows
superior Trojan coverage and accuracy of Trojan-impacted
nodes compared to scenarios where only few-shot examples
are used without providing the supervised-learning rules.

The maximum number of tokens fitting within the context
window for the GPT-3.5-turbo model is 16385. Average LLM
inferencing time is 9.2 seconds across all cases of Trojan
identification, thereby confirming the runtime efficiency of
SPICED as it streamlines the process of analog design analysis
and bug (both syntactical and functional) localization.
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VI. CONCLUSION

We have explored both syntactical and functional bug
detection capabilities of the LLM. The proposed instruction-
following approach significantly reduces the number of false
positives while achieving high bug coverage. Additionally,
by curating prompts with few-shot examples and CoT, LLM
efficiently localizes the Trojan-impacted nodes for a range of
Trojan-insertion scenarios while incurring zero area and power
overheads. By incorporating the supervised learning rules in
the prompt, we achieve an average Trojan coverage of 93.32%
and an average true positive rate of 93.4% in identifying
Trojan-impacted nodes for the evaluated analog benchmark
circuits. This opens up new directions for securing analog
designs from threats arising anywhere between design and
fabrication stages of the chip.
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