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ABSTRACT
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerabil-
ity assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive 
capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying 
signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity. Here, we address the 
question of local adaptation to temperature and the genetic basis of thermal tolerance in two stream frogs (Ascaphus truei and 
A. montanus). Building on previous physiological and temperature data, we used whole-genome resequencing of tadpoles from 
four sites spanning temperature gradients in each species to test for signatures of local adaptation. To support these analyses, 
we developed the first annotated reference genome for A. truei. We then expanded the geographic scope of our analysis using 
targeted capture at an additional 11 sites per species. We found evidence of local adaptation to temperature based on physiolog-
ical and genomic data in A. montanus and genomic data in A. truei, suggesting similar levels of sensitivity (i.e., susceptibility) 
among populations regardless of stream temperature. However, invariant thermal tolerances across temperatures in A. truei 
suggest that populations occupying warmer streams may be most sensitive. We identified high levels of evolutionary potential 
in both species based on genomic and physiological data. While further integration of these data is needed to comprehensively 
evaluate spatial variation in vulnerability, this work illustrates the value of genomics in identifying spatial patterns of climate 
change vulnerability.
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1   |   Introduction

One of the greatest conservation challenges of the 21st cen-
tury is predicting the effects of climate change on biodiversity 
to inform effective conservation actions (Buckley et al. 2023; 
Urban et al. 2024). Many species have already been negatively 
impacted by increasing temperatures and associated distur-
bances such as heat waves, and these impacts are projected 
to worsen (Pigot et al. 2023; Wiens and Zelinka 2024). Within 
species, genetic and phenotypic diversity among populations 
and the distribution of populations across heterogeneous en-
vironments can foster the maintenance of intraspecific di-
versity that can improve the resiliency of populations in the 
face of changing climatic conditions (Forester et  al.  2022). 
Identifying populations that are more or less vulnerable will 
be critical for focusing and planning effective conservation ef-
forts within target species. These species-specific efforts can 
then be aggregated to build evidence for more widely appli-
cable principles to identify vulnerable populations in order to 
improve conservation practice more broadly.

A species' vulnerability to climate change and other anthropo-
genic changes is determined by its exposure and sensitivity to 
changing conditions and is mitigated by its adaptive capacity 
in response (Foden et  al.  2019; Thurman et  al.  2020; Figure  1). 
While exposure quantifies the magnitude of change (i.e., de-
parture from climatic parameters that the species has evolved 
with), sensitivity reflects how closely tied performance, fecun-
dity, survival and other correlates of fitness are to those changes 
(Dawson et al. 2011). Given population-level exposure and sensi-
tivity, adaptive capacity—the ability to cope with, accommodate 

or evolve—fundamentally determines if and how populations and 
species will persist or decline in response to change. Adaptive ca-
pacity is usually summarised by three processes: dispersal and col-
onisation abilities, phenotypic plasticity and evolutionary potential 
(Foden et al. 2019). Here, we define evolutionary potential as the 
capacity to evolve genetically based changes in traits that increase 
population-level fitness in response to novel or changing environ-
mental conditions (Forester et al. 2022). This definition is analo-
gous to the term ‘adaptive potential’ as used in the Convention on 
Biological Diversity's Global Biodiversity Framework (e.g., Hoban 
et al. 2023). While this climate change vulnerability framework 
is most commonly discussed and applied at the species level, 
intraspecific variation in exposure, sensitivity and adaptive ca-
pacity can play a critical role in determining overall vulnerabil-
ity (e.g., Forester et al. 2023; Gervais et al. 2021; Herrando-Pérez 
et  al.  2019). However, population-level data informing vulnera-
bility can be challenging to collect, especially in at-risk species. 
Genomic data are becoming an increasingly useful tool for charac-
terising some aspects of vulnerability, including dispersal ability, 
local adaptation to climatic conditions and, when physiological 
data are available, local adaptation of sensitivity traits such as 
physiological thresholds (Bay et al. 2017; Bernatchez et al. 2023; 
Höglund, Laurila, and Rödin-Mörch 2021; Waldvogel et al. 2020).

Understanding whether populations are locally adapted to cli-
matic conditions is a key aspect of addressing spatial variation in 
sensitivity and adaptive capacity in response to climate change 
(e.g., Thomas et  al.  2022). The dominant paradigm in ecolog-
ical studies has been to assume that traits related to adaptive 
capacity, such as thermal tolerance or dispersal ability, can be 
characterised for a given species by sampling a single or few 
populations across a species' range (Beever et al. 2017; Freeman 
and Class Freeman  2014; Hoffmann and Sgro  2011; Isaak 
et al. 2016; Isaak, Wenger, and Young 2017; Sunday, Bates, and 
Dulvy  2012). For thermal tolerance, this leads to a prediction 
that the most sensitive (i.e., susceptible, Figure  1) populations 
are those whose critical thermal maximum temperature (i.e., 
CTmax, the maximum body temperature that permits perfor-
mance; Angilletta 2009) is closest to current summer tempera-
tures. These populations will have a reduced warming tolerance 
(i.e., the difference between CTmax and relevant metrics of 
summer temperature; Deutsch et al. 2008), meaning that they 
are susceptible to even small increases in temperatures. Under 
this perspective, populations at warmer, lower elevations would 
be predicted to be more sensitive than populations occupying 
cooler high-elevation environments (Figure 2a). However, from 
an evolutionary perspective, populations occupying divergent 
environments should be locally adapted to their historical tem-
perature regime (Kawecki and Ebert  2004; Sandoval-Castillo 
et al. 2020). This perspective recognises population variation in 
traits affecting adaptive capacity, which leads to different pre-
dictions about spatial patterns of sensitivity to climate change 
(Valladares et al. 2014). For example, if organisms are adapted to 
the historical temperature regime of their local elevation, then 
CTmax is predicted to decrease with increasing elevation in par-
allel with maximum temperatures, such that warming tolerance 
may be similar and all populations are equally sensitive, or sus-
ceptible, to warming temperatures (Figure 2b).

Local adaptation of sensitivity traits can also influence spa-
tial patterns of adaptive capacity and overall vulnerability. For 

FIGURE 1    |    Climate change vulnerability framework. Exposure 
quantifies the magnitude of change from climatic parameters the spe-
cies or population has evolved with, while sensitivity reflects how close-
ly tied fitness is to climatic conditions. Together, these factors determine 
the potential impact of changing climate on the species or population. 
Adaptive capacity summarises the ability of the species or population to 
respond to changing climate through plasticity (e.g., acclimation), evo-
lutionary change or movement to track shifting conditions. Adaptive 
capacity can mitigate potential impacts of climate change, reducing a 
species' or population's overall vulnerability to climate change.
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example, adaptive capacity may be reduced in populations occu-
pying lower elevations if they have reached their upper thermal 
limit due to evolutionary constraints (Hoffmann, Chown, and 
Clusella-Trullas  2013). However, high dispersal capacity may 
allow these warm-tolerant alleles found in low-elevation popu-
lations to spread into higher populations via gene flow, increas-
ing CTmax and warming tolerance at higher elevations and 
reducing their vulnerability, while low-elevation populations 
remain vulnerable (Figure  2c). Alternatively, evolutionary po-
tential may be reduced in populations at high compared to low 
elevation if these populations have low additive genetic variation 
due to small effective population size and isolation or reduced 
acclimation ability (Brattstrom  1968; Funk et  al.  2005; Polato 
et  al.  2017; Figure  2d). If so, then high-elevation populations 
may be more vulnerable to increasing temperature than low-
elevation populations, especially where higher elevations are 
warming more rapidly than lower elevations (Pepin et al. 2015).

While many other scenarios could be envisioned, the critical 
point is that populations may vary greatly in their exposure, 
sensitivity and adaptive capacity, and hence in their vulnera-
bility to warming, but few studies have measured intraspecific 
variation in physiological traits that predict sensitivity, and even 
fewer have explored their genetic basis coupled with parameters 
relevant to estimating adaptive capacity. This is due in large part 
to the difficulty of accumulating these data from populations 

distributed across species' ranges. However, the integration of 
physiological and genomic data provides a powerful approach 
for testing for local adaptation to temperature variation (Huey 
et al. 2012). In addition, genomic data can provide useful prox-
ies for dispersal ability and evolutionary potential (e.g., Rödin-
Mörch et al. 2021), informing adaptive capacity in response to 
changing climate (Forester et al. 2022).

In this study, we address the question of whether or not popula-
tions of two species of tailed frogs are locally adapted to tempera-
ture in order to better understand spatial patterns of sensitivity and 
adaptive capacity in response to climate change. Tailed frogs are 
stream-dwelling species endemic to the mountains of the western 
United States and Canada and are represented by only two species: 
the coastal tailed frog (Ascaphus truei) and the Rocky Mountain 
tailed frog (A. montanus). These species are listed under Canada's 
Species At Risk Act as Special Concern (A. truei) and Threatened 
(A. montanus). They are also listed as California Priority 2 Species 
of Special Concern (A. truei), and British Columbia Imperilled and 
Washington State Candidate species (A. montanus). Tailed frogs 
occupy cold, fast-flowing streams and the tadpoles have relatively 
low thermal maxima among amphibians (Bennett et  al.  2018), 
making them sensitive to increasing temperatures (Bury  2008; 
Cicchino, Shah, Forester, Dunham, et al. 2023). These species also 
inhabit ecoregions with different thermal regimes, with A. truei oc-
cupying the more temperate, coastal environments of the Klamath 
and Cascade Mountains and the Coast Ranges (Figure 3), while 
A. montanus occupies the continental landscapes of the northern 
Rocky Mountains of the United States and Canada (Figure 4). Our 
previous work has shown a significant amount of population-level 
variation in stream temperatures and CTmax in both species, with 
a positive relationship between maximum stream temperatures 
and CTmax in A. montanus (Cicchino, Shah, Forester, Dunham, 
et al. 2023). This stream temperature and CTmax covariation sug-
gest adaptive divergence related to thermal tolerance, but common 
garden or genomic data are required to test this hypothesis, as vari-
ation in CTmax could be due to phenotypic plasticity. We selected 
CTmax because it is an ecologically meaningful index of thermal 
tolerance in tailed frogs and is closely related to tadpole thermal 
stress and mortality at temperatures predicted to be common in 
the near future for these populations (Cicchino, Ghalambor, and 
Funk 2023). Here, we build off these physiological data by apply-
ing whole-genome resequencing to individuals from four sites 
spanning temperature gradients and watersheds in each species. 
In combination with stream temperature data and individual-
level estimates of CTmax, we test for a genetic signature related 
to CTmax variation using two genome-wide association (GWAS) 
methods and test for evidence of divergent selection related to 
temperature using two genotype–environment association (GEA) 
methods. To support these analyses, we develop the first anno-
tated reference genome for the anuran family Ascaphidae (for A. 
truei), improving the taxonomic breadth of available reference ge-
nomes for anurans. Finally, we expanded the geographic scope of 
inferences of local adaptation using targeted capture of candidate 
adaptive variants from an additional 11 sites per species, providing 
additional evaluation of adaptive signatures. We integrate these 
data with our previous work in Ascaphus to build a more compre-
hensive understanding of sensitivity and adaptive capacity in these 
two species, providing insight into the complexity of predicting 
spatial patterns of climate change vulnerability that is applicable 
beyond our study system.

FIGURE 2    |    Hypotheses of differential sensitivity (i.e., susceptibil-
ity to temperature change; a and b) and overall vulnerability (i.e., in-
corporating sensitivity, adaptive capacity and exposure; c and d) as a 
function of elevation (x-axes), temperature (y-axes), critical thermal 
limits (CTmax) and the potential for evolutionary responses and dis-
persal, both of which are components of adaptive capacity. Solid lines 
show current (blue) and future (orange) maximum temperatures, while 
dashed lines show current (blue) and future (orange) CTmax. Red lines 
and caution signs signify sensitive (a and b) and vulnerable (c and d) 
populations.
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2   |   Methods

2.1   |   Field Sampling

We sampled 15 stream reaches (~100 m) across three watershed 
basins in the summers of 2017 and 2018 in each of Oregon and 
Montana (Figures  3 and 4; Table  S1). We captured tadpoles 
by shifting and brushing benthic substrate while holding an 
aquarium net downstream. We held tadpoles in 2-L insulated 
containers with stream water in the field with frequent water 
changes to ensure they stayed cold. All tadpole collection was 

performed under the following permits: Oregon Department of 
Fish and Wildlife permit numbers 114-18 and 110–17; Montana 
Department of Fish, Wildlife and Parks permit number 2017-
060-W; and Colorado State University Institutional Animal Care 
and Use Committee protocol 16-6667AA.

2.2   |   Temperature Data

We used a combination of August mean temperature data 
from the NorWeST summer stream temperature model 

FIGURE 3    |    Sampling locations for Ascaphus truei in Oregon across three watersheds: Clackamas in the north (green inset), McKenzie in the 
centre (main map) and Umpqua in the south (pink inset). Site names include elevation and are colour coded by mean August stream temperature. 
Triangles are four whole-genome resequencing sites (WGR, 40 individuals total) and circles are 11 capture sites (100 individuals total). Basemap: 
ESRI World Hillshade.
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(Isaak et  al.  2017) and data collected directly from sampled 
stream reaches. In these streams, August is the month when 
annual maximum temperatures are most likely to be realised, 
as well as the month for which most field data are available 
for fitting regional models of stream temperature (Dunham 
et al. 2005). For in-stream data collection, we installed two tem-
perature loggers (Onset Hobo Pendants UA-001-064) at most 
sites (14 of 15 sites per species) at the upstream and downstream 
ends of the stream reach using rebar pounded into the substrate 
(Table  S1). We protected temperature loggers from debris and 

sunlight using a PVC tube and drilled holes to allow water flow. 
Water temperature was recorded every 4 h. We plotted the time-
series temperature data to detect obvious errors and screened the 
data using standard deviation time plots (Dunham et al. 2005). 
We evaluated in-stream temperature data availability for August 
2017 and 2018 and averaged upstream and downstream loggers 
when available. We compared in-stream August mean tempera-
ture data with NorWeST data, which represents August mean 
temperature averaged from 1993 to 2011. In cases where in-
stream August mean temperatures were within 1°C of NorWeST 

FIGURE 4    |    Sampling locations for Ascaphus montanus in Montana across three watersheds: Lower Clark Fork in the north (green inset), Middle 
Clark Fork in the centre (main map) and Bitterroot in the south (pink inset). Site names include elevation and are colour coded by mean August 
stream temperature. Triangles are four whole-genome resequencing sites (WGR, 40 individuals total) and circles are 11 capture sites (108 individuals 
total). Basemap: ESRI World Hillshade.
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estimates for that stream reach, we used the NorWeST value, 
otherwise, we used the in-stream data. The 30-year averages 
provided in the NorWeST data were preferred in this study as 
they represent long-term environmental conditions, and there-
fore longer-term selection pressures, on Ascaphus populations. 
We also evaluated NorWeST projections of stream temperature 
at all sites for 2080 (average of 2070–2099), which are derived 
from the Intergovernmental Panel on Climate Change's Special 
Report on Emissions Scenarios (SRES) A1B Scenario (represent-
ing a mid- to high-emissions scenario; Isaak et al. 2017). Unless 
otherwise noted, all statistical analyses for temperature and the 
following data used R version 4.0.3 (R Core Team 2021).

2.3   |   Critical Thermal Maximum and Length Data

We collected critical thermal maximum (CTmax) data at all 
sites using temperature ramping experiments as described in 
Cicchino, Shah, Forester, Dunham, et al. (2023). Briefly, tad-
poles were held at 8°C for 3 days in oxygenated and recircu-
lated natal stream water without food. To measure CTmax, we 
transferred tadpoles to mesh containers in the experimental 
tank containing natal stream water at 8°C. We held tadpoles 
for 3 min to acclimate to the chamber conditions before ramp-
ing the temperature at a rate of 0.3°C/min. We defined CTmax 
as the temperature at which tadpoles no longer responded to a 
tactile stimulus. Upon reaching CTmax, we returned tadpoles 
to an 8°C holding container and allowed them to recover for up 
to an hour. Following experiments, tadpoles were euthanised 
using a 20% benzocaine solution. We then photographed each 
tadpole laterally with a ruler before taking a small tissue sam-
ple from the tail, preserved in 95% ethanol. We used ImageJ 
(Rasband 2018) to measure the length of each tadpole (tip of 
snout to tip of tail) from the lateral photographs; each tadpole 
was measured twice and the values were averaged. For each 
species, we used linear mixed-effects models to test relation-
ships between individual CTmax estimates and August mean 
temperatures, while controlling for tadpole length and sam-
pling site. Individual data are compiled in Table S2.

2.4   |   Reference Genome and Annotation

We developed a reference genome for A. truei using high-
molecular-weight DNA extracted as described in Session 
et al. (2016) from whole blood from a single male frog (Kermit) 
collected by Cherie Mosher in British Columbia, Canada (UTM 
Zone 9T, 558268 E, 6048350 N). A reference genome sequence 
was then assembled by integrating linked short reads (108× 
nominal sequencing coverage in 150 bp paired-end reads from 
a 10x Genomics Chromium Genome library, sequenced with 
Illumina HiSeq X) with single-molecule, real-time continuous 
long reads (SMRT CLR, 15× coverage in reads of mean length 
5427 bp sequenced with Pacific Biosciences Sequel). Long-range 
linkages were obtained through high-throughput chromatin 
conformation capture (Hi-C) paired ends (42× sequence cover-
age in 150 bp paired ends from Dovetail Genomics Hi-C library 
prepared from liver, sequenced with Illumina HiSeq4000 and 
NextSeq). Data are summarised in Table S3

We assembled the reference genome hierarchically follow-
ing a previously described strategy used for the Túngara frog 

Engystomops pustulosus (Bredeson et  al.  2024). First, linked 
reads were assembled with Supernova (v. 2.0.1; Weisenfeld 
et  al.  2017). Next, the Supernova assembly was scaffolded 
with PacBio CLR data using DBG2OLC (v. Jun 11, 2015; Ye 
et al. 2016), and the resulting assembly was error corrected two 
times with BLASR (commit 4323a52; Chaisson and Tesler 2012) 
and PBDAGCon (pitchfork commit 1a2f1e79; Chin et al. 2013) 
using the map4cns pipeline (v. 0.2.0-20-gdd89f52; https://​bitbu​
cket.​org/​rokhs​ar-​lab/​map4cns). Error-corrected scaffolds were 
organised into chromosomes by aligning the Hi-C reads to the 
assembly with Juicer (v. 1.5.4-71-gd3ee11b; Durand, Robinson, 
et al. 2016), with initial scaffolds longer than 10 kb ordered and 
oriented by 3D-DNA (commit 745779b; Dudchenko et al. 2017) 
followed by manually reordering, reorienting and linking using 
Juicebox (v. 1.9.0; Durand, Shamim, et  al.  2016). Gaps were 
closed by aligning PacBio reads to the Hi-C-based assembly 
using BWA (v. 0.7.17) (Li and Durbin 2009) and filling spanned 
gaps with PBJelly (PBSuite v15.8.24) (English et al. 2012). After 
a second round of manual review of Hi-C linkages with Juicer 
and Juicebox, the assembly was then error corrected with the 
custom script LoReM (v. 1.0; https://​github.​com/​abmudd/​
Assembly), which flags and breaks regions with potential mis-
assemblies based on low spanning coverage and high number 
of read terminals (starts and ends) from linked read and long 
read data aligned with BWA. Following mis-assembly detection, 
the Hi-C data were again aligned to the assembly with Juicer 
and the chromosome structure was ordered and oriented using 
Juicebox. Finally, the assembled sequence was polished with 
two rounds of error correction with linked read data. Linked 
reads were adapter trimmed with trim_10X.py (v. 1.0; https://​
github.​com/​abmudd/​Assembly) and aligned to the assembly 
with BWA. Variants called by FreeBayes (v. 1.1.0-54; Garrison 
and Marth  2012) with a read depth within 2 standard devia-
tions of the Gaussian fit were corrected using the script ILEC 
in the map4cns pipeline (v. 0.2.0-20-gdd89f52; https://​bitbu​cket.​
org/​rokhs​ar-​lab/​map4cns). Remaining gaps were resized with 
the PacBio data, and closure was attempted with the adapter-
trimmed 10x genomics data using Platanus (v. 1.2.1; Kajitani 
et al. 2014).

We extracted RNA from tissue samples from four individuals 
(Table  S4): the primary sequencing of A. truei male (Kermit); 
a tadpole (Tadpole2) collected by Cherie Mosher in British 
Columbia, Canada (UTM Zone 9T, 558388 E, 6048031N); a sec-
ond A. truei male (Hum2) collected by Justin M. Garwood, Ryan 
Bourque, Matt Kluber, William Devenport and Kristina Zabierek 
in California, USA (UTM Zone 10T, 422811 E, 4527864 N); and 
a female A. montanus (MTF2) collected by Richard Honeycutt 
and Blake Hossack in Montana, USA (UTM Zone 12T, 272115 
E, 5210575 N). All samples were washed twice with PBS, ho-
mogenised in TRIzol reagent and centrifuged, followed by flash 
freezing of the supernatant. RNA was isolated using the TRIzol 
Reagent User Guide (Pub. No. MAN0001271 Rev. A.0) protocol.

To annotate protein-coding genes and repetitive elements, we 
developed a catalogue of A. truei repetitive sequences using 
RepeatModeler (v. 1.0.11; Smit and Hubley  2015) and com-
bined it with similarly determined repeat libraries from a set 
of diverse pipanuran genomes (Bredeson et  al.  2024) as well 
as ancestral frog repeats from RepBase (v. 23.12; Bao, Kojima, 
and Kohany 2015). This composite library was mapped to the 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17651 by C
olorado State U

niversity, W
iley O

nline Library on [18/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://bitbucket.org/rokhsar-lab/map4cns
https://bitbucket.org/rokhsar-lab/map4cns
https://github.com/abmudd/Assembly
https://github.com/abmudd/Assembly
https://github.com/abmudd/Assembly
https://github.com/abmudd/Assembly
https://bitbucket.org/rokhsar-lab/map4cns
https://bitbucket.org/rokhsar-lab/map4cns


7 of 18

A. truei reference sequence with RepeatMasker (v. 4.0.7; Smit, 
Hubley, and Green 2015). We then inferred the location and exon 
structure of protein-coding genes by combining direct transcrip-
tome sequencing from diverse A. truei samples with homology 
modelling using the latest Xenopus tropicalis gene set (Bredeson 
et  al.  2024). We obtained A. truei transcriptome sequences 
from 23 diverse tissue samples of both tadpoles and adults 
(Illumina TruSeq Stranded mRNA Sample Prep LS Protocol 
(Part #15031058 Rev. E), sequenced with Illumina HiSeq 4000; 
Table  S3). We annotated exon structures using Gene Model 
Mapper (v. 1.6; Keilwagen et  al.  2016) with aligned A. truei 
mRNA sequences, mapped X. tropicalis annotations and soft-
masked repeats as input evidence. Functional annotation was 
performed using InterProScan (v. 5.34-73.0; Jones et al. 2014).

2.5   |   Whole-Genome Resequencing

We selected 80 individual tadpoles for whole-genome resequenc-
ing using the Illumina Nextera DNA Flex Library Prep kit. We 
selected four sites per species (10 individuals per site), includ-
ing a high- and low-elevation population from two of the three 
sampled watersheds for each species (Figures 3 and 4). We used 
Qiagen DNeasy Blood and Tissue Kits for DNA extraction, add-
ing 4 μL of RNase after tissue digestion. We quantified DNA 
using Qubit dsDNA assays and verified quality in a subset of 
samples using agarose gel electrophoresis. We used 500 ng of 
DNA for each library preparation, following the Nextera proto-
col (Illumina Document # 1000000025416 v07, May 2019). We 
pooled unique, dual-indexed libraries at equal quantities (60 ng) 
before sequencing on two S4 flow cells of an Illumina NovaSeq 
6000 (paired-end, 150 bp reads) with Novogene Corporation. 
Species and populations were split across libraries and sequenc-
ing lanes to control for library and lane effects.

For bioinformatics, we first used Trim Galore! (v. 0.6.4; 
Krueger 2019), a wrapper for Cutadapt (v. 2.5; Martin 2011) and 
FastQC (v. 0.11.8; Andrews  2019), to quality trim sequences 
(Phred score < 20) and remove Nextera transposase adapters 
(stringency = 6). We then reran Trim Galore! to remove over-
represented sequences, as identified by FastQC. We mapped 
retained reads to the reference genome using the Burrows–
Wheeler Aligner algorithm BWA_MEM (v. 0.7.17; Li 2013). We 
then removed PCR duplicates using Picard's MarkDuplicates (v. 
2.20.6; Broad Institute  2019). To prepare a set of known vari-
ants for base quality recalibration in GATK (v. 3.8-1; McKenna 
et al. 2010), we called variants with both GATK HaplotypeCaller 
and bcftools (v. 1.9; Li  2011) mpileup using the following set-
tings: calculating genotype likelihoods (-pairHMM) using 
logless caching (GATK); and a coefficient for downgrading map-
ping quality (-adjust-MQ) of 50 (bcftools). We filtered the output 
from each variant caller using the following filters in vcftools 
(v. 0.1.17 (Danecek et al. 2011)): retain only biallelic SNPs, min-
imum genotype equality of 20, minimum depth of 10, maxi-
mum amount of missing data of 0.75 and minor allele frequency 
threshold of 5%. We then intersected these filtered variant files 
using bedtools (v. 2.28.0; Quinlan and Hall 2010) intersect and 
used the overlapping variants for the known variants input to 
BaseRecalibrator. We applied the recalibration using PrintReads 
and then ran a final round of HaplotypeCaller on the recali-
brated BAM files.

We split the variant files by species (40 individuals per species) 
and removed invariant sites and sites with missing data in more 
than 10 of 40 individuals. We imputed missing values within 
each species using Beagle (v. 4.1; Browning and Browning 2016), 
setting model scale = 1.5 and niterations = 25 based on recom-
mendations from Pook et al. (2020). We used an effective popu-
lation size (Ne) estimate of 600 to parameterise Beagle based on 
the average of Ne point estimates (excluding infinite values, see 
Table S5) calculated for 45 A. montanus populations (microsat-
ellite data from Metzger et al. 2015). We used NeEstimator (v. 
2.01; Do et al. 2014) to calculate Ne based on the 13 microsatellite 
loci from Metzger and colleagues, using a minor allele frequency 
threshold of 0.05. We used bcftools to filter the imputed VCFs 
by removing low-quality variants (QUAL < 30), singletons and 
invariant sties and retaining only biallelic SNPs and indels. We 
subsampled the imputed, filtered data sets to ~100,000 SNPs for 
each species and evaluated heterozygote miscall rates within 
watersheds (pooling individuals, i.e., n = 20 in each watershed) 
using the whoa package version 0.0.2.999 (Anderson 2019).

2.6   |   Identification of Candidate Adaptive Variants

We identified candidate adaptive variants using two GEA 
tests: partial redundancy analysis (pRDA; Capblancq and 
Forester  2021; Forester et  al.  2018) and latent factor mixed 
models (LFMM-lasso; Frichot et  al.  2013) based on August 
mean temperature at each site, and two GWAS tests: pRDA 
and GEMMA (Zhou and Stephens  2012) based on individual 
CTmax measurements. Our sampling design was developed to 
maximise power to detect adaptive differentiation by sampling 
across the extremes of the temperature gradient within drain-
ages while accounting for potential population structure across 
drainages (Forester et al. 2018; Lotterhos and Whitlock 2015). 
For pRDA, we corrected for population structure using the first 
principal component derived from the LD-pruned genotype 
matrices (plink --indep-pairwise 50 5 0.2, v. 1.90 b6.15; Chang 
et al. 2015). We retained one principal component to control for 
population structure for both species based on the minimum 
average partial test (Shriner 2011). Similarly, we used K = 2 in 
LFMM and the centred genotype matrix in GEMMA. For the 
genotype–phenotype analyses (pRDA and GEMMA), we in-
cluded tadpole length as a covariate to control for tadpole size. 
We identified candidate adaptive markers for pRDA and LFMM 
based on loadings and z-scores (respectively) that were larger 
than 2.5 standard deviations from the mean loading/z-score. For 
GEMMA, we used an analogous p-value cutoff of p < 0.012 using 
the likelihood ratio test p-value.

We compiled all candidate adaptive variants and annotated them 
using snpEFF v. 4.3t (Cingolani et  al.  2012). For downstream 
analysis of variants identified by each GEA and GWAS method, 
we retained variants located in all identified genes and the top 
5000 modifiers for each species. We matched identified genes 
against protein names in the UniProtKB database (The UniProt 
Consortium 2021) for Xenopus tropicalis and Homo sapiens. We 
identified a subset of candidate adaptive variants for a targeted 
capture design. For each GEA and GWAS method and each spe-
cies, we selected: (1) the top 500 detections (i.e., highest loadings 
and lowest p-values, which could be genes or modifiers); (2) a small 
set of candidate genes; (3) a small set of cross-species detections; 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17651 by C
olorado State U

niversity, W
iley O

nline Library on [18/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



8 of 18 Molecular Ecology, 2025

and (4) all genes within each species that were in the top 500 de-
tections by both GEA or GWAS methods. For candidate genes, 
we identified protein names that contained the following terms: 
heat, hsp, hsf, HMGB1 or cold (i.e., related to thermal tolerance, 
Hoffmann, Sørensen, and Loeschcke  2003; Narum et  al.  2013; 
Somero  2005); hypoxia, egln, HIF, NFAT, calcineurin or GSK3 
(i.e., related to hypoxia and anoxia, Al-Attar and Storey  2018; 
Yang, Qi, and Fu 2016); mhc or immune (i.e., related to immune 
response); and stress (i.e., related to stress response). All identi-
fied candidate variants were evaluated for targeted capture design 
by, Ann Arbor, MI). We used RDA to evaluate the contributions 
of these identified variants to explaining variation in site-specific 
stream temperature and individual CTmax.

2.7   |   Genetic Diversity, Population Structure 
and Effective Population Sizes

We evaluated genetic diversity and population structure in each 
species using putatively neutral variants. These neutral data sets 
were generated by removing repeat regions, gene regions and 
candidate adaptive variants. We calculated observed and ex-
pected heterozygosity, FIS, and mean pairwise FST using vcftools. 
Before calculating FIS, we pruned for linkage disequilibrium with 
bcftools using a window size of 25 variants and LD threshold of 
0.5 (Kardos, Luikart, and Allendorf 2015). We used PCA to visu-
alise population structure in vegan (v. 2.5-7; Oksanen et al. 2020). 
To estimate Ne, we selected a random subset of ~6000 variants 
from each species' putatively neutral markers for analysis with 
NeEstimator, after removing singletons. We used this subset of 
markers distributed across chromosomes to avoid pseudorepli-
cation while maximising precision (i.e., precision in Ne does not 
increase much after using a few thousand SNPs, Waples 2024).

2.8   |   Targeted Capture

Our final capture array was designed to bind sequences from 
1433 candidate adaptive variants in A. truei and 1486 in A. mon-
tanus. We extracted DNA and quantified samples for whole-
genome resequencing samples. DNA was sheared to ~200 bp 
using a Covaris E220 focused ultrasonicator at the University 
of California-Davis DNA Technologies Core. We used 230–
1000 ng (average ~ 900 ng) of DNA for each library, following the 
NEBNext Ultra II DNA Library Prep Kit for Illumina. Each in-
dividual was labelled with a unique dual-index primer pair and 
we used five PCR amplification cycles. Libraries were target en-
riched and PCR amplified using the MyBaits standard protocol 
after a 24-h hybridisation. Libraries were pooled and the result-
ing pool was sequenced two times on a HiSeq 4000 (paired-end, 
150 bp reads) with Novogene Corporation. We sequenced 124 
individual A. truei and 123 A. montanus.

For bioinformatics, we used AfterQC for quality control, prelim-
inary data filtering and error profiling (Chen et al. 2017), and 
identified and removed overrepresented sequences. We used 
Trim Galore! to quality trim sequences (Phred score < 20) and 
remove Illumina adapters (stringency = 6). We mapped retained 
reads to the reference genome using BWA_MEM and removed 
PCR duplicates using Picard's MarkDuplicates. We then called 
variants with GATK HaplotypeCaller as above. We pulled the 

targeted variants, split the variant files by species and imputed 
missing values within each species using Beagle, as above. 
Finally, we used bcftools to filter the imputed VCFs by removing 
low-quality variants (QUAL < 30), singletons and invariant sites 
and variants with > 70% missing data, and removed samples 
genotyped at fewer than 1000 variants. We used RDA to evalu-
ate the contributions of retained variants to explaining variation 
in stream temperature and CTmax.

3   |   Results

3.1   |   Temperature and CTmax

For sites where we had both temperature logger and NorWeST 
data, in-stream August mean temperatures (hereafter ‘summer 
temperatures’) were within 1°C of the 1993–2011 NorWeST 
mean for half of our sites. In these cases, we used NorWeST 
30-year averages as they are representative of local tempera-
ture conditions and will better reflect long-term selection 
pressures on Ascaphus populations. Sites that had larger devi-
ations from the NorWeST August means likely reflect complex 
topographic and hydrological features contributing to thermal 
diversity that are not captured by the NorWeST model (e.g., 
Leach and Moore 2019; Schultz et al. 2017). In these cases, we 
use in-stream summer temperature data, as these will best re-
flect local selection pressures on populations. For example, in 
Montana, we had multiple high-elevation sites that were outlets 
of lakes (which were warm during summer months) and where 
summer temperatures were much warmer than predicted by 
the NorWeST model (Figure 4; Table S1; Moore Creek, Oregon 
Gulch, Upper Torino Tributary). These warmer, high-elevation 
sites contributed to a lack of correlation between summer 
temperatures and elevation in Montana (Pearson's correla-
tion = 0.005, p = 0.987). By contrast, summer temperatures in 
Oregon were significantly correlated with elevation (Pearson's 
correlation = −0.830, p = 0.0001). While summer temperatures 
were not statistically different between states (t-test, t = −1.725, 
df = 27.98, p = 0.10), Montana streams had nearly 2 degrees 
more range in summer temperatures (minimum = 6.72°C, max-
imum = 16.30°C, range = 9.58°C) compared to Oregon streams 
(minimum = 7.66°C, maximum = 15.27°C, range = 7.61°C), re-
flecting their continental versus coastal climatic influences, 
respectively. NorWeST projections for 2080 under the SRES 
A1B climate change scenario showed an average shift of 2.14°C 
(range 1.91°C–2.32°C) for sites in Oregon and an average shift 
of 2.08°C (range 1.88°C–2.33°C) for sites in Montana (Table S6). 
On average, this represents a shift in summer temperatures from 
11.65°C to 13.80°C in Oregon and 9.65°C to 11.73°C in Montana.

After excluding one outlier A. truei individual with a spurious 
CTmax estimate (> 9 standard deviations), we retained CTmax 
data from 162 A. truei and 163 A. montanus tadpoles. In both spe-
cies, tadpole length had a significant negative effect on CTmax 
(p < 0.001, Table  S7), while only A. montanus CTmax showed 
a significant (positive) relationship with August mean stream 
temperatures after accounting for tadpole length and site (A. 
montanus p = 0.0035, A. truei p = 0.145, Figure 5, Table S7, see 
also Cicchino, Shah, Forester, Dunham, et al. 2023). Both species 
showed variability in CTmax values within sites (A. truei me-
dian of ranges = 1.1°C, A. montanus median of ranges = 1.3°C).
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3.2   |   Reference Genome and Annotation

The A. truei reference genome sequence is 3.10 billion base pairs 
(Gbp) long, with half of the assembled sequence in 8 scaffolds 
longer than 76.7 Mbp and 4717 contigs longer than 155.4 kbp. 
The longest 22 scaffolds are identified with chromosomes (total 
1.98 Gbp), and range in length from 11.2 to 330.6 Mbp. Slightly 
more than half (55.9%) of the assembled genome sequence was 
characterised as repetitive, including the bulk of subchromo-
somal scaffolds. Annotation identified 16,254 high-confidence 
protein-coding genes, 94.5% of which could be assigned a puta-
tive functional annotation based on sequence similarity. These 
annotated genes possessed an average of 7.38 exons per gene 
(median exon size 124 bp and median intron size 1055 bp), with 
median coding sequence length of 1017 bp (339 amino acids), 
comparable to other recently annotated frog genomes. A. truei 
assembly and protein-coding annotations were deposited in 
NCBI under GenBank accession GCA_036426205.1.

3.3   |   Whole-Genome Resequencing

The two NovaSeq S4 lanes produced ~1 TB of data, with 10–12 GB 
representing each of the 80 individuals. Mapping quality was 
high, with an average of 98% of reads mapping across both lanes 
and species (Table S8). The average percentage of reads mapped 
was slightly lower in A. montanus (98.2%) than A. truei (98.4%). 
Average read depth was 6.1× (range 4.8× − 9.0×) across lanes 
and was lower in A. montanus (5.8×) than A. truei (6.4×). Slightly 
lower read mapping and read depth in A. montanus may be due 
to mapping to the A. truei reference genome (e.g., Bohling 2020). 
The known variants input for GATK BaseRecalibrator included 
114,407 SNPs. After filtering the recalibrated and imputed 
VCFs, we retained 39,825,878 variants for A. truei (34,339,610 
SNPs and 5,486,268 biallelic indels) and 33,709,071 variants for 
A. montanus (28,980,064 SNPs and 4,729,007 biallelic indels). 
Heterozygote miscall rates were low: for A. montanus, the Dry 
and Upper Torino drainage (Middle Clark Fork) had a mean 
miscall rate of 0.020 (95% CIs: 0.019–0.022), while the Upper 
and Lower Lost Horse drainage (Bitterroot) had a mean miscall 

rate of 0.012 (95% CIs: 0.011–0.014); for A. truei, the Bulldog and 
North Fork Steelhead drainage (Umpqua) had a mean miscall 
rate of 0.054 (95% CIs: 0.053–0.055), while the Lamb and Ore 
drainage (McKenzie) had a mean miscall rate of 0.058 (95% CIs: 
0.057–0.059).

3.4   |   Genetic Diversity, Population Structure 
and Effective Population Sizes

We calculated observed and expected heterozygosity and pair-
wise FST for the eight whole-genome resequencing sites using 
10,671,372 and 9,450,199 putatively neutral variants in A. truei 
and A. montanus, respectively. For FIS, we used an LD-pruned 
subset of these variants totalling 4,089,856 and 3,458,884 loci in 
A. truei and A. montanus, respectively. Observed and expected 
heterozygosity were slightly lower in A. truei than A. monta-
nus, while FIS values were slightly higher (Table 1), which may 
reflect relatively higher isolation and reduced gene flow in A. 
truei. Pairwise FST values were low within watersheds (average 
of 0.011 for A. truei and −0.004 for A. montanus) and higher 
across watersheds (average of 0.115 for A. truei and 0.089 for 
A. montanus; see Table S9 for full results). These results were 
reflected in the PCAs for both species, with PC1 splitting sites 
across watersheds and PC2 identifying minor substructures 
within watersheds (Figure S1). Lower within-species Fst for A. 
montanus may be a result of mapping to the A. truei genome 
(Bohling  2020), although other studies have found similarly 
low-to-moderate intraspecific divergence among A. montanus 
populations (Metzger et al. 2015; Spear and Storfer 2010). For all 
sites, point Ne estimates were negative and confidence intervals 
were infinity, suggesting genetic drift is negligible within sites 
and that Ne values are large (Waples 2024).

3.5   |   Identification of Candidate Adaptive Variants

We identified candidate adaptive markers for pRDA and LFMM 
based on loadings and z-scores (respectively) that were larger 
than 2.5 standard deviations from the mean loading/z-score. For 

FIGURE 5    |    Relationships between critical thermal maximum (CTmax) and August mean stream temperatures for (a) A. truei (n = 162) and 
(b) A. montanus (n = 163). Prediction slope (black line) and 95% confidence intervals (grey lines) estimated by the linear mixed-effects model are 
shown for A. montanus (p = 0.0035).

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17651 by C
olorado State U

niversity, W
iley O

nline Library on [18/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

info:refseq/GCA_036426205.1


10 of 18 Molecular Ecology, 2025

GEMMA, we used an analogous p-value cutoff of p < 0.012. The 
two GEA methods identified a total of 1,131,492 unique candi-
date variants in A. truei and 566,375 in A. montanus. The two 
GWAS methods identified a total of 748,450 unique candidate 
variants in A. truei and 523,658 in A. montanus. We analysed a 
reduced set of these detections by pulling all genes and the top 
5000 modifiers identified by each method. A large number of 
genes and variants related to temperature (GEA methods) and 
CTmax (GWAS methods) were identified in each species, with 
some overlap across methods within species (A. truei and A. 
montanus rows in Table 2). There were gene annotations iden-
tified in both species related to temperature and CTmax; how-
ever, overlap in the specific variants identified was low (‘Overlap 
across species’ row in Table 2).

We identified a subset of these variants for a targeted capture 
panel, including 2382 variants in A. truei and 2275 variants in A. 
montanus (Table S10). Candidate variants in this subset identi-
fied by GEA explained 31% of the variance in stream temperature 
across four sites in both A. truei and A. montanus (p = 0.001 for 
both species; Table 3). Similarly, candidate variants in the subset 
identified by GWAS explained 37% of the variance in CTmax 

across four sites and 40 individuals in A. truei and 32% of the 
variance in CTmax in A. montanus (p = 0.001 for both species; 
Table 3). Plots of RDAs including both predictors provide an in-
tegrative visualisation of these results for A. truei (Figure 6a) and 
A. montanus (Figure 6b), where individuals are located in the 
multivariate space as a function of their multilocus genotypes 
at the candidate adaptive variants. Each individual tadpole's 
point is colour coded to reflect the summer stream temperatures 
they experience, and the size of the point is scaled to the value 
of their CTmax. In both species, individuals on the right-hand 
sides of these plots have more candidate adaptive alleles related 
to higher temperatures and higher CTmax, while individuals on 
the left-hand sides have more alleles related to lower tempera-
tures and lower CTmax. This visualisation reflects potential 
local adaptations of populations to stream temperature (or other 
environmental parameters correlated with stream temperature) 
and a potential genetic basis to CTmax variability across popu-
lations in both species.

3.6   |   Targeted Capture

After filtering, we retained 1052 variants and 100 individuals for 
A. truei and 1269 variants and 108 individuals for A. montanus. 
While this reduced set of variants explained a much smaller 
proportion of the variance in stream temperatures and CTmax 
across 11 additional sites in each species, the results were signifi-
cant (e.g., p < 0.05) in all tests except CTmax in A. truei (Table 2), 
illustrating a consistent relationship with temperature adapta-
tion in both species. Plots of RDAs using both predictors for this 
smaller set of capture data are provided for A. truei (Figure 6c) 
and A. montanus (Figure 6d). Again, individuals are located in 
the multivariate space as a function of their multilocus geno-
types at the genotyped candidate adaptive variants and points 
are colour coded and scaled to the individual's summer stream 
temperature and CTmax, respectively. In A. truei, the tempera-
ture relationship is strong, with most individuals from warmer 
sites located in the top half of the plot, and individuals from 
cooler sites in the bottom (Figure 6c). By contrast, the CTmax 
signature in the capture data for A. truei is relatively weak, with 
no clear pattern of circle size related to CTmax. These patterns 

TABLE 2    |    Unique gene annotations and variants across species and detection methods (two genotype–environment association or GEA methods 
and two genome-wide association or GWAS methods) for a subset of candidate adaptive variants identified from four sites per species, with 10 
individuals per site. ‘Overlap’ refers to duplicate gene annotation or variant detections across GEA and GWAS methods.

Species Identification method Unique gene annotations Unique variants

A. truei GEA 6233 19,213

GWAS 5408 14,287

Overlap 1881 475

A. montanus GEA 4493 12,067

GWAS 3963 9967

Overlap 1406 895

Overlap across species GEA 1403 18

GWAS 1165 21

Overlap 263 0

TABLE 1    |    Observed (Ho) and expected (He) heterozygosity and FIS 
for whole-genome resequencing sites (10 individuals/site) for Ascaphus 
truei and A. montanus.

Species Site Ho He FIS

A. truei Ore 0.23 0.27 0.040

Lamb 0.23 0.27 0.044

North Fork 
Steelhead

0.23 0.27 0.075

Bulldog 0.23 0.27 0.069

A. montanus Dry 0.27 0.30 −0.035

Upper Torino 0.27 0.30 −0.013

Lower Lost Horse 0.26 0.30 0.008

Upper Lost Horse 0.26 0.30 0.043

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17651 by C
olorado State U

niversity, W
iley O

nline Library on [18/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



11 of 18

correspond with the statistical results for A. truei across these 
two predictors (i.e., a significant relationship with temperature 
and nonsignificant result with CTmax; Table  3) and can be 

contrasted with the significant relationships for A. truei related 
to both predictors in the WGR capture candidates (Figure  6a; 
top row of Table 3). Results across these candidate adaptive data 

TABLE 3    |    RDA results for the full set of candidate adaptive markers identified for targeted capture from whole-genome resequencing (WGR) 
data and the final targeted capture data.

Data set Species
Variants 
related to

Number of 
individuals

Number 
of sites

Number of 
variants Adjusted r2 p

WGR, capture 
candidates

A. truei Temperature 40 4 1145 0.310 0.001

CTmax 40 4 1202 0.373 0.001

A. montanus Temperature 40 4 1192 0.307 0.001

CTmax 40 4 1083 0.323 0.001

Targeted capture A. truei Temperature 100 11 476 0.017 0.001

CTmax 100 11 562 0.001 0.210

A. montanus Temperature 108 11 662 0.003 0.004

CTmax 108 11 599 0.002 0.011

FIGURE 6    |    Redundancy analysis (RDA) plots for A. truei (left, a and c) and A. montanus (right, b and d) showing capture candidates from whole-
genome resequencing at four sites (10 individuals per site per species; top, a and b, labelled by site) and targeted capture data at 11 sites (100 individ-
uals total for A. truei and 108 individuals total for A. montanus; bottom, c and d). Circles represent individual tadpoles, which are positioned in the 
multivariate space by their multilocus genotype as a function of the two predictors, August mean stream temperature (Temp) and CTmax, shown as 
blue vectors. In all plots, each individual's circle is colour coded by their stream's August mean temperature (legend in d), while the size of each circle 
is scaled to that individual's CTmax (legend in c). A plot of capture data by site is available in Figure S2.
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sets are more consistent for A. montanus. Capture data show 
strong relationships between multilocus genotypes and both 
predictors, with individuals sorting more clearly in the ordina-
tion space along the two predictor vectors (Figure 6d), reflecting 
the significant statistical results for A. montanus (Table 3) and 
in agreement with the RDA of capture candidates (Figure 6b).

4   |   Discussion

We combined genomic data with temperature and physiologi-
cal data to provide strong evidence for local adaptation to tem-
perature variation in two, cold-water stream frog species. The 
correlation of genetically based adaptive variation with tem-
perature and thermal tolerance indicates that tailed frog pop-
ulations vary in sensitivity to increasing stream temperatures, 
and have the potential to evolve in response. Below we discuss 
these results in more depth, as well as their implications for 
sensitivity, evolutionary potential and overall vulnerability to 
climate change.

4.1   |   Integrative Evidence for Local Adaptation to 
Temperature Variation

For A. montanus, both physiological and genomic data provide 
strong evidence for local adaptation to temperature (Figures 5b 
and 6b,d). Previous work found that CTmax is positively related 
to maximum stream temperatures in A. montanus, but that 
study was unable to distinguish between plasticity and evolu-
tionary adaptation as drivers of the observed patterns (Cicchino, 
Shah, Forester, Dunham, et al. 2023). Our study provides evi-
dence for a genetic basis for CTmax, with a large number of 
variants significantly related to individual-level CTmax across 
four sites in two different watersheds (Figure 6b; Tables 2 and 
3). Sequencing of a subset of these variants across 11 additional 
sites distributed across three watersheds confirmed a signifi-
cant signature of local adaptation of CTmax to average August 
stream temperatures (Figure 6d; Table 3). The large number of 
variants identified points to a polygenic basis that was expected 
given that complex physiological traits such as CTmax are ex-
pected to have a polygenic architecture (Bernatchez 2016; Healy 
et al. 2018; Rose et al. 2018). GEA tests revealed a large number of 
variants significantly related to summer temperature variation 
across populations, indicating adaptive divergence related to 
temperature variability across the sampled range (Figure 6b,d; 
Table 3). Importantly, most of the variants and gene annotations 
identified by GWAS and GEA tests did not overlap (Table 2), in-
dicating that there are other traits in addition to CTmax that are 
involved in temperature adaptation, or parameters correlated 
with temperature, across the range of A. montanus.

By contrast, A. truei shows more complexity in the relation-
ships among CTmax, temperature variation and local adapta-
tion (Figures  5a and 6a,c). Previous work found that CTmax 
was not significantly related to maximum stream temperatures 
in A. truei, perhaps due to lower variation in temperatures 
among sites when compared to A. montanus (Cicchino, Shah, 
Forester, Dunham, et al. 2023). Despite this, our genomic data 
provide evidence for a polygenic genetic basis for CTmax in A. 
truei. Similarly to our findings in A. montanus, we identified a 

large number of variants significantly related to individual-level 
CTmax across four sites in two different watersheds (Figure 6a; 
Tables  2 and 3). However, unlike A. montanus, sequencing of 
a subset of these variants across 11 additional sites distributed 
across three watersheds did not show evidence of a significant 
relationship with CTmax (Figure 6c; Table 3). This may be due 
to less variation in CTmax across populations of A. truei rela-
tive to A. montanus, although reduced power with the subset of 
variants sequenced could also have contributed. In both species, 
however, there is substantial variation in CTmax among indi-
viduals within populations (Figure  5), indicating that there is 
available phenotypic variation for selection to act upon; if this 
variation is heritable, these populations could have potential for 
a more rapid adaptive response to rising temperatures. Finally, 
GEA results in A. truei uncovered similar relationships as A. 
montanus, with a large number of variants significantly related 
to population-level stream temperature variation across the 
sampled species range, indicating adaptive divergence related to 
temperature variability (Figure 6a; Table 3). Variants and gene 
annotations identified by GWAS and GEA tests also showed low 
overlap. In both species, these signatures of adaptive divergence 
related to temperature variability point to potential local adap-
tation to the thermal environment and/or other covarying en-
vironmental parameters, such as stream flow regimes, stream 
productivity, food quality or biotic interactions. Additionally, 
we identified more candidate variants in A. truei relative to A. 
montanus, which may reflect the relatively higher population 
differentiation in A. truei (detected in our Fst analyses and 
previous studies, Spear and Storfer 2008, 2010), potentially fa-
cilitating greater adaptive differentiation at more loci among 
populations in A. truei, although this hypothesis will need fur-
ther evaluation. Finally, we found moderate levels of overlap in 
gene annotations and variants for GEA and GWAS tests across 
species (Table  2), suggesting that different genes and variants 
may be involved in adaptation to temperature regimes in these 
species, a result consistent with their long evolutionary diver-
gence (i.e., late Miocene and early Pliocene, Nielson, Lohman, 
and Sullivan  2001) as well as differences in climatic regimes 
across their ranges.

4.2   |   Implications for Sensitivity to Increasing 
Temperatures

Climate change vulnerability assessments commonly assume 
or imply that a single estimate of thermal tolerance is repre-
sentative of a species' sensitivity, often due to a focus on expo-
sure, limited intraspecific data availability across the species' 
range or a presumption that intraspecific variation is negligi-
ble relative to interspecific variation (Butt et al. 2016; Foden 
et al. 2013, 2019; Herrando-Pérez et al. 2019). This assumption 
leads to the conclusion that populations in the warmest parts 
of a species' range (e.g., low latitude or low elevation) will 
likely be the most sensitive to warming from climate change, 
as these will be the first populations where environmental 
temperatures will exceed thermal tolerance (Hoffmann and 
Sgro  2011; Sunday, Bates, and Dulvy  2012; e.g., Figure  2a). 
Our results add to growing evidence (e.g., Gervais et al. 2021; 
Herrando-Pérez et al. 2019; Jackson et al. 2024; Nati et al. 2021) 
that intraspecific variability in thermal tolerance and local ad-
aptation to temperature regimes can result in more complex 
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spatial patterns of sensitivity across species' ranges than pre-
dicted by the assumption of invariant thermal tolerance.

In A. montanus, combined evidence for local adaptation to tem-
perature variation suggests that all populations may have sim-
ilar sensitivity to warming (i.e., consistent warming tolerance; 
Figure  2b) since populations that currently occupy warmer 
streams show higher CTmax. By contrast, conclusions about 
sensitivity for A. truei depend on which data are being consid-
ered. Based on physiological data alone, the assumption that 
populations in warmer environments are more sensitive (i.e., 
lower warming tolerance than population in cooler environ-
ments; Figure 2a) is supported, given that A. truei populations 
do not vary in their CTmax across stream temperatures. This 
conclusion supports the one made in Cicchino, Shah, Forester, 
Dunham, et al. (2023) that physiological vulnerability decreases 
with elevation among population of this species (which is un-
surprising given the data used here are a subset of the physio-
logical data used in that study). However, genomic data show 
signatures of local adaptation in both CTmax and temperature 
variability across sites, indicating that, at least based on some 
metrics of thermal sensitivity, all populations will be similarly 
sensitive to changing conditions. These different conclusions 
regarding sensitivity in A. truei highlight the importance of col-
lecting multiple data types and lines of evidence, where possible, 
to create a more informed assessment of patterns of sensitivity 
(Huey et al. 2012).

4.3   |   Integrative Evidence for Evolutionary 
Potential

The available data support a conclusion of generally high 
evolutionary potential in Ascaphus populations included in 
this study. In both species, we see high variability in CTmax 
within sites, and, in A. montanus, among sites, indicating 
the maintenance of trait variation across scales (Figure  5). 
GWAS tests identified a polygenic genetic basis to this CTmax 
variability, pointing to local adaptation of A. montanus pop-
ulations (i.e., based on both whole-genome and targeted cap-
ture results), with weaker signatures in A. truei (i.e., based 
on whole-genome data only; Figure  6). This polygenic ar-
chitecture may confer increased evolutionary potential in 
CTmax across these populations and allow for more consis-
tent evolutionary responses to natural selection (Kardos and 
Luikart  2021). GEA tests identified additional (mostly non-
overlapping) signatures of local adaptation to temperature 
variation in both species, suggesting evolutionary potential 
related to additional traits involved in thermal tolerance, or 
other traits or environmental characteristics that are cor-
related with temperature variability. Finally, in agreement 
with previous work (Metzger et  al.  2015; Spear, Crisafulli, 
and Storfer 2012; Spear and Storfer 2008, 2010) we found high 
genetic diversity and large effective population sizes at four 
sites in both species (Table 1), with low population structure 
within drainages. These genetic data suggest a high capacity 
to retain genetic variation over time and high efficacy of selec-
tion within populations with minimal negative impacts from 
genetic drift, although we note that some A. truei populations 
at the species' northern range boundary (not included in this 
study) show reduced genetic diversity due to historical range 

expansion (Mosher, Johnson, and Murray 2022). While these 
results point to robust evolutionary potential for both species 
across the sampled portions of their ranges, it is unclear how 
and to what extent these characteristics will have the poten-
tial to reduce population- and species-level vulnerability to 
increasing temperatures.

4.4   |   Implications for Vulnerability

A comprehensive climate change vulnerability assessment 
involves integration of intraspecific data on exposure, sensi-
tivity and all three components of adaptive capacity: disper-
sal capacity, phenotypic plasticity and evolutionary potential. 
In our case, evidence for local adaptation to temperature 
based on physiological and genomic data in A. montanus 
and genomic data in A. truei suggests similar levels of sen-
sitivity among populations (Figure  2b), regardless of stream 
temperature, but relatively invariant CTmax across tempera-
tures in A. truei suggests that populations occupying warmer 
streams may be most sensitive to warming (Figure  2a). For 
A. truei, this points to the importance of reducing additional 
stressors such as timber harvest (which reduces canopy cover 
and increases siltation, impacting larval biomass; Wahbe and 
Bunnell  2003), in populations occupying warmer streams. 
Additionally, some A. montanus populations currently ex-
perience maximum summer temperatures that are close 
to temperatures associated with mortality over a 3-day pe-
riod (Cicchino, Ghalambor, and Funk 2023; Cicchino, Shah, 
Forester, Dunham, et al. 2023). For these populations, similar 
reductions in stressors that drive increasing stream tempera-
ture will likely be important. In terms of adaptive capacity, 
the low genetic differentiation within watersheds in both spe-
cies confirms results from previous studies showing relatively 
high gene flow and dispersal potential for both Ascaphus spe-
cies (Metzger et al. 2015; Spear, Crisafulli, and Storfer 2012; 
Spear and Storfer  2008, 2010), improving both colonisation 
abilities and the potential for adaptive gene flow (Figure 2c). 
As noted by previous studies in both species, maintaining in-
tact forest cover both within and between riparian areas is a 
key factor for sustaining gene flow and population connectiv-
ity (Spear and Storfer 2008, 2010). Additionally, all available 
data suggest high levels of evolutionary potential in response 
to temperature variation: variability in CTmax both within (in 
both species) and across (in A. montanus) sites combined with 
substantial genomic evidence, high genetic diversity and large 
effective population sizes supports evolutionary potential re-
lated to temperature and thermal tolerance. This evidence for 
high dispersal capacity and evolutionary potential in response 
to temperature change is important given that previous work 
in Ascaphus has shown relatively low acclimation capacity of 
CTmax across populations in both species, which will limit 
the role of thermal tolerance plasticity in improving adap-
tive capacity (Cicchino, Shah, Forester, Dunham, et al. 2023). 
Furthermore, most streams lack significant microclimatic 
spatial variation in temperature, making behavioural ther-
moregulation and the use of thermal refuges less likely op-
tions under future warmer conditions (Cicchino et al. 2024). 
Despite this, movement of warm-tolerant genotypes among 
populations, especially within watersheds, is one potential 
mechanism to reduce vulnerability as stream temperatures 
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continue to change over time, with NorWeST projections indi-
cating at least 2°C shifts in average summer stream tempera-
tures by 2080 (e.g., Figure 2c, Table S6). Additional work to 
measure the sublethal effects of warming on sensitivity could 
contribute to the growing body of evidence suggesting that 
exposure to heat well below CTmax can have detrimental im-
pacts on organisms (Harvey et al. 2023; Shah et al. 2023; Li 
et  al. 2013). Finally, further integration of these data would 
allow for a more comprehensive evaluation of spatial variation 
in vulnerability within species in response to shifting tem-
peratures and changes in stream flow, for example, through 
the use of individual-based eco-evolutionary simulation mod-
els (e.g., Bay et al. 2017; Forester et al. 2023).

5   |   Conclusions

Predicting responses to climate warming is a challenging 
problem because it requires integrating organismal and popu-
lation responses over different time scales (Huey et al. 2012). 
Genomic data, in combination with at-site measurement of 
climatic conditions, physiology and individual-based model-
ling can provide a holistic and powerful approach for predict-
ing spatial patterns of climate change vulnerability over short 
(i.e., physiological responses) and longer (i.e., evolutionary) 
time scales. These efforts require large amounts of data, how-
ever, as well as controlled experiments, which are not possible 
in the majority of species of conservation concern. The use of 
proxies for population-level sensitivity and adaptive capacity 
traits will therefore be critical to inform these assessments 
in at-risk species (e.g., Forester et al. 2022; Huey et al. 2012). 
Compiling data in species that are more amenable to study, 
such as tailed frogs, can not only provide data to inform and 
validate proxies but can also help guide efforts for data-poor 
cases and ultimately identify trends and general principles 
(Foden et  al.  2013, 2019). This study is part of that effort to 
provide insights into the complexity of predicting spatial pat-
terns of climate change vulnerability more broadly.
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