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Abstract. The Davis–Kahan–Wedin sin⇥ theorem describes how the sin-
gular subspaces of a matrix change when subjected to a small perturbation.
This classic result is sharp in the worst case scenario. In this paper, we prove a
stochastic version of the Davis–Kahan–Wedin sin⇥ theorem when the pertur-
bation is a Gaussian random matrix. Under certain structural assumptions, we
obtain an optimal bound that significantly improves upon the classic Davis–
Kahan–Wedin sin⇥ theorem. One of our key tools is a new perturbation
bound for the singular values, which may be of independent interest.

1. Introduction

Consider an N ⇥n (data) matrix A. In practice, it is common that we only have
access to a corrupted (noisy) version eA given by

eA := A+ E, (1)

where E represents the noise matrix. As a result, one must use eA as input for all
calculations and algorithms intended for A. A question of fundamental interest is
to estimate the impact of the noise E on the output; see for instance [31,32,33,37,
40,41,55,57,60,65,72] and references therein.

In modern studies, noise is often assumed to be random (e.g., Gaussian) and
the data matrix A possesses certain structural properties. For example, in a vast
number of studies, researchers assume that A has low rank [18, 19, 20, 63], and our
main results focus on this case.

Assume that the N ⇥ n data matrix A has rank r � 1. We will often think of r
as a constant (or a parameter very small compared to the dimensions N and n such
as r  log n or r  n✏). The singular value decomposition (SVD) of A takes the
form A = U⌃V T , where ⌃ = diag(�1, . . . ,�r) is a diagonal matrix containing the
non-zero singular values �1 � �2 � · · · � �r > 0 of A; the columns of the matrices
U = (u1, . . . , ur) and V = (v1, . . . , vr) are the orthonormal left and right singular
vectors of A, respectively. In other words, ui and vi are the left and right singular
vectors corresponding to �i. It follows that UTU = V TV = Ir, where Ir is the r⇥r
identity matrix. For convenience, we will take �r+i = 0 for all i � 1.

Recall that eA is given in (1). Denote the SVD of eA similarly by eA = eU e⌃eV T,
where the diagonal entries of e⌃ are the singular values e�1 � e�2 � · · · � e�min{N,n} �
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0, and the columns of eU and eV are the orthonormal left and right singular vectors,
denoted by eui and evi, respectively.

Let ⇧s denotes the orthogonal projection onto the subspace spanned by the s
leading singular vectors of A (either left or right). The matrix ⇧sA is the best rank
s approximation of A [34, Section 2.4] and plays an important role in applications
in almost every fields of science involving large data sets. Given the noise issue, it
is thus of fundamental interest to bound the di↵erence between ⇧s and its “noisy”
counterpart e⇧s (the projection onto the subspace formed by the leading s singular
vectors of eA). The goal of this paper is to bound this di↵erence.

As our main result is bit technical, let us first consider a toy case. Assume we
want to compute the first (left) singular vector u1 of the matrix A. If we only have
access to the noisy matrix eA, we can only compute eu1. The famous Davis–Kahan–
Wedin sin⇥ theorem [25, 70] provides a bound on the di↵erence between eu1 and
u1. Two parameters appear in this bound: the gap (or separation) �1 between the
largest singular values of A given by

�1 := �1 � �2

and the spectral norm of E defined by

kEk := max
kuk=1

kEuk,

where kuk denotes the Euclidean norm of the vector u.

Theorem 1 (Davis–Kahan–Wedin sin⇥ theorem). One has

sin\(u1, eu1)  2
kEk
�1

,

where \(u1, eu1) is the acute angle between u1 and eu1, taken in [0,⇡/2]. The same

bound holds for sin\(v1, ev1).
Theorem 1 follows as a simple corollary of the Davis–Kahan–Wedin sin⇥ the-

orem; see Theorem 4 from [51], which also contains an example explaining the
necessity of the appearance of the gap �1.

In [51], the current authors considered random noise and improved Theorem 1
by showing that a stronger bound

sin\(u1, eu1) .
C(r)

�1
+

kEk
�1

+
kEk2

�1�1
(2)

holds with high probability (the probability space is generated by the randomness
of the noise matrix E; see [51] for details). Here, C(r) is a parameter depending
polynomially on r. To see how this improves upon the Davis–Kahan–Wedin sin⇥
theorem, let us mention that in most settings, the norm of the random matrix E
is polynomial in N + n. Thus, in the setting where r is significantly smaller than
the dimensions N,n, the first term C(r)/�1 improves upon the term kEk/�1 as it
replaces a polynomial in N + n by a polynomial in r. The second term kEk/�1

represents the signal-to-noise ratio; notice that the denominator is the singular
value �1 which is usually much larger than the gap �1 between �1 and �2. Finally,

the third term kEk2

�1�1
improves upon the term kEk/�1 by the a factor involving the

noise-to-signal ratio kEk/�1. This theorem generalized Theorem 8 of [66], where
the second author considered Bernoulli random matrices.
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The first term on the right-hand side of (2) was already conjectured in [66]. As
noted above, the second term represents the signal-to-noise ratio. Both terms are
necessary (see below for further details). Indeed, if the gap �1 is too small, there is
a chance that the two leading singular values (and thus the corresponding singular
vectors) get “swapped.” Moreover, if the signal-to-noise ratio is low, then the data
matrix is overwhelmed by noise, and the singular vectors behave more like random
vectors. In random matrix theory, this phenomenon is known as the BBP phase
transition, named after Baik, Ben Arous, and Péché [5]; see [5, 8] and references
therein for further details.

It is conjectured that the third term on the right-hand side of (2) is not nec-
essary, under some mild assumptions. In this paper, we introduce a new method
of analyzing random perturbations and confirm this conjecture (up to lower-order
corrections). As the precise result is a bit technical, let us first state a simpler,
but easier to read, version of the our main result. The asymptotic notation is used
under the assumption that the dimensions n and N tend to infinity.

Theorem 2 (Perturbation with Gaussian noise; simplified asymptotic version).
Let A and E be N ⇥n real matrices, where A is deterministic and the entries of E
are jointly independent standard Gaussian random variables. If A has rank r � 1,
then, with probability 1� o(1),

sin\(u1, eu1) .
C(r, log(N + n))

�1
+

kEk
�1

, (3)

where C(s, t) is a positive parameter which grows at most polynomially in s and t.

Theorem 2 shows that the third term on the right-hand side of (2) is not necessary
and verifies the conjecture discussed above. In Section 2, we state the more detailed
version of Theorem 2 and its generalizations. In this paper, we focus on the case
when the entries of E are jointly independent Gaussian random variables. This
assumption simplifies parts of the (already technical) proofs, but the method does
extend to other distributions. For instance, the results can be extended to the case
when E has independent and identically distributed sub-gaussian entries. To relax
the Gaussian assumption, one needs to establish a variant of the isotropic local
law presented in Lemma 9 below. Similar results have been established for more
general entry distributions (see the discussion regarding the isotropic local laws in
Section 3.2 for references). We plan to discuss the non-Gaussian case in a separate
paper.

One can also consider the case when the entries of E are not necessarily identi-
cally distributed (but are still jointly independent). For example, consider the case
when the entries of E = (Eij) are jointly independent normal random variables,
where Eij has mean zero and variance �2

ij . Depending on the values of the vari-
ances �2

ij , the resolvent of E may no longer satisfy an isotropic law and instead
may satisfy an anisotropic law [43]. It is unclear if our methods can be adapted to
deal with the anisotropic case. Similarly, while we expect our results to also hold
when there is a small dependence between the entries of E, our methods heavily
rely on the joint independence of the entries.

It is worth noting that when �1 = �1 (i.e., the rank-1 case) or when the spectral
gap is of similar magnitude to the signal strength, �1 ⇣ �1, the right-hand side of
(3) is proportional to kEk/�1. Theorem 3 below implies that, up to lower order
terms and constants, this bound is optimal. Nevertheless, based on our bounds, it
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is apparent that sin\(u1, eu1) can be reasonably bounded in most cases, even when
�1 ⌧ �1. Such relaxation o↵ers improved outcomes in numerous applications, which
will be elaborated upon in a forthcoming paper.

We remark that the bound in (3) does not depend on the condition number
 = �1/�r of A. Instead, we have modeled our main results after the Davis–
Kahan–Wedin sin⇥ theorem (Theorem 1), which instead relies on the gap �1 to
quantify how sensitive the matrix is to perturbations.

Before concluding this section, we discuss the optimality of Theorem 2. Numer-
ical simulations show that, up to the particular form that C(s, t) takes, the first
term on the right-hand side of (3) is necessary; see Figure 1. The second term
on the right-hand side of (3) represents the signal-to-noise ratio; this term is also
necessary as can be seen from the following lower bound.
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Figure 1. A plot of the cumulative distribution function F of
sin\(u1, eu1), where F (x) = P(sin\(u1, eu1)  x) for 0  x  1.
We take N = n = 1000 and A = diag(300, 300 � �, 0, · · · , 0) with
rank r = 2 where the spectral gap � = �1 is chosen to be 20, 10,
5, and 2. E is a Gaussian matrix as in Theorem 2. Each curve is
generated from 400 samples.

Theorem 3 (Lower bound). Let A and E be N ⇥ n real matrices, where A is

deterministic with rank r satisfying 1  r  1

2
max(N,n) and the entries of E are

independent and identically distributed sub-gaussian
1
random variables with mean

zero and unit variance. Then

max{sin\(u1, eu1), sin\(v1, ev1)} � 1

8
p
2

kEk
�1

1 + (1 +
p
2)kEk

�1

(4)

with probability at least 1 � C exp (�cmax(N,n)) , where C, c > 0 are constants

depending only on the sub-gaussian norm of the entries of E.

Notice that if kEk
�1

 1, then the right-hand side of (4) simplifies to ckEk
�1

for
some constant c. The proof of Theorem 3 can be found in Appendix A. This result
can be extended to more general random matrices with independent entries and
matrix ensembles satisfying rotational invariance. Due to space limitation, we do
not pursue such generalizations here.

1A random variable ⇠ is sub-gaussian if there is a positive constant c such that P(|⇠| � t) 
2 exp(�ct2) for all t � 0; the largest constant c > 0 for which this property holds is called the
sub-gaussian norm of ⇠. Standard normal random variables are sub-gaussian.
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2. Main results

We state all of our main results in non-asymptotic forms (without using any
asymptotic notation) and state all constants explicitly so that the results can be
applied to matrices of any dimension.

2.1. Individual singular vector bounds. We first state the technical version of
Theorem 2 with precise dependences between the parameters.

Theorem 4 (Perturbation with Gaussian noise). Let A and E be N ⇥ n real

matrices, where A is deterministic with rank r � 1 and the entries of E are jointly

independent standard Gaussian random variables. Let K be an arbitrary positive

constant, and denote ⌘ := 54r
p

(K + 8) log(N + n). If �1 � 4(
p
N +

p
n) + 140⌘r

and �1 = �1 � �2 � 100⌘r, then with probability at least 1� 15(N + n)�K

sin\(u1, eu1)  542
p
K + 8

r
p
log(N + n)

�1
+ 2

kEk
�1

(5)

whenever
(
p
N+

p
n)2

log(N+n) > 64(K + 9). The same bound holds for sin\(v1, ev1).

Remark 5. Note that the constants in this theorem (such as 54 and 100) and our
theorems below are chosen for convenience. In order to keep the proof presentable,
we have not tried to optimize these values. However, the values can be significantly
improved by tracking the constants throughout the proof. For example, if one

replaces the assumptions �1 � 4(
p
N +

p
n) + 140⌘r and (

p
N+

p
n)2

log(N+n) > 64(K + 9)

by �1 � 11(
p
N +

p
n)+150⌘r and (

p
N+

p
n)2

log(N+n) > 200(K+9), then the constant 542

appearing on the right-hand side of (5) can be replaced by 180.

Theorem 4 improves upon (2) and Theorem 1 when the rank r is su�ciently
small and �1 ⌧ kEk. As discussed in the previous section, the bound given in (5)
is optimal, up to the choice of constants and the particular polynomial dependence
on r and log(N + n).

2.2. Singular subspace bounds. The results stated so far have focused on the
singular vectors corresponding to the largest singular value. More generally, we will
consider the singular subspaces spanned by the first j (1  j  r) singular vectors.
Define

Uj := Span{u1, . . . , uj}, Vj := Span{v1, . . . , vj},
eUj := Span{eu1, . . . , euj}, eVj := Span{ev1, . . . , evj}.

(6)

Even more generally, for any 1  k  s  r, let us denote

Uk,s := Span{uk, . . . , us}, eUk,s := Span{euk, . . . , eus}

and analogously for Vk,s and eVk,s.
Recall that if U and V are two subspaces of the same dimension, then the largest

principal angle \(U, V ) between them is given by

sin\(U, V ) := max
u2U ;u 6=0

min
v2V ;v 6=0

sin\(u, v) = kPU � PV k = kPU?PV k, (7)
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where PW is the orthogonal projection matrix onto subspace W . We define the
gaps (or separations) between the singular values of A by

�i = �i � �i+1

for 1  i  r, where we use the convention that �r+1 = 0.
Theorem 2 can be generalized to the following.

Theorem 6 (Singular subspace bounds; simplified asymptotic version). Let A and

E be N⇥n real matrices, where A is deterministic with rank r � 1 and the entries of

E are jointly independent standard Gaussian random variables. For any 1  r0  r,
if min�l 6=�j ,1l,jr0 |�l � �j | � C(r, log(N + n)), then, with probability 1� o(1),

sin\(Ur0 , eUr0) .
C(r, log(N + n))

�r0
+

kEk
�r0

,

where C(s, t) is a positive parameter that grows at most polynomially in s and t.

Here, the minimum min�l 6=�j ,1l,jr0 |�l � �j | is over all distinct singular values
�l 6= �j , j, l  r0. In particular, this includes the case when some of the singular
values of A may be repeated. Since the minimum is only over distinct singular
values, even if some singular values occur with multiplicity, it is always the case
that min�l 6=�j ,1l,jr0 |�l � �j | > 0. The technical version of Theorem 6 is given
below.

Theorem 7 (Singular subspace bounds). Let A and E be N⇥n real matrices, where

A is deterministic and the entries of E are jointly independent standard Gaussian

random variables. Assume A has rank r � 1. Let K > 0 be any constant and denote

⌘ := 54r
p
(K + 8) log(N + n). Assume

(
p
N+

p
n)2

log(N+n) > 64(K + 9). For any 1  r0 
r, if �r0 � 4(

p
N+

p
n)+140⌘r, �r0 � 100⌘r and min�l 6=�j ,1l,jr0 |�l��j | � 100⌘r,

then

sin\(Ur0 , eUr0)  21
p
2⌘

vuut
r0X

j=1

1

(�j � �r0+1)2
+ 2

kEk
�r0

(8)

with probability at least 1 � 15(N + n)�K
. The same conclusion also holds for

sin\(Vr0 , eVr0).
In addition, for any 1 < k  s  r0, if min{�k�1, �s} � 100⌘r, then

sin\(Uk,s, eUk,s) 21
p
2⌘

0

@

vuut
k�1X

j=1

1

(�j � �k)2
+

vuut
sX

j=k

1

(�j � �s+1)2

1

A

+ 2

✓
kEk
�k�1

+
kEk
�s

◆

with probability at least 1 � 15(N + n)�K
. The same conclusion also holds for

sin\(Vk,s, eVk,s).

The choice of constants, such as 100 and 140, in Theorem 7 is for convenience;
an inspection of the proof will reveal exactly how much these constants can be
optimized (see Remark 5).

The key to proving our main results is a precise prediction for the location of the
singular values of A+E. In order to obtain optimal control of the singular values,
one cannot simply compare e�j to �j (or more conveniently e�2

j to �2

j ). Instead, we
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compare �2

j to e�2

j + ", where " is a random correction term (depending only on
the matrix E). This random correction term allows us to obtain a more precise
prediction for the singular values. The precise result is given in Theorem 12, which
can be found in Section 3.3, after appropriate notations have been introduced.

2.3. Comparison to other results in the literature. Many classical results
compare the singular vectors (alternatively, eigenvectors) of A + E to those of
A. The study of eigenvector perturbations dates back to at least Rayleigh [54]
and Schrödinger [58]. More recently, these results include the Davis–Kahan–Wedin
sin⇥ theorem [25,70]. For the singular values (alternatively, eigenvalues), there are
many classical results, including Weyl’s bound [13]. In contrast to this work, all of
these classical results focus on the case when A and E are deterministic. We refer
the reader to the classical texts [13, 38,59] for further details and generalizations.

The case when E is random has only been studied more recently. As discussed
above, our main results in this paper improve upon the works [51,66]. A number of
similar results have focused on the case when E has Gaussian entries. For example,
in [44], Koltchinskii and Xia derive concentration bounds for linear forms involving
the singular vectors and this was later extended to tensors by Xia and Zhou in [71].
The non-asymptotic distribution of the singular vectors, up to rotation, is studied
by R. Wang in [69]. A perturbative expansion of the coordinates of the eigenvectors
is given in [9]. Allez and Bouchaud studied the eigenvector dynamics of A+E when
both A and E are real symmetric matrices and the entries of E are constructed
from a family of independent real Brownian motions [2].

In the random matrix theory literature, there are a number of perturbation
results; in contrast to this work, many of these results focus on the case when kAk
and kEk are proportional. The works of Benaych–Georges and Nadakuditi [11,12]
have influenced this paper (and we discuss these works more below). The results in
[11,12] establish the almost sure convergence of the projection of the outlier singular
vectors (resp. eigenvectors) onto the r-dimensional singular vector subspace (resp.
eigenspace) of A, assuming r, the rank of A, is fixed and the dimensions N,n tend
to infinity. The limiting distribution of such projections is explicitly given in [7].
In these papers, the norm of A and E must be comparable. We make no such
assumption here. (In fact, in applications, the intensity of the noise is expected to
be much smaller than the key signals.) Several related results for eigenvectors of
random matrices are also discussed in the survey [50]. A di↵erent yet closely related
type of perturbation comes from the spiked covariance model (see [5, 6, 16, 17, 49]
and many references therein).

Another class of results in the literature is motivated by applications. Motivated
by statistical machine learning, Abbe, Fan, Wang, and Zhong [1] provide entry-wise
bounds between the eigenvectors of a random matrix and those of its expectation.
With similar motivations, the geometry of the singular subspaces are studied using
the two-to-infinity subordinate vector norm on matrices in [22]. In the real symmet-
ric case, when the matrix A is incoherent and has low rank, `1-norm bounds for the
eigenvectors are given in [33]. Similar entrywise-type behaviors for the eigenvectors
are studied in [76, 77]. Both deviation and fluctuation results for the eigenvectors
are presented in [21] based on statistical motivations. Applications of principal
components analysis have also motivated a number of similar works, including [75]
and references therein.
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The stochastic block model has been extensively studied in recent years, espe-
cially in connection with spectral algorithms, which often take advantage of eigen-
vector perturbation results. For example, motivated by the stochastic block model,
Eldridge, Belkin, and Wang [26] investigated random perturbations of real sym-
metric matrices. In particular, their results focus on the eigenvalues and `1-norm
bounds for the eigenvectors, which improve upon classical bounds. Additionally, we
highlight the works [24, 35, 47, 48, 55, 61, 67, 73, 74] concerning the stochastic block
model, which are perhaps the most relevant to this paper.

The list of works discussed above is far from complete and represents only a
small fraction of the literature.

2.4. Outline and notation. The paper is organized as follows. Section 3 estab-
lishes the preliminary tools needed for the proofs of our main results. We introduce
a key lemma, Lemma 9, that shows that the resolvent of the random noise can be
well approximated by a diagonal matrix. The proof of Lemma 9 is deferred to Sec-
tion 6. Section 3 also contains a brief overview of our proof techniques. In Section
4, we prove Theorem 7 using Lemma 9. Section 5 contains the proof of Theorem
12, which describes the precise location of the perturbed singular values of eA. The
proof of Theorem 3 is presented in Appendix A. In Appendix B, we collect the
proofs of Propositions 8, 10, 11, (21) and Lemma 13.

Without loss of generality, we always assume N  n, for if not, one can simply
apply the results to the transposes of the matrices. We introduce the following
notation. For a finite set S, |S| denotes the cardinality of S. Recall that kMk
denotes the spectral norm of the matrix M , and let kMkF denote the Frobenius
norm. For a vector x, kxk will be its Euclidean norm. The matrix In is the n⇥ n
identity matrix. We will often simply write I when the size can be deduced from
context. For integers m2 � m1 � 1, we let Jm1,m2K := {m1, . . . ,m2} denote
the discrete interval. The distance between a point z 2 C and a set G ⇢ C is
dist(z,G) := infw2G |z � w|. For two sets F ,G ⇢ C, the distance between them is
dist(F ,G) := infz2F,w2G |z�w|. For two random elements x and y, we write x ⇠ y
if x and y have the same distribution. The function log(·) will always denote the
natural logarithm.

3. Basic tools and an overview of the proof

In this section, we develop the preliminary tools needed to establish our main
results. Section 3.5 contains a brief overview of our main proof techniques.

3.1. Linear algebra. We first apply a linearization trick, which allows us to con-
sider the eigenvalues and eigenvectors of a symmetric matrix instead of studying
the singular values and vectors of a non-symmetric matrix.

Consider the (N + n)⇥ (N + n) matrices

A :=

✓
0 A
AT 0

◆
and E :=

✓
0 E
ET 0

◆

in block form. Define
eA := A+ E .

The non-zero eigenvalues of A are given by ±�1, . . . ,±�r. Indeed, A(uT

j , v
T

j )
T =

�j(uT

j , v
T

j )
T and A(uT

j ,�vTj )
T = ��j(uT

j ,�vTj )
T. Denote these eigenvalues by

�j = �j and �j+r = ��j for 1  j  r. Then uj := 1p
2
(uT

j , v
T

j )
T and uj+r :=
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1p
2
(uT

j ,�vTj )
T for 1  j  r are their corresponding orthonormal eigenvectors. The

spectral decomposition of A is given by

A = UDUT, (9)

where U := (u1, . . . ,u2r) and D := diag(�1, · · · ,�2r). It follows that UTU = I2r.

Similarly, the non-zero eigenvalues of eA are denoted by e�j = e�j and e�j+min{N,n} =

�e�j for 1  j  min{N,n}. The eigenvector corresponding to e�j is denoted by euj

and is formed by the right and left singular vectors of eA.
For J ⇢ J1, 2rK, we introduce the notation UJ to denote the (N +n)⇥ |J | matrix

formed from U by removing the columns containing ui for i 62 J . Similarly, DJ

will denote the |J |⇥ |J | matrix formed from D by removing the rows and columns
containing �i for i 62 J . Let I := J1, 2rK \ J . In this way, we can decompose A as

A = UDUT = UJDJUT

J + UIDIUT

I . (10)

With a slight abuse of notation, we also denote the subpace

UJ := Span{uk : k 2 J}.

Let PJ be the orthogonal projection onto the subspace UJ . Clearly, PJ = UJUT

J .

Analogous notations eUJ , ePJ , eDJ are also defined for eA.
For the remainder of the paper, it su�ces to derive results on the eigenspaces of

eA by noting the following linear algebra fact.

Proposition 8. Let U, eU ⇢ RN
and V, eV ⇢ Rn

be subspaces of the same dimension

p. Let W and fW be subspaces in RN+n
obtained by concatenating vectors from U, V

and eU, eV respectively, i.e. W = {w 2 RN+n : w = (uT , vT )T , u 2 U, v 2 V } and

fW = { ew 2 RN+n : ew = (euT , evT )T , eu 2 eU, ev 2 eV }. Then

max{sin\(U, eU), sin\(V, eV )} = sin\(W,fW ).

The proof of Proposition 8 is deferred to Appendix B.1. In particular, as a
special case of Proposition 8 one has

max{sin\(Ur0 , eUr0), sin\(Vr0 , eVr0)} = sin\(UI , eUI) (11)

for the index set I := J1, r0K [ Jr + 1, r + r0K and

max{sin\(Uk,s, eUk,s), sin\(Vk,s, eVk,s)} = sin\(UI, eUI) (12)

where I := Jk, sK [ Jr + k, r + sK, 1  r0  r, and 1  k  s  r0.
We also recall the Weinstein-Aronszajn identity (also called Sylvester’s determi-

nant identity), see page 271 of [53]: if B is an n⇥ k matrix and C is a k⇥n matrix
then

det(In �BC) = det(Ik � CB). (13)

When k < n, (13) allows us to reduce an n ⇥ n determinant to a smaller k ⇥ k
determinant.

Weyl’s inequality (see [13, Corollary III.2.6]) states that if B and C are n ⇥ n
real symmetric matrices with eigenvalues �1(B) � · · · � �n(B) and �1(C) � · · · �
�n(C), then

max
1jn

|�j(B)� �j(C)|  kB � Ck. (14)

The resolvent identity

B�1 � C�1 = B�1(C �B)C�1 (15)
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holds for invertible matrices B and C.

3.2. Resolvent. For z 2 C with |z| > kEk, we define the resolvent of E as

G(z) := (zI � E)�1.

Often we will drop the identity matrix and simply write (z � E)�1 for this matrix.
We use Gij(z) to denote the (i, j)-entry of G(z).

The resolvent G(z) is a heavily studied object in random matrix theory. For
example, one can study the eigenvalues of E (and hence the singular values of E)
by analyzing the trace, trG(z), since the trace is a meromorphic function with poles
precisely at the eigenvalues. In addition, the matrix G(z) encodes the behavior of
the eigenvectors of E (and hence the singular vectors of E). For many matrix models
(see [15,27,28,30,36,42,43,45,46] and references therein), the resolvent G(z) can be
approximated by a diagonal matrix. Here, we consider a random diagonal matrix

�(z) :=

 
1

�1(z)
IN 0

0 1

�2(z)
In

!
, (16)

where

�1(z) := z �
X

t2JN+1,N+nK
Gtt(z), �2(z) := z �

X

s2J1,NK
Gss(z). (17)

Under the assumptions of Theorem 7, where ⌘ = 54r
p

(K + 8) log(N + n), de-
fine a set in the complex plane in the neighborhood of any � 2 R by

S� := {w 2 C : | Im(w)|  20⌘r,� � 20⌘r  Re(w)  8

7
� + 20⌘r}. (18)

In the remainder of this paper, we define an index

i0 := min{j 2 J1, r0K : �j  n2}. (19)

Hence, for any the index l < i0, �l > n2. Note that i0 may not exists; in this case,
�j > n2 for all 1  j  r0.

Lemma 9. Under the assumptions of Theorem 7 and the additional assumption

that i0 defined in (19) exists, one has

max
j2Ji0,r0K

max
z2S�j

|z|2
��UT (G(z)� �(z))U

��  54r
p
(K + 8) log(N + n)

with probability at least 1� 10(N + n)�(K+1)
.

Lemma 9 is similar to many isotropic laws for random matrices; see, for instance,
[15, 36, 42, 43] and references therein. Roughly speaking, Lemma 9 quantitatively
controls how close G(z) is to the diagonal matrix �(z) and will be a fundamental
tool in our proofs. Unfortunately, we are not aware of any results in the literature
that imply Lemma 9 as stated due to the block structure that E takes and the
particular spectral domain S� we are interested in. We present the proof of this
lemma in Section 6. The assumption �j  n2 is purely technical: it is used in the
proof for carrying out a volume argument on a bounded set. The cuto↵ n2 is chosen
for convenience. An inspection of the proof reveals the conclusion of Lemma 9 holds
for all �j ’s satisfying �j  nc for a fixed c > 1 by adjusting the tail probability
accordingly.
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Finally, we collect some basic facts about the matrix �(z). By setting

Iu :=

✓
IN 0
0 0

◆
and Id :=

✓
0 0
0 In

◆
,

one can rewrite (17) as

�1(z) = z � tr IdG(z), �2(z) = z � tr IuG(z). (20)

It can be derived by elementary linear algebra (see Appendix B.4 for the proof)
that

�1(z) = �2(z)�
1

z
(n�N). (21)

From the definition of U in (9), it is easy to verify that

UT�(z)U =

✓
↵(z)Ir �(z)Ir
�(z)Ir ↵(z)Ir

◆
, (22)

where we denote

↵(z) :=
1

2

✓
1

�1(z)
+

1

�2(z)

◆
and �(z) :=

1

2

✓
1

�1(z)
� 1

�2(z)

◆

for notational brevity. It follows that

kUT�(z)Uk = max

⇢
1

|�1(z)|
,

1

|�2(z)|

�
. (23)

Sometimes, we drop the z-dependence of ↵(z),�(z),�1(z),�2(z) and simply write
↵,�,�1,�2 when the context is clear.

The following technical results can be derived via basic linear algebra and the
proofs are deferred to Appendix B.

Proposition 10. For 1  r0 < r, denote the index sets I := J1, r0K[ Jr+1, r+ r0K
and J := J1, 2rK \ I. For any x 2 R satisfying |x| > kEk, the singular values of

I2r�2r0 � UT

J �(x)UJDJ are given by

����
q
1 + �(x)2�2

t ± |↵(x)|�t

����

for r0 + 1  t  r.

Proposition 11. For any z 2 C satisfying |z| > kEk, the matrix

D�1 � UT�(z)U

is invertible with probability 1, and one has

���
�
D�1 � UT�(z)U

��1
��� = max

1lr

�l

|�2

l � �1�2|
Q1/2,

where

Q := |�1�2|2+
1

2
�2

l (|�1|2+|�2|2)+
1

2
�l

⇥
4|�1�2|2|�1 + �̄2|2 + �2

l (|�1|2 � |�2|2)2
⇤1/2

.
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3.3. Singular value locations. In this subsection, we introduce results that de-
scribe the precise locations of the singular values of A+E , and they will play a key
role in the proof of Theorem 7.

To this end, consider the random function

'(z) := �1(z)�2(z), (24)

where �1(z) and �2(z) are defined in (17), and recall the set S� for any � 2 R
defined in (18).

Theorem 12 (Singular value locations). Under the assumptions of Theorem 7

and the additional assumption that i0 defined in (19) exists, for any i0  j  r0,
if �j has multiplicity ↵j and is denoted by �j = �j+1 = . . . = �j+↵j�1, then

e�j , e�j+1, . . . , e�j+↵j�1 are in the set S�j specified in (18), and

|'(e�j+s)� �2

j+s| 
115

4
⌘r

✓
e�j+s +

8

7
�j+s

◆
for 0  s  ↵j � 1 (25)

with probability at least 1� 10(N + n)�K
.

Since '(z) = z2 + "(z), where "(z) is a random term depending on z and the
resolvent G(z), Theorem 12 allows us to approximate the (squared) singular values
of eA with those of A, up to the random "(z) correction term. While this random
correction term may seem odd at first, it allows for the much sharper bound appear-
ing on the right-hand side of (25), which in many cases is a significant improvement
over classic, deterministic bounds (such as Weyl’s inequality). Intuitively, since the
singular values of eA are random, it makes sense that one cannot only use deter-
ministic values to accurately predict their locations. One of the key di↵erences
between the techniques in this paper and those in [51] is that we take into account
the precise behavior of this random correction term.

The singular values considered in Theorem 12 are no larger than n2. If a singular
value �l is su�ciently large, the e↵ect of the noise E is negligible compared to the
strong signal and consequently, the location of e�l is very close to �l. The next
lemma provides the perturbed singular value locations for large singular values.
We defer its proof to Appendix B.5.

Lemma 13. Under the assumptions of Theorem 7,

max
l2J1,r0K:�l>

1
2n

2
|e�l � �l|  ⌘r

with probability at least 1� (N + n)�2r4(K+8)
.

3.4. Additional tools. We now present a few additional tools we will need in
the proofs. The first lemma captures the tail behavior for sub-exponential random
variables. A random variable X with mean µ = EX is sub-exponential with non-
negative parameters (⌫2,↵) if

E
⇣
e�(X�µ)

⌘
 e

⌫2�2

2 for all |�| < 1

↵
.

It is easy to verify that for a standard Gaussian random variable Z, Z2 is sub-
exponential with parameters (4, 4), i.e.

E
⇣
e�(Z

2�1)

⌘
 e

4�2

2 , for all |�| < 1

4
. (26)
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Lemma 14 (Bernstein’s inequality for sub-exponential random variables; see Propo-
sition 2.9 in [68]). Suppose that X is sub-exponential with parameters (⌫2,↵). Then

P(|X � EX| � t)  2 exp

✓
�1

2
min

⇢
t2

⌫2
,
t

↵

�◆
.

The following lemma provides a non-asymptotic bound for the spectral norm of
Gaussian matrices.

Lemma 15 (Spectral norm bound; see (2.3) from [56]). Let E be an N ⇥n matrix

whose entries are independent standard Gaussian random variables. Then

kEk  2(
p
N +

p
n)

with probability at least 1� 2e�(
p
N+

p
n)2/2

. More generally,

P(kEk 
p
N +

p
n+ t) � 1� 2e�t2/2.

The next lemma bounds the operator norms of the resolvent and is used fre-
quently in the proof. Let E(k) be the minor of E with the kth row and column
replaced by zeros and G(k)(z) the resolvent of E(k) (see the precise definition at the
beginning of Section 6). The proof is given in Appendix C.

Lemma 16. On the event where kEk  2(
p
N +

p
n),

kG(z)k  2

|z| , kG(k)(z)k  2

|z|
and

7

8
|z|  |�i(z)| 

9

8
|z| for i = 1, 2 (27)

for any z 2 C with |z| � 4(
p
N +

p
n) and for any k 2 J1, N + nK.

The following lemma suggests that when |z| is large, the resolvent G(z) can be
well approximated by a simple matrix. We defer its proof to Appendix C.

Lemma 17. On the event where kEk  2(
p
N +

p
n),

����G(z)� 1

z
IN+n � E

z2

����  2kEk2

|z|3

for any z 2 C with |z| � 4(
p
N +

p
n).

The next lemma bounds the operator norm of the random matrix UT EU of size
2r ⇥ 2r where U is defined in (9). Its proof can be found in Appendix C.

Lemma 18. Let K be an arbitrary positive constant. With probability at least

1� 2(N + n)�K
, we have

kUT EUk  2
p
r +

p
2K log(N + n).

3.5. Overview of the proofs. We now provide a brief overview of the proofs of
our main results. For simplicity, we focus on the proof of Theorem 4, although the
proof of Theorem 7 is similar.

As noted above, Proposition 8 allows us to focus on the eigenvectors of A and
eA. In this case, we have

sin2 \(u1, eu1) = 1� |uT

1
eu1|2 =

X

j 6=1

|uT

1
euj |2.
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Thus, our task reduces to controlling the inner products uT
1
euj for j 6= 1. For

simplicity, let us focus on the case when j = 2. We start with the eigenvector-
eigenvalue equation

eAeu2 = e�2eu2.

Rearranging this equation and using that eA = A+ E , we arrive at

eu2 = G(e�2)Aeu2, (28)

provided |e�2| > kEk. Multiplying (28) by uT
1
, we find

uT

1
eu2 = uT

1
G(e�2)UDUTeu2, (29)

where we used the spectral decomposition given in (9). Using Lemma 9, the re-
solvent matrix on the right-hand side of (29) can be approximated by the matrix

�(e�2). Accordingly, we split the right-hand side of (29) into two terms

uT

1
eu2 = uT

1
�(e�2)UDUTeu2 + uT

1

⇣
G(e�2)� �(e�2)

⌘
U · DUTeu2, (30)

and Lemma 9 facilitates precise control over the second term appearing on the
right-hand side of (30). In addition, we see that the term UTeu2 appearing in the
first term on the right-hand side of (30) contains a copy of the inner product u1 ·eu2

as one of its entries. This will allow us to turn (29) into a recursive equation, with
the inner product appearing on both sides of the equation. More precisely, from
the spectral decomposition

A = UDUT = �1u1u
T

1
+ �r+1ur+1u

T

r+1
+ U0D0UT

0
,

where U0 is obtained from U by removing the columns u1 and ur+1 and D0 from
D by removing the rows/columns containing �1 and �r+1. Hence, from (22), we
arrive at

uT

1
�(e�2)UDUTeu2 = �1↵(e�2)u

T

1
eu2 + �r+1�(e�2)u

T

r+1
eu2.

Plugging the above equation back into (30) and rearranging the terms, we see that
⇣
1� �1↵(e�2)

⌘
uT

1
eu2 = �r+1�(e�2)u

T

r+1
eu2 +uT

1

⇣
G(e�2)� �(e�2)

⌘
U ·DUTeu2. (31)

Understanding the location of e�2 is key to analyzing the left-hand side of (31), and
Theorem 12 will allow us to accurately estimate

1� �1↵(e�2) = 1� �1↵(e�2) ⇡ 1� �1/�2;

this estimate explains the appearance of the spectral gap �1 in the results.
Actually, the term uT

r+1
eu2 on the right-hand side of (31) also encompasses infor-

mation regarding uT
1
eu2 by the definition of the euj ’s and should not be overlooked.

Besides, it is also wasteful to estimate each inner product |uT
1
euj | separately. In-

stead, when proving Theorem 7, we will group the inner products |uT
1
euj | into two

categories: when j 2 Jr0 + 1, rK[ Jr+ r0 + 1, 2rK and when j > 2r. The arguments
for the first category are similar to the methods discussed above (see Lemma 20).
The bound for the second category is much simpler and results in the signal-to-noise
ratio term appearing in Theorem 7 (see Lemma 19).
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4. Proof of Theorem 7

In this section, we prove Theorem 7 using Theorem 12 and Lemma 9. In view of
(11), it su�ces to bound sin\(UI , eUI) for I := J1, r0K[ Jr+ 1, r+ r0K. Assume the
null space of A is spanned by the orthonormal basis {u2r+1, . . . ,uN+n}; in general,
there will be many choices for this orthonormal basis and any choice will su�ce for
our purposes.

The main idea of the proof is to divide the bound on sin\(UI , eUI) into two parts.
The first part involves projections of the vectors ur0+1, . . . ,ur,ur+r0+1, . . . ,u2r

while the second part involves projections of the vectors u2r+1, . . . ,un+N . The
latter terms can be controlled using the noise-to-signal ratio kEk/�r0 . The main
argument is the estimate of the first term, which reflects that when the signal is
stronger than the noise, the action of E is essentially on the 2r-dimensional subspace
spanned by the eigenvectors of A corresponding to the non-trivial eigenvalues. We
use the resolvent G(z) to extract information about the perturbed eigenvectors with
the aid of Lemma 9 and Theorem 12.

If r0 = r, then �r = �r and the conclusion follows from the Davis–Kahan–Wedin
sine ⇥ theorem [25,70], which implies that

max{sin\(Ur, eUr), sin\(Vr, eVr)}  2
kEk
�r

.

Thus we assume 1  r0  r� 1 throughout the proof. For the remainder of this
section, we fix the index sets

I := J1, r0K [ Jr + 1, r + r0K
and

J := J1, 2rK \ I = Jr0 + 1, rK [ Jr + r0 + 1, 2rK.

Lemma 19. Under the assumptions of Theorem 7,

sin\(UI , eUI) := kPI � ePIk  kPJ
ePIk+ 2

kEk
�r0

with probability 1.

Proof. We assume �r0 > 2kEk as the bound is trivial otherwise. In view of [13,
Exercise VII.1.11],

kPI � ePIk = kPIc ePIk

 kPJ
ePIk+ kPJ2r+1,N+nK ePIk.

We aim to bound
kPJ2r+1,N+nK ePIk  kUT

J2r+1,N+nK eUIk.

From the spectral decomposition of eA, we have

(A+ E) eUI = eUI
eDI .

Multiplying by UT

J2r+1,N+nK on the left of the equation above, we further have

UT

J2r+1,N+nKE eUI = UT
J2r+1,N+nK eUI

eDI .

As �r0 > 2kEk by supposition, Weyl’s inequality (14) implies that

e�i � �i � kEk � 1

2
�i (32)
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for 1  i  r0. Hence, eDI is invertible since |e�i| = e�i � �i �kEk > 0 for i 2 J1, r0K
and |e�i| = e�i�r > 0 for i 2 Jr + 1, r + r0K. It follows that

kUT

J2r+1,N+nK eUIk = kUT

J2r+1,N+nKE eUI
eD�1

I k  kEkk eD�1

I k =
kEk
e�r0

.

Thus by another application of (32), we get

kPJ2r+1,N+nK ePIk  kEk
e�r0

 2
kEk
�r0

. (33)

as desired. ⇤
It remains to bound kPJ

ePIk, which is the content of the following lemma.

Lemma 20. Under the assumptions of Theorem 7, we have

kPJ
ePIk  21

p
2⌘

vuut
r0X

j=1

1

(�j � �r0+1)2

with probability at least 1� 15(N + n)�K
.

Proof. In the following, we work on the event where kEk  2(
p
N +

p
n); Lemma

15 shows this event holds with probability at least 1� 2e�(
p
N+

p
n)2/2 � 1� 2(N +

n)�32(K+2) since (
p
N +

p
n)2 > 64(K + 2) log(N + n) by assumption. We start

with the bound

kPJ
ePIk  kUT

J
eUIk  kUT

J
eUIkF =

sX

i2I

kUT

J euik2. (34)

Now we estimate kUT

J euik for each i 2 I. We split the index set I into two disjoint
sets:

Is := {i 2 I : |�i|  n2} and Ib := {i 2 I : |�i| > n2}.
Note that Is or Ib could be the empty set.

Case 1: estimate kUT

J euik for i 2 Is. We first obtain an identity for the eigenvec-

tor eui. By Weyl’s inequality, |e�i| � e�r0 � �r0 � kEk > kEk = kEk by supposition

on �r0 and thus G(e�i) and �(e�i) are well-defined. As (A + E)eui = e�ieui, we solve
for eui to obtain

eui = (e�iI � E)�1Aeui = G(e�i)Aeui.

Rewrite the above equation

eui = �(e�i)Aeui +
⇣
G(e�i)� �(e�i)

⌘
Aeui

and multiply on the left by UT

J to get

UT

J eui = UT

J �(e�i)Aeui + UT

J

⇣
G(e�i)� �(e�i)

⌘
Aeui. (35)

Plugging in (10), we further have

UT

J eui = UT

J �(e�i)UJDJUT

J eui + UT

J

⇣
G(e�i)� �(e�i)

⌘
UDUTeui,

where we used UT

J �(
e�i)UI = 0. Hence,

⇣
I2r�2r0 � UT

J �(e�i)UJDJ

⌘
UT

J eui = UT

J

⇣
G(e�i)� �(e�i)

⌘
UDUTeui. (36)
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We are now in position to bound kUT

J euik. This can be achieved by obtaining an
upper bound for the right-hand side of (36) and estimating the smallest singular
value of the matrix

I2r�2r0 � UT

J �(e�i)UJDJ (37)

on the left-hand side of (36). We establish these estimates in the following two
steps. Recall the index i0 from (19). We will work on the event E := \r0

i=i0
Ei where

Ei :=

⇢
e�i 2 S�i ,

��UT (G(e�i)� �(e�i))U
��  ⌘

e�2

i

, |�1(e�i)�2(e�i)� �2

i | 
115

4
⌘r(e�i +

8

7
�i)

�
.

(38)

By Theorem 12 and Lemma 9, the event E holds with probability at least 1�12(N+
n)�K .

Step 1. Upper bound for the right-hand side of (36). Recall I = J1, r0K [ Jr +

1, r + r0K. We first consider the case when i 2 J1, r0K and e�i = e�i. Note that
UT

J (G(e�i)� �(e�i))U is a sub-matrix of UT (G(e�i)� �(e�i))U . Thus, using (38)
and the fact that the spectral norm of any sub-matrix is bounded by the spectral
norm of the full matrix, we deduce that

kUT

J (G(e�i)� �(e�i))UDUTeuik  ⌘

e�2

i

kDUTeuik.

Observe from (A + E)eui = e�ieui that UDUTeui = (e�iI � E)eui. Multiplying UT on
both sides, we get the bound

kDUTeuik  kEk+ e�i  2�i (39)

using the assumption kEk  1

2
�i and Weyl’s inequality. Hence,

���UT

J

⇣
G(e�i)� �(e�i)

⌘
UDUTeui

���  2
⌘�i

e�2

i

. (40)

For the case when i 2 Jr + 1, r + r0K, e�i = �e�i�r. Observe that

G(�e�i�r) = (�e�i�r � E)�1 = �(e�i�r + E)�1 ⇠ �(e�i�r � E)�1 = �G(e�i�r)

because the distribution of E is symmetric. Hence

�(�e�i�r) ⇠ ��(e�i�r)

by the definition (16). Repeating the arguments from the previous case, we see that
���UT

J

⇣
G(e�i)� �(e�i)

⌘
UDUTeui

���  2
⌘�i�r

e�2

i�r

. (41)

Step 2. Lower bound for the smallest singular value of the matrix (37). By Propo-

sition 10, the singular values of I2r�2r0 � UT

J �(
e�i)UJDJ are given by

����
q
1 + �(e�i)2�2

t ± |↵(e�i)|�t

���� (42)

for r0 + 1  t  r.
In order to bound the singular values, we first estimate �1(e�i)�2(e�i), �1(e�i) and

�2(e�i) for i0  i  r0. Since e�i 2 S�i by (38) where S�i is defined in (18), we have

e�i � �i � 20⌘r � 4(
p
N +

p
n)
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and
9

7
�i �

8

7
�i + 20⌘r � e�i � �i � 20⌘r � 6

7
�i

by the supposition �i � 4(
p
N +

p
n) + 140⌘r.

Continuing from (38), we have

|�1(e�i)�2(e�i)� �2

i | 
1955

28
⌘r�i (43)

and consequently, 393

784
�2

i  �1(e�i)�2(e�i)  1175

784
�2

i from the supposition that �i �
140⌘r. Observe from (27) that

7

8
e�i  �1(e�i) 

9

8
e�i. (44)

Thus
3

4
�i  �1(e�i) 

81

56
�i.

The same bound also holds from �2(e�i). Using these estimates, we crudely bound

0 < ↵(e�i) =
1

2

✓
1

�1(e�i)
+

1

�2(e�i)

◆
 4

3�i
,

and with (21)

�(e�i) =
1

2

✓
1

�1(e�i)
� 1

�2(e�i)

◆
=

�2(e�i)� �1(e�i)

2�1(e�i)�2(e�i)
=

n�N

e�i

1

2�1(e�i)�2(e�i)
 49

786�i

by noting that e�i,�i � 4(
p
N +

p
n).

We are ready to bound the singular values of I2r�r0 � UT

J �(e�i)UJDJ . We start

with the case when i 2 J1, r0K and e�i = e�i. In view of (42), the goal is to bound

min
r0+1tr

����
q
1 + �(e�i)2�2

t ± |↵(e�i)|�t

���� = min
r0+1tr

����
q

1 + �(e�i)2�2
t � ↵(e�i)�t

����

= min
r0+1tr

�����
1� (↵(e�i)2 � �(e�i)2)�2

tp
1 + �(e�i)2�2

t + ↵(e�i)�t

�����

= min
r0+1tr

���1� �2
t

�1(e�i)�2(e�i)

���
p
1 + �(e�i)2�2

t + ↵(e�i)�t

.

The upper bounds of ↵(e�i) and �(e�i) obtained above, together with �t/�i  1,
yield that

q
1 + �(e�i)2�2

t + ↵(e�i)�t 

s

1 +

✓
49

786

◆2 �2
t

�2

i

+
4�t

3�i
 2.5

for any r0 + 1  t  r. Hence,

min
r0+1tr

����
q

1 + �(e�i)2�2
t ± ↵(e�i)�t

���� �
1

2.5
min

r0+1tr

����
�1(e�i)�2(e�i)� �2

t

�1(e�i)�2(e�i)

����

� 1

2.5

�2

i � 1955

28
⌘r�i � �2

r0+1

�1(e�i)�2(e�i)
.

In the last inequality above, we invoked (43) which implies

�1(e�i)�2(e�i)� �2

t � �2

i �
1955

28
⌘r�i � �2

r0+1
> 0
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by the supposition �i � �r0+1 � �r0 � 100⌘r. Applying this supposition again,
together with (44), we further deduce that

min
r0+1tr

����
q
1 + �(e�i)2�2

t ± ↵(e�i)�t

���� �
1

e�2

i

1

2.5

✓
8

9

◆2✓
�2

i � �2

r0+1
� 1955

28
⌘r�i

◆

�
�2

i � �2
r0+1

e�2

i

1

2.5

✓
8

9

◆2✓
1� 1955

28

1

100

◆

� 0.0953
�2

i � �2
r0+1

e�2

i

. (45)

For the case when i 2 Jr + 1, r + r0K and e�i = �e�i�r. Use the observation

that ↵(e�i) ⇠ �↵(e�i�r) and �(e�i) ⇠ ��(e�i�r) from the definitions (20). A simple
modification of the proof for the first case shows that

min
r0+1tr

����
q
1 + �(e�i)2�2

t ± |↵(e�i)|�t

���� � 0.0953
�2

i�r � �2
r0+1

e�2

i�r

. (46)

Step 3. Combining the bounds above. With the estimates deduced in the previous
two steps, we are in a position to bound kUT

J euik. For i 2 J1, r0K\Is, plugging (40)
and (45) and into (36), we find that

kUT

J euik  2⌘�i

0.0953(�2

i � �2
r0+1

)
 21⌘

�i � �r0+1

, (47)

and for i 2 Jr + 1, r + r0K \ Is, using (41) and (46), we get

kUT

J euik  21⌘

�i�r � �r0+1

. (48)

Case 2: estimate kUT

J euik for i 2 Ib. By Weyl’s inequality, |e�i| � n2 � kEk �
4(
p
N +

p
n) for every i 2 Ib. Hence, we apply Lemma 17 to get

���G(e�i)� (e�i)
���  2kEk2

|e�i|3
(49)

where  (z) := 1

z IN+n + 1

z2 E . Repeating the arguments as in the beginning of Case
1, we obtain the following equation similar to (35):

UT

J eui = UT

J  (e�i)Aeui + UT

J

⇣
G(e�i)� (e�i)

⌘
Aeui.

Plugging in (10) and using the facts UT

J UI = 0 and UT

J UJ = I, we further get

UT

J eui =
1
e�i

DJUT

J eui +
1
e�2

i

UT

J EUDUTeui + UT

J

⇣
G(e�i)� (e�i)

⌘
UDUTeui,

which, by rearranging the terms, is reduced to

(e�iI �DJ)UT

J eui =
1
e�i

UT

J EUDUTeui + e�iUT

J

⇣
G(e�i)� (e�i)

⌘
UDUTeui.

Hence,

min
j2J

|e�i � �j | · kUT

J euik  1

|e�i|
kUTEUk · kDUTeuik+ |e�i|kG(e�i)� (e�i)k · kDUTeuik.
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Note that kDUTeuik  kEk + |e�i|  2|e�i| as in (39). Inserting (49) into the above
inequality, we arrive at

min
j2J

|e�i � �j | · kUT

J euik  2kUTEUk+ 4
kEk2

|e�i|
. (50)

For the remaining arguments, we work on the event

F :=
�
kUTEUk  2

p
r +

p
10(K + 8) log(N + n)

 
\
�

max
i2J1,r0K;�i> 1

2n
2
|e�i � �i|  ⌘r

 
.

(51)

By Lemma 13 and Lemma 18, the event F holds with probability at least

1� 2(N + n)�5(K+8) � (N + n)�2r4(K+8) � 1� 3(N + n)�2(K+8).

We continue the estimation of kUT

J euik from (50). Note from (51) that

kUTEUk  2
p
r +

p
10(K + 8) log(N + n)  ⌘.

Also, kEk2/|e�i|  8(2
p
n)2/n2  ⌘ where we used the crude bound |e�i| � 1

2
n2 by

Weyl’s inequality. It follows that

min
j2J

|e�i � �j | · kUT

J euik  6⌘. (52)

To bound the left-hand side of (52), we first consider i 2 J1, r0K \ Ib. Then

min
j2J

|e�i � �j | = min
r0+1jr

|e�i � �j | = e�i � �r0+1

by (51) and the supposition �r0 = �r0 ��r0+1 � 100⌘r. Next, applying �r0 � 100⌘r
again, we get

min
j2J

|e�i � �j | = �i � �r0+1 + (e�i � �i) � 0.99(�i � �r0+1).

It follows from (52) that

kUT

J euik  7⌘

�i � �r0+1

(53)

for every i 2 J1, r0K \ Ib. Finally, for i 2 Jr + 1, r + r0K \ Ib, analogous arguments
yield that

kUT

J euik  7⌘

�i�r � �r0+1

. (54)

The proof is now complete by inserting (47), (48), (53) and (54) into (34). ⇤

Combining Lemma 19 and Lemma 20 gives

sin\(UI , eUI)  21
p
2⌘

vuut
r0X

i=1

1

(�i � �r0+1)2
+ 2

kEk
�r0

. (55)

The proof of (8) now follows by (11).
Finally, the bound for sin\(UJk,sK, eUJk,sK) and sin\(VJk,sK, eVJk,sK) can be derived

by an analogous procedure, and we briefly sketch the details below. First, recall
from (12) that it su�ces to bound sin\(UI, eUI) where I := Jk, sK [ Jr + k, r + sK.

Denote
J := J1, 2rK \ I = J1 [ J2,
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where

J1 := J1, k � 1K [ Jr + 1, r + k � 1K and J2 := Js+ 1, rK [ Jr + s+ 1, 2rK.
Observe that

sin\(UI, eUI) = kPI � ePIk = kPIc
ePIk

 kPJ1
ePIk+ kPJ2

ePIk+ kPJ2r+1,N+nK ePIk.
Using the same method as in Lemma 19, one can bound

kPJ2r+1,N+nK ePIk  2
kEk
�s

.

Similarly, following the arguments in the proof of Lemma 20, one sees that

kPJ2
ePIk  21

p
2⌘

vuut
sX

i=k

1

(�i � �s+1)2
.

To conclude the result, we only need to bound

kPJ1
ePIk = k(PJ1 � ePJ1) ePIk

 kPJ1 � ePJ1k = sin\(UJ1 , eUJ1)  21
p
2⌘

vuut
k�1X

i=1

1

(�i � �k)2
+ 2

kEk
�k�1

by applying (55). Hence, we obtain

sin\(UI, eUI)

 21
p
2⌘

vuut
k�1X

i=1

1

(�i � �k)2
+ 21

p
2⌘

vuut
sX

i=k

1

(�i � �s+1)2
+ 2

kEk
�k�1

+ 2
kEk
�s

.

The proof is complete by (12).

5. Proof of Theorem 12

This section is devoted to the proof of Theorem 12. Throughout the proof, we
work on the event where kEk = kEk  2(

p
N+

p
n); recall that Lemma 15 provides

with probability at least 1�2e�(
p
N+

p
n)2/2 � 1�2(N +n)�32(K+2) that this event

holds. For convenience, denote

M := 4(
p
N +

p
n).

Note that the assumptions of Theorem 12 guarantees that for any z 2 S�j (i0 
j  r0), |z| � Re(z) � �j � 20⌘r > M .

Our next lemma provides a way to locate the eigenvalues of a perturbed real
symmetric matrix. Similar results have been applied in the random matrix the-
ory literature to study eigenvalues for both symmetric and non-symmetric random
matrices [4, 10, 11,23,62].

Lemma 21 (Eigenvalue location criterion). Assume A has rank 2r with the spectral

decomposition A = UDUT
, where U is an (N+n)⇥2r matrix satisfying UTU = I2r

and D is a 2r⇥2r diagonal matrix with non-zero �1, . . . ,�2r on the diagonal. Then

the eigenvalues of A+ E outside of [�kEk|, kEk] are the zeros of the function

z 7! det(D�1 � UTG(z)U).
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Moreover, the algebraic multiplicity of each eigenvalue matches the corresponding

multiplicity of each zero.

Proof. The eigenvalues of A + E are the zeros of the polynomial det(zI �A � E).
For |z| > kEk,

det(zI �A� E) = det(zI � E) det(I �G(z)A)

= det(zI � E) det(I �G(z)UDUT)

= det(zI � E) det(I � UTG(z)UD)

= det(zI � E) det(D) det(D�1 � UTG(z)U).

by the Weinstein-Aronszajn identity (13). Since det(zI � E) 6= 0 for |z| > kEk, the
claim follows. ⇤

Define the functions

f(z) := det(D�1 � UTG(z)U), g(z) := det
�
D�1 � UT�(z)U

�
,

where �(z) is given in (16). Observe that, by Lemma 16, 1/�1(z), 1/�2(z) and
thus �(z) are well-defined for any |z| > M . Therefore, f and g are both complex
analytic in the region {z 2 C : |z| > M}.

An easy computation, together with (22), yields that

g(z) =
rY

l=1

✓
1

�1(z)�2(z)
� 1

�2

l

◆

and thus the zeros of g(z) are the values z 2 C which satisfy the equations
�1(z)�2(z) = �2

l .
Recall from (24) and (20) that

'(z) = �1(z)�2(z) = (z � tr IdG(z))(z � tr IuG(z)).

The next lemma establishes several properties of ' in the complex plane and on
the real line.

Lemma 22. The function ' satisfies the following properties.

(i) For z, w 2 C with |z|, |w|, |z + w| > M ,

9

16
|z2 � w2|  |'(z)� '(w)|  23

16
|z2 � w2|. (56)

(ii) (Monotone) ' is real-valued and strictly increasing on [M,1).
(iii) (Crude bounds) 0 < '(z) < z2 for any z 2 [M,1).

Proof. Since '(z) = z2 � z trG(z) + tr IuG(z) tr IdG(z), we first have

'(z)� '(w) = (z2 � w2)� (z trG(z)� w trG(w))

+ (tr IuG(z) tr IdG(z)� tr IuG(w) tr IdG(w)). (57)

To establish (56), observe that

z trG(z)� w trG(w) = (z trG(z)� w trG(z)) + w(trG(z)� trG(w))

= (z � w) trG(z) + w(w � z) trG(z)G(w)
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by the resolvent identity (15). For |z|, |w|, |z + w| > M , using Lemma 16, we get

|z trG(z)� w trG(w)| = |z � w|(| trG(z)|+ |w|| trG(z)G(w)|)
 |z � w| ((N + n)kG(z)k+ |w|(N + n)kG(z)G(w)k)

 |z � w|(N + n)

✓
2

|z| + |w| 4

|z||w|

◆

= |z � w|(N + n)
6

|z|

 3

8
|z2 � w2|. (58)

Analogously, one can split

| tr IuG(z) tr IdG(z)� tr IuG(w) tr IdG(w)|
 | tr IuG(z) tr IdG(z)� tr IuG(w) tr IdG(z)|

+ | tr IuG(w) tr IdG(z)� tr IuG(w) tr IdG(w)|. (59)

For the first term on the right-hand side of (59), by (15) and Lemma 16, we have

| tr IuG(z) tr IdG(z)� tr IuG(w) tr IdG(z)| = | tr IdG(z)|| tr IuG(z)� tr IuG(w)|
= | tr IdG(z)||(z � w) tr IuG(z)G(w)|

 1

8
|z||z � w|| tr IuG(z)G(w)|

 1

8
|z||z � w|(N + n)kG(z)kkG(w)k

 1

2

N + n

|w| |z � w|

 1

32
|z2 � w2|,

where in the last inequality we used N+n
|w|  1

16
|z + w| since |w|, |z + w| > M .

The second term on the right-hand side of (59) can be estimated likewise, and we
conclude that

| tr IuG(z) tr IdG(z)� tr IuG(w) tr IdG(w)|  1

16
|z2 � w2|.

Combining the above bound and (58) with (57) yields (56).
To prove property (ii), it su�ces to show that �1(z),�2(z) are both positive and

strictly increasing on [M,1). By (20) and the bound in (95), �1(z) > 0 for z � M .
Using the expression in (93), we observe that

�1(z) = z � 1

2

NX

i=1

✓
1

z � ⌘i
+

1

z + ⌘i

◆
� 1

z
(n�N), (60)

where ⌘1, . . . , ⌘N are the singular values of E. Thus, �1(z) is a strictly increasing
function since z � M � |⌘i| for all i. A similar argument shows that �2(z) is also
positive and strictly increasing on [M,1). Thus, '(z) = �1(z)�2(z) is the product
of two positive strictly increasing functions and so is strictly increasing. In addition,
it follows from (60) that 0 < �1(z) < z (and similarly 0 < �2(z) < z) for z � M .
Thus, property (iii) follows immediately. ⇤
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Fix an index j 2 J1, r0K. Since '(M) < M2 and limz!1 '(z) = 1, it follows
from the previous lemma that there exists a unique positive real number zj > M
such that '(zj) = �2

j . Similarly, if �l > M for �l 6= �j , then there exists a unique
positive real number zl with '(zl) = �2

l so that zj > zl if l > j and zj < zl if l < j.
For the next result, we define the half space

Hj := {z 2 C : Re(z) � zj � 20⌘r}.

Proposition 23. Under the assumptions of Theorem 7, for every z 2 Hj,

|z| � �j � M.

In particular,

�j < zj <
8

7
�j . (61)

Proof. In view of Lemma 22, it follows that �2

j = '(zj) < z2j . Thus, as �j �
M + 140⌘r by assumption,

|z| � Re(z) � zj � 20⌘r � �j � 20⌘r � M + 100⌘r � M

for any z 2 Hj .
Since �2

j = '(zj) = (zj � tr IdG(zj))(zj � tr IuG(zj)),

z2j � �2

j = zj trG(zj)� tr IuG(zj) tr IdG(zj)  2(N + n), (62)

where we invoked Lemma 16 and the fact that tr IuG(zj) tr IdG(zj) � 0 (see (93)
and (94)) in the last inequality. Hence, using that zj � M and �j � M , we conclude
that

zj � �j 
N + n

M
 1

4
(
p
N +

p
n)  1

16
�j ,

where the last inequality follows from the assumption that n+N � 32. This proves
(61) (where we use a slightly worse but simpler constant). ⇤

If �j is su�ciently large, we get a finer estimate for zj than what is given in (61).

Proposition 24. If �j >
1

2
n2

, then |zj � �j |  8

n .

Proof. Following the computation in (62), together with Lemma 16, we get

|zj � �j |(zj + �j) = |z2j � �2

j |  zj | trG(zj)|+ tr IuG(zj) tr IdG(zj)

 zj(N + n)kG(zj)k+NnkG(zj)k2

 2(N + n) + 4
Nn

z2j

 2(N + n) + 4
Nn

�2

j

,

where we used (61) in the last inequality. Since zj + �j � 2�j , we further get

|zj � �j | 
N + n

�j
+ 2

Nn

�3

j

,

and the conclusion follows from �j >
1

2
n2 and the supposition N  n. ⇤
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We now complete the proof of Theorem 12. Let j be a fixed index in Ji0, r0K.
We will work in the set Hj \ S�j , where S�j is specified in (18). By Corollary 2.14
in [39], it follows that

|f(z)� g(z)|
|g(z)|  (1 + "(z))2r � 1, (63)

where

"(z) :=
���
�
D�1 � UT�(z)U

��1
���
��UT(G(z)� �(z))U

�� .

The next result facilitates the comparison of the numbers of zeros of f and g
inside a region and will be used repeatedly in the later arguments.

Lemma 25. For any circle C ⇢ C, if "(z)  1

4r for all z 2 C, then the number of

zeros of f inside C is the same as the number of zeros of g inside C.

Proof. Continuing from (63), we find that

|f(z)� g(z)|
|g(z)| 

✓
1 +

1

4r

◆2r

� 1  e1/2 � 1 < 1 (64)

for each z 2 C. Therefore, by Rouché’s theorem, we conclude that the numbers of
zeros of f and g inside C are the same. ⇤

We first bound "(z) for z 2 S�j . By Proposition 11,
���
�
D�1 � UT�(z)U

��1
��� = max

1lr

�l

|�2

l � �1�2|
Q1/2,

where

Q := |�1�2|2+
1

2
�2

l (|�1|2+|�2|2)+
1

2
�l

⇥
4|�1�2|2|�1 + �̄2|2 + �2

l (|�1|2 � |�2|2)2
⇤1/2

.

Using (27) from Lemma 16, for z 2 S�j , we get

Q 
✓
9

8

◆4

|z|4 +
✓
9

8

◆2

�2

l |z|2 +
✓
9

8

◆2

�l|z|2
s

�2

l + 4

✓
9

8

◆2

|z|2

 9

4
|z|4 + 27

4
|z|3�l +

9

2
|z|2�2

l

 9

4
|z|2

✓
|z|+ 3

2
�l

◆2

,

and thus
���
�
D�1 � UT�(z)U

��1
���  3

2
|z| max

1lr

�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
.

Combining this bound with the bound in Lemma 9, we obtain with probability at
least 1� 10(N + n)�(K+1)

"(z)  max
1lr

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
(65)

for all z 2 S�j .
We now restrict ourselves to values of z contained on a circle Cj in Hj \ S�j .

Here we take Cj to be the circle of radius 20⌘r centered at zj (which by definition
is contained in Hj \ S�j ).
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The goal is to show "(z) is small for all z 2 Cj . Continuing from (65), it su�ces
to show

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
is small for all 1  l  r. We split the discussion into two cases: l = j and l 6= j.

Case 1. When l = j, in view of (56), for z 2 Cj , we have

|�2

j � �1(z)�2(z)| = |�1(zj)�2(zj)� �1(z)�2(z)|

� 9

16
|z2j � z2| = 45

4
⌘r|zj + z| � 585

28
⌘r�j ,

where, in the last inequality, we used |z + zj | = |2zj + z � zj | � 2zj � 20⌘r � 13

7
�j

by (61) and the assumption �j � 140⌘r. Similarly, using (56) and Proposition 23,

|�2

j � �1(z)�2(z)| 
23

16
|z2j � z2|  1955

28
⌘r�j . (66)

Thus, to bound "(z), we apply the bound

6

7
�j  zj � 20⌘r  |z|  zj + 20⌘r  9

7
�j (67)

that follows from (61) and �j � 140⌘r to obtain

3

2

⌘

|z|
�j(|z|+ 3

2
�j)

|�2

j � �1(z)�2(z)|
 0.13

r
<

1

4r
.

Case 2. When l 6= j, note that

|�2

l � �1(z)�2(z)| � |�2

l � �2

j |� |�2

j � �1(z)�2(z)|

� |�j � �l|(�j + �l)�
1955

28
⌘r�j

� 169

560
|�j � �l|(�j + �l)

by (66) and the assumption that |�j � �l| � 100⌘r. Hence, using (67), we get

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
 3

2

⌘
6

7
�j

560�l(
9

7
�j +

3

2
�l)

169|�j � �l|(�j + �l)
 9

⌘�l

�j |�j � �l|
.

If �l  1.8�j , then

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
 9

1.8⌘

100⌘r
<

1

4r
.

If �l � 1.8�j , then �l � �j � 4

9
�l and

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
 9

⌘

140⌘r 4

9

<
1

4r
.

Thus, we conclude that

"(z)  1

4r
(68)

for all z 2 Cj . By Lemma 25, the number of zeros of f inside Cj is the same as the
number of zeros of g inside Cj . Since g has ↵j zeros inside Cj , it follows that there
exists exactly ↵j values of l1(j)  . . .  l↵j (j) such that

|e�ls(j) � zj | < 20⌘r for 1  s  ↵j . (69)
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In particular, this means that for 1  s  ↵j

|'(e�ls(j))� '(zj)| 
23

16
|e�2

ls(j)
� z2j | 

115

4
⌘r(e�ls(j) + zj) 

115

4
⌘r

✓
e�ls(j) +

8

7
�j

◆

by Lemma 22 and (61). Since '(zj) = �2

j , we conclude that

|'(e�ls(j))� �2

j | 
115

4
⌘r

✓
e�ls +

8

7
�j

◆
. (70)

It remains to show that ls(j) = j+s�1 for 1  s  ↵j and i0  j  r0. We will do
so by proving the following claims hold with probability at least 1�30(N+n)�(K+1)

(see Figure 2 for an illustration):

Figure 2. Distinct circles Cj with centers zj on the real line and
radius 20⌘r for i0  j  r0.

Claim 1. Distinct circles do not intersect.
Claim 2. A+ E has exactly i0 � 1 eigenvalues larger than zi0 + 20⌘r.
Claim 3. No eigenvalues of A+ E lie between distinct circles.

For the moment, let us assume these claims are true. Note that e�i0 has to lie
inside one of the Cj ’s (i0  j  r0) because it is the largest eigenvalue of A+E that
is no larger than zi0 + 20⌘r (due to Claim 2 ) and thus it satisfies e�i0 > zr0 � 20⌘r
by (69). Since the number of zeros of g(z) located inside Cj ’s for all i0  j  r0,
which is r0 � i0 + 1, is the same as that of f(z) inside Cj ’s (i0  j  r0), we have
e�i0 , . . . , e�r0 lie inside Cj ’s (i0  j  r0). The conclusion follows by the fact that
the number of zeros of g(z) in each Cj is the same as that of f(z).

We start with the proof of the Claim 1. For �l 6= �j , by Lemma 22,

|z2l � z2j | �
16

23
|'(zl)� '(zj)| =

16

23
|�2

l � �2

j | �
16

23
100⌘r(�l + �j).

Since |z2l � z2j | = (zl + zj)|zl � zj |  8

7
(�l + �j)|zl � zj | by Proposition 23, we have

|zl � zj | �
1400

23
⌘r, (71)

and thus
dist(Cj , Cl) � |zl � zj |� 40⌘r > 20⌘r.

Next, we prove Claim 2. We split the proof into two cases: i0 = 1 and i0 > 1.
Case 1: i0 = 1. We prove that no eigenvalues of A + E are larger than z1 + 20⌘r.
We now take C0 to be any circle with radius 20⌘r centered at a point z0 > z1+20⌘r
on the real line inside the region H1 \ Ŝ�1 such that dist(z1, C0) � 20⌘r. Here

Ŝ�1 := {w 2 C : | Im(w)|  20⌘r, 4(
p
N +

p
n) + 120⌘r  Re(w)  3

2
�1 + 20⌘r}

(72)
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is a slight modification of the set S� in (18). Note that e�1 2 Ŝ�1 : the upper bound
e�1  3

2
�1 follows from the Weyl’s inequality and the supposition kEk  1

2
�1; the

lower bound is because it is the largest eigenvalue and e�1 � zj � 20⌘r � �j � 20⌘r
from (69). An inspection of the proof of Lemma 9 reveals that the conclusion of
Lemma 9 also holds on the set Ŝ�1 . Hence, the bound (65) also holds for z 2 Ŝ�1 .
We show

"(z) <
1

4r
for all z 2 C0. The proof is similar to the proof of (68) and we sketch it here. For
any z 2 C0, from |z � z0| = 20⌘r, |z � z1| � 20⌘r and z0 � z1 > 40⌘r, we obtain
|z|  z0 + 20⌘r and

|z| � z0 � 20⌘r � z1 + 20⌘r > �1 + 20⌘r > �1.

Again, by Lemma 22, we see for any 1  l  r,

|�2

l � �1(z)�2(z)| = |'(zl)� '(z)|

� 9

16
|z2l � z2|

� 9

16
(zl +Re(z))(Re(z)� zl)

� 9

16
(�l + z0 � 20⌘r)(z0 � zl � 20⌘r)

� 9

16
(�l + z0 � 20⌘r)20⌘r. (73)

Plugging these estimates back into (65), we see

"(z)  max
1lr

3

2

⌘�l

�1

z0 + 20⌘r + 3

2
�l

9

16
(�l + z0 � 20⌘r)20⌘r

<
1

4r
,

where we used the bound z0+20⌘r+ 3

2
�l  3

2
(�l+ z0�20⌘r) in the last inequality.

By Lemma 25, f has the same number of zeros inside C0 as g. As g has no zeros
inside C02, A + E has no eigenvalues inside C0. Since the circle C0 was arbitrarily
chosen inside this region, we conclude that A + E has no eigenvalues larger than
z1 + 20⌘r.

Case 2: i0 > 1. We work on the event

max
l2J1,r0K;�l>n2/2

|e�l � �l|  ⌘r. (74)

By Lemma 13, this event holds with probability at least 1� (N + n)�2r4(K+8).
Note that �i0�1 > n2. Combining (74), Proposition 24 and zi0�1�zi0 � 1400

23
⌘r >

60⌘r from (71), we get

e�i0�1 � �i0�1 � ⌘r � zi0�1 �
8

n
� ⌘r � zi0 + 59⌘r � 8

n
> zi0 + 20⌘r.

Hence, A+ E has at least i0 � 1 eigenvalues larger than zi0 + 20⌘r.
We first consider �i0 > 1

2
n2. It follows from (74) and Proposition 24 that

e�i0  �i0 + ⌘r  zi0 +
8

n
+ ⌘r  zi0 + 20⌘r.

This shows that A+ E has exactly i0 � 1 eigenvalues larger than zi0 + 20⌘r.

2This follows from Lemma 22 and the fact that Im('(z)) 6= 0 whenever Im z 6= 0 for all |z| > M .
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Now consider �i0  1

2
n2. By Weyl’s inequality, e�i0  �i0 + kEk < 3

2
�i0 . If

3

2
�i0  zi0 + 20⌘r, the proof is already done. Now we assume 3

2
�i0 > zi0 + 20⌘r. If

3

2
�i0 � (zi0 + 20⌘r) < 40⌘r, following (61), we have 8

7
�i0 > zi0 > 3

2
�i0 � 60⌘r and

thus �i0 < 168⌘r. From the assumption �i0 � 4(
p
N +

p
n) + 140⌘r, we further

have 4(
p
N +

p
n)  28⌘r and hence kEk  2(

p
N +

p
n) < 14⌘r. It follows from

Weyl’s inequality and (61) that e�i0  �i0 + kEk  zi0 + 14⌘r < zi0 + 20⌘r.
It remains to consider the case when 3

2
�i0 � (zi0 + 20⌘r) � 40⌘r. To prove

e�i0  zi0 + 20⌘r, we show that f has no zeros on the interval (zi0 + 20⌘r, 3

2
�i0).

The proof is similar to the proof of Case 1 when i0 = 1. We only mention the
di↵erences. Define Ŝ�i0

as in (72) and the bound (65) also holds for z 2 Ŝ�i0
. The

goal is to show "(z) < 1/4r for all z 2 C0, where C0 is any circle with radius 20⌘r
centered at a point z0 2 (zi0 + 20⌘r, 3

2
�i0) inside the region Hi0 \ Ŝ�i0

such that

dist(z0, zi0 + 20⌘r) � 20⌘r and dist(z0,
3

2
�i0) � 20⌘r. If so, by Lemma 25, f has

the same number of zeros inside C0 as g. Note that g has no zeros inside C0 since
Im('(z)) 6= 0 whenever Im z 6= 0 for all |z| > M and zi0�1 � �i0�1 � 8

n > n2 � 8

n >
3

2
�i0 by Proposition 24. Since C0 was arbitrarily chosen, A+ E has no eigenvalues

on (zi0 + 20⌘r, 3

2
�i0).

It remains to bound "(z) from (65). The same arguments as those in Case 1

yield that

max
i0lr

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
<

1

4r

for any z 2 C0. We only need to control

max
1li0�1

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
.

For any z 2 C0, |z| � z0 � 20⌘r � zi0 � �i0 and |z|  z0 + 20⌘r  3

2
�i0 + 40⌘r. For

any 1  l  i0 � 1, using similar computation from (73), we get

|�2

l � �1(z)�2(z)| �
9

16
(�l + z0 � 20⌘r)(zl � z0 � 20⌘r).

Note that z0 � zi0+40⌘r � �i0+40⌘r. Hence, �l+z0�20⌘r � �l+�i0+20⌘r. From
�l � n2, we see �i0  1

2
n2  1

2
�l. This, together with (61) and z0  3

2
�i0 � 20⌘r,

implies that

zl � z0 � 20⌘r � �l �
3

2
�i0 � �l �

3

4
�l =

1

4
�l.

Hence,

max
1li0�1

3

2

⌘

|z|
�l(|z|+ 3

2
�l)

|�2

l � �1(z)�2(z)|
 3

2

⌘

�i0

max
1li0�1

�l(
3

2
�i0 + 40⌘r + 3

2
�l)

9

16
(�l + �i0 + 20⌘r) 1

4
�l

 16⌘

�i0

<
1

4r
using the assumption �i0 > 140⌘r. Therefore, "(z) < 1/4r for all z 2 C0.

The proof of Claim 3 is similar to the previous argument. Let Cj1 , Cj2 be two
distinct adjacent circles. Note that from the proof of Claim 1, dist(Cj1 , Cj2) > 20⌘r.
We show that A+ E has no eigenvalues lying on the real line between Cj1 and Cj2 .
Take any point x on the real line between the two circles so that Cx, the circle
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centered at x with radius 10⌘r, is inside the region Hj1 \S�j1
or Hj2 \S�j2

, where
dist(x, Cj1) > 10⌘r and dist(x, Cj2) > 10⌘r. Then using similar calculations as in
the proof of Claim 2, it su�ces to show that "(z) < 1

4r . The remaining arguments
are similar to those in the proof of Claim 2 ; we omit the details.

6. Proof of Lemma 9

In this section, we present the proof of Lemma 9. We first show that G(z) is
close to �(z) for any fixed z 2 C satisfying |z| � 4(

p
N+

p
n). Then we extend this

result to any z 2 S�j by a net argument. Throughout the proof, we will sometimes
write G instead of G(z) for convenience. The proof presented here takes advantage
of the fact that the entries of E are jointly independent standard Gaussian random
variables; this assumption greatly simplifies the forthcoming calculations, although
the method can be extended to other distributions. In particular, when the entries
are non-Gaussian, one also needs to estimate the o↵-diagonal entries of G. This
can be accomplished by modifying some of the techniques from [15].

We begin with the following notation.

Definition 26 (Minors). For I ⇢ J1, N + nK, we define E(I) by

E(I)
st :=

⇢
Est if s, t 62 I,
0 otherwise.

We define the resolvent of E(I) by

G(I)
st (z) :=

⇢
(z � E(I))�1

st if s, t 62 I,
0 otherwise,

whenever the inverse is defined. We use the summation notation
(I)X

s

:=
X

s2J1,N+nK:s 62I

.

When I = {a}, we abbreviate ({a}) by (a) in the above definitions.

Lemma 27 (Resolvent identities). For any k 2 J1, N + nK and for |z| > kEk

Gkk(z) =
1

z � Ekk �
P

(k)
s,t EskG

(k)
st (z)Etk

.

Moreover, for i 6= j and any |z| > kEk,

Gij(z) = �Gii(z)

(i)X

k

EikG(i)
kj (z).

Proof. The formula for the diagonal entries follows from the Schur complement
(see [3, Theorem A.4]). The o↵-diagonal entries can be computed in a similar way
(see [27, Lemma 4.2] or [29, Lemma 6.10]). ⇤

Next, we show that the resolvent matrix G(z) = (z � E)�1 is well approximated
by the diagonal matrix �(z) for any fixed z 2 C with su�ciently large modulus.

Lemma 28. Let K > 0 be any constant and assume (
p
N +

p
n)2 � 64(K +

2) log(N + n). For any z 2 C with |z| � 4(
p
N +

p
n),

��UT (G(z)� �(z))U
��  48r

p
(K + 1) log(N + n)

|z|2
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with probability at least 1� (N + n)�K
.

Proof. By the rotational invariance of E, it su�ces to assume that U is the matrix
with columns e1, . . . , er, where e1, . . . , eN is the canonical basis in RN , and the
columns of V are given by f1, . . . , fr, where f1, . . . , fn is the canonical basis in Rn.
We use the shorthand notations ī = i� r and j̄ = j � r if r + 1  i, j  2r. Thus,

2(UTGU)ij =

8
>>><

>>>:

Gij +Gi,N+j +GN+i,j +GN+i,N+j if i, j 2 J1, rK;
Gij̄ �Gi,N+j̄ +GN+i,j̄ �GN+i,N+j̄ if i 2 J1, rK, j 2 Jr + 1, 2rK;
Gīj +Gī,N+j �GN+ī,j �GN+ī,N+j if i 2 Jr + 1, 2rK, j 2 J1, rK;
Gīj̄ �Gī,N+j̄ �GN+ī,j̄ +GN+ī,N+j̄ if i, j 2 Jr + 1, 2rK.

Fix z 2 C with |z| � 4(
p
N +

p
n). Denote the set

Sr := {(i, j) : i, j 2 J1, rK [ JN + 1, N + rK}.
Since kMk  2rkMkmax := 2rmax1i,j2r |Mij | for any 2r ⇥ 2r matrix M, we
first get

��UT (G(z)� �(z))U
��  2r max

1i,j2r

��(UTG(z)U)ij � (UT�(z)U)ij
�� . (75)

In order to prove Lemma 28, we claim that it su�ces to show that

max
(i,j)2Sr

|Gij(z)� �ij(z)|  12

p
(K + 1) log(N + n)

|z|2 . (76)

with probability at least 1� 10(N + n)�K .
Let us assume for the moment that (76) holds. For any (i, j) 2 J1, rK, in view of

(22) and the definition of �(z) in (16), we find that

2r
��(UTG(z)U)ij � (UT�(z)U)ij

��

= r

����Gij +Gi,N+j +GN+i,j +GN+i,N+j �
1

�1(z)
�ij �

1

�2(z)
�ij

����

 r|Gij(z)� �ij(z)|+ r|Gi,N+j(z)� �i,N+j(z)|
+ r|GN+i,j(z)� �N+i,j(z)|+ r|GN+i,N+j(z)� �N+i,N+j(z)|

 48r

p
(K + 1) log(N + n)

|z|2 .

Similar discussion applies to every (i, j) 2 J1, 2rK and the details are omitted.
Hence,

2r max
1i,j2r

��(UTG(z)U)ij � (UT�(z)U)ij
��  48r

p
(K + 1) log(N + n)

|z|2

and the conclusion of Lemma 28 follows from (75).
Now we turn to the proof of (76). For the remainder of the proof, we work on

the event where kEk = kEk  2(
p
N +

p
n); recall that Lemma 15 shows this event

holds with probability at least 1 � 2e�(
p
N+

p
n)2/2 � 1 � 2(N + n)�32(K+2) since

(
p
N+

p
n)2

log(N+n) > 64(K + 2). We start by controlling the diagonal entries of G(z). By

Lemma 27, for k 2 J1, N + nK,

Gkk(z) =
1

z � Ekk �
P

(k)
s,t EskG

(k)
st (z)Etk

,



32 SEAN O’ROURKE, VAN VU, AND KE WANG

and thus, for 1  k  r, by the block definition of E and the expression of �1(z) in
(17) and (20), we have

����Gkk(z)�
1

�1(z)

���� =

�����
1

z �
P(k)

1i,jn EkiG
(k)
N+i,N+j(z)Ekj

� 1

�1(z)

�����


|
P(k)

1i,jn EkiG
(k)
N+i,N+j(z)Ekj �

P
t2JN+1,N+nK Gtt(z)|

|z �
P(k)

1i,jn EkiG
(k)
N+i,N+j(z)Ekj ||z � tr IdG(z)|

.

(77)

We now turn to bounding the right-hand side of (77). We start with obtaining an
upper bound for the numerator of this term. By the triangle inequality,

P

0

@

������

(k)X

1i,jn

EkiG
(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
G(k)

tt (z)

������
� t

1

A (78)

 P

0

@

������

(k)X

1i,jn

Eki ReG
(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
ReG(k)

tt (z)

������
� t/2

1

A (79)

+ P

0

@

������

(k)X

1i,jn

Eki ImG(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
ImG(k)

tt (z)

������
� t/2

1

A .

Since the k-th row of E is independent of G(k), we condition on G(k) in the following
estimates. We start with the term in (79). For notational convenience, denote

X :=
⇣
ReG(k)

N+i,N+j(z)
⌘

i,j 6=k
and gT the kth row of E with the kth entry removed.

By assumption, g is a standard Gaussian vector in Rn�1. Rewrite

(k)X

1i,jn

Eki ReG
(k)
N+i,N+j(z)Ekj = gTXg

and
P

t2JN+1,N+nK ReG
(k)
tt (z) = EgTXg. Assume the singular value decomposi-

tion of X is given by X = O1⌃O2 where ⌃ = diag(s1, · · · , sn�1) and O1, O2 are
orthogonal matrices. Due to the rotation invariance property of Gaussian vectors,
gTXg ⇠ gT⌃g and EgTXg = EgT⌃g =

Pn�1

i=1
si. To bound (79), it is equivalent to

bound P(|gT⌃g � EgT⌃g| � t/2). In order to apply Lemma 14, we can verify that
gT⌃g =

Pn�1

i=1
sig2i is sub-exponential with parameters (4kXk2F , 4kXk). Indeed, by

independence and (26),

Ee�(g
T
⌃g�EgT⌃g) = Ee

Pn�1
i=1 �(si�1)g2

i =
n�1Y

i=1

Ee�si(g
2
i�1) 

n�1Y

i=1

e
4s2i�2

2 = e
4kXk2F

2

for all |�| < 1

4maxi si
= 1

4kXk . It follows from Lemma 14 that

������

(k)X

1i,jn

Eki ReG
(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
ReG(k)

tt (z)

������
 t (80)
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with probability at least 1 � 2 exp
�
� 1

32
min

�
t2|z|2/n, 2t|z|

 �
by combining the

following estimates

kXk 
����
⇣
G(k)

N+i,N+j(z)
⌘

1i,jn

����  kG(k)(z)k  2

|z|

and

kXk2F 
����
⇣
G(k)

N+i,N+j(z)
⌘

1i,jn

����
2

F

 n

����
⇣
G(k)

N+i,N+j(z)
⌘

1i,jn

����
2

 4n

|z|2

due to Lemma 16. Since |z| � 4(
p
N+

p
n), by selecting t =

p
2(K + 1) log(N + n)

in (80), we find that
������

(k)X

1i,jn

Eki ReG
(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
ReG(k)

tt (z)

������

p

2(K + 1) log(N + n)

with probability at least 1 � 2(N + n)�(K+1). To be more specific, to get this
probability bound, we need the following discussion. When t|z|  2n and thus
min

�
t2|z|2/n, 2t|z|

 
= t2|z|2/n, the probability bound in (80) is at least 1� 2(N +

n)�(K+1) since t|z| � 4
p
2(K + 1) log(N + n)(

p
N +

p
n). When t|z| > 4n and

min
�
t2|z|2/n, 2t|z|

 
= 2t|z| > 2n, we obviously still have the probability bound

in (80) is at least 1 � 2 exp(�n/8) > 1 � 2(N + n)�2(K+2) by the suppositions
(
p
N +

p
n)2 > 64(K + 2) log(N + n) and n � N .

Likewise, one also has
������

(k)X

1i,jn

Eki ImG(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
ImG(k)

tt (z)

������

p
2(K + 1) log(N + n)

with probability at least 1 � 2(N + n)�(K+1). Inserting the above estimates back
into (78), we find that
������

(k)X

1i,jn

EkiG
(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
G(k)

tt (z)

������
 2

p
2(K + 1) log(N + n)

(81)
with probability at least 1� 4(N + n)�(K+1).

Next, we show that the di↵erence between
P

t2JN+1,N+nK G
(k)
tt (z) and

P
t2JN+1,N+nK Gtt(z)

is quite small. Thus, combining (81), we get an upper bound for the term in the
numerator of the right-hand side of (77). Rewrite

������

X

t2JN+1,N+nK
G(k)

tt (z)�
X

t2JN+1,N+nK
Gtt(z)

������
=
���tr Id(G(k)(z)�G(z))

��� .

By the resolvent identity (15), the above term is written as
���tr Id(G(k)(z)�G(z))

��� =
���tr IdG(z)(E � E(k))G(k)(z)

��� .
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Since E � E(k) has at most rank 2, we conclude that
���tr IdG(z)(E � E(k))G(k)(z)

���  2kG(z)(E � E(k))G(k)(z)k

 2kG(z)k(kEk+ kE(k)k)kG(k)(z)k

 16kEk
|z|2

 8

|z|

since |z| � 4(
p
N +

p
n) and kEk  2(

p
N +

p
n). Thus, we have shown that

������

X

t2JN+1,N+nK
G(k)

tt (z)�
X

t2JN+1,N+nK
Gtt(z)

������
 8

|z| 
2p

N +
p
n
.

Returning to (81), we see that
������

(k)X

1i,jn

EkiG
(k)
N+i,N+j(z)Ekj �

X

t2JN+1,N+nK
Gtt(z)

������
 4

p
(K + 1) log(N + n)

(82)
with probability at least 1� 4(N + n)�(K+1).

To finish the estimate of (77), we provide a lower bound for the denominator of
the right-hand side of (77). Note from (95) that

������

X

t2JN+1,N+nK
Gtt(z)

������
= | tr IdG(z)|  |z|

8
.

Combined with (82) and the fact that

4
p
(K + 2) log(N + n)  1

2
(
p
N +

p
n)  |z|

8

since (
p
N +

p
n)2 � 64(K + 2) log(N + n) by supposition and |z| � 4(

p
N +

p
n),

we arrive at ������

(k)X

1i,jn

EkiG
(k)
N+i,N+j(z)Ekj

������
 |z|

4
.

Hence, by triangle inequality,

|z �
(k)X

1i,jn

EkiG
(k)
N+i,N+j(z)Ekj ||z � tr IdG(z)| � 21

32
|z|2.

Together with (82), inserting the above estimates into (77) yields
����Gkk(z)�

1

�1(z)

���� 
128

21

p
(K + 1) log(N + n)

|z|2

with probability at least 1� 4(N + n)�(K+1) for 1  k  r. Analogously, one also
has ����Gkk(z)�

1

�2(z)

���� 
128

21

p
(K + 1) log(N + n)

|z|2
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with probability at least 1�4(N+n)�(K+1) for N+1  k  N+r. Union bounding
over all k 2 J1, rK [ JN + 1, N + rK completes the proof for the diagonal entries.

For the o↵-diagonal entries, by Lemma 27, we have

|Gij(z)| 
2

|z|

������

(i)X

k

EikG(i)
kj (z)

������

on the event where kEk  2(
p
N +

p
n). Since the i-th row of E is independent

of G(i), conditioning on G(i),
P(i)

k EikG(i)
kj (z) still has a Gaussian distribution. In

particular, the real part
P(i)

k Eik ReG(i)
kj (z) has a Gaussian distribution with mean

0 and variance
P(i)

k

⇣
ReG(i)

kj

⌘2


P(i)

k G(i)
kjG

(i)
kj = ((G(i))⇤G(i))jj . Likewise, the

imaginary part
P(i)

k Eik ImG(i)
kj (z) also has a Gaussian distribution with mean 0 and

variance at most ((G(i))⇤G(i))jj . Using the tail bounds for the Gaussian distribution
[64, Proposition 2.1.2], we get

������

(i)X

k

EikG(i)
kj (z)

������


������

(i)X

k

Eik ReG(i)
kj (z)

������
+

������

(i)X

k

Eik ImG(i)
kj (z)

������

 2
p
2(K + 1) log(N + n)

q
((G(i))⇤G(i))jj

with probability at least 1 � 0.5(N + n)�(K+1). By bounding ((G(i))⇤G(i))jj 
kG(i)k2  (2/|z|)2, we conclude that

|Gij(z)| 
8
p

2(K + 1) log(N + n)

|z|2

with probability at least 1� 0.5(N + n)�(K+1). Union bounding over i, j 2 J1, rK[
JN + 1, N + rK completes the proof. ⇤

We conclude this section with the proof of Lemma 9.

Proof of Lemma 9. Fix an index j 2 Ji0, r0K. By Lemma 28, for any z 2 C with
|z| � 4(

p
N +

p
n),

��UT (G(z)� �(z))U
��  48r

p
(K + 8) log(N + n)

|z|2

with probability at least 1 � (N + n)�(K+7). Note that every z 2 S�j satisfies

|z| � 4(
p
N +

p
n) by assumption. Let N be a 1-net of S�j . Since �j  n2, a

simple volume argument (see for instance [52, Lemma 3.3]) shows N can be chosen
so that |N |  20[(20⌘r)2 + (8n2/7 + 20⌘r)2]. By the union bound, the supposition
(
p
N +

p
n)2 � 64(K + 9) log(N + n) and Lemma 28,

max
z2N

|z|2
��UT (G(z)� �(z))U

��  48r
p
(K + 8) log(N + n) (83)

with probability at least 1� 10(N + n)�(K+1). We now wish to extend this bound
to all z 2 S�j .

Define the functions

f(z) := z2UTG(z)U , g(z) := z2UT�(z)U .
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In order to complete the proof, it su�ces to show that f and g are 8-Lipschitz
in S�j . In other words, we want to show that kf(z) � f(w)k  8|z � w| and
kg(z)� g(w)k  8|z�w| for all z, w 2 S�j . Indeed, in view of (83), if z 2 S�j , then
there exists w 2 N so that |z � w|  1, and hence

|z|2
��UTG(z)U � UT�(z)U

��  kf(z)� f(w)k+ kf(w)� g(w)k+ kg(w)� g(z)k
 16 + |w|2

��UTG(w)U � UT�(w)U
��

 16 + 48r
p
(K + 8) log(N + n)

 54r
p
(K + 8) log(N + n),

where we used the Lipschitz continuity of f and g in the second inequality.
It remains to show that f and g are 8-Lipschitz in S�j . To do so we will only

work on the event where kEk  2(
p
N +

p
n); the probability of this event is at

least 1� 2e(
p
N+

p
n)2/2 � 1� 2(N + n)�32(K+9) by Lemma 15 and the supposition

(
p
N +

p
n)2 � 64 log(N + n)(K + 9). Let z, w 2 S�j , and assume without loss of

generality that |z| � |w| � 4(
p
N +

p
n). Then

kf(z)� f(w)k  kz2UTG(z)U � zwUTG(z)Uk+ kzwUTG(z)U � w2UTG(z)Uk
+ kw2UTG(z)U � w2UTG(w)Uk

 |z|kG(z)k|z � w|+ |w||z � w|kG(z)k+ |w|2|z � w|kG(z)kkG(w)k
 8|z � w|,

where we used the resolvent identity (15), Lemma 16, and the fact that |w|
|z|  1.

This shows that f is 8-Lipschitz in S�j .

The proof for g is similar. First, for |z| � |w| � 4(
p
N +

p
n), by the triangle

inequality, we have

kg(z)� g(w)k
 kz2UT�(z)U � zwUT�(z)Uk+ kzwUT�(z)U � w2UT�(z)Uk

+ kw2UT�(z)U � w2UT�(w)Uk
 |z||z � w|kUT�(z)Uk+ |w||z � w|kUT�(z)Uk+ |w|2kUT(�(z)� �(w))Uk.

(84)

Using the explicit expression in (22), we find that

kUT(�(z)� �(w))Uk = max

⇢
|�1(z)� �1(w)|
|�1(z)�1(w)|

,
|�2(z)� �2(w)|
|�2(z)�2(w)|

�
.

By (20) and the resolvent identity (15),

|�1(z)� �1(w)| = |z � w � tr Id(G(z)�G(w))|
= |z � w � (z � w) tr IdG(z)G(w)|
 |z � w| (1 + (N + n)kG(z)kkG(w)k)

 |z � w|
✓
1 +

4(N + n)

|z||w|

◆

 5

4
|z � w|,
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where we used Lemma 16 and the facts that N+n
|w|  |w|

16
and |w|

|z|  1. The same

upper bound also holds for |�2(z)� �2(w)|. Combining these estimates with (27),
we have

kUT(�(z)� �(w))Uk  80

49

|z � w|
|z||w| .

Notice that kUT�(z)Uk  8

7|z| for any |z| � 4(
p
N +

p
n), which can be verified

using (23) and the bounds in (27). Inserting these bounds into (84) yields that g
is 8-Lipschitz in S�j ; we omit the details.

The proof is complete by taking a union bound over j 2 Ji0, r0K. ⇤

Appendix A. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. Unless otherwise specified,
we let C and c be positive constants, which may change from one occurrence to
the next, depending only on the sub-gaussian moment of the entries of E. Without
loss of generality, we assume N  n, for if not, one can simply replace A and E by
their transposes.

Let P1 2 RN⇥N be the orthogonal projection matrix onto the subspace Span{u1, . . . , ur}?
and P2 2 Rn⇥n be that onto Span{v1, . . . , vr}?.

We first prove that

e�1 sin\(u1, eu1) +
p
2kEk sin\(v1, ev1) � kP1Ev1k,

e�1 sin\(v1, ev1) +
p
2kEk sin\(u1, eu1) � kP2E

Tu1k. (85)

To start, observe that

sin2 \(u1, eu1) = 1� hu1, eu1i2 = keu1k2 � hu1, eu1i2

=
rX

i=2

hui, eu1i2 + kP1eu1k2 � kP1eu1k2. (86)

By multiplying by P1 on all sides of the equation eAev1 = Aev1 +Eev1 = e�1eu1, we get
P1Eev1 = e�1P1eu1. Continuing from (86), we have

e�1 sin\(u1, eu1) � kP1Eev1k. (87)

Likewise, we also have

e�1 sin\(v1, ev1) � kP2E
T eu1k. (88)

Let ↵ denote the angle between u1 and eu1 (taken in [0,⇡]) and � denote the angle
between v1 and ev1 (taken in [0,⇡]). By possibly multiplying eu1, ev1 by �1, it su�ces
to consider one of the following cases: either (i) ↵,� 2 [0, ⇡

2
]; or (ii) ↵ 2 [⇡

2
,⇡] and

� 2 [0, ⇡
2
].

If ↵,� 2 [0, ⇡
2
], by simple trigonometric identities,

ku1 � eu1k = 2 sin(↵/2) =
sin↵

cos(↵/2)


p
2 sin↵ =

p
2 sin\(u1, eu1). (89)

Similarly, we have

kv1 � ev1k 
p
2 sin\(v1, ev1).
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From (87) and the triangle inequality, we obtain

e�1 sin\(u1, eu1) � kP1Eev1k
� kP1Ev1k � kP1E(ev1 � v1)k
� kP1Ev1k � kEkkev1 � v1k

� kP1Ev1k �
p
2kEk sin\(v1, ev1).

Repeating the same argument, we obtain

e�1 sin\(v1, ev1) � kP2E
Tu1k �

p
2kEk sin\(u1, eu1).

In the second case, if ↵ 2 [⇡
2
,⇡] and � 2 [0, ⇡

2
], we still have kv1 � ev1k p

2 sin\(v1, ev1), and hence

e�1 sin\(u1, eu1) � kP1Ev1k �
p
2kEk sin\(v1, ev1).

Since ✓ := ⇡ � ↵ 2 [0, ⇡
2
], using the same estimate as in (89), we see that

ku1 + eu1k = 2 sin(✓/2) =
sin ✓

cos(✓/2)


p
2 sin ✓ =

p
2 sin(⇡ � ↵) =

p
2 sin\(u1, eu1).

Thus, from (88), we conclude that

e�1 sin\(v1, ev1) � kP2E
T eu1k

� kP2E
Tu1k � kP2E

T (eu1 + u1)k
� kP2E

Tu1k � kEkkeu1 + u1k

� kP2E
Tu1k �

p
2kEk sin\(u1, eu1).

Rearranging the terms yields (85).
We now turn to the proof of Theorem 3. It follows immediately from (85) that

max{sin\(u1, eu1), sin\(v1, ev1)} � max{kP1Ev1k, kP2ETu1k}
e�1 +

p
2kEk

� max{kP1Ev1k, kP2ETu1k}
�1 + (1 +

p
2)kEk

,

(90)

where in the last inequality we used e�1  �1 + kEk from the classical Weyl’s
inequality. Furthermore, using [50, Lemma 11.8], one has

P(|kP2E
Tu1k2 � (n� r)| > t)  C exp

✓
�min

⇢
t2

n� r
, t

�◆

for any t � 0. Thus, since N  n,

max{kP1Ev1k, kP2E
Tu1k} � kP2E

Tu1k � 1

2

p
n� r

with probability at least 1� C exp(�c(n� r)). Plugging into (90), we get

max{sin\(u1, eu1), sin\(v1, ev1)} � 1

2

p
n� r

�1 + (1 +
p
2)kEk

=
kEk
2�1

p
n�r
kEk

1 + (1 +
p
2)kEk

�1

.

Applying [56, Proposition 2.4], we have kEk  2(
p
N +

p
n) with probability at

least 1� C exp(�c(
p
N +

p
n)2). It follows that

p
n�r
kEk � 1

4
p
2
, where we used that
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r  n/2. Finally, we conclude that

max{sin\(u1, eu1), sin\(v1, ev1)} � 1

8
p
2

kEk
�1

1 + (1 +
p
2)kEk

�1

with probability at least 1�C exp(�c(n� r)). The claim now follows from the fact
that r  n/2.

Appendix B. Proofs of Propositions 8, 10, 11, (21) and Lemma 13

In this section, we collect the proofs of Propositions 8, 10, 11, (21) and Lemma
13 from Section 3. We continue to use the notation introduced in the previous
sections.

B.1. Proof of Proposition 8. Let 0  ↵1  · · ·  ↵p  ⇡/2 be the principal

angles between U and eU . Then

cos↵p = cos\(U, eU).

Let {u1, . . . , up} (resp. {eu1, . . . , eup}) be an orthonormal basis for U (resp. for
eU). Denote the matrices U := (u1, . . . , up) and V := (v1, . . . , vp). [14, Theorem
1] provides the connection between the principle angles and the singular values of

UT eU. That is, consider the SVD of UT eU given by

UT eU = Y1C1Z
T
1
,

where C1 is a diagonal matrix composed of the singular values and Y1, Z1 are p⇥ p
orthogonal matrices. Then the diagonal entries of C1 are exactly cos↵1, . . . , cos↵p.

Analogously, let 0  �1  · · ·  �p  ⇡/2 be the principal angles between V and
eV . Then

cos�p = cos\(V, eV ).

For the orthonormal basis {v1, . . . , vp} for V and {ev1, . . . , evp} for eV , denote V :=

(v1, . . . , vp) and eV := (ev1, . . . , evp). Consider the SVD

VT eV = Y2C2Z
T
2
,

where C2 is a diagonal matrix composed of the singular values and Y2, Z2 are
orthogonal matrices. Then the diagonal entries of C2 are cos�1, · · · , cos�p.

Next, define wi := (uT

i , v
T

i )
T and wi+p := (uT

i ,�vTi )
T for 1  i  p. Define

ewi’s (1  i  2p) analogously. It is easy to verify that 1p
2
{w1, · · · ,w2p} forms

an orthonormal basis of W and 1p
2
{ew1, · · · , ew2p} forms an orthonormal basis of

fW . Denote the matrices W := 1p
2
(w1, · · · ,w2p) and fW := 1p

2
(ew1, · · · , ew2p). Let

0  �1  · · ·  �2p  ⇡/2 be the principal angles between W and fW . Then

cos �1, . . . , cos �2p are the singular values of WTfW by [14, Theorem 1]. In partic-

ular, the smallest singular value of WTfW is cos �2p = cos\(W,fW ).
Observe that

WTfW =
1

2

✓
U U
V �V

◆T
 
eU eU
eV �eV

!
=

1

2

 
UT eU + V T eV UT eU � V T eV
UT eU � V T eV UT eU + V T eV

!
.
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Using the SVDs of UT eU and V T eV and simple computations, we further get

WTfW =
1p
2

✓
Y1 �Y2

Y1 Y2

◆✓
C1 0
0 C2

◆
1p
2

✓
ZT
1

ZT
1

�ZT
2

ZT
2

◆
=: Y CZT.

Since Y1, Y2, Z1, Z2 are orthogonal matrices, it is easy to verify that both Y and
Z are 2p ⇥ 2p orthogonal matrices. Hence, Y CZT is the SVD of WTfW. By [14,

Theorem 1], the singular values cos �1, · · · , cos �2p of WTfW are exactly

cos↵1, · · · , cos↵p, cos�1, · · · , cos�p.

Hence,

cos\(W,fW ) = cos �2p = min{cos↵p, cos�p} = min{cos\(U, eU), cos\(V, eV )},
which is equivalent to

sin\(W,fW ) = max{sin\(U, eU), sin\(V, eV )}.
This completes the proof.

B.2. Proof of Propositions 10. Note that �(x) is well-defined when |x| > kEk.
From the expression of UT�(x)U in (22), using the block structure of matrices, we
rewrite

I2r�2r0 � UT

J �(x)UJDJ =

✓
Ir�r0 � ↵DJr0+1,rK ��DJr+r0+1,2rK

��DJr0+1,rK Ir�r0 � ↵DJr+r0+1,2rK

◆
.

Note that DJr+r0+1,2rK = �DJr0+1,rK by the definition of D. We compute the
eigenvalues of (I2r�2r0 � UT

J �(e�j)UJDJ)(I2r�2r0 � UT

J �(e�j)UJDJ)T , which, after
simplification, has the following format

 
(I � ↵DJr0+1,rK)

2 + �2D2

Jr0+1,rK 2↵�D2

Jr0+1,rK
2↵�D2

Jr0+1,rK (I + ↵DJr0+1,rK)
2 + �2D2

Jr0+1,rK

!
. (91)

Note that each block of (91) is a diagonal matrix. Using basic linear algebra and
a simple computation, we further obtain the eigenvalues of the above matrix are
given by

1 + �2

t (↵
2 + �2)± 2|↵|�t

q
1 + �2�2

t =

✓q
1 + �2�2

t ± |↵|�t

◆2

for r0 + 1  t  r. Taking the square roots yields the singular values of I2r�2r0 �
UT

J �(x)UJDJ and completes the proof.

B.3. Proof of Propositions 11. Note that �(z) is well-defined when |z| > kEk.
We first compute the eigenvalues of

�
D�1 � UT�(z)U

� �
D�1 � UT�(z)U

�⇤
, (92)

where we remind the readers that D and U are defined in Section 3.1. In particular,
D = diag(diag(D),� diag(D)). Recall the definition of UT�(z)U in (22). Note that

D�1 � UT�(z)U =

✓
D�1 � ↵Ir ��Ir

��Ir �D�1 � ↵Ir

◆

where each block is a diagonal matrix. Elementary (yet tedious) calculations yield
that the eigenvalues of (92) are

|↵|2 + |�|2 + 1

�2

l

±
✓
(2|↵|2 + 2|�|2 + ↵̄2 � �̄2 + ↵2 � �2)

1

�2

l

+ 2|↵|2|�|2 + ↵̄2�2 + ↵2�̄2

◆1/2

.
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With further simplification after plugging in the expressions of ↵,�, we denote these
eigenvalues by

�l± :=
1

�2

l

+
1

2

✓
1

|�1|2
+

1

|�2|2

◆
± 1

2

"
4

�2

l

����
1

�1

+
1

�̄2

����
2

+

✓
1

|�1|2
� 1

|�2|2

◆2
#1/2

for 1  l  r. Since the entries of E have continuous distribution, D�1 �UT�(z)U
is invertible with probability 1. Consequently,

���
�
D�1 � UT�(z)U

��1
���
2

= max
1lr

1

�l�
= max

1lr

�2

l

|�2

l � �1�2|2
Q,

where

Q := |�1�2|2+
1

2
�2

l (|�1|2+|�2|2)+
1

2
�l

⇥
4|�1�2|2|�1 + �̄2|2 + �2

l (|�1|2 � |�2|2)2
⇤1/2

.

The conclusion of Propositions 11 follows by taking a square root.

B.4. Proof of (21). The singular value decomposition of E is given by E =
X diag(⌘1, . . . , ⌘N )Y T, where the columns of X (resp. Y ) are x1, . . . ,xN 2 RN

(resp. y1, . . . ,yN 2 Rn). Clearly, some of the ⌘i’s may be zero. However, if
n > N , then E trivially maps an (n � N)-dimensional space to zero; we assume
this subspace has orthonormal basis h1, . . . ,hn�N 2 Rn.

The spectral decomposition of E is then given by

E = W diag(⌘1, . . . , ⌘N ,�⌘1, . . . ,�⌘N )WT,

where the columns of W are the orthonormal vectors wi =
1p
2
(xT

i ,y
T

i )
T 2 RN+n

and wN+i =
1p
2
(xT

i ,�yT

i )
T 2 RN+n for 1  i  N . Likewise, E trivially maps an

(n � N)-dimensional space to zero; this subspace is spanned by the orthonormal
vectors w2N+j = (0,hT

j )
T 2 RN+n for j = 1, . . . , n � N . Thus, the spectral

decomposition of the resolvent G(z) can be expressed as

G(z) = (z � E)�1 =
NX

i=1

wiwT

i

z � ⌘i
+

NX

i=1

wN+iwT

N+i

z + ⌘i
+

1

z

n�NX

j=1

w2N+jw
T

2N+j .

It follows that

tr IdG(z) =
1

2

NX

i=1

✓
1

z � ⌘i
+

1

z + ⌘i

◆
+

1

z
(n�N), (93)

tr IuG(z) =
1

2

NX

i=1

✓
1

z � ⌘i
+

1

z + ⌘i

◆
, (94)

and thus, from (20), we see that (21) holds.

B.5. Proof of Lemma 13. We work on the event that kEk  2(
p
N+

p
n), which

holds with probability at least 1� 2e�(
p
N+

p
n)2/2 by Lemma 15.

If r2 > 1

27
(
p
N +

p
n), then the conclusion follows directly from the Weyl’s

inequality and the supposition on n,N :

max
1lr

|e�l � �l|  kEk  2(
p
N +

p
n)  ⌘r = 54r2

p
(K + 8) log(N + n).
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If r2  1

27
(
p
N +

p
n), then ⌘r < 1

4
n2 < 1

2
�l for any �l >

1

2
n2. We apply [51,

Theorem 23] by noting that E is (2, 1

2
, 2)-concentrated in the Definition 11 from [51]

to get

e�l � �l � ⌘r

uniformly for any 1  l  r with probability at least 1 � 9r+1 exp(�(⌘r)2/32).
Conditioning on this event, with the assumption that �l > 1

2
n2 which implies

e�l >
1

2
�l, [51, Theorem 23] yields the lower bound

e�l  �l + t
p
r + 128

p
r

n
+ 29

r

n5/2

with probability at least 1� 4 · 92r exp(�rt2/32) for any t > 0. Note that 128
p
r

n +
29 r

n5/2  (3/100)⌘r by the supposition on n. The conclusion follows by taking

t
p
r = 1

2
⌘r, a union bound over l  r0 and simplifying the probability bounds

using (⌘r)2 > 542r4.

Appendix C. Proofs of Lemma 16, 17, and 18

In this section, we collect the proofs of Lemma 16, 17, and 18.

C.1. Proof of Lemma 16. By writing G(z) := (z � E)�1 as a Neumann series,
we find

kG(z)k  1

|z|

1X

k=0

✓
kEk
|z|

◆k

.

Since kEk = kEk and kEk
|z|  1/2 by assumption, the claim for kG(z)k follows. Since

kE(k)k  kEk, the same proof also applies to G(k)(z). The bounds in (27) follow
from (20), the bound

max{| tr IuG(z)|, | tr IdG(z)|}  (N + n)kG(z)k  2(N + n)

|z|  |z|
8
, (95)

and the triangle inequality.

C.2. Proof of Lemma 17. By writing G(z) := (z � E)�1 as a Neumann series,
we see that

����G(z)� 1

z
IN+n � E

z2

����  1

|z|

1X

k=2

✓
kEk
|z|

◆k

=
kEk2

|z|2(|z|� kEk)  2kEk2

|z|3

since kEk
|z|  1/2 and |z|� kEk � 1

2
|z| by assumption.

C.3. Proof of Lemma 18. By the rotational invariance of E, it su�ces to assume
that U is the matrix with columns e1, . . . , er, where e1, . . . , eN is the canonical
basis in RN , and the columns of V are given by f1, . . . , fr, where f1, . . . , fn is the
canonical basis in Rn. By the definition of U in (9), it is easy to verify that

2(UT EU)ij =

8
>>><

>>>:

Eij + Eji for 1  i, j  r;

�Ei,j�r + Ej�r,i for 1  i  r, r + 1  j  2r;

Ei�r,j � Ej,i�r for r + 1  i  2r, 1  j  r;

�Ei�r,j�r � Ej�r,i�r for r + 1  i, j  2r.
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Denote Er the r ⇥ r upper-left corner of E. We rewrite

UT EU =
1

2

✓
Er + ET

r �Er + ET
r

Er � ET
r �Er � ET

r

◆
=

1

2

✓
Ir Ir
Ir �Ir

◆✓
Er 0
0 ET

r

◆✓
Ir �Ir
Ir Ir

◆
.

By elementary computation and the fact that ErET
r and ET

r Er share the same
non-trivial eigenvalues, we get

kUT EUk  1

2

����

✓
Ir Ir
Ir �Ir

◆����

����

✓
Er 0
0 ET

r

◆����

����

✓
Ir �Ir
Ir Ir

◆���� = kErk.

Hence, by invoking Lemma 15, we have

kUT EUk  kErk  2
p
r +

p
2K log(N + n)

with probability at least 1� 2(N + n)�K .
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[47] M. Lelarge, L. Massoulié, and J. Xu. Reconstruction in the labelled stochastic block model.
IEEE Trans. Network Sci. Eng., 2(4):152–163, 2015.

[48] F. McSherry. Spectral partitioning of random graphs. In 42nd IEEE Symposium on Foun-
dations of Computer Science (Las Vegas, NV, 2001), pages 529–537. IEEE Computer Soc.,
Los Alamitos, CA, 2001.

[49] B. Nadler. Finite sample approximation results for principal component analysis: a matrix
perturbation approach. Ann. Statist., 36(6):2791–2817, 2008.

[50] S. O’Rourke, V. Vu, and K. Wang. Eigenvectors of random matrices: A survey. Journal of
Combinatorial Theory, Series A, 144:361 – 442, 2016. Fifty Years of the Journal of Combi-
natorial Theory.

[51] S. O’Rourke, V. Vu, and K. Wang. Random perturbation of low rank matrices: improving
classical bounds. Linear Algebra Appl., 540:26–59, 2018.

[52] S. O’Rourke and N. Williams. Pairing between zeros and critical points of random polynomials
with independent roots. Trans. Amer. Math. Soc., 371(4):2343–2381, 2019.

[53] C. Pozrikidis. An introduction to grids, graphs, and networks. Oxford University Press, Ox-
ford, 2014.

[54] J. W. S. Rayleigh, Baron. The Theory of Sound. Dover Publications, New York, N. Y., 1945.
2d ed.

[55] K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic
blockmodel. Ann. Statist., 39(4):1878–1915, 2011.

[56] M. Rudelson and R. Vershynin. Non-asymptotic theory of random matrices: extreme singular
values. In Proceedings of the International Congress of Mathematicians. Volume III, pages
1576–1602. Hindustan Book Agency, New Delhi, 2010.

[57] P. Sarkar and P. J. Bickel. Role of normalization in spectral clustering for stochastic block-
models. Ann. Statist., 43(3):962–990, 2015.

[58] E. Schrödinger. Quantisierung als eigenwertproblem. Annalen der Physik, 384(4):361–376,
1926.

[59] G. W. Stewart and J. G. Sun. Matrix perturbation theory. Computer Science and Scientific
Computing. Academic Press, Inc., Boston, MA, 1990.

[60] M. Tang, A. Athreya, D. L. Sussman, V. Lyzinski, Y. Park, and C. E. Priebe. A semiparamet-
ric two-sample hypothesis testing problem for random graphs. J. Comput. Graph. Statist.,
26(2):344–354, 2017.

[61] M. Tang, J. Cape, and C. E. Priebe. Asymptotically e�cient estimators for stochastic block-
models: the naive MLE, the rank-constrained MLE, and the spectral estimator. Bernoulli,
28(2):1049–1073, 2022.

[62] T. Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations. Probab.
Theory Related Fields, 155(1-2):231–263, 2013.

[63] C. Tomasi and T. Kanade. Shape and motion from image streams: a factorization method.
Proceedings of the National Academy of Sciences, 90(21):9795–9802, 1993.

[64] R. Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

[65] U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–416, 2007.
[66] V. Vu. Singular vectors under random perturbation. Random Structures Algorithms,

39(4):526–538, 2011.
[67] V. Vu. A simple SVD algorithm for finding hidden partitions. Combin. Probab. Comput.,

27(1):124–140, 2018.
[68] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.

Cambridge University Press, 2019.
[69] R. Wang. Singular vector perturbation under Gaussian noise. SIAM J. Matrix Anal. Appl.,

36(1):158–177, 2015.



46 SEAN O’ROURKE, VAN VU, AND KE WANG

[70] P.-A. Wedin. Perturbation bounds in connection with singular value decomposition. Nordisk
Tidskr. Informationsbehandling (BIT), 12:99–111, 1972.

[71] D. Xia and F. Zhou. The sup-norm perturbation of HOSVD and low rank tensor denoising.
J. Mach. Learn. Res., 20:Paper No. 61, 42, 2019.

[72] Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis-Kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

[73] S.-Y. Yun and A. Proutiere. Accurate community detection in the stochastic block model via
spectral algorithms. Available at arXiv:1412.7335, 2014.

[74] S.-Y. Yun and A. Proutiere. Optimal cluster recovery in the labeled stochastic block model.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[75] X. Zhong, C. Su, and Z. Fan. Empirical Bayes PCA in high dimensions. J. R. Stat. Soc. Ser.
B. Stat. Methodol., 84(3):853–878, 2022.

[76] Y. Zhong. Eigenvector under random perturbation: A nonasymptotic rayleigh-schrödinger
theory. Available at arXiv:1702.00139, 2017.

[77] Y. Zhong and N. Boumal. Near-optimal bounds for phase synchronization. SIAM J. Optim.,
28(2):989–1016, 2018.

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309
E-mail address: sean.d.orourke@colorado.edu

Department of Mathematics, Yale University, PO Box 208283, New Haven, CT 06520-
8283, USA

E-mail address: van.vu@yale.edu

Department of Mathematics, Hong Kong University of Science and Technology,
Hong Kong

E-mail address: kewang@ust.hk


	1. Introduction
	Acknowledgements
	2. Main results
	2.1. Individual singular vector bounds
	2.2. Singular subspace bounds
	2.3. Comparison to other results in the literature
	2.4. Outline and notation

	3. Basic tools and an overview of the proof
	3.1. Linear algebra
	3.2. Resolvent
	3.3. Singular value locations
	3.4. Additional tools
	3.5. Overview of the proofs

	4. Proof of Theorem 7
	5. Proof of Theorem 12
	6. Proof of Lemma 9
	Appendix A. Proof of Theorem 3
	Appendix B. Proofs of Propositions 8, 10, 11, (21) and Lemma 13
	B.1. Proof of Proposition 8
	B.2. Proof of Propositions 10
	B.3. Proof of Propositions 11
	B.4. Proof of (21)
	B.5. Proof of Lemma 13

	Appendix C. Proofs of Lemma 16, 17, and 18
	C.1. Proof of Lemma 16
	C.2. Proof of Lemma 17
	C.3. Proof of Lemma 18

	References

