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ABSTRACT. The Davis-Kahan—-Wedin sin © theorem describes how the sin-
gular subspaces of a matrix change when subjected to a small perturbation.
This classic result is sharp in the worst case scenario. In this paper, we prove a
stochastic version of the Davis—Kahan—Wedin sin © theorem when the pertur-
bation is a Gaussian random matrix. Under certain structural assumptions, we
obtain an optimal bound that significantly improves upon the classic Davis—
Kahan-Wedin sin © theorem. One of our key tools is a new perturbation
bound for the singular values, which may be of independent interest.

1. INTRODUCTION

Consider an N x n (data) matrix A. In practice, it is common that we only have
access to a corrupted (noisy) version A given by

A:=A+E, (1)

where E represents the noise matrix. As a result, one must use A as input for all
calculations and algorithms intended for A. A question of fundamental interest is
to estimate the impact of the noise E on the output; see for instance [31,32, 33,37,
40,41,55,57,60, 65, 72] and references therein.

In modern studies, noise is often assumed to be random (e.g., Gaussian) and
the data matrix A possesses certain structural properties. For example, in a vast
number of studies, researchers assume that A has low rank [18,19,20,63], and our
main results focus on this case.

Assume that the N x n data matrix A has rank r» > 1. We will often think of r
as a constant (or a parameter very small compared to the dimensions N and n such
as r < logn or 7 < nf). The singular value decomposition (SVD) of A takes the

form A = UXVT, where ¥ = diag(o1,...,0,) is a diagonal matrix containing the
non-zero singular values o1 > 09 > --- > 0, > 0 of A; the columns of the matrices
U= (u1,...,ur) and V = (vy,...,v,) are the orthonormal left and right singular

vectors of A, respectively. In other words, u; and v; are the left and right singular
vectors corresponding to o;. It follows that UTU = VTV = I,., where I, is the r x r
identity matrix. For convenience, we will take o,4; = 0 for all ¢ > 1.

Recall that A is given in (1). Denote the SVD of A similarly by A = USVT,
where the diagonal entries of 3 are the singular values 61 > 02 > -+ > Tmin{n,n} =
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0, and the columns of U and V are the orthonormal left and right singular vectors,
denoted by u; and v;, respectively.

Let II; denotes the orthogonal projection onto the subspace spanned by the s
leading singular vectors of A (either left or right). The matrix IT; A is the best rank
s approximation of A [34, Section 2.4] and plays an important role in applications
in almost every fields of science involving large data sets. Given the noise issue, it
is thus of fundamental interest to bound the difference between Il and its “noisy”
counterpart ﬁs (the projection onto the subspace formed by the leading s singular
vectors of /T) The goal of this paper is to bound this difference.

As our main result is bit technical, let us first consider a toy case. Assume we
want to compute the first (left) singular vector u; of the matrix A. If we only have
access to the noisy matrix Z, we can only compute %;. The famous Davis-Kahan—
Wedin sin © theorem [25,70] provides a bound on the difference between %; and
u1. Two parameters appear in this bound: the gap (or separation) ¢; between the
largest singular values of A given by

51 =01 — 09
and the spectral norm of E defined by

B == max || Euf,
lull=1

where ||u|| denotes the Euclidean norm of the vector w.

Theorem 1 (Davis—Kahan-Wedin sin © theorem). One has

~ E
sin Z(uy, uy) < QM,
01
where Z(uy,u1) s the acute angle between uy and Uy, taken in [0,7/2]. The same
bound holds for sin Z(vy,v7).

Theorem 1 follows as a simple corollary of the Davis—-Kahan-Wedin sin © the-
orem; see Theorem 4 from [51], which also contains an example explaining the
necessity of the appearance of the gap 4.

In [51], the current authors considered random noise and improved Theorem 1
by showing that a stronger bound

o) | IE] , 1Bl
51 g1 0'1(51

(2)

holds with high probability (the probability space is generated by the randomness
of the noise matrix E; see [51] for details). Here, C(r) is a parameter depending
polynomially on r. To see how this improves upon the Davis—-Kahan-Wedin sin ©
theorem, let us mention that in most settings, the norm of the random matrix F
is polynomial in N + n. Thus, in the setting where r is significantly smaller than
the dimensions N, n, the first term C(r)/d; improves upon the term ||E||/d; as it
replaces a polynomial in N + n by a polynomial in 7. The second term || E||/o1
represents the signal-to-noise ratio; notice that the denominator is the singular
value o1 which is usually much larger than the gap d; between o1 and os. Finally,
the third term % improves upon the term || E||/d; by the a factor involving the
noise-to-signal ratio |E||/oy. This theorem generalized Theorem 8 of [66], where
the second author considered Bernoulli random matrices.

sin 4(111, al) 5
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The first term on the right-hand side of (2) was already conjectured in [66]. As
noted above, the second term represents the signal-to-noise ratio. Both terms are
necessary (see below for further details). Indeed, if the gap ¢; is too small, there is
a chance that the two leading singular values (and thus the corresponding singular
vectors) get “swapped.” Moreover, if the signal-to-noise ratio is low, then the data
matrix is overwhelmed by noise, and the singular vectors behave more like random
vectors. In random matrix theory, this phenomenon is known as the BBP phase
transition, named after Baik, Ben Arous, and Péché [5]; see [5,8] and references
therein for further details.

It is conjectured that the third term on the right-hand side of (2) is not nec-
essary, under some mild assumptions. In this paper, we introduce a new method
of analyzing random perturbations and confirm this conjecture (up to lower-order
corrections). As the precise result is a bit technical, let us first state a simpler,
but easier to read, version of the our main result. The asymptotic notation is used
under the assumption that the dimensions n and N tend to infinity.

Theorem 2 (Perturbation with Gaussian noise; simplified asymptotic version).
Let A and E be N x n real matrices, where A is deterministic and the entries of E
are jointly independent standard Gaussian random variables. If A has rank r > 1,
then, with probability 1 — o(1),
C(r,log(N +n))  [I£]
+ )
51 g1

sin Z(uq,u1) S

3)

where C(s,t) is a positive parameter which grows at most polynomially in s and t.

Theorem 2 shows that the third term on the right-hand side of (2) is not necessary
and verifies the conjecture discussed above. In Section 2, we state the more detailed
version of Theorem 2 and its generalizations. In this paper, we focus on the case
when the entries of F are jointly independent Gaussian random variables. This
assumption simplifies parts of the (already technical) proofs, but the method does
extend to other distributions. For instance, the results can be extended to the case
when FE has independent and identically distributed sub-gaussian entries. To relax
the Gaussian assumption, one needs to establish a variant of the isotropic local
law presented in Lemma 9 below. Similar results have been established for more
general entry distributions (see the discussion regarding the isotropic local laws in
Section 3.2 for references). We plan to discuss the non-Gaussian case in a separate
paper.

One can also consider the case when the entries of E are not necessarily identi-
cally distributed (but are still jointly independent). For example, consider the case
when the entries of E = (E;;) are jointly independent normal random variables,
where E;; has mean zero and variance U?j. Depending on the values of the vari-
ances U%, the resolvent of E may no longer satisfy an isotropic law and instead
may satisfy an anisotropic law [43]. It is unclear if our methods can be adapted to
deal with the anisotropic case. Similarly, while we expect our results to also hold
when there is a small dependence between the entries of E, our methods heavily
rely on the joint independence of the entries.

It is worth noting that when §; = o7 (i.e., the rank-1 case) or when the spectral
gap is of similar magnitude to the signal strength, §; < o1, the right-hand side of
(3) is proportional to || E||/o1. Theorem 3 below implies that, up to lower order
terms and constants, this bound is optimal. Nevertheless, based on our bounds, it
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is apparent that sin Z(uq,%1) can be reasonably bounded in most cases, even when
01 < o01. Such relaxation offers improved outcomes in numerous applications, which
will be elaborated upon in a forthcoming paper.

We remark that the bound in (3) does not depend on the condition number
k = o1/o, of A. Instead, we have modeled our main results after the Davis—
Kahan-Wedin sin © theorem (Theorem 1), which instead relies on the gap d; to
quantify how sensitive the matrix is to perturbations.

Before concluding this section, we discuss the optimality of Theorem 2. Numer-
ical simulations show that, up to the particular form that C(s,t) takes, the first
term on the right-hand side of (3) is necessary; see Figure 1. The second term
on the right-hand side of (3) represents the signal-to-noise ratio; this term is also
necessary as can be seen from the following lower bound.

........

FicUure 1. A plot of the cumulative distribution function F of
sin Z(uy, 1), where F(z) = P(sin Z(uy,u;) < ) for 0 < z < 1.
We take N = n = 1000 and A = diag(300,300 — §,0,--- ,0) with
rank 7 = 2 where the spectral gap § = d; is chosen to be 20, 10,
5, and 2. F is a Gaussian matrix as in Theorem 2. Each curve is
generated from 400 samples.

Theorem 3 (Lower bound). Let A and E be N X n real matrices, where A is
deterministic with rank r satisfying 1 < r < %max(N, n) and the entries of E are

L random variables with mean

independent and identically distributed sub-gaussian
zero and unit variance. Then

=]

1 =
8v21 + (1 +v2)LEL

with probability at least 1 — Cexp (—cmax(N,n)), where C,c > 0 are constants
depending only on the sub-gaussian norm of the entries of E.

max{sin Z(u1,u1),sin Z(vy,01)} >

(4)

Notice that if % < 1, then the right-hand side of (4) simplifies to c”G—ElH for
some constant c. The proof of Theorem 3 can be found in Appendix A. This result
can be extended to more general random matrices with independent entries and
matrix ensembles satisfying rotational invariance. Due to space limitation, we do

not pursue such generalizations here.

1A random variable £ is sub-gaussian if there is a positive constant ¢ such that P(|¢| > t) <
2exp(—ct?) for all t > 0; the largest constant ¢ > 0 for which this property holds is called the
sub-gaussian norm of £. Standard normal random variables are sub-gaussian.
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2. MAIN RESULTS

We state all of our main results in non-asymptotic forms (without using any
asymptotic notation) and state all constants explicitly so that the results can be
applied to matrices of any dimension.

2.1. Individual singular vector bounds. We first state the technical version of
Theorem 2 with precise dependences between the parameters.

Theorem 4 (Perturbation with Gaussian noise). Let A and E be N x n real
matrices, where A is deterministic with rank r > 1 and the entries of E are jointly
independent standard Gaussian random variables. Let K be an arbitrary positive
constant, and denote n := 54r\/(K + 8)1log(N +n). If o1 > 4(vV'N + \/n) + 140nr
and 6, = o1 — oy > 100nr, then with probability at least 1 — 15(N +n)~K

log(N
< stV I (5)
1

01

sin 4(U1, ﬂl)

whenever % > 64(K +9). The same bound holds for sin Z(vq,v1).

Remark 5. Note that the constants in this theorem (such as 54 and 100) and our
theorems below are chosen for convenience. In order to keep the proof presentable,
we have not tried to optimize these values. However, the values can be significantly
improved by tracking the constants throughout the proof. For example, if one

replaces the assumptions oy > 4(v/N + y/n) + 140nr and % > 64(K +9)

by o1 > 11(V/N +/n) + 15097 and LAY~ 200(K +9), then the constant 542

appearing on the right-hand side of (5) can be replaced by 180.

Theorem 4 improves upon (2) and Theorem 1 when the rank r is sufficiently
small and §; < ||E||. As discussed in the previous section, the bound given in (5)
is optimal, up to the choice of constants and the particular polynomial dependence
on r and log(N + n).

2.2. Singular subspace bounds. The results stated so far have focused on the
singular vectors corresponding to the largest singular value. More generally, we will
consider the singular subspaces spanned by the first j (1 < j < r) singular vectors.

Define
U, := Spanf{ui,...,u;}, V;:=Span{vy,...,v;},
ﬁj := Span{uy,...,u;}, ‘7} := Span{vy,...,0;}. ©)
Even more generally, for any 1 < k < s < r, let us denote
Uk,s == Span{uyg, ..., us}, (7;6’5 := Span{ug,...,Us}

and analogously for Vj s and \N/k, 5
Recall that if U and V are two subspaces of the same dimension, then the largest
principal angle Z(U, V') between them is given by

sin Z(U,V) := onax, Uer‘r/llilrjliosin Z(u,v) = ||Py — Py|| = [Py Py, (7)
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where Py, is the orthogonal projection matrix onto subspace W. We define the
gaps (or separations) between the singular values of A by

0; =07 —Oit1

for 1 <14 < r, where we use the convention that .11 = 0.
Theorem 2 can be generalized to the following.

Theorem 6 (Singular subspace bounds; simplified asymptotic version). Let A and
E be N xn real matrices, where A is deterministic with rank r > 1 and the entries of
FE are jointly independent standard Gaussian random variables. For any1 < rg <,
if MiNg, 25, 1<1,j<ry |01 — 04| > C(r,log(N +n)), then, with probability 1 — o(1),

~ C(r,log(N E
sin Z(Uyy, Uyy) < (r,log(N' +n)) , 1B

~ Ory Org
where C(s,t) is a positive parameter that grows at most polynomially in s and t.

Here, the minimum ming, £, 1<1,5<r, |oy — o] is over all distinct singular values
o1 # 04, §,1 < ro. In particular, this includes the case when some of the singular
values of A may be repeated. Since the minimum is only over distinct singular
values, even if some singular values occur with multiplicity, it is always the case
that ming, £, 1<1,j<r, |01 — 0| > 0. The technical version of Theorem 6 is given
below.

Theorem 7 (Singular subspace bounds). Let A and E be N xn real matrices, where
A is deterministic and the entries of E are jointly independent standard Gaussian
random variables. Assume A has rankr > 1. Let K > 0 be any constant and denote

n = 54r\/(K + 8)log(N +n). Assume % > 64(K +9). Forany 1 <ry <

T, ifop, > 4(\/]v+\/ﬁ)+140777“, dro > 100mr and ming, 4o, 1<1,j<r, |01—0;] > 10007,
then

~ o 1 E
sin Z(Ury, Uy) < 21v27, | S ER—— +2||U I
J To T0

J=1

(8)

with probability at least 1 — 15(N + n)~X. The same conclusion also holds for
sin Z(Vyg, Vi ).
In addition, for any 1 < k < s <rg, if min{dx_1,ds} > 100nr, then

k—1 s

1 1
2 (0, —on)? 2 (0j = 0s41)?

j=1 j=k *77

(02

Ok—1 Os

sin Z(Up.s, Ug.s) <21v/27

with probability at least 1 — 15(N + n)~X. The same conclusion also holds for
sin Z(Vk75, Vk,s)-

The choice of constants, such as 100 and 140, in Theorem 7 is for convenience;
an inspection of the proof will reveal exactly how much these constants can be
optimized (see Remark 5).

The key to proving our main results is a precise prediction for the location of the
singular values of A+ E. In order to obtain optimal control of the singular values,
one cannot simply compare 7; to o; (or more conveniently 532- to sz»). Instead, we
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compare 03 to 55 + &, where ¢ is a random correction term (depending only on
the matrix F). This random correction term allows us to obtain a more precise
prediction for the singular values. The precise result is given in Theorem 12, which
can be found in Section 3.3, after appropriate notations have been introduced.

2.3. Comparison to other results in the literature. Many classical results
compare the singular vectors (alternatively, eigenvectors) of A + E to those of
A. The study of eigenvector perturbations dates back to at least Rayleigh [54]
and Schrodinger [58]. More recently, these results include the Davis-Kahan—Wedin
sin © theorem [25,70]. For the singular values (alternatively, eigenvalues), there are
many classical results, including Weyl’s bound [13]. In contrast to this work, all of
these classical results focus on the case when A and E are deterministic. We refer
the reader to the classical texts [13,38,59] for further details and generalizations.

The case when FE is random has only been studied more recently. As discussed
above, our main results in this paper improve upon the works [51,66]. A number of
similar results have focused on the case when F has Gaussian entries. For example,
in [44], Koltchinskii and Xia derive concentration bounds for linear forms involving
the singular vectors and this was later extended to tensors by Xia and Zhou in [71].
The non-asymptotic distribution of the singular vectors, up to rotation, is studied
by R. Wang in [69]. A perturbative expansion of the coordinates of the eigenvectors
is given in [9]. Allez and Bouchaud studied the eigenvector dynamics of A+ E when
both A and F are real symmetric matrices and the entries of F are constructed
from a family of independent real Brownian motions [2].

In the random matrix theory literature, there are a number of perturbation
results; in contrast to this work, many of these results focus on the case when ||A]|
and ||E|| are proportional. The works of Benaych—Georges and Nadakuditi [11,12]
have influenced this paper (and we discuss these works more below). The results in
[11,12] establish the almost sure convergence of the projection of the outlier singular
vectors (resp. eigenvectors) onto the r-dimensional singular vector subspace (resp.
eigenspace) of A, assuming r, the rank of A, is fixed and the dimensions N,n tend
to infinity. The limiting distribution of such projections is explicitly given in [7].
In these papers, the norm of A and E must be comparable. We make no such
assumption here. (In fact, in applications, the intensity of the noise is expected to
be much smaller than the key signals.) Several related results for eigenvectors of
random matrices are also discussed in the survey [50]. A different yet closely related
type of perturbation comes from the spiked covariance model (see [5,6,16,17,49]
and many references therein).

Another class of results in the literature is motivated by applications. Motivated
by statistical machine learning, Abbe, Fan, Wang, and Zhong [1] provide entry-wise
bounds between the eigenvectors of a random matrix and those of its expectation.
With similar motivations, the geometry of the singular subspaces are studied using
the two-to-infinity subordinate vector norm on matrices in [22]. In the real symmet-
ric case, when the matrix A is incoherent and has low rank, /°°-norm bounds for the
eigenvectors are given in [33]. Similar entrywise-type behaviors for the eigenvectors
are studied in [76,77]. Both deviation and fluctuation results for the eigenvectors
are presented in [21] based on statistical motivations. Applications of principal
components analysis have also motivated a number of similar works, including [75]
and references therein.
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The stochastic block model has been extensively studied in recent years, espe-
cially in connection with spectral algorithms, which often take advantage of eigen-
vector perturbation results. For example, motivated by the stochastic block model,
Eldridge, Belkin, and Wang [26] investigated random perturbations of real sym-
metric matrices. In particular, their results focus on the eigenvalues and ¢*°-norm
bounds for the eigenvectors, which improve upon classical bounds. Additionally, we
highlight the works [24,35,47,48,55,61, 67,73, 74] concerning the stochastic block
model, which are perhaps the most relevant to this paper.

The list of works discussed above is far from complete and represents only a
small fraction of the literature.

2.4. Outline and notation. The paper is organized as follows. Section 3 estab-
lishes the preliminary tools needed for the proofs of our main results. We introduce
a key lemma, Lemma 9, that shows that the resolvent of the random noise can be
well approximated by a diagonal matrix. The proof of Lemma 9 is deferred to Sec-
tion 6. Section 3 also contains a brief overview of our proof techniques. In Section
4, we prove Theorem 7 using Lemma 9. Section 5 contains the proof of Theorem
12, which describes the precise location of the perturbed singular values of A. The
proof of Theorem 3 is presented in Appendix A. In Appendix B, we collect the
proofs of Propositions 8, 10, 11, (21) and Lemma 13.

Without loss of generality, we always assume N < n, for if not, one can simply
apply the results to the transposes of the matrices. We introduce the following
notation. For a finite set S, |S| denotes the cardinality of S. Recall that ||M]|
denotes the spectral norm of the matrix M, and let ||M||r denote the Frobenius
norm. For a vector z, ||z|| will be its Euclidean norm. The matrix I, is the n x n
identity matrix. We will often simply write I when the size can be deduced from
context. For integers mo > my > 1, we let [myi,mo] := {mq,...,ma} denote
the discrete interval. The distance between a point z € C and a set G C C is
dist(z,G) := infeg |2 — w|. For two sets F,G C C, the distance between them is
dist(F,G) = inf,e r weg |2 — w|. For two random elements = and y, we write x ~ y
if z and y have the same distribution. The function log(-) will always denote the
natural logarithm.

3. BASIC TOOLS AND AN OVERVIEW OF THE PROOF

In this section, we develop the preliminary tools needed to establish our main
results. Section 3.5 contains a brief overview of our main proof techniques.

3.1. Linear algebra. We first apply a linearization trick, which allows us to con-
sider the eigenvalues and eigenvectors of a symmetric matrix instead of studying
the singular values and vectors of a non-symmetric matrix.

Consider the (N +n) x (N + n) matrices

0 A 0 F
A:—(AT 0) and 5:—(ET O)

in block form. Define

A:=A+E.
The non-zero eigenvalues of A are given by +o1,...,+0,.. Indeed, A(u]T, UJT)T =
Uj(u;,vE)T and .A(u;-f, —’U]T)T = —aj(u;r,—v})T. Denote these eigenvalues by
Aj =o0; and Ajy, = —oj for 1 < j < r. Then u; := %(UE,UE)T and Ujy, =



GAUSSIAN NOISE: OPTIMAL ESTIMATES FOR SINGULAR SUBSPACE PERTURBATION 9

%(UJT, —v})T for 1 < j < r are their corresponding orthonormal eigenvectors. The
spectral decomposition of A is given by

A=Upu’, (9)
where U = (uy,...,uy,) and D := diag(A1, -+, A2,). It follows that UTU = Iy,.
Similarly, the non-zero eigenvalues of A are denoted by Xj =0, and Xj+min{ N} =
—o; for 1 < j <min{N,n}. The eigenvector corresponding to Xj is denoted by 1,
and is formed by the right and left singular vectors of A.

For J C [1,2r], we introduce the notation I/ to denote the (N +n) x |J| matrix
formed from U by removing the columns containing u; for ¢ ¢ J. Similarly, D;
will denote the |J| x |J| matrix formed from D by removing the rows and columns
containing A; for i € J. Let I :=[1,2r] \ J. In this way, we can decompose A as

A=UDUT =U;D;UT + U DU (10)
With a slight abuse of notation, we also denote the subpace
Uy = Span{uy : k € J}.

Let P; be the orthogonal projection onto the subspace Uy. Clearly, P; = L{JU}.

Analogous notations Uy, Py, Dy are also defined for A.
__ For the remainder of the paper, it suffices to derive results on the eigenspaces of
A by noting the following linear algebra fact.

Proposition 8. Let U, U CRY and V, V C R" be subspaces of the same dimension
p- Let W and W be subspaces in RN*" obtained by concatenating vectors from U,V
and U,V respectively, i.e. W = {w € RN*" 1w = (v, 01T, u € U,v € V} and
W={wecRVN*t" o= @", ") acU,vcV}. Then
max{sin Z(U, 17), sin Z(V, ‘7)} = sin Z(W, ,VV)
The proof of Proposition 8 is deferred to Appendix B.1. In particular, as a
special case of Proposition 8 one has

max{sin Z(Uy,, Uy, ), sin £V, Vg )} = sin Z(Uy, Uy) (11)
for the index set I := [1,79] U [r + 1,7 + o] and
max{sin Z(Uy., Ur.s),8i0 Z(Vi.s, Vies) } = sin Z(Uy, Uy) (12)

where | := [k, sJU[r+k,r+s],1 <rg<r,and 1 <k <s <.

We also recall the Weinstein-Aronszajn identity (also called Sylvester’s determi-
nant identity), see page 271 of [53]: if B is an n x k matrix and C'is a k X n matrix
then

det(I,, — BC) = det(I — CB). (13)
When k < n, (13) allows us to reduce an n X n determinant to a smaller k x k
determinant.

Weyl’s inequality (see [13, Corollary I11.2.6]) states that if B and C are n x n
real symmetric matrices with eigenvalues Ay (B) > -+ > A\, (B) and A (C) > --- >
An(C), then

max [\;(B) = \,(C)| < |B - Cl|. (14)

1<j<n
The resolvent identity

B™'-c'=B"YC-B)C™! (15)



10 SEAN O’ROURKE, VAN VU, AND KE WANG

holds for invertible matrices B and C.

3.2. Resolvent. For z € C with |z| > ||£]|, we define the resolvent of £ as
G(z) = (21 - &N

Often we will drop the identity matrix and simply write (z — &)1 for this matrix.
We use G;;(z) to denote the (i, j)-entry of G(z).

The resolvent G(z) is a heavily studied object in random matrix theory. For
example, one can study the eigenvalues of £ (and hence the singular values of E)
by analyzing the trace, tr G(z), since the trace is a meromorphic function with poles
precisely at the eigenvalues. In addition, the matrix G(z) encodes the behavior of
the eigenvectors of £ (and hence the singular vectors of E). For many matrix models
(see [15,27,28,30,36,42,43,45,46] and references therein), the resolvent G(z) can be
approximated by a diagonal matrix. Here, we consider a random diagonal matrix

1
a0

$2(2)
where

$1(2)i=2— Y. Gulz), e(2)i=z2- Y Gul2). (17)

te[N+1,N+n] s€[1,N]

Under the assumptions of Theorem 7, where n = 54T\/(K + 8)log(N + n), de-
fine a set in the complex plane in the neighborhood of any o € R by

8
Se :={w € C: |Im(w)| < 20nr,0 — 20nr < Re(w) < 70 + 20mr}. (18)
In the remainder of this paper, we define an index
i ;= min{j € [1,70] : 0; < n?}. (19)

Hence, for any the index | < iy, 07 > n?. Note that iy may not exists; in this case,
o; >n?forall 1<j<r.

Lemma 9. Under the assumptions of Theorem 7 and the additional assumption
that ig defined in (19) exists, one has

4 Iﬁyax | max |2 U (G(2) — () U| < 54r+/ (K + 8)log(N +n)
J€lto,r0] # T

with probability at least 1 — 10(N 4 n)~ K+,

Lemma 9 is similar to many isotropic laws for random matrices; see, for instance,
[15,36,42,43] and references therein. Roughly speaking, Lemma 9 quantitatively
controls how close G(z) is to the diagonal matrix ®(z) and will be a fundamental
tool in our proofs. Unfortunately, we are not aware of any results in the literature
that imply Lemma 9 as stated due to the block structure that £ takes and the
particular spectral domain S, we are interested in. We present the proof of this
lemma in Section 6. The assumption o; < n? is purely technical: it is used in the
proof for carrying out a volume argument on a bounded set. The cutoff n? is chosen
for convenience. An inspection of the proof reveals the conclusion of Lemma 9 holds
for all o;’s satisfying o; < n¢ for a fixed ¢ > 1 by adjusting the tail probability
accordingly.
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Finally, we collect some basic facts about the matrix ®(z). By setting

w._ (IN O a._ (0 0
T .—(0 0) and 7' .-(0 In>’

one can rewrite (17) as
$1(2) = 2z — tr T9G(2), P2(z) = z —tr I"G(2). (20)

It can be derived by elementary linear algebra (see Appendix B.4 for the proof)
that

61(2) = 6a() — (0 — ). (21)

From the definition of U in (9), it is easy to verify that

- (3 20%)

where we denote

°()=3 <¢11(z) ' ¢21(Z)) . 6) = <¢>11<z> ) ¢21<z>>

for notational brevity. It follows that

1 1
U ®(2)U|| = max {, } . (23)
[¢1(2)]" |¢2(2)]
Sometimes, we drop the z-dependence of «(z), 5(2), $1(z), ¢2(z) and simply write
a, B, ¢1, 2 when the context is clear.
The following technical results can be derived via basic linear algebra and the
proofs are deferred to Appendix B.

Proposition 10. For 1l <ry <r, denote the index sets I := [1, o] U[r+1,r+1o]
and J = [1,2r] \ I. For any x € R satisfying |z| > ||E||, the singular values of
Iop—2py —UF®(2)U;Dy are given by

‘ 1+ B(z)20? & |a(z)|oy

forrg+1<t<r.

Proposition 11. For any z € C satisfying |z| > ||€||, the matriz
D —UTB(2)U

is invertible with probability 1, and one has

D UTd(2)U ‘1H - 9L g2
I () | = e 01
where

1/2

Q:= |¢1¢2\2+%a?(\¢1\2+|¢2|2>+%m (416162101 + G2 + 0F (161 * — |62/*)°]
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3.3. Singular value locations. In this subsection, we introduce results that de-
scribe the precise locations of the singular values of A+ &, and they will play a key
role in the proof of Theorem 7.

To this end, consider the random function

0(2) == ¢1(2)p2(2), (24)

where ¢1(z) and ¢2(z) are defined in (17), and recall the set S, for any ¢ € R
defined in (18).

Theorem 12 (Singular value locations). Under the assumptions of Theorem 7
and the additional assumption that ig defined in (19) exists, for any io < j < 7o,
if oj has multiplicity «; and is denoted by 05 = 0j41 = ... = Ojya,—1, then
0j,0j41,--,0j1a;—1 are in the set S, specified in (18), and

~ 115 ~ 8
|o(Cjts) — 0]2»+s| < - <0j+s + 7o'j+s) for0<s<a;—1 (25)

with probability at least 1 — 10(N + n)~¥.

Since p(2) = 22 + £(z), where £(z) is a random term depending on 2z and the
resolvent G(z), Theorem 12 allows us to approximate the (squared) singular values
of A with those of A, up to the random e(z) correction term. While this random
correction term may seem odd at first, it allows for the much sharper bound appear-
ing on the right-hand side of (25), which in many cases is a significant improvement
over classic, deterministic bounds (such as Weyl’s inequality). Intuitively, since the
singular values of A are random, it makes sense that one cannot only use deter-
ministic values to accurately predict their locations. One of the key differences
between the techniques in this paper and those in [51] is that we take into account
the precise behavior of this random correction term.

The singular values considered in Theorem 12 are no larger than n2. If a singular
value o; is sufficiently large, the effect of the noise £ is negligible compared to the
strong signal and consequently, the location of o; is very close to o;. The next
lemma provides the perturbed singular value locations for large singular values.
We defer its proof to Appendix B.5.

Lemma 13. Under the assumptions of Theorem 7,

max oy — oyl <mr
le[1,ro]:01>4n?

with probability at least 1 — (N + n)~ 2" (K+8),

3.4. Additional tools. We now present a few additional tools we will need in
the proofs. The first lemma captures the tail behavior for sub-exponential random
variables. A random variable X with mean y = EX is sub-exponential with non-
negative parameters (v, a) if

v222 1
E (e’\(X_“)> <e'7 for all [N < —.
a

It is easy to verify that for a standard Gaussian random variable Z, Z2 is sub-
exponential with parameters (4,4), i.e.

2 1
E (EA(Z2*1)> <e™, forall |\ < 1 (26)
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Lemma 14 (Bernstein’s inequality for sub-exponential random variables; see Propo-
sition 2.9 in [68]). Suppose that X is sub-exponential with parameters (v?, ). Then

1o (t*
P(|X —EX| >1t) <2exp —g min — 0.

1?2«
The following lemma provides a non-asymptotic bound for the spectral norm of

Gaussian matrices.

Lemma 15 (Spectral norm bound; see (2.3) from [56]). Let E be an N X n matriz
whose entries are independent standard Gaussian random variables. Then

1B < 2(VN + V)
with probability at least 1 — 2e~(VN+VR)*/2 - M ore generally,
P|E| < VN +vn+t)>1—2e"/2

The next lemma bounds the operator norms of the resolvent and is used fre-
quently in the proof. Let £*) be the minor of £ with the kth row and column
replaced by zeros and G(¥)(z) the resolvent of £() (see the precise definition at the
beginning of Section 6). The proof is given in Appendix C.

Lemma 16. On the event where ||E|| < 2(v/'N + y/n),

2 2
|G < s IG®) (2)] < =
|| E
and
7 9 .
Slel <16i(2) < Slel fori=1,2 (27)

for any z € C with |z| > 4(V'N + /n) and for any k € [1, N + n].

The following lemma suggests that when |z| is large, the resolvent G(z) can be
well approximated by a simple matrix. We defer its proof to Appendix C.

Lemma 17. On the event where ||E| < 2(v/N + /n),

1 & 2||I€12

for any z € C with |z| > 4(V'N + /n).

The next lemma bounds the operator norm of the random matrix U7 EU of size
2r x 2r where U is defined in (9). Its proof can be found in Appendix C.

Lemma 18. Let K be an arbitrary positive constant. With probability at least
1—2(N +n)~ ¥, we have

|UTEU|| < 2¢/r + /2K log(N + n).

3.5. Overview of the proofs. We now provide a brief overview of the proofs of
our main results. For simplicity, we focus on the proof of Theorem 4, although the
proof of Theorem 7 is similar.
_ As noted above, Proposition 8 allows us to focus on the eigenvectors of A and
A. In this case, we have
sin® Z(uy, 1) = 1— [ufm > =) [ufg,)%
i#1
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Thus, our task reduces to controlling the inner products ulu, for j # 1. For
simplicity, let us focus on the case when j = 2. We start with the eigenvector-
eigenvalue equation

Atly = Moty
Rearranging this equation and using that A=A+& , we arrive at
iy = G(\p) All, (28)
provided |Xo| > [|€]|. Multiplying (28) by uf, we find
ult, = ul GOL)UDU 1y, (29)

where we used the spectral decomposition given in (9). Using Lemma 9, the re-
solvent matrix on the right-hand side of (29) can be approximated by the matrix
®(A2). Accordingly, we split the right-hand side of (29) into two terms

uTty = ul e )UDU T, + uT (G(Xg) - @(XQ)) U - DU T, (30)

and Lemma 9 facilitates precise control over the second term appearing on the
right-hand side of (30). In addition, we see that the term U 1, appearing in the
first term on the right-hand side of (30) contains a copy of the inner product u; - iz
as one of its entries. This will allow us to turn (29) into a recursive equation, with
the inner product appearing on both sides of the equation. More precisely, from
the spectral decomposition

A=UDUT = N\juiul + \juur g + UoDoldy

where Uy is obtained from U by removing the columns u; and u,4; and Dy from
D by removing the rows/columns containing A; and \,y;. Hence, from (22), we
arrive at

ul @) UDUT T = Ma(Do)ul Bg + A1 8(Ae)ul, s

Plugging the above equation back into (30) and rearranging the terms, we see that
(1 . Ala(XQ)) ultiy = A1 B()ul,, 1y + ul (G(XQ) - @(XQ)) U-DUTT,. (31)

Understanding the location of Xg is key to analyzing the left-hand side of (31), and
Theorem 12 will allow us to accurately estimate

1-— )\10&(X2) =1- 010[(52) ~1-— 0'1/0'2;

this estimate explains the appearance of the spectral gap §; in the results.

Actually, the term u;", ;8 on the right-hand side of (31) also encompasses infor-
mation regarding uf iy by the definition of the u;’s and should not be overlooked.
Besides, it is also wasteful to estimate each inner product |[uf u;| separately. In-
stead, when proving Theorem 7, we will group the inner products |u1Tﬁj| into two
categories: when j € [rog+ 1,7]U[r +ro+ 1,2r] and when j > 2r. The arguments
for the first category are similar to the methods discussed above (see Lemma 20).
The bound for the second category is much simpler and results in the signal-to-noise
ratio term appearing in Theorem 7 (see Lemma 19).
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4. PROOF OF THEOREM 7

In this section, we prove Theorem 7 using Theorem 12 and Lemma 9. In view of
(11), it suffices to bound sin Z(Uy,Uy) for I := [1,70] U [r + 1,7 4+ ro]. Assume the
null space of A is spanned by the orthonormal basis {ug,41, ..., Untn}; in general,
there will be many choices for this orthonormal basis and any choice will suffice for
our purposes.

The main idea of the proof is to divide the bound on sin Z (U, L~{[) into two parts.
The first part involves projections of the vectors u,,+1,...,Ur, Urtro+1,---, U2y
while the second part involves projections of the vectors ug;41,...,up+n. The
latter terms can be controlled using the noise-to-signal ratio || E||/oy,. The main
argument is the estimate of the first term, which reflects that when the signal is
stronger than the noise, the action of £ is essentially on the 2r-dimensional subspace
spanned by the eigenvectors of A corresponding to the non-trivial eigenvalues. We
use the resolvent G(z) to extract information about the perturbed eigenvectors with
the aid of Lemma 9 and Theorem 12.

If ro = r, then §, = o, and the conclusion follows from the Davis—Kahan—Wedin
sine © theorem [25,70], which implies that

- - E
max{sin Z(U,,U,),sin £(V,., V;-)} < 2u.

T
Thus we assume 1 < rg < r — 1 throughout the proof. For the remainder of this
section, we fix the index sets

I=[1LrJU[r+1,7+r]

and
J=[L2r]\ I =[ro+ 1,7JU[r+ro+ 1,2r].

Lemma 19. Under the assumptions of Theorem 7,

. ~ ~ E
sml(Z/{I,Z/{I) = ||PI — P]” S ||PJP]H —|—2H H

Orq

with probability 1.

Proof. We assume o,, > 2|/ E| as the bound is trivial otherwise. In view of [13,
Exercise VII.1.11],

|Pr = Pr|| = || PrePy|
< 1Py Pyl + |1 Ppav1,n+np Pr -
We aim to bound B _
1 Prort1, 8401 Prll < U1 wngta -
From the spectral decomposition of ./T, we have
(A+EU; =UD;.
Multiplying by Ll[[gr +1,N4n] O the left of the equation above, we further have
u[[q‘;r+17N+n]]5a1 = u[%;r+1,N+n]]ZjI,lAjI-

As 0,, > 2||E|| by supposition, Weyl’s inequality (14) implies that

. 1
o >0 —||E|| > 50 (32)
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for 1 < i < ro. Hence, Dy is invertible since |X\;| = &; > o; — | E| > 0 for i € [1,70]
and |\;| = 0;—r > 0 for ¢ € [r+1,r +ro]. It follows that

IE]
||u[[2r+1 N+n]]uf|| - ||U|I2r+1 N+n]]5u1 1” < ||5H||DI H -5
T0
Thus by another application of (32), we get
HEH S IEll
| Prars1,nny P < 2=—. (33)
T0 UTO
as desired. ([l

It remains to bound ||P;P; ||, which is the content of the following lemma.

Lemma 20. Under the assumptions of Theorem 7, we have

~ 0 1
|1PyPr|| < 21v2n s
D) e

with probability at least 1 — 15(N +n)~ K
Proof. In the following, we work on the event where ||E| < 2(v/N + /n); Lemma

15 shows this event holds with probability at least 1 — 2e~(VN+Vn)?/2 >1-2(N+
n)~32(K+2) since (VN + /n)? > 64(K + 2)log(N + n) by assumption. We start

with the bound
1Py Pr|| < U5ty < lUFts e = > IUF)2 (34)
el

Now we estimate |[U/T 1| for each i € I. We split the index set I into two disjoint
sets:
To={icl:|N| <n?} and T :={icl:|\|>n?}.
Note that Zs or Zj could be the empty set.
Case 1: estimate |[U/T1;|| for i € Z,. We first obtain an identity for the eigenvec-
tor w;. By Weyl’s inequality, |\;| > 7, > 0r, — |E|| > || E|| = ||€]| by supposition
on o, and thus G()\;) and ®()\;) are well-defined. As (A + &)u; = \u;, we solve
for u; to obtain N N
;= (Ml — &) AW = G(\)Au,.
Rewrite the above equation
;= D) AT + (G — D(N) ) Al
and multiply on the left by U7} to get
UFG: = UTO(N) Al +UT (GO - @) ) Al (35)
Plugging in (10), we further have
UF G = UT O O)U DU+ UT (GO) = o(%) ) UDU S,

where we used u}@(ii)ul = 0. Hence,

(IQT,QTO - u}@(Xi)uJDJ) UTw; =u’ (G(Xi) — (X )) UDU ;. (36)
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We are now in position to bound ||if; 0;||. This can be achieved by obtaining an
upper bound for the right-hand side of (36) and estimating the smallest singular
value of the matrix

Inp—ory — U @(N)U;Dy (37)
on the left-hand side of (36). We establish these estimates in the following two
steps. Recall the index ig from (19). We will work on the event E := N;2; E; where

Ei = {51 S Sgi, |Z/{T (G(&z) - @(51))24” S %, |¢1(&Z)¢2(5Z) - Uz2| S 142777"(5,' + 80’,’)} .

7
(38)

By Theorem 12 and Lemma 9, the event E holds with probability at least 1 —12(N +
n)~ K.
Step 1. Upper bound for the right-hand side of (36). Recall I = [1,ro] U [r +
1,7 + ro]. We first consider the case when i € [1,r] and A\, = 7;. Note that
UT (G(5;) — ®(0;))U is a sub-matrix of U (G(5;) — ®(5;))U. Thus, using (38)
and the fact that the spectral norm of any sub-matrix is bounded by the spectral
norm of the full matrix, we deduce that
~ ~ ~ n ~

45 (G(&:) = ®(@) UDUT || < = || DU ).
Observe from (A + &)1; = o;u; that UDUTR; = (5;1 — £)u;. Multiplying UT on
both sides, we get the bound

DU ;| < ||E| + 65 < 20 (39)

using the assumption ||E|| < 20; and Weyl’s inequality. Hence,

no;

<2—-. 40
<2 (10)

Hu} (G(Xi) - @(XZ—)) UDUTE;

For the case when i € [r + 1,7 + o], XZ = —0;_.. Observe that
G(=Gir) =(=0ip =) ' ==(Cirp + &)~ =(0ir — &) = =G (Gir)
because the distribution of £ is symmetric. Hence
B(~5iy) ~ —B(Gir)

by the definition (16). Repeating the arguments from the previous case, we see that

Hu} (6O - (%)) upU™;

< 277;;*’". (41)

1—T

Step 2. Lower bound for the smallest singular value of the matriz (37). By Propo-

sition 10, the singular values of Iz, _o,, — u}@(Ai)uJDJ are given by

‘ 1+ B(N)202 + |a(Xi)|oy (42)

forrg+1<t<r.
In order to bound the singular values, we first estimate ¢1(d;)2(7;), ¢1(0;) and
¢2(0;) for ig <i < ry. Since 7; € S5, by (38) where S,, is defined in (18), we have

Gi > 0y — 20nr > 4(VN + /n)
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and 9 g 6
§Ji Z ?O'i + 20’[]7‘ Z 51 2 o; — 20’[]7‘ Z ?0'1'
by the supposition o; > 4(vV'N + v/n) + 140nr.
Continuing from (38), we have

613)62(5) — 7] < = (13)

and consequently, ?gi 02 < ¢1(5:)p2(0:) < 171874502 from the supposition that o; >
140nr. Observe from (27) that

gaz < ¢1(01) S

9
- 44
Thus

1
zo—z < ¢1(01) < %0—1

The same bound also holds from ¢9(5;). Using these estimates, we crudely bound
1 1 1 4
0<a(@)==(——+— | <=—,
(@) 2 <¢1(Uz‘) ¢2(Uz')) 30
and with (21)

_. 1 1 1 $2(F;) — ¢1(3;) n—N 1 49
Bloi) =5 — - | = e = = = <
¢1(0:)  ¢2(03) 2¢1(54)$2(03) Gi  201(0i)$2(cs) ~ 7860;
by noting that &;,0; > 4(VN + /n).
We are ready to bound the singular values of Ia,_,, — UT®(5;)U;D,;. We start
with the case when i € [1,79] and A\; = 7;. In view of (42), the goal is to bound

i 5.)2 52 5. - i 5)252 — (5
,nin_ 1+ B(0;)%07 £ |a(0;)]o: ,min_ 1+ B(6;)%0f — a(0;)oy
_ 1— (a(3)? - 8(3))0?
ro+1<t<r 14+ B(&i)2dg + a(&i)at
oy
. ’1 ~ P60
= min

rotisi<r /T4 3,207 + ol@i)or

The upper bounds of a(g;) and $(;) obtained above, together with o¢/0; < 1,

yield that
49\% 62 4o
V1 5:)202 G 1 t t <925
+B(oi)?*0t + alGi)or < +<786) 2 1 3,

for any ro +1 <t < r. Hence,

. . _ L N G Cad ke
1 V252 4 . > = = !
rot1gt<r + (00t £ alGi)or| = 2.5 rotist<r | 61 (61)02(57)
L 1 of = BPmoi—of

2.5 $1(04)p2(04)

In the last inequality above, we invoked (43) which implies

61(5:)$2(5;) — 02 > 02 — 152925

2
nro; — o, 41 >0
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by the supposition o; — 0,41 > 0, > 100nr. Applying this supposition again,

together with (44), we further deduce that
11 /8)\? 1955
; ~\2 .2 ~ > b 2 _ 2 _ U )
i |V1HB@) o £alGi)on) 2 2557 <9) (G’ Tro+1 ™ 798 77“”)
o —o2 1 1 8\ 1955 1
> 1- ——
2 25\ 9 28 100
o2
> 0.09537 7"0“ (45)
i = —0;—r. Use the observation

For the case when i € [r + 1,7 + ro] and A
) ~ —B(0i—r) from the definitions (20). A simple

that a(X\;) ~ —a(5;_,) and B(\;
modification of the proof for the first case shows that

2
> 0.0953 e _Trotl (46)
Oir

i 1 2 2 +
Lmin YL B0} £ la(N)o:
Step 8. Combining the bounds above. With the estimates deduced in the previous

two steps, we are in a position to bound |1/} ;||. For i € [1,70] NZ;, plugging (40)

and (45) and into (36), we find that
2no; 21n

Uz, < : A7

ey aill < 0.0953(02 — 02, 1) ~ 05 — Opyt1 (47)
and for i € [r + 1,7 + ro] NZ;, using (41) and (46), we get

~ 21n
o4} il < ——— : (48)
Oj—r — Orpg+1

Case 2: estimate |} u;| for i € Z,. By Weyl’s inequality, |\;| > n? — ||€]| >

(VN + /n) for every i € T,. Hence, we apply Lemma 17 to get
5 1ol < 2lEIP
G(A\) — ¥\ 49
ot - e < 55 (19)

~Inyn + =5 €. Repeating the arguments as in the beginning of Case

where U(z) :=
1, we obtain the following equation similar to (35)

UTE; = UTOOG) A, + UL (G(Xi) - W(L)) At
Plugging in (10) and using the facts Z/lTZ/lI =0 and U}FUJ = I, we further get

U = = DJuJ U + = uJTeubuTuz +ut (G(Ni) ET6Y )) uUDUTY,,

which, by rearranging the terms, is reduced to
1 ~
(I — DUt = < TEUDUTE; + NlUT (G( ) — \I!(AQ) UDU"

%

Hence,
V)| - DU

min|X; — - U7 0] < jIIUTWII DU w|| + [Nl |G(N) —

| Ai
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Note that |DUTT; || < ||€]| + [Ai| < 2|\ as in (39). Inserting (49) into the above
inequality, we arrive at

~ _ E 2
min |\ — \;| - [[UT 0 < 2UTEU| +4u. (50)
jeJ A |

|Ai
For the remaining arguments, we work on the event

F:= {|UTeU|| < 2v/r + /10(K + 8)log(N +n)} N { e |5; — o] <mr}.
i€[L,rollsoi>5n
(51)

By Lemma 13 and Lemma 18, the event F holds with probability at least
1-2(N +n)—5(K+8) — (N + n)—2r“(K+8) >1-3(N+ n)—2(K+8).
We continue the estimation of |/} w;|| from (50). Note from (51) that
lUTEU|| < 2v/r + /10(K + 8) log(N +n) < 7.

Also, || E|[2/|\| < 8(2y/m)?/n2 < 1 where we used the crude bound |X\;| > in? by
Weyl’s inequality. It follows that

min | X; — Ay - U7 6] < 6n. (52)
JjeJ
To bound the left-hand side of (52), we first consider ¢ € [1,7¢] N Zy. Then
in |\ — \j| = i 0, —0j| =0; — oy
A= i el =F o

by (51) and the supposition 0,, = 0, —0r,+1 > 100nr. Next, applying d,, > 100nr
again, we get

1}16151 |X1 — )‘Jl =0; — Oryt1 + (52 - O'i) > 0-99(Ui — Ur0+1)~

It follows from (52) that

m

e wi| <
0; — Org+1

(53)

for every i € [1,r0] NZy. Finally, for i € [r + 1,7 + ro] N Zp, analogous arguments
yield that

~ ™
Uy ws) < —— : (54)
1—7r ar0+1
The proof is now complete by inserting (47), (48), (53) and (54) into (34). O
Combining Lemma 19 and Lemma 20 gives
: 7 S 1 ]
sin Z(Uy, Ur) < 21v2n Z S 20— (55)

~ (0i = 0rg11) Tro

The proof of (8) now follows by (11).

Finally, the bound for sin Z(Upy 4], ('j/[[k,s]]) and sin Z (V4 YN/[[k,s]]) can be derived
by an analogous procedure, and we briefly sketch the details below. First, recall
from (12) that it suffices to bound sin Z(U,U) where | := [k, s] U [r + k,r + s].

Denote

J:= [[1,2’)"]] \ | = J1 UJQ,
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where
Ji=[LE-1Ur+1,r+k—1] and Jo:=[s+1,7JU[r+s+1,2r].
Observe that
sin Z(h,U) = | — B = || BB
< |Py, Bl + || Py, Pil| + \\P[[2r+1,N+n]}16|||~
Using the same method as in Lemma 19, one can bound

~ E
1Piapss nom Bl < 2121
Og

Similarly, following the arguments in the proof of Lemma 20, one sees that

S

~ 1
1Py, Bl < 21v2n, | -

— (0i —0s41)
To conclude the result, we only need to bound

1Py, Bill = [[(Py, = Py, ) Al

~ . 1 E
< I1Py, = By, = sin 2@y, 1) < 21V Ll
i — Ok) Or-1
by applying (55). Hence, we obtain
sin Z(Uy,U)
S - 1 IEl , IE
<21V2n, | > S +21V2n S22
i—1 (Ui - Gk) i—k (Ui - Us-{—l) Ok—1 Og

The proof is complete by (12).

5. PROOF OF THEOREM 12

This section is devoted to the proof of Theorem 12. Throughout the proof, we
work on the event where ||€|| = || E|| < 2(v/N ++/n); recall that Lemma 15 provides
with probability at least 1—2e~(VN+VR)*/2 > 1 _ 9(N 4 n)~32(K+2) that this event
holds. For convenience, denote

M := 4(V'N + /n).
Note that the assumptions of Theorem 12 guarantees that for any z € Sy, (ip <
Jj <o), |2| > Re(z) >o; —20nr > M.
Our next lemma provides a way to locate the eigenvalues of a perturbed real

symmetric matrix. Similar results have been applied in the random matrix the-

ory literature to study eigenvalues for both symmetric and non-symmetric random
matrices [4,10,11,23,62].

Lemma 21 (Eigenvalue location criterion). Assume A has rank 2r with the spectral
decomposition A = UDUT, where U is an (N +n) x 2r matriz satisfying UTU = I,
and D is a 2r X 2r diagonal matrix with non-zero A1, ..., Ao on the diagonal. Then
the eigenvalues of A+ & outside of [—||E|||, ||€]]] are the zeros of the function

2z det(D™ —UTG(2)U).
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Moreover, the algebraic multiplicity of each eigenvalue matches the corresponding
multiplicity of each zero.

Proof. The eigenvalues of A + £ are the zeros of the polynomial det(z] — A —&).
For [z > |[€]],
det(z] — A — &) =det(z] — &) det(I — G(2)A)
= det(zI — &) det(I — G(2)UDU™)
= det(2I — &) det(I — UTG(2)UD)
= det(zI — &) det(D) det(D~! —UTG(2)U).

by the Weinstein-Aronszajn identity (13). Since det(zI — &) # 0 for |z| > ||€]|, the
claim follows. O

Define the functions
f(z) :=det(D~! —UTG(2)U), g(z) :==det (D' —UT®(2)U) ,

where ®(z) is given in (16). Observe that, by Lemma 16, 1/¢1(z), 1/¢p2(z) and
thus ®(z) are well-defined for any |z| > M. Therefore, f and g are both complex
analytic in the region {z € C: |z| > M}.

An easy computation, together with (22), yields that

9(2) :lljl<<;51(z)1<;§2(z) - 01?>

and thus the zeros of g(z) are the values z € C which satisfy the equations
$1(2)¢2(2) = 0.
Recall from (24) and (20) that
0(2) = ¢1(2)h2(2) = (2 — tr TG(2)) (2 — tr T G(2)).

The next lemma establishes several properties of ¢ in the complex plane and on
the real line.

Lemma 22. The function ¢ satisfies the following properties.
(i) For z,w € C with |z|, |w|, |z +w| > M,

9

2128 = 0 < J(2) -

< lp(2) - ()| < 72|22 — w?). (56)

(ii) (Monotone) ¢ is real-valued and strictly increasing on [M,o0).
(iii) (Crude bounds) 0 < p(2) < 2% for any z € [M,00).
Proof. Since ¢(z) = 22 — 2tr G(2) + tr I°G(2) tr IT9G(z), we first have
p(2) = p(w) = (2* — w?) = (2tr G(2) — wtr G(w))
+ (tr 7°G(2) tr 79G(2) — tr 7' G(w) tr I¢G(w)). (57)
To establish (56), observe that
z2trG(z) —wirG(w) = (2tr G(z) —wtr G(2)) + w(tr G(z) — tr G(w))

=(z—w)trG(z) + w(w — 2) tr G(z) G(w)



GAUSSIAN NOISE: OPTIMAL ESTIMATES FOR SINGULAR SUBSPACE PERTURBATION23

by the resolvent identity (15). For |z|, |wl,|z + w| > M, using Lemma 16, we get
|ztr G(z) —wtr G(w)| = |z — w|(] tr G(2)| + |w|| tr G(2)G(w)])
< [z = wl (N +n)[|GE) + [w|(N +n)[|G(2)G(w)])

2 4
S|zl An) <z| * '“"|z|w|)

6
= [z —w|(N +n)—
2|

3
< |22 —w?. (58)

3!
Analogously, one can split
|t Z°G(2) tr I9G(2) — tr TVG(w) tr 79G (w)]
< [tr2VG(2) tr 796G (2) — tr IVG(w) tr T9G(2))|

+ [tr 7UG(w) tr 79G (2) — tr IV G(w) tr TG (w)|. (59)
For the first term on the right-hand side of (59), by (15) and Lemma 16, we have
|tr TUG(2) tr T9G(2) — tr TVG(w) tr T9G(2)| = |tr TG(2)|| tr VG (2) — tr TG (w)|
= | tr 79G(2)||(z — w) tr T"G(2) G (w)|

1
< glllz = wllr G (2) G (w)]

< élZ\IZ —w|(N +n)[|GE)[[[G(w)]l

1N +n
< 5 |z —w
2 |w|
1
< @‘22 - ’LU2|,
where in the last inequality we used A(qj}'l" < 15|z + w| since |w|, |z + w| > M.

The second term on the right-hand side of (59) can be estimated likewise, and we
conclude that

[tr TVG(2) tr I9G(2) — tr I"G(w) tr G (w)| < %|22 —w?.

Combining the above bound and (58) with (57) yields (56).

To prove property (ii), it suffices to show that ¢;(z), ¢2(z) are both positive and
strictly increasing on [M, 00). By (20) and the bound in (95), ¢1(z) > 0 for z > M.
Using the expression in (93), we observe that

1L/ 1 1 1
-y = § —~(n—-N 60
ne = 21—1(Z7h'+2+7h'> Z<n ) (60)
where 71, ...,ny are the singular values of E. Thus, ¢1(2) is a strictly increasing

function since z > M > |n;| for all . A similar argument shows that ¢2(2) is also
positive and strictly increasing on [M, 0c0). Thus, ¢(z) = ¢1(2)d2(2) is the product
of two positive strictly increasing functions and so is strictly increasing. In addition,
it follows from (60) that 0 < ¢1(z) < z (and similarly 0 < ¢2(z) < z) for z > M.
Thus, property (iii) follows immediately. a
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Fix an index j € [1,70]. Since p(M) < M? and lim,_,o ¢(z) = oo, it follows
from the previous lemma that there exists a unique positive real number z; > M
such that ¢(z;) = O'J2». Similarly, if o; > M for o; # o, then there exists a unique
positive real number z; with ¢(z;) = o so that z; > 2 if [ > j and 2; < 2 if | < j.

For the next result, we define the half space

H; :={z € C:Re(z) > z; — 20nr}.
Proposition 23. Under the assumptions of Theorem 7, for every z € Hj,
|z| > o; > M.
In particular,
0; <z < %O’j. (61)

Proof. In view of Lemma 22, it follows that oF = ¢(z;) < 27

5. Thus, as o; >
M + 140nr by assumption,

|z| > Re(z) > z; — 20nr > 0; — 20mr > M + 100nr > M
for any 2z € Hj.
Since 05 = ¢(z;) = (2j — trZ9G(25)) (z; — tr IVG(2)),

2]2 - sz_ = zjtr G(z;) — tr I"G(z;) tr I9G(z;) < 2(N +n), (62)

where we invoked Lemma 16 and the fact that tr ZUG(z;) tr Z9G(z;) > 0 (see (93)
and (94)) in the last inequality. Hence, using that zj 2 M and 0; > M, we conclude
that

N + 1 1
zj =05 < MRSZ(\/NﬂL\/ﬁ)SE%

where the last inequality follows from the assumption that n+ N > 32. This proves
(61) (where we use a slightly worse but simpler constant). O

If o; is sufficiently large, we get a finer estimate for z; than what is given in (61).
Proposition 24. If g; > in?, then |z; — o;| < 2.
Proof. Following the computation in (62), together with Lemma 16, we get
|zj —ojl(z +0j) = |z]2 - 032-\ < zj|tr G(z;)| + tr TG () tr Z9G ()
< (N +n)[[G(z)ll + Nn||G(z)|?

N
<N +n)+4—
%
N
< 2N +n) +4—,
75

where we used (61) in the last inequality. Since z; + o; > 20, we further get

N+ Nn
|2 — 04 < +2—,
O'j O'j

and the conclusion follows from o; > %nz and the supposition N < n. (]
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We now complete the proof of Theorem 12. Let j be a fixed index in [ig, ro]-
We will work in the set H; NS, , where S, is specified in (18). By Corollary 2.14
in [39], it follows that

1)~ g(2) o
00 < (1+e(z)) 1, (63)

where
g(z) =

The next result facilitates the comparison of the numbers of zeros of f and g
inside a region and will be used repeatedly in the later arguments.

(D~ — U D))~ H U™ (G(z) — @)U .

Lemma 25. For any circle C C C, if e(z) < ﬁ for all z € C, then the number of
zeros of f inside C is the same as the number of zeros of g inside C.

Proof. Continuing from (63), we find that

1f(2) —9(2)] ( 1)” 1/2
— 1+ — —1<e’/”=-1<1 64
9| i (6
for each z € C. Therefore, by Rouché’s theorem, we conclude that the numbers of
zeros of f and g inside C are the same. O

We first bound &(z) for z € S,,. By Proposition 11,

|07~ e ™| = s o0

where
1 1/2
= (6162 + 50712+ 9al)+ 501 [41610a%11 + Gal? + 02 (16 — Iaf?)?) /2.
Using (27) from Lemma 16, for z € S,,, we get

4 2 2 2
9 9 9 9
(3) i+ (5) ot (§) aﬁzﬁa?ﬂ(g) 2P

9
2l

Q

IN

7 9

+ Z|Z|3Ul + §|Z|2<Tl2
2

9 3

A CREIR

H(D*1 Ut U H < f|z|

AN

and thus
oi(|z] + 301)
1215 o7 — ¢1(2)p2(2)]

Combining this bound with the bound in Lemma 9, we obtain with probability at
least 1 — 10(N + n)~(K+1)

ozl + da)
2] 0% = 61(2)62(2)

e(z) < max. g (65)

<
for all z € S,
We now restrict ourselves to values of z contained on a circle C; in H; N S,,;.
Here we take C; to be the circle of radius 20nr centered at z; (which by definition
is contained in H; N S, ).
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The goal is to show ¢(z) is small for all z € C;. Continuing from (65), it suffices
to show
3 n 0'1(‘2’|+%0’l)
2 |z| |of — ¢1(2)¢2(2)]
is small for all 1 <1 < r. We split the discussion into two cases: | = j and [ # j.
Case 1. When | = j, in view of (56), for z € C;, we have

|05 = ¢1(2)p2(2)] = |1(25)2(25) — 1(2)¢2(2)]

9 45 585
> e = 22 = el 42l 2 5oy,

— 16 - 28
where, in the last inequality, we used |z + z;| = |22; + z — z;| > 2z; — 20nr > %Jj
by (61) and the assumption o; > 140nr. Similarly, using (56) and Proposition 23,
23 1955
93~ 91 (2)02()] < |22 = 27| < o, (66)
Thus, to bound &(z), we apply the bound
6 9
0j <zj—20mr < |z| < zj +20nr < =0 (67)

that follows from (61) and o; > 140nr to obtain
3n oj(lzl+30) _013 1
2|z lof — d1(2)g2(z)| = v Ar
Case 2. When |l # j, note that

|07 — ¢1(2)2(2)| 2 |0 — 0} — |07 — P1(2)¢2(2)]

2 loj —aulloy + o) = —=nro;
> @M' —oil(o; + o)
= 5607 /
by (66) and the assumption that |o; — ;| > 100nr. Hence, using (67), we get
3 ozl + So1) Z3n 5600, (20; + 30y) noy
22| |of = ¢1(2)¢2(2)| — 2 80, 169|0; — ou|(0j +01) ~ “ojloy — ol

If o7 < 1.80}, then
3n oz + %01) < 1.8 1

2107 = 61(2)a(2)] — 1000  4r

If o > 1.80, then 0y — 0 > %al and

3n olzdt+go) o om 1
2zl |0} — ¢1(2)p2(2)| ~ " 1d0pry  4r’

Thus, we conclude that

1
< — 68
() < 1 (68)
for all z € C;. By Lemma 25, the number of zeros of f inside C; is the same as the

number of zeros of g inside C;. Since g has «; zeros inside Cj, it follows that there
exists exactly a; values of [;(j) < ... <1, (j) such that

Gr) — 2l <2000 for 1<s<ay (69)
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In particular, this means that for 1 < s < oy

~ 115 115 - 8
6G) — )] < 3916~ 21 < G + ) < o (6 + 2oy
by Lemma 22 and (61). Since ¢(z;) = 07, we conclude that
~ 115 ~ 8
o) — ot < o (5 + 5 ) (70)

It remains to show that [;(j) = j+s—1for 1 <s < q; and ig < j < ry. We will do
so by proving the following claims hold with probability at least 1—30(N +n)~(K+1)
(see Figure 2 for an illustration):

=

Zry Zig+1 Zi,

&

FIGURE 2. Distinct circles C; with centers z; on the real line and
radius 20nr for ig < 7 < rg.

Claim 1. Distinct circles do not intersect.
Claim 2. A+ & has exactly iy — 1 eigenvalues larger than z;, + 20nr.
Claim 3. No eigenvalues of A + £ lie between distinct circles.

For the moment, let us assume these claims are true. Note that o;, has to lie
inside one of the C;’s (ip < j < 1) because it is the largest eigenvalue of A+ & that
is no larger than z;, + 20nr (due to Claim 2) and thus it satisfies o;, > 2, — 20nr
by (69). Since the number of zeros of g(z) located inside C;’s for all iy < j < ro,
which is ro — 49 + 1, is the same as that of f(z) inside C;’s (ig < j < r¢), we have
Gigy -+ -»0r, lie inside C;’s (i9 < j < rg). The conclusion follows by the fact that
the number of zeros of ¢g(z) in each C; is the same as that of f(z).

We start with the proof of the Claim 1. For 0y # o, by Lemma 22,

16 16
5 2212 Sol(a) — plz)] = molo? 0% 2 2010001 +0,).
Since |27 — 22| = (21 + 2j) |21 — 2] < 8(01+ )21 — zj| by Proposition 23, we have
1400
o=l = S, ()

and thus
dist(C;,Ci) > |21 — 25| — 40mr > 20nr.

Next, we prove Claim 2. We split the proof into two cases: 7o = 1 and 79 > 1.
Case 1: ig = 1. We prove that no eigenvalues of A + £ are larger than z; + 20nr.
We now take Cy to be any circle with radius 20mr centered at a point zg > z1 +20nr
on the real line inside the region Hy N S, such that dist(z1,Co) > 20nr. Here

S, :={w e C:|Im(w)| < 20n9r,4(V'N + v/n) + 120nr < Re(w) < gal + 20mr}
(72)
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is a slight modification of the set S, in (18). Note that &, € S,,: the upper bound
o1 < %01 follows from the Weyl’s inequality and the supposition ||£]| < %01; the
lower bound is because it is the largest eigenvalue and o1 > z; — 20mr > o; — 2007
from (69). An inspection of the proof of Lemma 9 reveals that the conclusion of
Lemma 9 also holds on the set S,,. Hence, the bound (65) also holds for z € Sy, .

‘We show )

6(2) < E

for all z € Cy. The proof is similar to the proof of (68) and we sketch it here. For
any z € Cp, from |z — 29| = 20n7, |2 — 21| > 20nr and zg — 21 > 40nr, we obtain
|z| < zo 4+ 20mr and

|z| > 20 — 20mr > 21 + 20nr > o1 + 20nr > o7.
Again, by Lemma 22, we see for any 1 <[ <r,

o7 — d1(2)¢2(2)] = l(z1) — o(2)]

> —|zj — 2
> — (21 + Re(2))(Re(z) — 2)
> — (o7 4 z0 — 20n7) (20 — 21 — 20m7)

> T — (o1 + 20 — 20n7) 2077 (73)

Plugging these estimates back into (65), we see
3 nou 2o + 20mr + al 1

3 < I
(2) 1<l<7" 2 oy 16 9 (a7 + 29 — 20mr)20mr  4r

where we used the bound zp + 20nr + 50; < 5(01 + 2o —20nr) in the last inequality.

By Lemma 25, f has the same number of zeros inside Cy as g. As g has no zeros
inside Cy2, A + £ has no eigenvalues inside Cy. Since the circle Cy was arbitrarily
chosen inside this region, we conclude that .4 4+ £ has no eigenvalues larger than
z1 + 20mr.

Case 2: ig > 1. We work on the event

ma. o] — < nr. 74
lE[[l,ro]];a:;(>n2/2 |Ul Jl| =1 ( )

By Lemma 13, this event holds with probability at least 1 — (N +n)~ 2r' (K+8)
Note that o;,_1 > n?. Combining (74), Proposition 24 and z;,_1—z;, > 52201 >
60nr from (71), we get

~ 8 8
Oig—1 2 Oig—1 — NT" 2 Zjg—1 — oLl > Zip +09nr — o > zip + 20nr.

Hence, A + £ has at least i9 — 1 eigenvalues larger than z;, + 20n7r.
We first consider oy, > in?. It follows from (74) and Proposition 24 that

8
Oiy L 04y +11 < 24y + — +nr < 25, + 20m7.
n
This shows that A + & has exactly i9 — 1 eigenvalues larger than z;, + 20nr.

2This follows from Lemma 22 and the fact that Im(¢(z)) # 0 whenever Im z # 0 for all |z| > M.
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Now consider o;, < in%. By Weyl’s inequality, 6;, < o, + [|E|| < 30y,. If

%Um < z;, + 20mr, the proof is already done. Now we assume %O’Z’O >z, +20nr. If
304, — (2io + 20mr) < 40nr, following (61), we have 0y, > 2, > 20y, — 60nr and
thus o;, < 168nr. From the assumption oy, > 4(v/N + v/n) + 140nr, we further
have 4(v/N + /n) < 28nr and hence | E|| < 2(v/N 4 /n) < 14nr. Tt follows from
Weyl’s inequality and (61) that &;, < gy, + | E|| < 2, + 1401 < z;, + 20nr.

It remains to consider the case when %O’io — (2, + 20nr) > 40mr. To prove
iy < Ziy + 20nr, we show that f has no zeros on the interval (z;, + 20nr, 20y,).
The proof is similar to the proof of Case I when i9 = 1. We only mention the
differences. Define 5'51.0 as in (72) and the bound (65) also holds for z € Saio. The
goal is to show &(z) < 1/4r for all z € Cy, where Cy is any circle with radius 20nr
centered at a point zg € (z;, + 20nr, %aio) inside the region H;, N S’gio such that
dist(zo, zi, + 20mr) > 20mr and dist(zo, %O'io) > 20nr. If so, by Lemma 25, f has
the same number of zeros inside Cy as g. Note that g has no zeros inside Cy since
Im(p(z)) # 0 whenever Im z # 0 for all |z| > M and z;,—1 > 051 — 2 >n? -2 >
%aio by Proposition 24. Since Cy was arbitrarily chosen, A + £ has no eigenvalues
on (z;, +20nr, 304,)).

It remains to bound e(z) from (65). The same arguments as those in Case 1
yield that

max §i 0l(|z| * %UZ) < i
io<i<r 2 |z| |0F — ¢1(2)p2(2)| ~ 4r
for any z € Cy. We only need to control
max 3 ollzl + 201)
1<i<io—1 2 |2] |0 — ¢1(2)¢2(2)]

For any z € Cy, |z| > 20 — 20nr > 2, > 0y, and |z| < 2o + 20nr < 30, + 40nr. For
any 1 <[ < iy — 1, using similar computation from (73), we get

\012 — ¢1(2)p2(2)| > %(Jl + 20 — 20mr) (2 — 20 — 20mT).

Note that zg > z;,+40nr > 04, +40nr. Hence, o;+20—20nr > 0;+0;,+20nr. From
o > n?, we see 0, < %nQ < %O'l. This, together with (61) and 2y < %aio — 20mr,
implies that

3 1
Z] — 20 — 2077’)”‘ 2 o] — 50'1'0 2 o] — ZO’[ = ZO’[.
Hence,
3 2|+ 3 3 304, + 4007 + 3
max =L 20;(\ [+ 501 <21 max gl(QUO L 2(171)
1<i<io—1 2 |2 |07 — ¢1(2)¢2(2)| ~ 2 04, 1<i<io—1 15 (01 4 04y +20m1) 70
< 16n
Uio
- 1
4r

using the assumption o;, > 140nr. Therefore, e(z) < 1/4r for all z € Cy.

The proof of Claim 3 is similar to the previous argument. Let C;,,C;, be two
distinct adjacent circles. Note that from the proof of Claim 1, dist(C;,,C;,) > 20nr.
We show that A4 + & has no eigenvalues lying on the real line between C;, and Cj,.
Take any point x on the real line between the two circles so that C,, the circle
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centered at = with radius 10nr, is inside the region H;, NSy, or Hj, NS, , where
dist(z,Cj,) > 10nr and dist(x,C;,) > 10nr. Then using similar calculations as in
the proof of Claim 2, it suffices to show that (z) < ﬁ. The remaining arguments
are similar to those in the proof of Claim 2; we omit the details.

6. PROOF OF LEMMA 9

In this section, we present the proof of Lemma 9. We first show that G(z) is
close to ®(z) for any fixed 2 € C satistying |z| > 4(v/N ++/n). Then we extend this
result to any z € S, by a net argument. Throughout the proof, we will sometimes
write G instead of G(z) for convenience. The proof presented here takes advantage
of the fact that the entries of E are jointly independent standard Gaussian random
variables; this assumption greatly simplifies the forthcoming calculations, although
the method can be extended to other distributions. In particular, when the entries
are non-Gaussian, one also needs to estimate the off-diagonal entries of G. This
can be accomplished by modifying some of the techniques from [15].

We begin with the following notation.

Definition 26 (Minors). For I C [1, N + n], we define £) by
g(t[) . { Eq ifstgl,

0 otherwise.
We define the resolvent of £() by

ey [ =D ifstgl
G (2) = { 0 otherwise,

whenever the inverse is defined. We use the summation notation
(1)

Y- %

s s€[1,N+n]:s¢1
When I = {a}, we abbreviate ({a}) by (a) in the above definitions.
Lemma 27 (Resolvent identities). For any k € [1, N +n] and for |z| > ||€]|

1
Gri(z) = )
2= & — 0 EaGE (2)Em

Moreover, for i # j and any |z| > ||€]|,

(1)
Gij(2) = —Gu(2) Y EaG(2).
k

Proof. The formula for the diagonal entries follows from the Schur complement
(see [3, Theorem A.4]). The off-diagonal entries can be computed in a similar way
(see [27, Lemma 4.2] or [29, Lemma 6.10]). O

Next, we show that the resolvent matrix G(z) = (z — £) ! is well approximated
by the diagonal matrix ®(z) for any fixed z € C with sufficiently large modulus.
Lemma 28. Let K > 0 be any constant and assume (VN + /n)? > 64(K +
2)log(N +n). For any z € C with |z| > 4(V'N + /n),

V(K + 1)1log(N +n)

U™ (G(2) — @(2)U|| < 48r

||
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with probability at least 1 — (N 4 n)~K

Proof. By the rotational invariance of FE, it suffices to assume that U is the matrix
with columns ey, ...,e,, where eq,...,en is the canonical basis in RV, and the
columns of V are given by f1,..., f, where f1,..., f, is the canonical basis in R™.
We use the shorthand notations i =i —r and j = j —r if r +1 < 4,5 < 2r. Thus,

Gij +Gingj +GNyij+GNyiny; ifd,j€ [1,r];
Gij —Gingj tGnyij— Grying Hi€[Lr],j€[r+1,2r];
Gij + Gingj — Gnyiy — Gyyingg i€ [r+1,2r],5 € [1,7];
Gl]_G%N"FJ GN+;,5+GN+;,N+3 1fl,j€[[7‘+1,27"]]
Fix z € C with |z| > 4(V/N + /n). Denote the set

S ={0,7): 4,7 €[1,rJU[N+1,N+r]}.
Since ||M]| < 27| M||lmax = 2rmaxi<; j<or |[M,;| for any 2r x 2r matrix M, we
first get

[UT (G(z) — @) U|| <2r max |UTG(2)U)i; — U R(2)U)s4| - (75)

1<4,5<2r

2UTGU); =

In order to prove Lemma 28, we claim that it suffices to show that
V(K + 1)log(N +n)
max |G; —P,:(2)| <12 .

(i,§)ES. | J( ) ]( )| |Z|2

with probability at least 1 — 10(N + n)~¥
Let us assume for the moment that (76) holds. For any (4,5) € [1,7], in view of
(22) and the definition of ®(z) in (16), we find that

2r |(UTG(Z)u)ij — (UT‘I)(Z)U)U"

(76)

1 1
6 T Ba2)

<7|Gij(2) = @i (2)| + 7Gi N+ (2) — Pi N1 (2)]
+7|GN+i,j(2) = Prnaij (2)] + TGN i N4 (2) = P N5 (2))]
\/(K+ )log(N+n)
|2[?

Similar discussion applies to every (i,j) € [1,2r] and the details are omitted.
Hence,

=r GU + G, N+j +GN+1J +GN+, N4j —

< 48r

\/(K + 1)log(N + n)
|2|2

2r max |UTG()U)i; — (UTR(2)U)5| < 48r

1<i,j<2r

and the conclusion of Lemma 28 follows from (75).

Now we turn to the proof of (76). For the remainder of the proof, we work on
the event where ||€]| = || E|| < 2(vV/N +/n); recall that Lemma 15 shows this event
holds with probability at least 1 — 2e~(VNTVD*/2 > 1 _ 9(N + n)=32(K+2) gince
(CAE=VD S 64(K + 2). We start by controlling the diagonal entries of G(z). By

log(N+n)
Lemma 27, for k € [1, N + n],

Gkk(z) = 1

2 & — ) ExGW ()€
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and thus, for 1 < k < r, by the block definition of £ and the expression of ¢1(z) in
(17) and (20), we have

1 1

k k
Z = Zgg)i,jgn EkiGSVl—i,N+j(z)Ekj ¢1(2)

k k
< | Zgg)i,jgn EkiGg\fli,Nﬂ(Z)Ekj - Zte[[N+1,N+n]] Gi(2)]
k k :
2 = 0 BriGS ki vy (2) Engllz — 0 TG (2))|

‘Gkk(z) -

1
$1(2)

(77)

We now turn to bounding the right-hand side of (77). We start with obtaining an
upper bound for the numerator of this term. By the triangle inequality,

(k)

k k
P Z EkiGE\]lLNJrj(z)Ekj_ Z th)(z) >t (78)
1<i,5<n teE[N+1,N+n]
(k) ) .
<P(| Y EuReGVnvi (B, — Y. ReGY(2)|>t/2] (79)
1<i,j<n te[N+1,N+n]
(k) ) .
+P ([ Y EamGV (DB — Y. ImGY(2)] > 1/2
1<i,5<n te[N+1,N+n]

Since the k-th row of E is independent of G**), we condition on G(*) in the following
estimates. We start with the term in (79). For notational convenience, denote

X = (Re Gs\lfzﬂ Nﬂ(z)) i and gT the kth row of F with the kth entry removed.
’ .9
By assumption, g is a standard Gaussian vector in R"~1. Rewrite

(k)
k
S EnReGY, vy (2)Ery = g"Xg

1<i,j<n

and > crny1, N4 RE Ggf)(z) = EgTXg. Assume the singular value decomposi-
tion of X is given by X = O1X0y where ¥ = diag(s1, - ,Sp—1) and O1,02 are
orthogonal matrices. Due to the rotation invariance property of Gaussian vectors,
g™Xg ~ gTxg and Eg™Xg = EgT¥g = E?:_ll s;. To bound (79), it is equivalent to
bound P(|gT¥g — EgT¥g| > t/2). In order to apply Lemma 14, we can verify that
gtyg = Z?;ll ;g7 is sub-exponential with parameters (4||X||%,4|/X]|). Indeed, by
independence and (26),

2,2 2
4522 41x1%

n—1 n—1
EeMe Se—EeTSg) _ mois Alsi—1gf _ H Ee)si(9i—1) < H e 5 —e 3
=1 =1

for all [A] < mlxlsl = m. It follows from Lemma 14 that
(k) i i
> BuReGiyny DBy~ > ReG(x) <t (80)

1<i,j<n te[N+1,N+n]
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with probability at least 1 — 2exp (— 55 min {t?|2]?/n,2t|2|}) by combining the
following estimates

2
<[lG® ()| < =
69 < 2

(k)
< ) .
X[ < H(GNH,NH(Z))KMQ

and

2 4n

< < —
" = P

2
2 - ( (O )
IX[l7 < H GN-H,NJ,-](Z) 1<ij<n

a'\k) ‘ )
- ( N+1,N+J(Z) 1<ij<n

due to Lemma 16. Since |z| > 4(v/N ++/n), by selecting t = \/2(K + 1) log(N + n)
in (80), we find that

(k)
Z Ey; Re Gs\l,czri’Nﬂ(z)Ekj — Z Re Ggf)(z) < V2(K +1)log(N +n)
1<i,j<n te[N+1,N+n]

with probability at least 1 — 2(N + n)~(5+1). To be more specific, to get this
probability bound, we need the following discussion. When t|z| < 2n and thus
min {t?|z|?/n, 2t|z|} = t?|z|?/n, the probability bound in (80) is at least 1 —2(N +
n)~E+D gince t|z| > 4\/2(K + 1)log(N + n)(V'N + /n). When t|z| > 4n and
min {t?|z[?/n,2t|z|} = 2t|z| > 2n, we obviously still have the probability bound
in (80) is at least 1 — 2exp(—n/8) > 1 — 2(N 4 n)~2(K+2) by the suppositions
(VN + /n)? > 64(K 4 2)log(N +n) and n > N.
Likewise, one also has

(k)

S EwImGY, (DB — Y. ImGi(2)| < V2(K + 1) log(N +n)
1<i,5<n teE[N+1,N+n]

with probability at least 1 — 2(N + n)’(K 1) Inserting the above estimates back
into (78), we find that

(k)

S BuGN Ny (B — Y. G ()| < 2v/2(K + 1)1og(N + n)
1<i,5<n te[N+1,N+n]

(s1)
with probability at least 1 — 4(N + n)~(K+1),

Next, we show that the difference between } 5,y 41 x4 Ggf) (2) and 3~ ey, npnp Gee(2)
is quite small. Thus, combining (81), we get an upper bound for the term in the
numerator of the right-hand side of (77). Rewrite

o 6l Y Gula)|=

te[N+1,N+n] te[N+1,N+n]

tr79(G®) () — G(z))‘ .

By the resolvent identity (15), the above term is written as

tr79(G®) () — G(z))‘ -

tr 79G(2) (€ — E(k))G(’“)(z)‘ .
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Since €& — £ has at most rank 2, we conclude that
tr79G(2) (€ — EMGW (2)| < 2|G(2)(E — EPYGP (2)||
z)

<21G@IUEN+ 1ERNIGH ()]
16| £l
|22
8
B

since |z| > 4(v/N + /n) and || E|| < 2(vV'N + y/n). Thus, we have shown that

8 2
Z Gif)(z) - Z Gu(2)| < — < ———.
te[N+1,N+n] te[N+1,N+n] || VN + Vn

<

Returning to (81), we see that
(k)

> EkiG%li7N+j(Z)Ekj - Y Gu(»)| <4V/(K+1)log(N +n)
1<i,j<n tE[N+1,N+n]

(82)
with probability at least 1 — 4(N + n)~(K+1),
To finish the estimate of (77), we provide a lower bound for the denominator of
the right-hand side of (77). Note from (95) that

Z Gu(2)| = |tr TG (2)| < %
tE[N+1,N+n]

Combined with (82) and the fact that

1
4y/(K +2)log(N +n) < 5(\/JV+ Vvn) < %
since (VN + y/n)? > 64(K + 2)log(N + n) by supposition and |z| > 4(v/N + /n),
we arrive at
(k) . 12|
Y EriGRine, (2B < 1

Hence, by triangle inequality,
(k) .
B Z EkiG%}?ﬁ-i,N-&-]‘(Z)EijZ - trIdG(z)| >

1<i,j<n

21
= 1%
32

Together with (82), inserting the above estimates into (77) yields

1 <%\/(K+1)log(1\7+n)
o1(z)| — 21 |z|?

with probability at least 1 — 4(N + n)~ K+ for 1 < k < r. Analogously, one also
has

‘Gkk(z) -

1

1| _ 128 /(K +1)log(N +n)
$2(2)

=91 EE

‘Gkk(z) -
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with probability at least 1 —4(N4n)~ K+ for N41 < k < N+r. Union bounding
over all k € [1,7] U[N + 1, N + r] completes the proof for the diagonal entries.
For the off-diagonal entries, by Lemma 27, we have

(1)
2 i
G (2)] < 7| D EnGi) (@)
k

on the event where ||E| < 2(v/N + y/n). Since the i-th row of £ is independent
of G, conditioning on G, (¥ &ng}(z) still has a Gaussian distribution. In
particular, the real part Zg) Eir Re G,(:j)(z) has a Gaussian distribution with mean
0 and variance Z,(;) (Re G,(:J?)z < Z,(j) GT,;J)GECZJ) = (GD)*GW),;. Likewise, the
imaginary part Zg) Eir Im G(i)( ) also has a Gaussian distribution with mean 0 and

variance at most ((G(V)*G(®);;. Using the tail bounds for the Gaussian distribution
[64, Proposition 2.1.2], we get

Z&kG ZEkReG ZEklmG

< 2¢/2(K + 1) log(N +n)y/ ((GD)*G®);

with probability at least 1 — 0.5(N + n)~ 5+ By bounding ((G®)*G®);; <
|G@ |2 < (2/]z])?, we conclude that

G| < 8y/2(K + 1) log(N + n)
v |2[?

with probability at least 1 — 0.5(N + n)~ (5 +1_ Union bounding over 4,5 € [1,7] U
[N + 1, N + r] completes the proof. |

We conclude this section with the proof of Lemma 9.

Proof of Lemma 9. Fix an index j € [ig,70]. By Lemma 28, for any z € C with

2] > 4(VN + v/n),

V(K +8)log(N +n)

|22
with probability at least 1 — (N 4 n)~(K+7). Note that every z € S, satisfies
2| > 4(V'N + /n) by assumption. Let A be a l-net of S,,. Since o; < n?, a
simple volume argument (see for instance [52, Lemma 3.3]) shows N can be chosen
so that [N < 20[(20mr)? + (8n2/7 + 20nr)?]. By the union bound, the supposition
(VN +/n)? > 64(K + 9)log(N + n) and Lemma 28,

max |2 | UT (G(2) — ®(2))U]|| < 487/ (K + 8)log(N +n) (83)

HUT (G(2) — D(2))U|| < 48r

with probability at least 1 — 10(N +n)~5+1) We now wish to extend this bound
toall z € S,,.
Define the functions

f(z) = 22UTG(2)U, g(2) :== 22U B(2)U.
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In order to complete the proof, it suffices to show that f and g are 8-Lipschitz
in S,;. In other words, we want to show that [|f(z) — f(w)| < 8|z — w| and
llg(z) —g(w)|| < 8|z —w| for all z,w € Sy,. Indeed, in view of (83), if z € S, then
there exists w € N so that |z — w| < 1, and hence

21 [UT G —UT (U < || f(2) = f(w)]l + [ f(w) = g(w)]| + [g(w) = g(2)]]
<16 + w]? [|UTG(w)d — U (w)U ||
< 16 4 487\/(K + 8)log(N +n)
< 54r\/(K + 8)log(N +n),

where we used the Lipschitz continuity of f and g in the second inequality.
It remains to show that f and g are 8-Lipschitz in S,,. To do so we will only

work on the event where ||E| < 2(v/N 4 /n); the probability of this event is at
least 1 — 2e(VN+HVM?/2 > 1 _ 9(N + n)=32(K+9) by Lemma 15 and the supposition
(VN + /n)? > 64log(N +n)(K +9). Let z,w € S,,, and assume without loss of
generality that |z| > |w| > 4(v/N + y/n). Then
1£(2) = Fw)ll < [22UTG(U = 2wltd "G()U|| + [|zwld T G()U — w?U T G(2)U|
+ [|[wUT G (2)U — wUTG(w)U||
< Gz = wl + [wllz = wl|G()|| + [w]?|z — w] |G () |G (w)]]
< 8|z — w),
where we used the resolvent identity (15), Lemma 16, and the fact that ‘\% <1
This shows that f is 8-Lipschitz in S, .
The proof for g is similar. First, for |z| > |w| > 4(v/N + y/n), by the triangle
inequality, we have
llg(2) = g(w)l
< N122UT R (U — 20UT(2)U || + ||zl T O (2)U — wUTB(2)U||
+ | w?UT B (2)U — wUT D (w)U||
< Jzllz — wlUT @)U + |w]]z — wlllT @)U + [w]* [l (2 (2) — D(w))U]|.
(84)
Using the explicit expression in (22), we find that

ol ot [ 18102) = G10)] [62(2) — o)
o7 (2(z) = 2(w)d] {|m@me|’|@wwxw|}'

By (20) and the resolvent identity (15),
61(2) = 1 ()| = |2 — w — rTHG(2) — Glw))
| —w— (2 — w) L TG()G(w)]
<z —w[(1+ (N +n)[|[GEG(w)]])

=l (14 )

2wl
—|Z—Ww
4 )

IA

A\
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where we used Lemma 16 and the facts that ]T$|n < % and % < 1. The same
upper bound also holds for |¢p2(z) — ¢2(w)|. Combining these estimates with (27),

we have

80 |z — w|
UT(B(2) — D(w)U|| < — .
(@) - awu] < 30
Notice that |[UT®(2)U| < % for any |z| > 4(vVN + /n), which can be verified

using (23) and the bounds in (27). Inserting these bounds into (84) yields that g
is 8-Lipschitz in S,,; we omit the details.
The proof is complete by taking a union bound over j € [lig, ro]. (]

APPENDIX A. PROOF OF THEOREM 3

This section is devoted to the proof of Theorem 3. Unless otherwise specified,
we let C' and ¢ be positive constants, which may change from one occurrence to
the next, depending only on the sub-gaussian moment of the entries of E. Without
loss of generality, we assume N < n, for if not, one can simply replace A and E by
their transposes.

Let P, € RV*¥ be the orthogonal projection matrix onto the subspace Span{us, .
and P, € R™*" be that onto Span{vy, ..., v, }*.

We first prove that

51 sin Z(Ul, ﬂl) + \/iHE” sin 4(1)1,51) Z ||P1E”U1||7
F1sin Z(vy,01) + V2| E|| sin Z(u1, 1) > ||[PoETuq . (85)

To start, observe that

sin2 Z(ul,ﬂl) =1- <u1,61>2 = ||1~L1||2 - <U1,ﬂ1>2
= (ui,w)? + |Pyi > > || P > (86)
=2

By multiplying by P; on all sides of the equation Aty = Ab, + Evy = o1u1, we get
P, Ev = 01 Piuy. Continuing from (86), we have

51 siné(ul,ﬂl) Z ||P1E51|| (87)
Likewise, we also have
G1sin Z(v1, 1) > ||PoE || (88)

Let « denote the angle between u; and @; (taken in [0,7]) and 5 denote the angle
between v; and v; (taken in [0, 7]). By possibly multiplying 1,71 by —1, it suffices
to consider one of the following cases: either (i) a, 8 € [0, §]; or (ii) a € [§, 7] and
Belo, 3]
If a, 8 € [0, 7], by simple trigonometric identities,
sin av

|lur — U] = 2sin(a/2) = cos(a/2) < V2sina = V2sin Z(uy, ). (89)

Similarly, we have
||’U1 — 61” S \@sin 4(1}1,51).

ot
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From (87) and the triangle inequality, we obtain
o1 sin Z(uy, uy) > || PLEv ||
> [[PLEv || — [PLE(01 — v
> [[PLEv || — [ E[[[or — v
> ||PLBui|| = V2| Bl sin £(v1, 31).
Repeating the same argument, we obtain
Fisin Z(vy,01) > ||PoETuy || — V2||E| sin £ (uy, Up).
In the second case, if a € [§,7] and B € [0, 3], we still have [jv; — U1 <
v/2sin Z(v1, 1), and hence
G1sin Z(uy, ) > || PLEv|| — V2||E| sin Z(v1,01).
Since 0 := 7 — a € [0, §], using the same estimate as in (89), we see that

- . sin . . . ~
lur + us || = 2sin(6/2) = m < V2sinf = V2sin(r — a) = V2sin Z(uy, Uy).

Thus, from (88), we conclude that
o1 sin Z(v1, 1) > || PaE 4 ||
> |RE || — | RET (d + i)
> [|P2ETua|| = || Bl + ]
> ||PETw|| — V2| E||sin Z(uq, U1 ).
Rearranging the terms yields (85).
We now turn to the proof of Theorem 3. It follows immediately from (85) that

max{|| P Evy|], || P ET uy ||} o, max{|[ P B, [P, ETuy ||}

o1+ V2||E| - o1+ (1+V2)|E|
(90)

)

max{sin Z(u1,u1),sin £(v1,01)} >

where in the last inequality we used o1 < o1 + ||E| from the classical Weyl’s
inequality. Furthermore, using [50, Lemma 11.8], one has

2
P(|BaE wi||? = (n — )| > £) < Cexp ( min{ ! t})

n—r
for any ¢t > 0. Thus, since N < n,
1
max{[|PLEvi, [ P2ETui ||} > | P2ETua || > Fvn-—r

with probability at least 1 — C exp(—c(n — r)). Plugging into (90), we get

Vn—r
1 Vn—r _ &l TET .
T 20+ 1+ V)E| 201 14 (1+ v2)LEL

o1

max{sin Z(u1, w1 ),sin £(v1,v1)}

Applying [56, Proposition 2.4], we have ||E| < 2(v/N + y/n) with probability at

least 1 — Cexp(—c(v'N + y/n)?). Tt follows that —w > ﬁ, where we used that
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r < n/2. Finally, we conclude that

IE]

1
> 71
T8V21 4 (1+v2)LEL

with probability at least 1 — Cexp(—c(n—r7)). The claim now follows from the fact
that » < n/2.

max{sin Z(uy, U1),sin Z(v1,01)}

APPENDIX B. PROOFS OF PROPOSITIONS 8, 10, 11, (21) AND LEMMA 13

In this section, we collect the proofs of Propositions 8, 10, 11, (21) and Lemma
13 from Section 3. We continue to use the notation introduced in the previous
sections.

B.1. Proof of Proposition 8. Let 0 < a3 < --- < o < 7/2 be the principal
angles between U and U. Then

cos o, = cos Z(U, U).

Let {u1,...,up} (resp. {@i,...,4p}) be an orthonormal basis for U (resp. for

U). Denote the matrices U := (ug,...,up) and V := (v1,...,v,). [14, Theorem
1] provides the connection between the principle angles and the singular values of
UTU. That is, consider the SVD of UTU given by

UTU =y, 27,

where (' is a diagonal matrix composed of the singular values and Y7, Z; are p x p
orthogonal matrices. Then the diagonal entries of C; are exactly cos oy, ..., cos ay.
Analogously, let 0 < 81 < --- < 8, < /2 be the principal angles between V and

V. Then
cos B, = cos Z(V, V).

For the orthonormal basis {v1,...,v,} for V and {v1,...,7,} for ‘7, denote V :=
(v1,...,vp) and V := (v1,...,0,). Consider the SVD

VIV = v,0, 27,

where C3 is a diagonal matrix composed of the singular values and Y5, Z5 are
orthogonal matrices. Then the diagonal entries of C are cos 31, -, cos 3p.

Next, define w; := (u},v])T and wiy, = (uf,—v1)T for 1 < i < p. Define
w;’s (1 < i < 2p) analogously. It is easy to verify that %{wl, -+, Wap} forms
an orthonormal basis of W and %{\7&/1, .-+, Waop} forms an orthonormal basis of

W. Denote the matrices W := %(wl, -+, Wgp) and W = %(Wl, -+, Wap). Let

0 <1 <+ <y < 7/2 be the principal angles between W and W. Then
COS1, .. .,C0872y are the singular values of WTW by [14, Theorem 1]. In partic-

ular, the smallest singular value of WTW is cosvs, = cos Z(W, W).
Observe that

WTWI(U U>T U 0\_1(UTU+V'V UTU-VTV
vV -V 2\UTU - VTV UTU+VTV )’
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Using the SVDs of UTU and VTV and simple computations, we further get
—~ 1 _ 1 T T
ww= (w6 e) s (B 2 =vern
Since Y1,Y3, Z1, Zy are orthogonal matrices, it is easy to verify that both Y and
Z are 2p x 2p orthogonal matrices. Hence, YCOZT is the /SVVD of WIW. By [14,
Theorem 1], the singular values cos~yi, - -+ ,cosy2, of WIYW are exactly
COS (¥1, "+ ,COS Qtp, COS 31, -+, COS 3.
Hence,
cos Z(W, W) = €08 Y2p = min{cos ay, cos B, } = min{cos Z(U, U),cos Z(V,V)},
which is equivalent to
sin Z(W, W) = max{sin Z(U,U),sin Z(V, V)}.
This completes the proof.
B.2. Proof of Propositions 10. Note that ®(x) is well-defined when |z| > ||€]|.

From the expression of UT®(x)U in (22), using the block structure of matrices, we
rewrite

T _( Ir—ro — aD[ryy1, —BDr4ro+1,20]

foraro ~Us By D = ( —BDlro+1,]  Ir—ro — @Dprgrgt1,20] ) '
Note that Dp4py+1,2/] = —D[rg+1,,) by the definition of D. We compute the
eigenvalues of (IQT_QTO — M}@(&j)UJDJ)(IQT_QTO — U}@(@-)UJDJ)T, VVhiCh7 after
simplification, has the following format

(I - QD[[T0+17THQ)2 + ﬂQDfro-l-l,r]] 2aﬂpfr20+1,7’ ) (91)
2a6D|Iro+1,r]] (I + QDHT0+1,T]]) + B D[rngl,T]]
Note that each block of (91) is a diagonal matrix. Using basic linear algebra and

a simple computation, we further obtain the eigenvalues of the above matrix are
given by

2
1+o2(a® + 6% £ 2|a\at\/1 + B202 = <\/1 + 20?2 + |aat>

for rg +1 <t < r. Taking the square roots yields the singular values of I5,_o,, —
UT®(z)U;Dy and completes the proof.

B.3. Proof of Propositions 11. Note that ®(z) is well-defined when |z| > ||&]|.
We first compute the eigenvalues of
(D'~ U ()U) (D7 —UT(2)U)", (92)

where we remind the readers that D and U are defined in Section 3.1. In particular,
D = diag(diag(D), — diag(D)). Recall the definition of UT®(2)U in (22). Note that

_ D' —al —B1
1 T _ ” ”
D -UP()U = ( _BI, _p-1 —aIr)

where each block is a diagonal matrix. Elementary (yet tedious) calculations yield
that the eigenvalues of (92) are

1 - 1 _
ol 4167+ 5 = (2l + 281 4.0 = 5+ 2 = 57) % + 2o + @26 + o2
l l

1/2
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With further simplification after plugging in the expressions of «, 8, we denote these

eigenvalues by
1+1<1+1>i141+12+<1 1)2
Ne=+5 0 sl=lm+t= T IE
o 2\ [¢ef? 2|07 |1 b2 (P17 |p2]?
for 1 <1 < r. Since the entries of E have continuous distribution, D~ —UT®(2)U
is invertible with probability 1. Consequently,
1 2

—1)2 g
Dt amaent) | = o = w7
H( U e(2)U) S . T 1% 07 — b1

1/2

Q,
where

1 1 _
Q= |¢1¢2‘2+5012(‘¢1‘2+|¢2|2)+§Jl [4]g1021 |01 + da|? + o7 (|01 |* — [62]*)?]

The conclusion of Propositions 11 follows by taking a square root.

1/2

B.4. Proof of (21). The singular value decomposition of E is given by E =
X diag(ny,...,mn)Y' T, where the columns of X (resp. Y) are xi,...,xy € RV

(resp. y1,...,yn € R™). Clearly, some of the 7,’s may be zero. However, if
n > N, then E trivially maps an (n — N)-dimensional space to zero; we assume
this subspace has orthonormal basis hy,...,h,_y € R".
The spectral decomposition of £ is then given by
E=Wdiag(ny,....,nn, =11, ..., —n)WT,

where the columns of W are the orthonormal vectors w; = %(X;F, yH)T € RN+

and wy; = —= (x5, —y5)T € RVN*" for 1 <i < N. Likewise, £ trivially maps an

V2
(n — N)-dimensional space to zero; this subspace is spanned by the orthonormal
vectors Won4; = (O,hJT)T € RN¥*" for j = 1,...,n — N. Thus, the spectral

decomposition of the resolvent G(z) can be expressed as

B N wiw? N WN-‘riW%Jri 1=y -
Glz)=(z-€&)" = Z PR +Z P 7 Z WoN+;WaN4j-
i=1 L i j=1
It follows that

1 1 1
tr79G(z) = = “(n—N 93
766 =33 (23 ) TR0 (99)

N

1 1 1
tr7VG(z) = - 94
rTYG(:) 2Z(Zm_+z+m), (04)

1
and thus, from (20), we see that (21) holds.

B.5. Proof of Lemma 13. We work on the event that ||E|| < 2(v/N ++/n), which
holds with probability at least 1 — 2e~(VN+vR)*/2 by Lemma 15.
If r2 > (VN + /n), then the conclusion follows directly from the Weyl’s
inequality and the supposition on n, N:
max |5; — 07| < || E|| < 2(V'N + v/n) < nr = 5412/ (K + 8) log(N + n).

1<i<r
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If 72 Sl(f+\f) thennr< in? < 1o for any o, > in% We apply [51,
Theorem 23] by noting that E is (2 2) concentrated in the Deﬁmtlon 11 from [51]
to get

727

o> o0, —nr

uniformly for any 1 < [ < r with probability at least 1 — 9"t exp(—(nr)?/32).
Conditioning on this event, with the assumption that o; > in? which implies

2
61 > 3oy, [51, Theorem 23] yields the lower bound
f

,
al<al+t\f+128—+29 72

with probability at least 1 —4 - 92" exp(—rt?/32) for any ¢ > 0. Note that 128% +
29 —m < (3/100)nr by the supposition on n. The conclusion follows by taking
t\/r = %777”, a union bound over [ < rg and simplifying the probability bounds

using (nr)? > 542r4.

APPENDIX C. PROOFS OF LEMMA 16, 17, AND 18

In this section, we collect the proofs of Lemma 16, 17, and 18.

C.1. Proof of Lemma 16. By writing G(z) := (2 — £)~! as a Neumann series,

we find
1 <=/|€
16N < 71 2 <|z|)

Since ||E|| = ||€]| and ”g” < 1/2 by assumption, the claim for ||G(2)|| follows. Since

IE®| < ||€]|, the same proof also applies to G*)(z). The bounds in (27) follow
from (20), the bound

2(N +n)

?a (95)

IN

and the triangle inequality.

C.2. Proof of Lemma 17. By writing G(z) := (2 — £)~! as a Neumann series,

we see that
|5||> €117 2||£]*
<
Z( lz[2([2[ = IE) =[]
(e

since T < <1/2 and |z] — |€]| > %|z| by assumption.

1
’G(z) — ~Inin—

C.3. Proof of Lemma 18. By the rotational invariance of F, it suffices to assume
that U is the matrix with columns ey,...,e,, where e1,...,eyx is the canonical
basis in RY, and the columns of V are given by fi,..., f., where fi,..., f, is the
canonical basis in R™. By the definition of U in (9), it is easy to verify that

E;; + Ej for 1 <4,j <r;

_Ei’—r E’—ri fi 1<'<7 1<'<2;
2UTEU; = T S = E T ST SR

i—rj — Bji—r orr+1<:<2r,1 <5<

*Ei—r,j—r — Ej—r,i—r for r -+ 1 S Z,] S 2r.
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Denote E,. the r x r upper-left corner of E. We rewrite
L{TEZ/IZE E.+EfY —-E.+ET :1 1. I, E. 0 I, —-1I.
2\E, - EY —-E,.—-ET 2\, —I, o EYJ\I. 1I.)°
By elementary computation and the fact that E.E' and E!FE, share the same
non-trivial eigenvalues, we get

I,,a IT E'r 0 I’r _IT
G B 2l )] -e

Hence, by invoking Lemma 15, we have

[UTEU|| < ||E,|| < 2v/7 + /2K log(N +n)

with probability at least 1 — 2(N + n)~X.

" eu) <
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