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ABSTRACT In the realm of the Internet of Things (IoT), unmanned aerial vehicles (UAVs) have garnered
significant attention due to their high mobility and cost-effectiveness. However, the limited onboard energy,
kinematic constraints, and highly dynamic environments present significant challenges for UAVs in the
context of continuous real-time data collection scenarios. To address this issue, we investigate the utilization
of a rechargeable UAV for data collection tasks in scenarios with densely mobile sensor nodes. This study
formulates the problem as a Markov decision process and designs a reinforcement learning approach called
guided search twin-dueling-double deep Q-Network (GS-TD3QN). Within this framework, the goal is to
optimize the flight path, charging strategy, and data upload intervals to collectively maximize the total
number of uploaded data packets, improve energy efficiency, and minimize the average age of information.
Additionally, we propose an action filter to mitigate collision risks and explore various scheduling strategies.
Ultimately, by evaluating the performance with simulation results, we confirm the effectiveness of the
proposed algorithm and validate its applicability across varying quantities of nodes.

INDEX TERMS Deep reinforcement learning, rechargeable UAV, data collection, mobile sensor nodes.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) are considered
a promising technology for enhancing network cov-

erage and providing on-demand connectivity, having been
extensively deployed as mobile communication base stations
within the Internet of Things (IoT) [1] [2]. In response, ex-
tensive research has focused on UAV-assisted data collection
in IoT networks. Initially, traditional algorithms were widely
adopted for single-objective optimization tasks. For instance,
Le et al. proposed a wireless power transfer (WPT)-enabled
mobile crowdsensing (MCS)-assisted sustainable federated
learning architecture to minimize the total task completion
time [3]. In [4], the average age of information (AoI) wasmin-
imized using dynamic programming and genetic algorithms.
Li et al. transformed the optimization problem into a traveling
salesman problem (TSP) to minimize the AoI [5]. However,
these approaches often require retraining when environmen-
tal conditions change, leading to substantial computational
costs [6]. To address these limitations, deep reinforcement

learning (DRL) has gained traction due to its adaptability
in handling dynamic environments [7]. Research shifted to-
ward multi-objective optimization. For example, Hu et al.
employed guided search DRL to jointly optimize the AoI of
high-priority nodes and the total uploaded data with different
priorities [8]. Zhang et al. applied the Deep Deterministic
Policy Gradient (DDPG) algorithm to minimize completion
time while maximizing data collection [9].
The above studies generally assumed that a UAV could

accomplish its task from the starting point to the end point
in a single flight. However, in practical applications, as net-
work scales expand [10], sensor nodes (SNs) continuously
generate data packets, necessitating that UAVs are capable of
prolonged data collection [11]. The limited onboard energy of
UAVs poses a significant challenge for continuous data col-
lection, making UAV recharging essential [12]. Due to this,
some studies had considered allowing UAVs to recharge.The
strategies discussed in [13] and [14] both involved comparing
the remaining battery level of the UAV with the minimum
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required battery level needed to return to the charging station
(CS), and choosing a straight-line path back for recharging.
However, this approach may not be optimal. On one hand,
data can not be collected during the return trip, increasing the
time cost of round trips. On the other hand, these strategies do
not consider obstacles, making the straight-line path infeasi-
ble in environments with obstacles. Existing studies mainly
focus on optimizing data acquisition, energy consumption,
AoI, and task completion time [15], with little attention to
energy efficiency (EE). Fu et al. proposed Q-learning to
optimize EE and charging costs but overlooked AoI and
environmental obstacles [16]. Yi et al. employed the D3QN
to optimize EE and AoI, but they did not consider obstacles
or the sustainable generation of data packets [17]. Due to this,
this paper incorporates these factors into the optimization.

The aforementioned studies primarily focused on scenar-
ios with a limited number of nodes. In dense network en-
vironments, researchers have proposed various optimization
approaches. As an illustration, Wang et al. proposed a method
where UAVs alternate between charging and data collection,
clustering SNs during charging and selecting cluster heads
as target nodes for immediate data collection afterward [18].
Zhu et al. clustered the nodes and used ground vehicles to
carry spare batteries to accompany the UAV [19]. Neverthe-
less, these approaches are not applicable to the mobile SNs
scenarios addressed in this study. Pre-clustering mobile nodes
introduces substantial challenges, such as inefficiencies aris-
ing from dynamic changes in node locations. Therefore, we
propose guided search to to assist the UAV in data collection.
With the increasing prevalence of mobile sensors and intelli-
gent devices, the scope of IoT has expanded to include mobile
networks, where IoT terminals are no longer fixed to static
infrastructures but instead move dynamically across different
environments. This introduces additional challenges for UAV
operations, as UAVs must continuously adjust their flight
paths to maintain communication with SNs [20]. Existing
studies on mobile SNs have primarily focused on objectives
such as movement planning or security. For example, [21]
employed a twin-delayed deep stochastic policy gradient
(TDDS) to guide SNs to specific positions to collect data and
upload it to edge stations. Similarly, [22] addressed secrecy
rate maximization in scenarios involving relay UAVs and
interference UAVs. Currently, no research has thoroughly
investigated UAV trajectory optimization and data collection
in scenarios involving dense mobile SNs. Inspired by the
aforementioned studies, this paper explores UAV trajectory
optimization in such environments, offering a novel approach
to data collection.

Based on the above considerations, this paper investigates
the problem of data collection by rechargeable UAV trained
with DRL in scenarios with dense mobile nodes. The main
contributions of this paper are summarized as follows:

• Unlike previous studies, we introduce mobile SNs into
the environment and assumed that the information of
SNs is only partially known. Additionally, to better
reflect real-world scenarios, obstacles are added, and

charging stations are implemented to support the UAV’s
sustainable data collection tasks.

• We formulate the rechargeable UAV data collection
problem as a Markov decision process (MDP) and pro-
pose the guided search twin-dueling-double deep Q-
Network (GS-TD3QN) algorithm. This algorithm incor-
porates a twin architecture into the D3QN framework
to enhance stability, allowing for the joint optimization
of the total number of uploaded data packets, energy
efficiency, and average AoI.

• By comparing various scheduling strategies, the optimal
strategy is selected as the guided search (GS) to assist the
UAV in efficient data collection. Additionally, to ensure
flight safety and minimize risks in real-world environ-
ments, an action filter system is designed to predict and
prevent UAV collisions with obstacles, providing real-
time feedback during decision-making.

The effectiveness and stability of the proposed GS-D3QN
are validated through comparisons with baseline algorithms.
Furthermore, the universality of the proposed algorithm was
tested across different numbers of nodes.
The remainder of this paper is structured as follows: Sec-

tion II introduces the system model and the problem formula-
tion. Section III presents the proposed GS-TD3ON algorithm
along with the action filter mechanism. Section IV discusses
the simulation results, and finally, Section V concludes the
paper with a summary.

II. SYSTEM MODEL AND PROBLEM FORMULATION

FIGURE 1: An illustration of a rechargeable UAV-assisted
data collection network.

A. SYSTEM MODEL
As illustrated in Fig. 1, a rechargeable UAV is deployed from
an initial position (indicated by the green diamond area at
the top-left corner) to collect data generated by SNs within
a designated region. When the UAV intends to upload the
collected data packets to the base station (BS), located at
PB = [xB, yB], it must be within the communication range
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of the BS, which means that the distance between the UAV
and the BS must not exceed dB. For the sake of simplicity, we
assume that the data upload occurs fast. Under the assumption
that the UAVflies at a fixed altitudeH and maintains constant
speed during data collection, its horizontal position in time
slot t1 is q(t) = [xu(t), yu(t)]

T . The trajectory of the UAV
during the entire collection process can be represented as
T = {q (0) , · · · , q (T − 1)}, where T is the total number of
time slots. Considering the limited battery capacity uc of the
UAV, a charging station (CS) is set up below the BS (marked
by a red dot). The UAV can proceed to the CS as needed and
is supposed to be fully charged within the time slot t upon
entering the proximity of the CS. To mitigate the wear and
tear on the battery caused by frequent charging, it is stipulated
that data upload to the base station and charging cannot occur
simultaneously. Within the designated area of size L1 × L2,
N SNs are randomly distributed. These SNs generate data
packets intermittently and can move a certain distance l in
any direction, where l ≤ L0 and L0 denotes the maximum
distance each SN can move within each time slot t . The infor-
mation of mobile SNs is represented as N = {I1, I2, · · · , In},
where In represents the information of the n-th node, specif-
ically, In = (nth, xn (t) , yn (t) ,Dn (t) , Tn (t)), n ∈ [1,N ]. To
simplify the notation, the following descriptions omit the use
of (t). In the information In, nth represents the index of n-th
SN, xn and yn represent the position of the SN, Dn is the list
of data packet generated by the SN that have not yet been col-
lected, and Tn denotes the timestamp of packets generation.
Additionally, several obstacles exist within the bounded area,
which the UAV cannot fly over and must navigate around.
To prevent interference during transmission, it is assumed
that the UAV adopts a time-division multiple access (TDMA)
protocol [23]. More specifically, it is stipulated that within a
given time slot t , at most one SN is allowed to communicate
with the UAV.

B. COMMUNICATION MODEL
Similar to [24], due to the absence of buildings, non-line-of-
sight (NLoS) links can be neglected, and only line-of-sight
(LoS) links are considered in this study. Consequently, with
the LoS links the path loss can be expressed as follows [25]:

L(d) = (d2 + H2)α/2, (1)

where H represents the altitude of the UAV and d is the
horizontal distance between the UAV and the SN. To be more
specific, we project the position of the UAV onto the ground
plane, and denote the projected position as q = (xu, yu). The
instantaneous distance between the UAV and the n-th SN is
given by d =

√
(xu − xn)

2
+ (yu − yn)

2
+ H2. α represents

the path loss exponent.
We assume that each SN is equipped with an omnidirec-

tional antenna, while the UAV is equipped with a directional

1To simplify the problem, the continuous collection period is discretized
into T discrete time slots.

antenna. According to [26], the antenna gain from the SN to
the UAV, denoted asGV (d), can be approximated as follows:

GV (d) = sin(θ) =
H√

d2 + H2
, (2)

where θ denotes the elevation angle between the UAV and the
SN, as depicted in Fig. 1.
Given Pn as the transmit power of each SN and Ns as

the noise power, the signal-to-noise ratio (SNR) between the
UAV and the nth SN is expressed using the following formula
[27]:

Sn
△
=

Pn

Ns
GV (d)L

−1(d) =
Pn

Ns
H(d2 + H2)−

1+α
2 . (3)

We define a fixed threshold S̄ as the SNR criterion for
determining whether the UAV can collect data from SNs.
Specifically, the UAV can successfully gather data packets
generated by SNs only if the SNR of the n-th SN is no smaller
than the threshold S̄, and this can be expressed as

Cn (t) =
{
LDn , if packet generated and Sn ≥ S̄
0, otherwise.

(4)

here LDn is the number of data packets generated by the SN.
TheUAV’s data storage buffer is assumed to have sufficient

capacity, and data can only be successfully uploaded to the BS
when the UAV is at a distance no greater than dB. Then the
total amount of data uploaded, denoted as Cd , is expressed as
follows:

Cd =

{∑T−1
t=0

∑N
n=1 Cn (t) , if dg ≤ dB
0, otherwise.

(5)

C. ENERGY EFFICIENCY (EE)
During flight and hovering, the UAV expends energy to
overcome gravity and air resistance in order to stay aloft or
move forward [28]. Since the energy consumption related to
communication is negligible compared to that of propulsion,
it is not taken into account in this paper. This paper focuses on
the flexibility and adaptability of rotary-wing UAVs. Based
on [29], we employ the following basic energy consumption
model. The energy consumption Ev during the time interval τ
can be represented as

Ev (t) = P (v) τ, (6)

where P (v) represents the propulsion power of the UAV.
When v = 0, the UAV is considered to be hovering, which
is regarded as a specific case of flying.

Therefore, the total energy consumed over the entire flight
duration T can be expressed as

E (T ) =
T−1∑
t=0

Ev (t) . (7)

It should be noted that only one SN can communicate with
the UAV at any given time slot. Then, the maximum amount
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of data the UAV can receive during the entire mission duration
T is expressed as

R (T ) =
∫ T

0

B log2 (1 + Sn(t)) dt, (8)

where B is the bandwidth of the communication channel.
In communication systems, optimizing energy efficiency

(EE) involves balancing energy consumption with data trans-
mission/collection [30]. The aim is to achieve higher data col-
lection while minimizing energy expenditure. Consequently,
EE, which measures the amount of data collected per unit of
energy, can be defined as:

EE =
R (T )
E (T )

. (9)

D. AGE OF INFORMATION (AOI)
To characterize the freshness of the collected data, AoI is
defined as the time that has passed since SN has generated
the latest information [31]:

AoIn (t) = t − Tu, (10)

where t represents the current time, and Tu denotes the times-
tamp for the most recent update of the information source.

As illustrated in Fig. 2, the SN generates a data packet in
time slot tg, and AoI of the packet increases over time. UAV
collects the data packet at time ti and uploads to the BS at time
tu. The AoI in this scenario is tu − tg.

FIGURE 2: AoI of the sensor nodes.

E. PROBLEM FORMULATION
In this paper, we investigate the problem of efficient data
collection with a rechargeable UAV. Our objective is to ensure
that the UAV can recharge effectively within a given collec-
tion period, while balancing EE and AoI, and maximizing the
collection of data packets generated by mobile SNs. Specifi-
cally, we consider the following optimization problem:

P1 : max
T

EE − 1

N

N∑
n=1

AoI (n) + Cd (11)

s. t. q (t) ∈ L1 × L2 ∀t, (11a)

uc ≥ 0 ∀t, (11b)

Sn ≥ S̄ ∀n, (11c)

||q (t)− po||2 > 0 ∀t and ∀o, (11d)

Above, T = {q (0) , · · · , q (T )} represents the trajectory
of the UAV. Cd indicates the total number of data packets

successfully transmitted by the UAV to the BS. In (11b), uc
represents the remaining battery level of the UAV, and the
constraint is imposed to ensure that the UAV has sufficient
energy to sustain its flight and complete its mission without
running out of power. The constraint in (11c) represents the
condition that the UAV collects data only when the SNR in
the communication link with a node exceeds the required
threshold. The constraint in (11d) ensures that theUAV avoids
collisions with obstacles, where po = (xo, yo)

T represents the
coordinates of an obstacle.

III. REINFORCEMENT LEARNING-BASED AGENT
Considering the complexity of the nonlinear programming
problem in (11), we propose an DRL approach to determine
the optimal trajectory based on the specified performance
metrics.

A. GS-TD3QN
In this section, we provide a detailed description of a UAV
trajectory design algorithm based on GS-TD3QN. The archi-
tecture of this algorithm features a twin structure that includes
two independent Q-networks. These networks share the same
architecture but have separate parameters and are updated
independently [32]. The proposed RL framework is depicted
in Fig. 3.

FIGURE 3: The framework structure of GS-TD3QN.

During the training process, the UAV obtains state from
the simulated environment and selects action by GS-TD3QN.
The action is then processed through action filter to elimi-
nate those that may result in collisions or other hazardous
scenarios. Subsequently, the reward is computed based on the
outcomes of the filtered action. Through repeated interactions
with the environment, the GS-TD3QN’s network parame-
ters are continuously optimized, ultimately yielding a well-
performing pre-trained policy. The detailed training process
is further described in Algorithm 1. In practical deployment,
the UAV utilizes this pre-trained policy with necessary fine-
tuning, significantly reducing the latency associated with al-
gorithm training and effectively meeting the requirements of
real-world tasks.
Now, we construct this DRL framework with state, action

and reward, and the relevant specifics are described below:

4 VOLUME 10, 2024



Xu et al.: Deep Reinforcement Learning for Rechargeable UAV-Assisted Data Collection from Dense Mobile Sensor Nodes

1) State Space(S)

S △
= [Su, [Snn ∀n]] . (12)

Here, Su represents the state of the UAV, which can be ex-
pressed as:

Su = [ux , uy, gx , gy, dg, θg, θu, tl ,EE , uCS , eemp, au, uBS ] ,
(13)

where ux and uy respectively represent the flight distance
along the x and y axis at time step t . Explicitly, ux = v cos θu
and uy = v sin θu, where θu denotes the flying direction of
the UAV and v is the UAV speed. gx and gy respectively
represent the x and y coordinates of the BS or CS (BS/CS),
and dg represents the distance from the UAV to the BS/CS.
θg denotes the angle between the UAV and the BS/CS, tl
denotes the remaining flight time of the UAV, and EE is the
energy efficiency of the UAV over the entire period from
start to present. uCS indicates whether recharging is needed;
when the UAV’s battery level drops below 2000, uCS is set
to 1; otherwise, it is set to 0. Similarly, eemp is set to 0 if
the battery has power, and 1 otherwise. au represents the
average AoI of the data packets stored in the UAV’s data
buffer. uBS indicates whether the stored data packets in storage
should be transmitted to the base station. If the AoI exceeds
a predetermined threshold, uBS is set to 1; otherwise, it is set
to 0.
Snn represents the state of the SNs, which can be defined as:

Sn = [xn, yn, dn, θnn,Dn, Sn,Cn, an] , (14)

where, xn and yn represent the coordinates of the n-th SN
along the x-axis and y-axis, respectively. The distance be-
tween SN and UAV is denoted by dn, while θnn represents the
elevation angle between them. The average AoI of the data
packets generated by the SN is indicated by an. Considering
that the information on SNs is only partially known to the
UAV, we stipulate that the UAV can observe the nearest Nc
SNs that have generated data packets. If there are fewer than
Nc SNs, we use zero padding.

2) Action Space (A)
The action space for the UAV is defined as follows:

A = [af , ac, ab] . (15)

The action set is discretized into 10 specific options. Among
them, the UAV’s flight direction θu is constrained within
(−θc, θc) and discretized into 7 directions. The flight action
af is defined as af = [v, θu], where v represents the UAV’s
constant flight speed. Having v = 0 indicates a hovering op-
eration. The 9th action, ac, represents the decision to charge,
while the 10th action, ab, indicates uploading data to the base
station.

3) Reward (R)
We define the reward as:

R = pa + ra + ro + pb + ru + rc + rn + re. (16)

Above, when the average AoI of the data stored in the UAV’s
storage buffer exceeds A, a penalty of pa is applied. ra indi-
cates the negative average AoI of the data collected by the
UAV and is specifically designed to optimize the AoI within
the objective function. ro denotes the penalty for encountering
an obstacle, while pb represents the penalty for leaving the
designated area, both designed to satisfy the constraints spec-
ified in Equations (11d) and (11a). ru = Cdrb is the reward
given for uploading data, aiming to optimize Cd as defined in
Equation (11). rc is granted for Equation (11b) and is defined
as:

rc =


a1, if disc > dth
a2, if disc ≤ dth and battery ≤ Bth,
a3, if disc ≤ dth and battery > Bth,
a4, battery ≤ 0.

(17)

Here, a1, a3, and a4 are negative constants, while a2 is a pos-
itive constant. disc and dth represent the distance between the
UAV and the BS, and the communication distance threshold,
respectively. battery and Bth represent the remaining battery
level and the specified battery threshold, respectively. To
simplify the modeling process, we assume that the UAV can
recharge only when it is within a certain range of the CS and
that its battery is instantaneously fully charged, restored to
its maximum capacity uc. While recharging helps ensure the
UAV’s operational continuity, charging too frequently may
negatively impact task efficiency [33]. Therefore, reward is
granted only when the UAV recharges with its remaining bat-
tery level below a specified threshold Bth, whereas frequent
charging with sufficient battery results in a penalty.
rn = Cn (t) rd is the reward for collecting new data, where

rd is a positive constant designed to encourage the UAV to
maximize data collection. To optimize the EE, the reward re
is introduced to maximize the EE in Equation (11).

B. ACTION FILTER
Notably, this paper introduces an action filter to evaluate the
chosen actions. This action filter can detect potential risks in
real-time and provide feedback, allowing the UAV to reselect
its actions, thereby effectively mitigating potential losses or
avoiding collisions.
The action filter Afiltered

t can be defined as follows:

Afiltered
t =

{
at , ifP(at) = 0

HoldPosition, ifP(at) = 1.
(18)

When the UAV selects its current action, the action is
fed to the action filter for preprocessing. The system pre-
executes the action to assess potential risks such as collisions
or boundary violations. If such risks are detected, that is,
when P(at) = 1, the system will force the UAV to maintain
its current position and cancel the execution of the selected
action. Additionally, the system will send a penalty signal to
the UAV, indicating the imprudence of the chosen action and
guiding the UAV toward more optimal flight decisions.
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Algorithm 1 GS-TD3QN algorithm

Input: Initialize the replay buffer D, capacity N , update steps C ,
max. flight time TF , max. training episode E , exploration prob-
ability ε and learning rate λ.

1: for episode in 0,1,...,T do
2: Initialize Q1,Q2 network parameters ξ1, ξ2
3: Initialize Q1 target network and Q2 target network parame-

ters ξ1′ and ξ2
′

4: Initialize the UAV position, node states, goal position, flight
time Tf

5: while True do
6: With probability ε, randomly select action at
7: otherwise select at = argmaxQ1 (st , a;ξ1)
8: Action filter system
9: The UAV takes action at

10: The UAV receives reward R, moves to next state st+1

11: Store (st , at ,R, st+1) in replay buffer
12: Randomly sample K samples from D
13: Calculate the target values Q1,Q2 of each sample ac-

cording to
14: Q = argmin (argmaxQ1, argmaxQ2)

15: yt =
{

rt , if episode terminates at time+1
rt + γmaxa′ Q

(
st+1, a′; ξ−

)
, otherwise

16: Update the network parameters using L (ξ) = (yt − Q)2

17: st+1 ← s, f ← f + 1
18: Every C steps, reset ξ1′ ← θξ1, ξ2

′ ← ξ2
19: if flight time Tf >TF or battery <0
20: then
21: break
22: end if
23: end while
24: end for

C. SCHEDULING POLICIES
Given the large number ofmobile SNs, theUAVmust not only
focus on data collection but also learn to recharge efficiently
and upload data in a timely manner. To effectively address
these challenges and enhance the UAV’s performance and
efficiency, we introduce five distinct scheduling policies (SP),
with the most effective strategy designated as Guided Search
(GS). The GS strategy serves as the key approach to optimize
the UAV’s operations.

SP1: This policy takes into account the distance between
UAV and SN, the average AoI of the data packets stored in
the SN, and the number of data packets generated by SNs.
It selects the target SN based on the minimum sum of these
three factors. This policy also constitutes the GS proposed in
our study.

SP2: This policy determines the target SN by selecting the
SN with the minimum sum of the distance from the UAV to
the SN and the average AoI of the data packets stored in the
SN.

SP3: This policy identifies the target SN by selecting the
SN with the minimum sum of the distance between the UAV
and the SN and the number of data packets generated by the
SNs.

SP4: This policy addresses only the average AoI of the data
packets stored in each SN and selects the SNwith the smallest
average AoI as the target SN.

TABLE 1: The Environmental Parameters

Notation Definition Value
α [25] Exponent of path loss 2
B [25] Channel bandwidth 1MHz
dB The maximum distance the UAV can upload

data to the BS.
5m

uc The battery of the UAV 120000mAh
N The number of SNs 50
v The flying speed of UAV 5m/s
H The flying height of UAV 50m
T The flight time of UAV 1000s
Pn [27] Transmitting power of sensor equipment 1e-3
Ns [27] Noise power of sensor equipment 1e-6
P (0) [29] Propulsion power in hovering state 222W
P (5) [29] Propulsion power during flight at a speed of 5 215W
S̄ SNR Threshold 0.37
θc The maximum turning angle the UAV can

achieve during flight

π
3

A The AoI threshold for data packets stored in
the UAV’s storage pool

100s

dth The given communication distance threshold 5m
Bth The specified battery threshold 20000mAh
Nc The maximum number of SNs observable by

the UAV
10

pa The penalty for the average AoI of data
packets in the UAV’s storage pool exceeding
threshold

-2

ro The reward of collision with obstacles -0.2
pb Out of Bounds Reward -0.2
rb The reward of upload data to BS 5
rd The reward of collect data 2
L0 The maximum moving distance of nodes 1m
Po The coordinate of obstacle 1 [-23,-23,6]

The coordinates of obstacle 2 [20,20,6]
PB The coordinate of BS [0,0,6]
PC The coordinate of CS [0,0,2]
a1, a3, a4 The negative reward of rc -5,-40,-500
a2 The positive reward of rc 5

SP5 : This policy depends only on the Euclidean distance
and chooses the SN closet to the UAV as the target SN.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we present comprehensive simulation results
and evaluate the performance of the proposed GS-TD3QN
algorithm, implemented using the PyTorch framework. The
simulation environment consists of a 100m × 100m area,
divided into 20m×20m grids and treated as a 2D plane due
to the UAV’s constant flight altitude. The UAV takes off from
a random position in a rectangular region, which is defined
by x-axis coordinates ranging from -50 to -30 and y-axis
coordinates ranging from 30 to 50, as illustrated by the green
area in Figure 1. Mobile SNs are randomly distributed within
the scenario, and there are two obstacles in the environment.
Additional details are provided in Tables 1 and 2.

We define the total number of data packets successfully
uploaded to the BS as CD, the number of charging instances
as CH, the ability of a UAV to maintain continuous power
supply throughout themission duration as Power Sustainment
Success Rate (PSSR), the average number of data uploads as
UP.
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FIGURE 4: Training performance metrics.

TABLE 2: The Hyperparameters of The GS-TD3QN

Parameter Value
Number of trainning round episodes 20000
Target network update frequency 1000
Size of repaly buffer 1e6
Mini-batch size 256
Discount factor 0.99
Learning rate 0.0003
The number of neurons in the first hidden layer 256
Initial epsilon 0.6

A. PERFORMANCE ANALYSIS OF DIFFERENT ALGORITHMS
We use traditional DQN and soft actor-critic (SAC) algo-
rithms as baseline comparisons to validate the effective-
ness and convergence of the GS-TD3QN algorithm. The
red, green, and blue curves represent DQN, GS-TD3QN,
and SAC, respectively. Fig. 4a, Fig. 4b, Fig. 4c, and Fig.
4d illustrate the performance of the three algorithms across
various dimensions during the training process. These fig-
ures comprehensively reflect the effects of each algorithm
across multiple aspects, providing an in-depth revelation of
their performance differences and characteristics throughout

the training. Although SAC achieves the lowest AoI, this
is attributed to its extremely limited data collection. The
results indicate that in our system model, both DQN and
GS-TD3QN algorithms perform better than SAC; however,
DQN underperforms compared to GS-TD3QN in most per-
formance metrics. This suggests that the proposed twin ar-
chitecture places greater emphasis on long-term benefits and
favors a more diversified approach. GS-TD3QN incorporates
two Q-networks with identical structures but completely in-
dependent parameters, reducing mutual interference through
independent updates. Additionally, the algorithm employs a
conservative estimation approach, effectively mitigating the
risk of overestimated Q-values during the update process.
This design enhances the algorithm’s exploration capabilities
in complex state spaces, enabling it to avoid local optima and
more effectively identify global optimal solutions. Therefore,
although GS-TD3QN converges slightly slower than DQN, it
ultimately achieves higher overall gains.
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TABLE 3: Test Results of Different Algorithms

Algorithm DQN GS-TD3QN SAC
Reward 7027.26 8894.92 -1131.45
CD 3.537e8 4.150e8 2.854e7
CH 1.84 1.66 0.27
EE 714.17 975.2 213.16
PSSR% 97.7 98.8 92.3
Avg AoI(s) 111.48 80.12 65.73
UP 71.8 72.9 54.3

TABLE 4: Test Results of NLOS

Algorithm LOS LOS+NLOS
Reward 8895 7933
CD 4.150e8 3.214e8
CH 1.66 1.92
EE 975.2 746
PSSR% 98.8 99.2
Avg AoI(s) 80 88

TABLE 6: Test Results for Varying Sensor Nodes

Num 10 30 70 100 120
Reward 8055 8569 8359 8290 8337
CD 4.292e8 4.163e8 3.924e8 3.913e8 3.908e8
CH 1.89 1.72 1.53 1.53 1.59
EE 515 835 1130 1230 1275
PSSR% 98.7 97.2 92.8 92.0 93.8
Avg AoI(s) 51 74 75 80 84

To provide a more intuitive evaluation of algorithm per-
formance, we have summarized the test results in Table 3.
Compared to DQN and SAC, the GS-TD3QN’s reward values
are higher by approximately 26.5% and 887.6%, CD is higher
by approximately 17.33% and 1354.10%, energy efficiency
is higher by approximately 36.6% and 357.6%, and PSSR
is higher by approximately 1.13% and 7.04%, respectively.
These results demonstrate that GS-TD3QN exhibits superior
advantages in optimizing drone performance.

Our model demonstrates good scalability and can adapt
to more realistic NLOS scenarios. To evaluate the perfor-
mance of GS-DT3QN under such conditions, we compared
the experimental results for LOS and LOS+NLOS scenar-
ios, as shown in table 4. Overall, the introduction of NLOS
conditions had some impact on the model’s performance,
with all metrics showing varying degrees of decline. This
can be attributed to the obstruction of signal propagation by
obstacles, which degrades the quality of communication links
and negatively affects overall performance. Nevertheless, the
changes are relatively minor, indicating that the model main-
tains reasonable adaptability and stability even in complex
environments.

B. VALIDATION OF THE EFFECTIVENESS OF THE
PROPOSED GS.
We further compare the different scheduling policies (SPs)
outlined in Section III.C and summarize the results in Table
5. The SP1 not only collects the largest amount of packets but
also achieves the smallest AoI for the uploaded data packets
and demonstrates excellent EE. It fully meets the objectives
of our study. When considering a single metric, such as in

TABLE 5: Test Results of Different Scheduling Policies

Policy SP1 SP2 SP3 SP4 SP5
Reward 8895 4365 6602 1442 4130
CD 4.150e8 3.072e8 3.696e8 8.871e7 3.236e8
CH 1.66 1.83 1.39 0.095 1.76
EE 975.2 289 780 438 251
PSSR% 98.8 99 99.2 8.7 97.8
Avg AoI(s) 80.12 198 114 68.2 220

SP4, where only the AoI of data packets generated by SNs
is considered, the AoI may be optimal, but the performance
in other aspects is poor. In SP2, where both distance and AoI
are taken into account, multiple data packets may have similar
conditions, leading to the selection of suboptimal packets and
resulting in an AoI performance that is inferior to that of
SP3, which considers both distance and the total number of
data packets. Observations show that the total number of data
packets in SP3 is also much lower than in SP1, likely due to
the similar conditions of multiple data packets, requiring a
comprehensive consideration of the AoI. Therefore, selecting
SP1 as the GS strategy in this study is experimentally justi-
fied.

C. VALIDATION OF THE ALGORITHM’S GENERALIZATION
ACROSS DIFFERENT NUMBERS OF SNS.
Finally, we train and test the proposed algorithm in environ-
ments with varying numbers of SNs to validate its universal-
ity, as shown in Table 6. Regardless of the number of SNs
being as few as 10 or as many as 120, it can be observed
that the UAV typically only needs to recharge approximately
once to serve all SNs within the designated period. Although
the total amount of data packets successfully uploaded to
the BS decreases as the number of SNs increases, the UAV
is still able to effectively complete the data upload for the
majority of data packets. As the number of SNs in the en-
vironment increases, the AoI of the uploaded data steadily
rises but remains within an acceptable range. However, when
the number of SNs exceeds 70, the PSSR shows a significant
decline, indicating that the capacity of a single UAV is limited
and cannot optimally balance recharging and data collection,
resulting in a lower PSSR. Thus, in future work, we aim to
determine the optimal UAV-to-sensor node ratio to enhance
resource utilization and system performance across various
deployment scenarios. This includes simulations to evaluate
different configurations for scalability and efficiency. Addi-
tionally, we plan to develop advanced algorithms for dynamic
UAVallocation and task assignment based on real-time sensor
data, improving operational effectiveness in complex envi-
ronments.

V. CONCLUSIONS
This paper addresses the path planning problem for recharge-
able UAV-assisted data collection from dense mobile SNs. To
enable UAV to effectively avoid obstacles while performing
long-term data collection tasks, we employ reinforcement
learning techniques to jointly optimize the uploaded data, EE,

8 VOLUME 10, 2024



Xu et al.: Deep Reinforcement Learning for Rechargeable UAV-Assisted Data Collection from Dense Mobile Sensor Nodes

and average AoI. Specifically, we propose the GS-TD3QN
algorithm, which utilizes GS to assist UAVs in path planning
by designing a reward function and action filter. Through
comparisons of various performance metrics under different
scheduling policies, the effectiveness of GS is experimentally
validated. Simulation results indicate that the GS-TD3QN
algorithm outperforms the DQN and SAC algorithms in the
studied environment, demonstrating superior performance.
Furthermore, the algorithm exhibits robust performance in
environments with varying numbers of nodes, proving its ef-
ficiency and strong convergence capabilities. However, as the
number of nodes increases, the performance of a single UAV
declines. Therefore, future research will focus on determining
the optimal number of UAVs based on the scale of sensor
nodes to effectively address this issue.
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