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Abstract. We present the Aemulus ν simulations: a suite of 150 (1.05h−1Gpc)3 N -body
simulations with a mass resolution of 3.51 × 1010 Ωcb

0.3 h−1M� in a wνCDM cosmological
parameter space. The simulations have been explicitly designed to span a broad range in
σ8 to facilitate investigations of tension between large scale structure and cosmic microwave
background cosmological probes. Neutrinos are treated as a second particle species to ensure
accuracy to 0.5 eV, the maximum neutrino mass that we have simulated. By employing
Zel’dovich control variates, we increase the effective volume of our simulations by factors of
10 − 105 depending on the statistic in question. As a first application of these simulations,
we build new hybrid effective field theory and matter power spectrum surrogate models,
demonstrating that they achieve ≤ 1% accuracy for k ≤ 1hMpc−1 and 0 ≤ z ≤ 3, and ≤ 2%
accuracy for k ≤ 4hMpc−1 for the matter power spectrum. We publicly release the trained
surrogate models, and estimates of the surrogate model errors in the hope that they will be
broadly applicable to a range of cosmological analyses for many years to come.

Keywords: cosmological neutrinos, cosmological parameters from LSS, cosmological simu-
lations, dark matter simulations
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1 Introduction

After recombination and on sufficiently large scales, the dynamics of the Universe can be
described by the collisionless Boltzmann equation in an expanding background. Much of the
theoretical effort in cosmology over the last few decades has been devoted to increasing the ac-
curacy, flexibility, and speed of methods for solving these equations, with techniques generally
falling into two camps: perturbation theory and simulation-based methods. In this work, we
combine aspects of both of these methodologies in order to make accurate non-linear predic-
tions for real-space power spectra in cold dark matter (CDM) cosmologies, including the ef-
fects of massive neutrinos and non-cosmological constant dark energy (DE) equations of state.

Perturbative methods for predicting matter density and velocity statistics have matured
over the past few decades to the point that they are now commonly used to confront con-
temporary observations [1–6]. Methods for incorporating the effects of dark energy [7], and
massive neutrinos have been developed [8–10], although near ΛCDM cosmologies the Einstein
de-Sitter approximation is typically accurate enough for current levels of observational er-
rors [11]. While fast, flexible, and accurate over the range of scales where perturbation is valid,
these methods inevitably break down in the non-linear regime of structure formation. With
the incorporation of effective field theory (EFT) techniques, the reach of perturbation theory
has been pushed to k ∼ 0.3hMpc−1 for real-space power spectra [12] and k ∼ 0.2hMpc−1

for redshift-space power spectra [13].

Methodologies for running N -body simulations more rapidly and in larger volumes have
also seen a great deal of development in the last few decades [14–17]. These simulations use a
variety of methods to solve a discretized version of the non-relativistic, collisionless Boltzmann
equation. They produce fully non-linear solutions, but great care must be taken to ensure
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that they are converged with respect to various choices that are made when running them,
such as mass and time resolution, volume, and initial conditions.

A variety of methods for including the effects of massive neutrinos in N -body simula-
tions have been developed. For sufficiently small neutrino masses, e.g. ∼ 0.3 eV and below,
treating the neutrino component linearly while solving for the full non-linear evolution of the
CDM distribution is sufficient [18–22]. At larger masses, a non-linear treatment of the neu-
trino component is necessary to achieve sub-percent accuracy above k ∼ 1hMpc−1 [22–26].
Including neutrinos as a separate particle species in N -body simulations has been shown to be
an accurate route for such a treatment [27, 28]. While the most widely used implementation
of this method incurs significant biases in the neutrino distribution itself due to the impact of
shot noise at early times when the neutrino auto-power spectrum is small, this complication
is insignificant, as all currently relevant observables either depend on the total matter field,
or the CDM and baryon fields, which are accurately recovered, albeit with slightly increased
noise, using such a technique for realistic neutrino masses.

Although N -body simulations are able to accurately solve for non-linear CDM and
neutrino dynamics, they are fundamentally limited in the scales that they can describe, as
neglected processes such as radiative cooling, star formation and subsequent supernovae,
as well as Mpc-scale outflows from supermassive black holes become non-negligible on the
scales of galaxies and galaxy clusters. Furthermore, because N -body simulations do not
include the actual objects that are observed in contemporary surveys, i.e. galaxies and other
luminous tracers of the matter distribution, there will always be uncertainty associated with
the connection between N -body simulations and galaxy surveys that must be appropriately
accounted for in order to use these simulations to confront observations.

Traditional methods for connecting N -body simulations to galaxy survey observations
involve statistical models for populating galaxies in simulated dark matter halos. Most
common among these techniques is the halo occupation distribution (HOD) formalism [29–
31], which assumes functional forms for the distribution of the number of galaxies that
occupy halos of a given mass, as well as the phase-space distribution of those galaxies within
a halo. The end product of this technique is a catalog of simulated galaxies, from which
various summary statistics can be computed and compared to observational data. N -body
simulations paired with the HOD formalism have recently been used to extract cosmological
constraints from a range of data sets, including redshift-space clustering [32–35], galaxy-
galaxy lensing [36, 37], and higher-order statistics of the galaxy field [38, 39].

There are two major limitations of the HOD formalism, which also apply to many other
methods for statistically populating simulated dark matter halos with galaxies. The first is
that such methods are significantly restricted by their reliance on halo-finding algorithms. In
order to model galaxy samples that populate low mass halos, the simulations must resolve
these halos, placing stringent requirements on the resolution of the simulations and thus
increasing the expense of running these simulations. Historically, this restriction has been one
of the main inhibitors in using simulations to analyze large scale structure data. Relatedly,
the halo definition employed in data analysis matters (e.g. [40]). Different choices of halo
definition can lead to very different resolution requirements [41, 42], and different conclusions
about the necessity of parameters beyond halo mass in the HOD parameterization [43, 44].

The second limitation is more philosophical, namely that the functional form parame-
terizations used in HOD models draw motivation from hydrodynamical simulations. These
simulations are able to model the formation of galaxies, and thus directly measure the rele-
vant quantities required for HOD models. Although such simulations have made significant
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progress in terms of reproducing observations over the last decade [45–48], they still rely
heavily on sub-grid physics models with tens of parameters that are hand tuned to match
observations. Thus the extent to which these simulations are predictive is limited, and the
accuracy of their predictions seldom meets the stringent requirements of cosmological pa-
rameter estimation. Furthermore, because hydrodynamical simulations are relied on to help
determine key ingredients of HOD models, there is no controlled series of HOD terms that
one can systematically check sensitivity to when performing data analysis. Nevertheless, if
these uncertainties can be satisfactorily controlled, then HOD and related methods paired
with high resolution N -body simulations have the potential to extract information from sig-
nificantly smaller scales than perturbation theory.

On the other hand, the bias expansions used to connect matter statistics to observed
tracer statistics in perturbation theory are well controlled: at a given order there are a finite
number of terms that obey the symmetries of the problem in question, and analyses can be
systematically checked for sensitivity to these terms. Furthermore, these expansions are flexi-
ble enough to model any biased tracer. Because of these advantages, significant effort has been
invested in the last few years in using the principles of perturbative bias expansions to connect
N -body simulations to observables, a methodology that has become known as hybrid effec-
tive field theory (HEFT). HEFT was first introduced in [49], where it was demonstrated that
appropriately post-processed outputs ofN -body simulations can replace the perturbation the-
ory basis spectra that are used in the bias expansion. This work showed that such a technique
enables one to fit real-space halo power spectra to k = 0.6hMpc−1, a factor of three smaller
in scale than what is possible with Lagrangian perturbation theory (LPT). Ref. [50] demon-
strated that HEFT could also accurately model summary statistics sensitive to higher-order
auto- and cross-clustering of tracers and matter [51, 52] on quasi-linear scales (& 15h−1Mpc).

One sacrifice that must be made when exchanging perturbatively predicted basis spectra
for their analogous simulation-based predictions is that the cosmology dependence of these
spectra must then be predicted by running simulations at many different cosmologies. Run-
ning a new simulation for each cosmology sampled in a Monte Carlo Markov Chain (MCMC)
analysis would be a prohibitively expensive endeavor, but significant progress has been made
in the last decade on so-called “emulation” or “surrogate modeling” techniques that circum-
vent the need for this. These techniques interpolate between measurements made from small
suites of simulations run at a few different cosmologies in order to obtain accurate predictions
over the entire range of cosmologies spanned by the simulations. Constructing such surrogate
models has become relatively commonplace, with simulation-based models now existing for
the matter power spectrum [53–55], the halo mass function [56, 57], linear halo bias [58, 59],
galaxy clustering and lensing statistics [33, 60–62], higher-order statistics [38, 39], as well as
HEFT models for a number of statistics [63–67].

Another sacrifice that must be made when using simulation-based predictions is that
sample variance is introduced due to the finite volumes that simulations are run in. A number
of methods have been introduced to mitigate the effect of sample variance on simulated
measurements. The most commonly used method is called fixed amplitude simulations,
where instead of initializing the amplitude of each Fourier mode of the simulation with a
Rayleigh distributed random number, the amplitude of each mode is fixed to its expectation
value [68, 69]. In combination with this, a second simulation is often run where each Fourier
mode is taken to be 180◦ out of phase with the first simulation [69, 70]. Together these
methods are called “paired and fixed” simulations, and have been used to reduce the variance
of measurements from a number of suites of simulations [54, 71, 72]. These methods come

– 3 –



J
C
A
P
0
7
(
2
0
2
3
)
0
5
4

with a cost though, as they require one to run twice as many simulations. They also forego
Gaussian initial conditions and thus statistics measured from them must be painstakingly
examined for biases [73–75]. Finally, the improvements in variance obtained from paired-and-
fixed simulations degrade significantly with non-linear and higher-order statistics [74, 75].

The method of control variates [76] offers an alternative to paired and fixed simulations
that does not suffer from these drawbacks. Control variates allow for the reduction in vari-
ance of a random variable in the presence of a correlated random variable with known mean.
This technique was introduced to the cosmology literature under the name ‘Convergence Ac-
celeration by Regression and Pooling’ (CARPool) [77–79] in order to reduce the variance of
measurements made from N -body simulations, where the control variate was taken to be mea-
surements from approximate simulations such as COLA [80] or FASTPM [81]. Ref. [82] and [83]
demonstrated that comparable variance reduction is possible at significantly less expense by
using the Zel’dovich approximation (ZA) as the control variate to reduce the variance of real
and redshift-space power spectra measured from N -body simulations, respectively.

In this work, we present a new suite of 150 simulations, run in a wνCDM cosmological
parameter space, simulating neutrinos as an extra particle species to ensure accuracy of our
predictions to 0.5 eV. Furthermore, we run these simulations in the broadest parameter space
ever used in a single suite of simulations in order to ensure that they are accurate over the
full range of wνCDM cosmologies allowed by current data. We perform convergence tests of
these simulations to ensure their accuracy and we take advantage of the Zel’dovich control
variate (ZCV) method to reduce the variance of the HEFT spectra that we measure from our
simulations. We then build a surrogate model for these HEFT spectra, including the matter
power spectrum.

This rest of this work is organized as follows. In section 2, we describe the parame-
ter space that the simulations are run in, focusing on how we optimized it to deliver both
breadth and accurate surrogate models. In section 3 we describe the settings used for our
N -body simulations, emphasizing the improved accuracy provided by initializing our simu-
lations at relatively low redshift using 3rd-order LPT. Section 4 introduces the basics behind
LPT and HEFT and section 5 describes our ZCV methodology and resultant improvements
in the precision of our HEFT measurements. Section 6 describes our surrogate modeling
methodology, quantifies the accuracy of the final HEFT models, and provides comparisons
to previous matter power spectrum surrogate models. Finally, in section 7 we summarize our
results, detail our data release plans, and discuss future directions of inquiry.

2 Parameter space design

The design of surrogate model parameter space is crucial for ensuring reliable analysis results,
and it requires balancing two factors: parameter space breadth and surrogate model accuracy.
Covering a broad parameter space is complicated by “tensions” that have arisen in contem-
porary cosmological constraints [84–87]. To avoid being biased by these tensions, simulations
must span the range of parameter values that both sets of experiments prefer. To achieve this
goal, the simulations’ parameter space should be as broad as possible without exceeding a
fixed threshold for model accuracy. We set a goal of 1% accuracy for two main reasons. First,
N -body codes agree to ∼ 0.5% at k ∼ 1hMpc−1 for the z = 0 matter power spectrum [14],
and so this sets a hard lower limit on how accurate a simulation based matter power spectrum
model can be. Secondly, ongoing and upcoming surveys such as the Dark Energy Spectro-
scopic Instrument [88], Rubin Observatory [89], Simons Observatory [90] will measure angular

– 4 –



J
C
A
P
0
7
(
2
0
2
3
)
0
5
4

200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

[C
XY

]/C
XY

 [%
]

k= 0.2hMpc 1
k 0.6hMpc 1

Rubin 
SO 
DESI Auto

DESI x Rubin
DESI x SO
Emulator error

Figure 1. Forecasted fractional uncertainties on angular galaxy and CMB lensing, and galaxy clus-
tering auto- and cross-power spectra from ongoing and upcoming surveys. The assumptions we have
made in computing these are described in the main text. The dashed vertical lines represent the ap-
proximate angular scales that correspond to k = 0.2hMpc−1, the kmax assumed in most analyses that
use pure perturbation theory models, and k = 0.6hMpc−1, the approximate kmax to which HEFT is
unbiased [63], for an effective redshift of z = 0.7 where the DESI sample is assumed to be centered.
We also plot our measured emulator error for the DESI auto spectrum at this redshift, computed as
described in section 6.3, to illustrate that the accuracy we achieve in this work is significantly below
the statistical errors of the measurements considered here.

weak lensing and galaxy clustering spectra at roughly 1% precision, as demonstrated in fig-
ure 1. We have made the forecasts in this figure assuming a disconnected covariance approxi-
mation, which should place a lower bound on the actual errors on these spectra. For DESI we
have assumed n̄ = 6×10−4 h3Mpc−3 and biases as measured in [91], consistent with the DESI
luminous red galaxy number density at z ∼ 0.7 [92], in a bin of roughly constant density be-
tween z = [0.6, 0.8]. For Rubin, we take σe = 0.26 and use a number density that is consistent
with a quarter of the LSST gold sample [93], n̄ = 10.8 arcmin−2, and a source distribution that
matches the gold sample at z ≥ 1 convolved with photometric redshift uncertainties. SO noise
curves are taken from [94], and for all three surveys we assume fsky = 0.4. The angular band
powers shown have a width of roughly ∆` ∼ 3

√
`. We have also plotted the error on the galaxy

angular auto-power spectrum that the model in this work achieves, computed as described in
section 6.3 to illustrate that the final accuracy of our model is sufficient for upcoming data,
although see discussion in that section related to error correlations between different scales.
This is an conservative bound compared to the emulator error achieved on the galaxy-matter
angular power spectrum or the matter-matter power spectrum for these redshift bins.

Additionally, it is important to have confidence that the chosen parameter space sam-
pling will deliver the desired level of accuracy before running any simulations. To address
this concern, we produce mock matter power spectrum measurements using HMcode2020 [95],
assuming a fixed number of simulations, while varying the bounds of the parameter space.
We then build surrogate models for these spectra and test their accuracy against a dense
sampling of HMcode2020 predictions that were not included in the surrogate model training.

– 5 –
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Here we aim to span a range of parameters in the wνCDM cosmological model, including
the matter density ωm, the baryon density ωb, the dark energy equation of state parameter
w, the Hubble parameter H0, the scalar spectral index ns, the normalization of the power
spectrum As, and the sum of neutrino masses

∑

mν . The parameters ωb and ns are tightly
constrained by CMB data, and their impact on LSS observables is minor [54, 58, 88]. We
set their bounds to 0.0173 ≤ ωb ≤ 0.0272, and 0.93 ≤ ns ≤ 1.01, broader than is allowed by
current CMB constraints; the small impact these parameters have on LSS observables means
that our surrogate model errors are not significantly affected by this breadth. We set broader
limits on the other parameters, as they have a more significant impact on LSS observables.
We use a prior on the logarithm of the sum of the neutrino masses

∑

mν , using a range
that is constrained by combinations of CMB and LSS data [88, 96] and by laboratory-based
experiments [97]: 0.01, eV ≤ ∑

mν ≤ 0.5, eV. The lower edge of the range is set below the
current minimum allowed value of 0.06eV [98, 99] to avoid modeling errors at the minimum
allowed mass.

We also investigate the impact of varying the widths of our parameter space in
log 1010As, w, ωc and H0 on the accuracy of the resulting surrogate models. In particu-
lar, we generate experimental designs in a four-dimensional grid, such that the bounds of
each design are

109As ∈ [2.1 − 0.33i, 2.1 + 0.33i]

w ∈ [−1 − 0.28j,−1 + 0.28j]

ωc ∈ [0.12 − 0.02k, 0.12 + 0.02k]

H0 ∈ [67 − 7.5l, 67 + 7.5l] ,

and i, j, k, l ∈ {1, 2, 3}.

We sample each of this set of 81 parameter bounds with 100 points in a Latin hy-
percube, maximizing the minimum distance between pairs of points in two dimensions. At
each point in parameter space, we produce non-linear matter power spectrum predictions us-
ing HMCode2020 [95], PHM

m,m(k, z), and 1-loop LPT predictions of the matter power spectrum

P 1-loop
m,m (k, z), as will be described in more detail in section 4. We evaluate these models at

100 points, logarithmically spaced between k = 10−1 hMpc−1 and k = 1 hMpc−1, at the
same redshifts that we output snapshots at, described in section 3.

We build surrogate models for the logarithm of the ratio of these predictions:

Γ = log10(PHM
m,m(k, z)/P 1-loop

m,m (k, z)) , (2.1)

reproducing the surrogate modeling methodology in [63] using a combination of principal
component analysis (PCA) and polynomial chaos expansions (PCE). We performed a hyper-
parameter optimization, using the same methodology as described in section 6, on the design
with i, j, k, l = 2. We have tested sensitivity to which design this optimization is performed
on and found negligible impact to our conclusions. One notable difference to the procedure
described in section 6, is that here we have used redshift as our time variable, rather than
using σ8(z) as we do in section 6. This is because before running our simulations, we did not
consider this option and our design choices were made using redshift as a time variable, so
we have not altered this after the fact.

In order to test the surrogate models trained on these 81 parameter spaces, we produce a
test set of 10,000 models over the broadest parameter space considered here, i.e. i, j, k, l = 3.

– 6 –
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Tier 1 min. Tier 1 max. Tier 2 min. Tier 2 max.

109As 1.10 3.10 1.77 2.43

ns 0.93 1.01 0.93 1.01

H0 52.0 82.0 59.5 74.5

w -1.56 -0.44 -1.28 -0.72

ωb 0.0173 0.0272 0.0198 0.0248

ωc 0.08 0.16 0.11 0.13
∑

mν (eV) 0.01 0.50 0.01 0.50

Table 1. Aemulus ν parameter space boundaries.

When measuring errors for each choice of parameter limits, we require that the test points lie
within the hypercube defined by the minimum and maximum value of each parameter in the
design under consideration, such that the number of test points varies from design to design.

In figure 2, we show the 68th percentile error for a sub-selection of parameter space
designs. It is clear that as we expand the boundaries of our parameter space, the surrogate
model errors become larger. The main notable feature is that surrogate model performance
is very sensitive to the chosen bounds on the dark energy equation of state parameter, w.
Only designs with j = 1 achieved our goal of sub-percent 68th percentile error over the entire
range of scales considered. Given the current constraints on w from individual LSS probes,
we determined that this choice would be too restrictive.

Because of this, we chose employ a two-tiered parameter space design, with the first tier
of 100 simulations, sampled using a Latin hypercube, spanning as broad a parameter space
as possible while not exceeding 2% 68th percentile error, and a more restricted second tier of
50 simulations, sampled with a Sobol sequence [100], where the 68th percentile error is less
than 1%. We have used a Sobol sequence for this second tier so that it is straightforward
to add additional simulations in the future by using the next element of the Sobol sequence.
Figure 3 shows the parameter space sampling resulting from this optimization compared
with that used in Aemulus α [101], as well as the cosmological constraints presented in [87].
Table 1 lists the boundaries for the Tier 1 and Tier 2 parameter spaces. Note that these
are the bounds of the Latin hypercube and Sobol sequence respectively, and not the actual
minimum and maximum values of simulated cosmologies, although the difference between
these is negligible. In section 6 and appendix A we demonstrate that the accuracy that we
achieve with our N -body based surrogate models is consistent with our forecast error, and
explore the HMCode2020 surrogate model error as a function of cosmological parameters for
the final design used for the Aemulus ν simulations.

3 Initial conditions and N -body solver

Appropriate initialization of simulations is as important for obtaining converged N -body
predictions as any setting in the N -body solver itself. In particular, it has been shown
that early initialization of simulations with low order LPT can lead to appreciable transient
errors in force calculations [102, 103]. These transients are sourced by sparse sampling of
modes around the Nyquist frequency, knyq, of the initial particle grid, leading to an incorrect
growing mode in the simulations until gravitational collapse leads to denser sampling on these
scales [104]. The impact of this effect becomes more appreciable for higher-order statistics,

– 7 –
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Figure 2. 68th percentile fractional error for HMCode2020 surrogate models as a function of k for
a sub-selection of the 81 parameter space bounds considered. The main feature of note is that the
surrogate model error depends significantly on the range of dark energy equation of state parameters
that we include in the training domain. Because of this, we have opted to use two tiers of simulations,
in order to allow for broad exploration of DE parameter space, while still maintaining very high
accuracy near ΛCDM.

where anisotropy in the particle distribution due to the imprint of the grid causes an even
larger impact. Ref. [103] showed that this transient effect can be alleviated by starting
simulations at significantly later cosmic times than previously used, enabled by using third-
order LPT (3LPT) to initialize the particle distributions, as implemented in the monofonic

code. Ref. [105] then extended monofonic to treat massive neutrinos by implementing
an approximate three-fluid 3LPT. In this work, we make use of this extended version of
monofonic to generate initial CDM and neutrino particle distributions at z = 12 using 3LPT.

The presence of massive neutrinos imparts a scale-dependent growth, D(k, z), to the
matter distribution that disallows the typical practice of back-scaling a z = 0 linear mat-
ter power spectrum using a scale-independent growth factor to initialize simulations. In-
stead, we compute the linear CDM and baryon (cb) power spectrum, Pcb,lin(k, z = 0), using
CLASS [106], and back-scale to our starting redshift zini using a scale dependent growth
factor, Dcb(k, zini), that is computed using a first-order Newtonian fluid approximation as
implemented in zwindstroom [105]. Conveniently, this also accounts for the lack of a radi-
ation component in our simulations, as well as the fact that Newtonian mechanics breaks
down at the highest redshifts and very largest scales that we simulate [107].

The initial cb power spectrum is then given by

Pcb(k, zini) = Dcb(k, zini)
2Pcb,lin(k, z = 0) . (3.1)

This is the quantity that is used to generate our initial Gaussian density field, from which
we compute displacements in order to initialize the cb particle distribution with 3LPT as

– 8 –
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Figure 3. Comparison of the Aemulus ν parameter space sampling to that used in Aemulus α. Blue
and orange points represent our tier 1 and 2 simulations respectively, while black points are cosmologies
used for the Aemulus α simulations. For reference, we also plot constraints from the combination of
DES Y3 weak lensing and galaxy clustering combined with BAO and type Ia supernovae [87, 96]
(green), as well as Planck 2018 constraints combined with the same BAO and type Ia supernovae
data (red) [88, 96].

implemented by monofonic. This re-scaling only works exactly at linear order at z = 0, but
it has been shown to achieve ∼ 0.1% accuracy at redshifts relevant for LSS studies [107]. As
discussed above, using 3LPT allows us to initialize our simulations significantly later than
would otherwise be possible with lower-order LPT models. We note that beyond-linear LPT
treatment of neutrinos is not particularly important, as the neutrino overdensities remain
small to very low redshifts due to the effect of free streaming. Using 3LPT for δcb is, however,
essential in order to start at zini = 12 [103].
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Nsim Lbox [h−1Mpc] Ncb Nν mpart,cb [h−1M�] ε [h−1kpc] ∆ ln amax zini

150 1050 14003 14003 3.30 × 1010
(

Ωcb
0.3

)

20 0.01 12

Table 2. Summary of the settings used to run the Aemulus ν simulations. Columns are the total
number of simulations, simulation side length, number of cb and neutrino particles, cb particle mass,
Plummer equivalent force softening, maximum time step, and starting redshift.

We generate neutrino particle initial conditions using fastDF [108], which produces
initial particle displacements and velocities at z = 12 by integrating neutrino particles along
geodesics starting from z = 109 using the linear metric perturbations output from CLASS.
We set the fastDF time stepping parameter to ∆ log a = 0.05, with a mesh size of M = 384,
as these settings are shown to lead to converged results in [108]. We assume that all three
neutrinos have equal masses, usually referred to as the degenerate mass approximation. This
has been shown to be a good approximation to both inverted and normal hierarchy scenarios,
and is significantly more accurate than assuming one massive and two massless neutrinos [27].

We make use of modified version of Gadget-3 in order to evolve our cb and neutrino par-
ticle distributions from zini = 12 to z = 0. We use 14003 cb and neutrino particles respectively
with a box size of Lbox = 1050h−1Mpc, yielding a cb particle mass of 3.51 × 1010 Ωcb

0.3 h−1M�.
We use a Plummer-equivalent force softening of εplummer = 20h−1kpc, a mesh size of
N = 2100 for large-scale force computations and a maximum time step of max[∆ ln a] = 0.01.
In order to facilitate arbitrary background evolution models, we have modified Gadget-3 to
read in a tabulated H(z) as output by zwindstroom, which accounts for relativistic correc-
tions to H(z) and allows us to simulate non-cosmological constant dark energy models. We
have also modified Gadget-3 to only compute forces from neutrinos at the particle mesh
level. This is an extremely accurate approximation, as neutrinos do not cluster significantly
on scales smaller than the mesh resolution Lbox/N = 0.5h−1 Mpc, as visually illustrated in 4.
This allows us to run simulations with neutrino particles that take only approximately 10%
longer than the same simulation without neutrinos. These settings are summarized in table 2.

We output fixed time snapshots at 30 epochs logarithmically spaced in scale factor
between z = 3 and z = 0. Halo finding is performed on each snapshot with Rockstar, using
strict spherical overdensity masses with ∆ = 200m, where strict refers to the inclusion of
unbound particles in the mass estimates of halos. Halos finding is performed with only cb
particles. All results relating to halos in this work use only host halos, i.e. those halos that
are not enclosed by halos with a higher maximum circular velocity.

3.1 Convergence tests

We made two changes to the accuracy settings of the Aemulus ν simulations compared to
those used in [101]. First, we decreased the maximum allowed time step to max[∆ ln a] = 0.01
from max[∆ ln a] = 0.025. This change was made to ensure accurate recovery of linear growth
on large scales, which was only achieved at ∼ 1% accuracy in the Aemulus α simulations. We
did not perform additional convergence tests of this change, because it is more conservative
than our previous choice. However, we note that this change is one of the reasons that we
are able to recover linear growth accurately, as discussed in section 6.

Second, we lowered the starting redshift of our simulations from zini = 49 to zini =
12. While [103] tested the reliability of this choice, their simulations used slightly different
settings, including a larger particle mass, than those used here. The accuracy of a particular
starting time and LPT order depends on the resolution of the simulation: higher resolution
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δν, kf = 0.05hMpc−1 δν, kf = 0.3hMpc−1 δν, kf = 0.75hMpc−1

δcb, kf = 0.05hMpc−1 δcb, kf = 0.3hMpc−1 δcb, kf = 0.75hMpc−1

Figure 4. The top row shows the neutrino overdensity field, δν(z = 0), smoothed with a Gaussian
filter of width kf = 0.05 hMpc−1 (left), kf = 0.3 hMpc−1 (middle), and kf = 0.75 hMpc−1 (right)
for the simulation in our suite with the largest neutrino mass. The bottom row shows the same but
for the CDM field, i.e. δcb(z = 0). For the largest smoothing scale, which is larger than the free
streaming length of the neutrinos, the cb and neutrino fields are almost identical. For progressively
smaller smoothing scales, the cb field continuously exhibits more structure, while the neutrino field
remains very similar between the middle and right most columns. This visually illustrates that the
neutrino component does not cluster on scales close to the grid scale.

simulations require earlier starting times at fixed LPT order because they resolve smaller
scales that become non-linear earlier. Therefore, we need to make sure that the findings
in [103] hold for the exact settings we used for Aemulus ν. We will now present a series of
tests to show that starting at zini = 12 produces more converged results compared to starting
our simulations at a higher redshift.

To perform our convergence tests, we have run three simulations, all at the Planck
2018 best fit ΛCDM cosmology [88]. The first simulation, which we call T0, uses identical
settings to our fiducial simulations, but is run in a reduced volume of (525h−1Mpc)3, evolving
7003 cb particles and 7003 neutrino particles, using a particle mesh size of 10503. The
second simulation, which we call T1, is identical to T0, except we use zini = 24. The final
simulation, T2, is identical to T1, but evolves 4 × 7003 cb particles and 4 × 7003 neutrino
particles, sampling the exact same modes as T0, using the “face-centered-cubic” lattice mode
in monofonic. Because particle discreetness effects decrease with the number of particles
used in the simulation, we can start the T2 simulation earlier and thus it provides a test of
whether 3LPT is sufficiently accurate at z = 12. We have run these simulations in a reduced
volume because we only wish to compare relative differences between them, and so can use
the same initial seed in order to remove sample variance from our comparisons.
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Figure 5. Comparison of real-space power spectra (left), monopole (middle) and quadrupole (right)
of redshift space cb power spectra between the T0 simulation started at z = 12 (solid) and the T1

simulation started at z = 24 (dashed) to the T2 simulation initialized at z = 24 with four times the
number of particles, but sampling the exact same modes. Initialization at z = 12 with 3LPT yields
the best results compared to this higher resolution simulation.

Figures 5 and 6 show comparisons of these three test simulations, where all figures
show fractional errors comparing T0 and T1 to T2. Figure 5 shows comparisons of real- and
redshift-space cb power spectra between the three simulations. The left hand panel depicts
the fractional error on the real-space cb power spectrum as a function of redshift. We see that
starting at zini = 24 leads to significantly larger errors at fixed k compared to zini = 12. This
effect is amplified at high redshift, mostly due to the fact that the amplitude of the power
spectrum is lower, so a similar absolute error translates into a larger fractional error. The
redshift-space monopole, P0,cb does not exhibit the same trends, likely because the finger-of-
god effect has washed out these subtle issues on small scales. The redshift-space quadrupole,
P2,cb, is recovered slightly better in T0 than T1, but the effect is again difficult to interpret due
to the large role that virial velocities play at high-k in redshift-space statistics. Nevertheless,
we see that our fiducial settings are converged at the ≤ 1% level to k ∼ 1hMpc−1 compared
to the higher resolution T2 simulation.

Figure 6 shows similar comparisons to figure 5, but focuses on halo statistics. The
left side shows fractional errors on the spherical overdensity halo mass function for the T0

and T1 simulations, again compared to the higher resolution T2. Error bars are estimated
via jackknife resampling, using 128 jackknife regions. We see that for z = 1 and z = 0
both simulations are converged to at the ≤ 1% level until ∼ 1013 h−1M�, after which the
T1 simulation begins to diverge. The T0 simulation remains converged at the ≤ 1% until
∼ 2 × 1012 h−1M�. Compared to our findings in the Aemulus α suite of simulations, starting
our simulations at zini = 12 yields halo masses that are converged at a factor of two lower
in mass, with the same mass resolution and force softening. At z = 2, both T0 and T1 are
converged at the ∼ 2% level until ∼ 4×1012 h−1M�. At z = 3 both the T0 and T1 simulations
diverge significantly from the T2 simulation at all masses measureable in these simulations
and so we do not plot statistics for this redshift.

The right hand side of figure 6 shows halo redshift-space monopole measurements for
the same redshift outputs, where we use halos in a bin of mass from 12.5 ≤ lgM ≤ 13.
We observe a similar trend in convergence as for the mass function, where for z < 2 both
simulations are converged with respect to the higher resolution simulation. At high k, the
T1 simulation deviates by ∼ 2%, although when we select samples by cumulative abundance
rather than mass this discrepancy disappears, suggesting that it is simply a difference in
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Figure 6. (Left) Same as figure 5, but comparing halo mass functions. Again we see that the T0

simulation started at z = 12 slightly outperforms the T1 z = 24 simulation in comparison to the higher
resolution T2 reference simulation started at z = 24. The only exception to this is for z = 2 where T0

and T1 perform comparably. At z = 3 the mass functions are not converged at the > 5% level for any
masses measureable in these simulations, and so we do not plot them and caution against the use of
the z = 3 outputs from these simulations in general. At the two lower redshifts shown, the error on
the halo mass function in the zini = 12 simulation remains below 1% until ∼ 2×1012h−1 M�, whereas
the later start deviates by more than a percent by ∼ 5 × 1012h−1 M�. (Right) Same as figure 5, but
comparing the monopole of the halo redshift-space power spectrum, measured in a halo mass bin of
1012.5h−1 M� ≤ M200b < 1013h−1 M�. Again we see that at z ≤ 2 the agreement between the T0

and T2 simulations is at the ≤ 1% level. The T1 simulation and T2 agree until k ∼ 0.5hMpc−1, after
which they begin to disagree by more than one percent. A similar trend is seen for the real-space
halo power spectrum as well, although we do not display it here. At z = 3, the halo (real and redshift
space) power spectra for both T0 and T1 simulations disagree with the T2 by ∼ 2% at all k.

shot noise due to the slightly different number densities of the mass selected samples in this
simulation. The z = 3 outputs from T0 and T1 exhibit a significant deviation from T2 and so
we do not plot them. Higher multipoles are too noisy to be of use in these comparisons. In
general this shows that masses and two-point clustering statistics of halos with lgM > 12.5
and z < 2 are converged at the ∼ 1 − 2% level, and halos from the z = 3 outputs should not
be used in these simulations.

4 Lagrangian perturbation theory and hybrid effective field theory

The utility of LPT extends beyond the simple use case of initializing N -body simulations. In
particular, it has proven to be a highly effective model for the density fields of biased tracers
in CDM cosmologies [3, 109]. In this work, we make use of LPT in two ways. First, we use
the ZA as a control variate to reduce the cosmic variance of our simulated measurements.
We also construct a surrogate model for HEFT measurements from our simulations, which
can be seen as a non-perturbative extension of LPT. In this section, we introduce some basic
LPT notation to clarify our presentation of these two aspects later in this work.

In LPT, we can express the combined CDM and baryon density field as

1 + δcb(x, a) =

∫

d3q δD(x − q − Ψ(q, a)) , (4.1)
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where

x = q + Ψ(q, a) , (4.2)

and Ψ(q, a) is computed perturbatively, such that

Ψ(q, a) =
∞

∑

n=1

Ψ(n)(q, a). (4.3)

Truncating this sum at n = 1 yields the well known ZA, with

Ψ(1)(q, a) =

∫

d3k

(2π)3
eik·q ik

k2
δcb,L(k, a) (4.4)

=

∫

d3k

(2π)3
eik·q ik

k2
D(k, a)δcb,L(k, 1) , (4.5)

where δcb,L(k, a) is the Fourier transform of the linear density field δcb(q, a), and D(a, k)
is the linear growth factor, which is scale dependent in the presence of massive neutrinos,
normalized to 1 at a = 1. Higher-order displacement terms are non-trivial to compute exactly
in LPT in the presence of dark energy and massive neutrinos, but computing these terms
with kernels derived for Einstein-de Sitter (EdS) cosmologies is quite accurate for cosmologies
close to ΛCDM [8, 9, 110–112]. In this work, we use ZeNBu1 and velocileptors2 to make
ZA and higher-order LPT predictions, respectively, following the neutrino approximations
described in appendix A of [85].

It has been shown that galaxies and halos are best treated as biased tracers of the δcb

field rather than total matter field, δm [20, 28]. In this case, in LPT we can express the
density field of a biased tracer, δt(k), as

1 + δt(x, a) =

∫

d3qF [δcb,L(q)]δD(x − q − Ψ(q, a)) , (4.6)

where F [δcb,L(q)] is a functional of the linear field, δcb,L(q), specifying the relationship be-
tween the tracer density and matter field at early times. In this work, we will consider an
expansion of F [δcb,L(q)] to second order:

F [δ(q)] ≈ 1 + b1δ(q) + b2(δ2(q) − 〈δ2〉) (4.7)

+ bs(s2(q) − 〈s2〉) + b∇2∇2δ(q) + . . .

where s2(q) = sij(q)sij(q) and

sij(q) =

(

∂i∂j

∂2
− δij

3

)

δ(q) , (4.8)

where we have dropped the cb subscripts for brevity since there is no ambiguity regarding
whether we are dealing with the cb or total matter field when modeling biased tracers. The
bias coefficients in front of each term serve to parameterize our ignorance of the galaxy
formation physics that sets the dependence of the tracer density field on these linear fields.

1https://github.com/sfschen/ZeNBu.
2https://github.com/sfschen/velocileptors.
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We can rewrite eq. (4.6) to explicitly emphasize that δt(x, a) is given by a sum over
advected linear fields

1 + δt(x, a) =
∑

{Oi∈cb,δ,

δ2, s2, ...}

bOi
Oi(x, a) , (4.9)

where the advected operators, Oi, are given in both configuration and Fourier space by

Oi(x, a) =

∫

d3
q Oi(q) δD(x − q − Ψ(q, a))

Oi(k, a) =

∫

d3
q e−ik·(q+Ψ(q)) Oi(q) , (4.10)

and setting bcb = 1 for notational convenience. With this notation in hand, we can express
cross-spectrum of two biased tracer fields, δa and δb, as

Pab(k) =
∑

Oi,Oj

ba
Oi
bb

Oj
Pij(k) (4.11)

where we have defined the basis spectra

Pij(k)(2π)3δD(k + k′) =
〈

Oi(k)Oj(k′)
〉

, (4.12)

and the bias coefficients for the two tracer fields are independent of each other. As gravita-
tional lensing is sensitive to the total matter field, δm, we will also be interested in its auto-
power spectrum, Pm,m(k), and cross-power spectrum with the δcb and biased tracer fields:

Pm,a(k) =
∑

Oi

ba
Oi
Pm,i(k) (4.13)

where
Pm,i(k)(2π)3δD(k + k′) =

〈

δm(k)Oi(k
′)

〉

. (4.14)

Note that none of the expressions we have written for biased tracer spectra depend on
how we have computed the displacements, Ψ. In real space for sufficiently low-bias tracers,
where eq. (4.8) holds, it is the perturbative calculation of Ψ in LPT that limits the range
of scales that can be modeled. On the other hand, N -body simulations solve discretized
versions of the same equations of motion that form the basis of LPT. Furthermore, all of the
ingredients that are used in the above expressions can be directly computed from N -body
simulations: the displacements are simply the difference between each particle’s position and
the grid point it began at, and the linear fields used in eq. (4.8) can be directly computed
from the Gaussian initial conditions used to seed the simulation. Thus, we can do away with
perturbative computations of Ψ and the EdS approximation, and use N -body simulations to
compute the basis spectra, Pij . This model has become known as HEFT.

More explicitly, after we have run a simulation to z = 0, we compute the HEFT Pij(k, a)
in each snapshot by performing the following algorithm:

1. Re-scale the Gaussian δcb,L(k, aini) field used to initialize the simulations by the ratio

of scale dependent growth factors D(k,a)
D(k,aini)

.

2. Compute the Lagrangian fields Oi(q) from δcb,L(k, a).
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3. Deposit cb particles to a mesh weighted by the values of Oi(q, a) to compute Oi(x, a).

4. Measure the cross-power spectrum of Oi(x, a) and Oj(x, a) to give Pij(k, a).

We use a mesh of size N = 14003 with a cloud-in-cell mass deposition scheme and interleave
the Oj(x, a) fields to partially de-alias them [113]. D(k, a) is computed using CLASS. This
algorithm is implemented in the anzu3 package.

5 Zel’dovich control variates

In order to reduce the variance on many of the measurements that we present in this work, we
will make use of Zel’dovich control variates (ZCV). In this section, we briefly summarize the
ZCV method, and refer readers to more detailed presentations in [82, 83] for further details.

Control variates [76] are well studied in the statistics literature as a method for reducing
the variance on the estimate of the mean of a random variable, X, when a correlated random
variable, or control variate, C is available. In this case, we can construct the following
quantity

Y = X − β(C − µc) , (5.1)

where µc is the mean of C, and β can be optimized to minimize var[Y]. Doing so yields

β∗ =
Cov[X,C]

Var[C]
. (5.2)

It can then be shown that

Var[Y]

Var[X]
= 1 − Cov[X,C]

Var[X]Var[C]
= 1 − ρ2

xc (5.3)

i.e. the variance of Y is reduced with respect toX by an amount proportional to the covariance
of X and C, assuming µc is known to arbitrary precision. The method of control variates
was first applied to cosmology in [77], where COLA [114] simulations were used as control
variates for full N -body simulations. Ref. [82] pointed out that one of the main limitations
of the control variate technique, namely the Monte-Carlo estimation of µc and additional
computational expense incurred by this process, can be avoided by using the Zel’dovich
approximation (ZA) [115] as a control variate, where µc can be calculated analytically to
arbitrary precision. More explicitly, in our case, X will be measurements from an N -body
simulation, and C will be the analogous measurements made from a Zel’dovich approximation
realization with the same initial δcb,L(q) as the N -body simulation.

The ZA is known to be highly correlated with full N -body simulations, even when it
fails to reproduce their means. Furthermore, in the ZA we can make analytic predictions for
µc for real- and redshift-space power spectra that are accurate out to high-k. Thus, given the
linear density field used to initialize a simulation, we can significantly reduce the variance on
measurements of two-point functions made from that simulation.

In this work we will be interested in reducing the variance of HEFT basis spectra mea-
sured from our simulations. Doing so will make the surrogate model that we describe in
the following sections more accurate, and will allow us to seamlessly transition to pure LPT

3https://github.com/kokron/anzu.
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predictions for these basis spectra on very large scales. For each HEFT basis spectrum,
P̂NN

ij (k), we can measure the analogous ZA spectrum, P̂ZZ
ij (k), and the cross-spectrum be-

tween the HEFT and ZA fields, P̂NZ
ij (k), where the hats denote measured quantities and

PNZ
ij =

〈

ON
i OZA

j

〉

. For spectra involving the total matter field, we use the analogous cb field
spectra for our ZA control variates.

We compute OZA
i (k, a) using the same algorithm described in section 4, with two key

differences. First, we do not rescale the Gaussian initial conditions by D(k,a)
D(k,aini)

for each

snapshot, instead opting to use the Lagrangian fields, OZA
i (q) computed from δcb,L(k, aini)

and re-scaled by the ratio of scale-independent growth factors D(a)
D(aini)

for all snapshots. This

allows us to avoid recomputing OZA
j (q) for each snapshot, which would dominate the run-

time of the ZCV algorithm. This incurs a negligible cost in the performance of the algorithm.
Second, instead of using N -body particles to compute displacements, we use the displacement
field produced by monofonic. Furthermore, following [82], we smooth δcb,L(k, aini) and Ψ(k)
at the Nyquist frequency of the mesh that the initial conditions are generated on, k = πNcb

Lbox
=

4.19 hMpc−1 using a Gaussian kernel.

Given these spectra, we can compute β∗ assuming a disconnected covariance approxi-
mation:

β∗ =
Cov[P̂NN

ij , P̂ZZ
ij ]

Var[P̂ZZ
ij ]

=
P̂NZ

ii (k)P̂NZ
jj (k) + P̂NZ

ij (k)P̂NZ
ji (k)

P̂ZZ
ii (k)P̂ZZ

jj (k) + (P̂ZZ
ij (k))2

.

On small enough scales, where the fields being correlated become highly non-Gaussian, this
disconnected approximation inevitably fails. In order to avoid adding extra noise to our
measured HEFT spectra on these scales, we damp β∗ to zero using a tanh function, with
the same damping parameters, k0 = 0.618 hMpc−1 and δk = 0.167 hMpc−1, as described
in [82]. We have investigated whether a redshift dependent damping of β∗ is warranted, but
found that the required damping parameters are relatively constant with redshift in the range
probed by our simulations, and so we have opted to keep them fixed.

Figure 7 demonstrates the effective volume of our simulations as a function of wavenum-
ber when employing ZCV to reduce the variance of HEFT spectra. We take Veff = Vfid

1−ρ2
xc

,
where ρxc is the cross correlation coefficient between the HEFT and ZA basis spectra in
question, again estimated using a disconnected covariance approximation and applying the
same damping factor to ρxc as to β∗. The results, reiterating those shown in [82], are quite
impressive, with improvements of factors of 10 − 105 in effective volume depending on the
spectrum and scale in question. We also observe a slight decrease in ρxc, and thus Veff , as a
function of redshift at fixed k. This is to be expected as beyond-linear displacements become
appreciable at lower wave-numbers as a function of redshift. At k > k0, the effective volume
asymptotes to Vfid as a consequence of our damping of β∗. Veff turns over on very large
scales for spectra that include the δ field, a behavior not seen in [82]. We attribute this to
our decision to not recompute Oi(q) at each redshift for the ZA fields, thus causing a slight
de-correlation due to different scale dependent growth in the N -body and ZA fields.
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Figure 7. Effective volume for our HEFT spectrum measurements after applying ZCV. The asymp-
tote to (1.05h−1Gpc)3 at k > 0.6 is due to the damping that we apply to β∗. We do not show spectra
computed with the total matter field, as the results are nearly identical to the analogous spectra using
the δcb field.

6 Surrogate model construction and performance

6.1 Surrogate model methodology

Having measured HEFT spectra for all of our simulations and reduced their variance using
ZCV, we now proceed to construct surrogate models for them. We generally follow the
surrogate modeling methodology described in [63], with a few notable changes which we
highlight when described. The quantities that we emulate are not the basis spectra, Pij , but
rather the logarithm of the ratio of these spectra to their 1-loop LPT counterparts:

Γij(k,Ω) = lg

[

PHEFT
ij (k,Ω)

P 1-loop
ij (k,Ω)

]

(6.1)

where Ω is a set of wνCDM cosmological parameters and σ8(z). We have empirically found
that using σ8(z) instead of redshift or scale factor as a time variable significantly improves
the performance of our surrogate models. Before taking the logarithm of the ratio of the
HEFT and 1-loop LPT spectra, we apply a third-order Savitsky-Golay filter to the ratio
with a window length of 11 in order to remove additional variance. We have tested that this
smoothing procedure does not lead to any appreciable bias.

Importantly, and differently from [63], we do not use standard convolutional Lagrangian
effective field theory (CLEFT) [116] predictions for P 1-loop

ij (k, ln a,Ω), but rather infrared
(IR) re-summed “k-expanded” CLEFT (KECLEFT), where the long-wavelength displace-
ment correlators Aij are expanded in a Taylor series as described in appendix E of [117].
Because Aij is Taylor expanded rather than exponentiated directly, we are able to avoid
damping the linear power spectrum that goes into these terms, leading to KECLEFT pre-
dicting additional power at small scales compared to CLEFT. This additional power in KE-

CLEFT predictions leads to more stable ratios at high-k in eq. (6.1) than those derived using
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Figure 8. Fractional deviation of HEFT basis spectra from 1-loop LPT predictions, i.e.
PHEFT

ij /P 1−loop
ij − 1. Solid lines represent the means, and shaded regions are one sigma errors, while

different colors represent different redshifts. On large scales, the spectra agree nearly perfectly. For
spectra depending on cubic combinations of fields, e.g. Ps2,cb, we have included an additional term
proportional to k2Pcb,cb(k) in order to bring HEFT and 1-loop LPT spectra into agreement on large
scales. The need to do this stems from the different smoothing conventions used in our simulations
and 1-loop LPT predictions.

CLEFT, thus reducing the dynamic range in Γij that we must emulate. Using CLEFT in-
stead of KECLEFT, while leaving all other choices the same leads to factors of two or more
degradation in surrogate model errors.

Figure 8 shows ratios of the HEFT basis spectra to their 1-loop LPT counterparts.
On large scales, the spectra converge to one another, indicating that the HEFT spectra
are equivalent to 1-loop LPT predictions on these scales. In particular, Pcb,cb matches the
1-loop LPT prediction nearly perfectly on the largest scales plotted here, indicating that
our simulations recover linear growth to significantly sub-percent accuracy. Notably, HEFT
spectra involving cubic combinations of fields, such as Ps2,cb, do not converge to their LPT
counterparts over the range of scales that are measurable in our simulations. The residuals
between HEFT and LPT spectra in these cases take the form of αk2Pcb,cb, where α is a free
coefficient. This is the same form as the derivative bias spectra, P∇2,cb, indicating that the
differences in these spectra stem from differences in the smoothing conventions employed
in our simulated measurements and the LPT predictions, due to our choice to implicitly
smooth our predictions at the scale of the initial conditions grid. In figure 8 we have included
this extra αk2Pcb,cb in the cubic 1-loop LPT predictions. Because we always include these
derivative bias operators in our predictions when fitting observational data, the differences
between the large scale behavior of these spectra are unimportant when interpreting data.

After measuring Γij for each snapshot, we perform a principal component analysis
(PCA) decomposition. We employ PCA as we wish to reduce the dimensionality of our
surrogate modeling problem. We construct the N ×M matrix, Xij , where

Xij
αβ = Γij(kβ,Ωα) − 〈Γij(kβ)〉 , (6.2)

where N = Nsim × Nsnap, where Nsim is the number of simulations, 150, and Nsnap is the
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Figure 9. Predictions from our HEFT surrogate model (solid), compared with their analogous 1-
loop LPT predictions (dashed). The combination of our ZCV procedure and the use of PCA in our
surrogate model leads to nearly noiseless model predictions.

number of snapshots per simulation, 30, and M is the number of wavenumbers in our mea-
surements of Γij . Ωα is a vector containing the cosmology and σ8(z) value for one of our
simulation snapshots. The average in the last term on the right hand side of eq. (6.2) is
taken over all cosmologies and redshifts in our training set. For Pm,m, Pm,cb and Pcb,cb we
perform a PCA on wavenumbers between kmin = 0.05 hMpc−1 and kmax = 4 hMpc−1, giving
M = 659, while for the rest of the spectra we take kmax = 1 hMpc−1, where M = 159. Pm,m,
Pm,cb and Pcb,cb are relevant for cosmic shear and intrinsic alignment predictions, and so pre-
dictions between k = 1 hMpc−1 and k = 4 hMpc−1 are useful, while the rest of the spectra
are only used in the Lagrangian bias expansion, which we expect to break down significantly
before k = 1 hMpc−1 and so there is no reason to emulate beyond this. Additionally, we
have found that Γij becomes numerically unstable for k > 1hMpc−1, further motivating
our choice to set kmax = 1hMpc−1 for everything other than Pm,m, Pm,cb and Pcb,cb. The
principal components (PCs) are then given by

Cij = (Xij)T Xij

= (Wij)T ΛijWij

where Wij is an M × M array whose rows are the eigenvectors that we will use, i.e.
W ij

αβ = PCα(kβ), and Λij are the corresponding eigenvalues. By keeping a subset of NPC of
these PCs, we can further reduce the noise on our final predictions without decreasing their
accuracy. We have found that the error incurred by truncating at NPC = 20 is less than 0.1%,
and so we use NPC = 20 for the duration of this work. This is notably higher than what was
required in [63], where we used 2 PCs. The need for more PCs in this work is driven both by
the larger range in scales that we emulate here, as well as the significantly broader range in
cosmology and redshift in the Aemulus ν simulations. We then project all Γij onto these PCs:

Aij = XijWij , (6.3)
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such that

Γij(kβ ,Ωα) = Aij
αγW

ij
γβ + 〈Γij(kβ)〉 .

The remaining task is to construct surrogate models, Ãij
γ , for the cosmology and redshift

dependence of the first NPC PC coefficients, Aij
αγ , such that

Aij
αγ ' Ãij

γ (Ωα) . (6.4)

We will use polynomial chaos expansions (PCEs) [118] as our model for Ãij
γ . A PCE of order

p is an expansion in orthonormal polynomials:

Ã(Ω) =
∑

|β|≤p

ηβΨβ(Ω) (6.5)

where β ∈ N
D, and D is the dimensionality of the domain of Ã. In our case D = 7 + 1,

as we have Ω = {ωb, ωc, w, ns, 109As, H0,
∑

mν , σ8(z)}. The independent variables in our
problem are uncorrelated and uniformly distributed (other than

∑

mν), so we can use the
Stieltjes three-term recurrence relation [119] to construct orthonormal polynomials, ψβi

(Ωi),
of order βi in each variable independently. In practice we scale each parameter Ωi such that
Ωi ∈ [−1, 1], and so this recurrance relation yields functions that are proportional to the
Legendre polynomials, i.e. ψβi

(Ωi) ∝ Pβi
(Ωi), where Pβi

is the order βi Legendre polynomial.
Ψβ is then given by

Ψβ(Ω) =
D
∏

i=1

ψβi
(Ωi) , (6.6)

and we obtain the final expression for our surrogate models:

Γ̃ij(kα,Ω) = Ãij
γ (Ω)W ij

γα + 〈Γij(kα)〉 (6.7)

= ηij
γβΨβ(Ω)W ij

γα + 〈Γij(kα)〉 . (6.8)

We then use least-squares regression to fit for ηij
γβ given a chosen maximum order p. We

perform these fits using the chaospy [120] python package.
In order to optimize our choice of p, we minimize a suitably defined measurement of the

generalization error of our surrogate models. For this work we use

εmax
ij = Var

[

max
k,z

Pij(k, z,Ω) − P̃ij(k, z,Ω)

Pij(k, z,Ω)

]

(6.9)

i.e. the variance of the maximum error taken over all k and z of our surrogate model P̃ij .
Since we do not have a separate suite of simulations on which to evaluate this error, we
instead use a cross-validation approach, leaving one simulation out of our training set at
a time, computing the error on the simulation that has been left out, and using that to
evaluate eq. (6.9). We then perform a grid search over 1 ≤ pi ≤ 7, independently for each
input parameter. The resulting best fit polynomial order is p = {2, 3, 3, 2, 2, 3, 2, 6}.

Figure 9 shows the predictions from our surrogate model compared to the corresponding
1-loop LPT predictions as a function of redshift. The main notable features are that the
HEFT predictions asymptote to the 1-loop LPT predictions at low k, and that there is no
discernible residual noise on our simulation predictions.
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6.2 Surrogate model performance

Figures 10 and 11 summarize the performance of our surrogate models after performing the
optimization procedure described in the previous section. Figure 10 shows the one-sigma
leave-one-out error evaluated for the more restrictive parameter space Tier 2 simulations as
a function of k and z for each basis spectrum. We do not plot spectra that include the δm

field, as they exhibit nearly identical behavior to their δcb counterparts. Note, that we still
train on the full set of Tier 1 and Tier 2 simulations in this case. The bottom triangle depicts
the fractional error for each basis spectrum, and the top triangle shows the contribution of
that fractional error to a tracer auto-power spectrum with b1 = 1, b2 = 0.2, bs = 0.2, and
n̄ = 5 × 10−4 h3Mpc−3. The errors are significantly below one percent for most redshifts,
other than for spectra including the s2 field. For reasonable choices of bs, these terms are
typically small, and so 2% errors in these spectra contribute at the < 0.01% level to tracer
auto-power predictions, as can be seen in the upper triangle. Figure 11 shows the same thing,
but evaluated over both the Tier 1 and Tier 2 simulations. The trends remain the same, but
with approximately 50% worse performance in the broader parameter space. We emphasize
that much of this parameter space is already significantly ruled out, and we include it when
constructing surrogate models in order to stabilize their performance around the edges of the
parameter space allowed by current data.

Figure 12 shows the performance of our surrogate model for Pm,m compared to three
other state-of-the-art models: HMCode2020 [95], CosmicEmu [55] and EuclidEmu2 [54]. The
top row of the figure depicts the 68th percentile error of each model compared to the Aemulus

ν Tier 2 simulations where lines are color coded by their redshift, while the bottom panel
shows errors for individual simulations at z = 0.53. This redshift was chosen to be close to the
peak of the galaxy-lensing kernel for upcoming galaxy-weak-lensing surveys. The performance
of our Pm,m and Pm,cb surrogate models are quite comparable to the performance of the Pcb,cb

surrogate in figure 10, with slightly degraded performance above k = 1 hMpc−1.
We see that the HMCode2020 model has a 68th percentile error for z ≤ 2 close to the 2.5%

error quoted in [95]. EuclidEmu2 and CosmicEmu have a relatively smaller 68th percentile
error, peaking at about 2% at k = 1 hMpc−1 and staying relatively constant with redshift.
The error increases significantly at the highest k and z shown in this figure, likely due to
insufficient resolution in our simulations at these high redshifts and wavenumbers. At low
wavenumbers, the CosmicEmu predictions disagree with our simulations, and linear theory
at the ∼ 1 − 1.5% level. There is also residual sample variance at the 1% level discernible
between 0.1 hMpc−1 ≤ k ≤ 0.5 hMpc−1 at low redshifts in the EuclidEmu2 model, where the
paired and fixed amplitude simulations they employ remove less sample variance from their
measurements than our ZCV technique. Although not plotted here, we find that EuclidEmu2

gives a 50th percentile error of about 1% at k ∼ 1 hMpc−1 and above, roughly consistent with
the statistics quoted in [54]. We note that for CosmicEmu and EuclidEmu2 only 18 and 27
of our tier 2 simulations are within their training domain, respectively, and CosmicEmu does
not make predictions for z > 2.02. HMCode2020 fares significantly worse than CosmicEmu,
EuclidEmu2 and our surrogate model in the quasi-linear regime, due to well studied issues
in halo models at k ranges that bridge the one- and two-halo regimes [121].

The black solid and dashed lines show the change in the matter power spectrum for a
change of δ

∑

mν = 0.03 eV and δw = 0.025 away from the Planck 2018 best fit cosmology.
Given the errors on our surrogate model, we would be able to distinguish these changes,
whereas the other models considered would not be able to tell these apart from surrogate
modeling errors. The δ

∑

mν = 0.03 eV is particularly relevant, because cosmological con-
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Figure 10. (lower triangle) Leave-one-out 68th percentile fractional error of our surrogate model for
each basis spectrum evaluated over the tier 2 simulations. Lines are color coded by redshift, going
from red to blue from z = 3 to z = 0. The shaded grey region shows 1% errors; most of the statistics
and redshifts fall below this error threshold. We note that this cannot be directly compared to figure
5 of [63], as there we quoted errors in terms of median absolute deviation (MAD) from our simulation
measurements. The surrogate model presented in this work is more accurate than that of [63] in terms
of MAD. (upper triangle) Same as for the lower triangle, but now quoted in terms of the fractional
error contribution to Phh, assuming b1 = 1, b2 = 0.2, bs = 0.2, and n̄ = 5 × 10−4 h3Mpc−3.

straints must achieve σ(
∑

mν) = 0.03 eV in order to conclusively distinguish the normal and
inverted mass hierarchies (e.g. [122, 123]).

6.3 Error modeling

Although this performance satisfies our goals of ≤ 2% 68th percentile error over our full
parameter space, and ≤ 1% 68th percentile error in our tier 2 parameter space, the errors
on our surrogates may not be entirely negligible for all analyses. In particular, as shown in
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Figure 11. Same as figure 10, but now evaluated over the entire simulation suite. The broader range
in cosmologies results in approximately 50% larger error.

figure 13, the errors have correlations as a function of scale that may contribute significantly to
otherwise small off-diagonal elements of covariance matrices. To facilitate the incorporation of
these errors into analyses, we provide additional functionality to produce covariance matrices
of these fractional errors for each basis spectrum along with our trained surrogate models.
In particular, we measure the following quantity:

Cov
[

εi,j(k), εl,m(k′)
]

=
Nsim
∑

n=0

(εni,j(k) − ε̄i,j(k))(εnl,m(k′) − ε̄l,m(k′)) , (6.10)

where

εni,j(k) =
Pij(k, z,Ωn) − P̃n

ij(k, z,Ωn)

Pij(k, z,Ωn)
(6.11)
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Figure 12. (Top) 68th percentile fractional error of HMCode2020 (left) CosmicEmu (middle left)
EuclidEmu2 (middle right) and the matter power spectrum surrogate model presented in this work
(right) to our tier 2 simulations. For Aemulus ν we use leave-one-out errors. The black solid and
dashed lines show the change in the matter power spectrum for a change of δ

∑

mν = 0.03 eV and
δw = 0.025 away from the Planck 2018 best fit cosmology. (Bottom) Fractional error at z = 0.53 for
each of our tier 2 simulations. For CosmicEmu and EuclidEmu2 we only compare to 18 and 27 of our tier
2 simulations that are in their domains, respectively. None of the models exhibit significant outliers in
their performance compared to the 68th percentile errors shown in the top panels. The performance of
Aemulus ν becomes slightly more unstable above k = 1 hMpc−1, with a few 2−3% outliers apparent.

is the fractional error for simulation n in our suite and P̃n
ij(k, z,Ωn) is the emulator prediction

trained on all simulations except for the nth one. We can then compute errors on Pgg

assuming bias parameters bi as

Covemu [

Pgg(k), Pgg(k′)
]

=
∑

i,j,l,m

bibjblbmPi,j(k)Pl,m(k′)Cov
[

εi,j(k), εl,m(k′)
]

(6.12)

and this covariance can then be further integrated along the line of sight, via e.g. the Limber
approximation, to produce emulator error contributions to the covariances of angular power
spectra. One such prediction for a DESI-like sample is used in figure 1.

7 Summary

In this work, we have introduced the Aemulus ν suite, a set of 150 N -body simulations in
a wνCDM parameter space that evolve massive neutrinos as an additional particle species.
The wνCDM cosmological parameter space of these simulations is sufficiently broad to make
them useful for investigating tensions between cosmological constraints coming from large
scale structure and cosmic microwave background experiments. Along with these simulations,
we present new hybrid effective field theory (HEFT) and matter power spectrum surrogate
models that represent significant improvements over the current state of the art.

In section 2 we describe how the sampling of wνCDM parameter space was optimized
in order to simultaneously maximize parameter space breadth while maintaining surrogate
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Figure 13. Covariance of the fractional error of our Pcb,cb, Pcb,δ and Pδ,δ surrogate models at z = 0.
Significant off-diagonal structure is present, although the amplitude of the overall errors are small. Our
surrogate modeling code provides an interface to these covariances so that they can be appropriately
accounted for when using the models presented in this work in data analysis.

model accuracy. To do so, we constructed surrogate models for HMCode2020 matter power
spectrum predictions, varying the allowed boundaries of our parameter space. Using these
surrogate models, we found that a two-tiered design, with 100 simulations in a broad wνCDM
parameter space, and 50 simulations in a parameter space with bounds restricted to be closer
to currently preferred constraints, yielded an accuracy that met our requirements.

In section 3, we describe the settings that were used to run our simulations, the simu-
lation convergence tests that we performed. We use a modified version of Gadget3 to evolve
14003 CDM and neutrino particles (for a total of 2 × 14003 particles) in a (1.05h−1Gpc)3

volume, yielding a cb particle mass of 3.51×1010 Ωcb

0.3 h−1M�. In order to mitigate systematic
errors associated with early simulation starting times, we initialize our simulations at z = 12
using third order Lagrangian perturbation theory (3LPT) as implemented in a modified ver-
sion of monofonic. As this is a significant change from previous simulations run as part of
the Aemulus project, we perform convergence tests demonstrating that starting at zini = 12
is converged at the ≤ 1% level with respect to a simulation run with four times the number
of particles, starting at zini = 24.

Section 4 introduces relevant perturbation theory notation, and describes how we mea-
sure HEFT basis spectra from our simulations. Then, in section 5, we describe our Zel’dovich
control variate (ZCV) methodology, showing that it reduces the sample variance on HEFT
spectra to the equivalent errors that we would obtain by running 10 − 105 times larger simu-
lations, depending on the basis spectrum and scale in question. Doing so leads to extremely
smooth predictions from our surrogate models, outperforming the improvements obtained
from paired and fixed simulations, and allowing us to run more simulations than we would
have otherwise been able to while still meeting our accuracy requirements. We believe the
ZCV technique will play an important role in similar applications in the future.

We described the implementation and optimization of our combined principal compo-
nent analysis (PCA) and polynomial chaos expansion (PCE) surrogate models in section 6.
There, we demonstrated that our HEFT surrogate model achieves ≤ 1% 68th percentile error
for most basis spectra over our Tier 2 parameter space and ≤ 2% 68th percentile error over
our full parameter space for k ≤ 1hMpc−1 and 0 ≤ z ≤ 3. The basis spectra that exceed
these error thresholds are sub-dominant, and thus their slightly worse accuracy is not of
great concern. Our matter power spectrum surrogate model achieves ≤ 1% 68th percentile
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Figure 14. Comparison between 68th percentile fractional residuals, averaged over all redshifts,
of our HMCode2020 Pm,m surrogate model (dashed) and Aemulus ν surrogate model (solid), when
both are trained using our fiducial parameter space design. For the HMCode2020 model, errors are
evaluated using a set of 10,000 cosmologies generated over the Tier 1 parameter space, while errors
for the Aemulus ν model are evaluated using the leave-one-out methodology described in section 6.
Blue lines are errors measured in the Tier 2 parameter space, while orange lines are evaluated over the
full Tier 1 parameter space. The errors are quite comparable between the model built on HMCode2020

data compared to that built from our actual Aemulus ν simulations, except at k ≤ 0.2 hMpc−1, where
residual sample variance may be contributing additional variance to the Aemulus ν based model.

error over our tier 2 simulations out to k = 1hMpc−1 and ≤ 2% 68th percentile error for
1hMpc−1 < k ≤ 4hMpc−1. We compare our matter power spectrum model to HMCode2020,
CosmicEmu and EuclidEmu2, finding that our model outperforms them when evaluated on
the tier 2 Aemulus ν simulations. We also provide estimates of surrogate model error co-
variance as a function of redshift along with our trained surrogate models so that it may be
incorporated as a theory error in analyses using our models.

We anticipate that the HEFT model presented here will be useful for analyses of pro-
jected galaxy clustering and weak lensing for many future surveys. This model can straight-
forwardly replace 1-loop LPT models for these statistics, extending their reach in scale by
a factor of two to three. HEFT can also serve as an immediate upgrade in terms of model
flexibility and accuracy for analyses that currently use non-linear matter power spectra and
constant linear bias. The matter power spectrum model presented here is the most accurate to
date, and can play a vital role in stage III and stage IV analyses of weak lensing auto-spectra.
We have made these models available at https://github.com/AemulusProject/aemulus_heft.
We will also make halo catalogs and downsampled particle catalogs available at
https://github.com/AemulusProject/aemulus_nu_public upon publication of this work, and
full snapshot data will be made available upon request to the authors. In future work we
will also release new halo mass function and halo bias models based on the simulations
presented here.
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Figure 15. 68th percentile fractional error at k = 1 hMpc−1 evaluated for the HMCode2020 Pm,m

surrogate model trained on our fiducial parameter space design, and tested on a set of 10,000 cos-
mologies in the Tier 1 parameter space drawn from a Sobol sequence. The black boxes represent
the boundaries of the Tier 2 parameter space. The points with error bars are the one-dimensional
marginal mean fractional errors with 1-sigma errors.
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A HMcode2020 surrogate model error

In this appendix we discuss the accuracy of the HMCode2020 surrogate model trained on the
same cosmologies used to run the Aemulus ν simulations. In order to train our HMCode2020

surrogate model we use the same optimization procedure described in section 6. In figure 14
we compare the resulting HMCode2020 68th percentile surrogate model error taken over all
cosmologies and redshifts to that obtained using the Aemulus ν simulations. The errors for
the HMCode2020 model are evaluated on the independent set of 10,000 HMCode2020 predictions
sampled using a Sobol sequence [100] over the Tier 1 cosmology space, while the Aemulus ν
errors are computed using the leave-one-out cross-validation procedure described in section 6.
For k > 0.3 hMpc−1 the errors are quite comparable to each other both for the Tier 2
cosmologies (blue) and the full set of cosmologies (orange). At lower k values than this, the
Aemulus ν errors are notably larger, likely due to residual sample variance in our simulation
measurements.

Because we have a dense set of HMCode2020 test models, we can accurately measure
the cosmology dependence of our surrogate model error. Given that the cosmology averaged
68th percentile errors are comparable between our HMCode2020 and Aemulus ν models, we can
hope that the cosmology dependence of the errors are also similar. Figure 15 shows the 68th
percentile fractional error, taken over cosmology and redshift, at k = 1 hMpc−1 as a function
of cosmology for our HMCode2020 surrogate model. The black lines represent the bounds of
the Tier 2 parameter space. Within this region the error is very stable and almost always
below 1%. Beyond this, the error monotonically increases, with some excursions beyond 2%
at the edges of our parameter space in w, ωc and H0.
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