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ABSTRACT 

 

Reliable evaluations of geotechnical hazards like landslides and debris flow require accurate 

simulation of granular flow dynamics. Traditional numerical methods can simulate the complex 

behaviors of such flows that involve solid-like to fluid-like transitions, but they are 

computationally intractable when simulating large-scale systems. Surrogate models based on 

statistical or machine learning methods are a viable alternative, but they are typically empirical 

and rely on a confined set of parameters in evaluating associated risks. Conventional machine 

learning models require an unreasonably large amount of training data for building generalizable 

surrogate models due to their permutation-dependent learning. To address these issues, we 

employ a graph neural network (GNN), a novel deep learning technique to develop a GNN-based 

simulator (GNS) for granular flows. Graphs represent the state of granular flows and 

interactions, like the exchange of energy and momentum between grains, and GNN learns the 

local interaction law. GNS takes the current state of the granular flow and estimates the next 

state using Euler explicit integration. We train GNS on a limited set of granular flow trajectories 

and evaluate its performance in a three-dimensional granular column collapse domain. GNS 

successfully reproduces the overall behaviors of column collapses with various aspect ratios that 

were not encountered during training. The computation speed of GNS outperforms high-fidelity 

numerical simulators by 300 times.  

 

INTRODUCTION 
 

Landslides entail massive granular flows and cause significant damage to civil 

infrastructures. Precise modeling runout caused by granular flows is critical to understand the 

impact of landslides. Numerical methods, such as DEM and MPM (Kumar et al., 2017; Mast et 

al., 2014; Utili et al., 2015; Yerro et al., 2019; Zenit, 2005), are often employed to assess 

landslide runouts. However, these methods are computationally expensive for simulating large-

scale problems, hindering multiple full-scale simulations for a comprehensive evaluation of 

runout hazard scenarios. Similarly, a back analysis to estimate material parameters requires a 

broad parametric sweep involving hundreds to thousands of simulations. However, current state-

of-the-art numerical methods are restricted to, at most, a few full-scale simulations, limiting our 

ability in scenario testing or back analysis. 

To circumvent the computational burden, researchers build surrogate models based on 

statistical or machine learning approaches. These models typically use <end-to-end= mapping 

between landslide risks with influencing factors (Durante and Rathje, 2021; Gao et al., 2021; Ju 
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et al., 2022; Zeng et al., 2021). Despite the success in associating granular flow runout with 

statistical or data-driven methods, these techniques do not directly account for the granular flow 

dynamics, the fundamental physics that governs flow behavior. Consequently, the absence of this 

physics consideration restricts these statistical models from extrapolating to different boundary 

conditions or geometries beyond the data on which they are built.  

Establishing a surrogate model that can replicate granular flow dynamics is a challenging 

problem. It should capture a wide range of behavior changes4non-linear, static, collisional, and 

frictional dissipation regimes involved in granular flows (Soga et al., 2016). Learning to simulate 

these complex behaviors requires the surrogate model to understand fundamental interactions 

between neighbors. However, traditional machine learning techniques, such as multi-layer 

perceptron (MLP) or convolutional neural networks (CNN), face challenges in learning these 

behaviors. Since MLPs are permutation-dependent learning, meaning that their outputs are 

always associated with the order of inputs, they require unreasonably large training data to map 

all the possible permutations of the grain arrangements and the interactions involved in granular 

flows (Battaglia et al., 2018). CNN is restricted to learning mesh-based systems causing 

challenges when it comes to learning the dynamically changing neighbors.  

To overcome these limitations, we use graph neural networks (GNNs), a state-of-the-art 

machine learning model (Battaglia et al., 2018; Battaglia et al., 2016; Sanchez-Gonzalez et al., 

2020), to learn the interaction law involved in granular flows. We develop a GNN-based 

Simulator (GNS) that uses graphs to represent the state of interacting granular flow and learns 

the fundamental interaction based on GNN. We train the GNS on the limited number of granular 

flow trajectories generated from the material point method (MPM). The performance of GNS is 

tested using the granular column collapse experiment in a three-dimensional domain, which 

quantifies overall large-scale runout dynamics. GNS successfully predicts the overall runout 

dynamics of column collapse in a different boundary condition and initial geometry beyond the 

data being trained. 

 

METHOD 
 

Graph Neural Network-based Simulator (GNS). Graphs ÿ = (�, �) are data that efficiently 

describe interactions between objects (Figure 1a). Graphs consist of vertices �ÿ ∈ � representing 

objects and edges �ÿ,Ā ∈ � connecting a pair of vertices (�ÿ and �Ā) representing the interactions 

between the objects with their direction represented with the arrows. Graph neural networks 

(GNNs) (Figure 1) take the graph as an input (Figure 1a), conduct the message passing, and return 

the updated graph ÿ′ = (�′, �′) (Figure 1b) with the updated vertices �ÿ′ ∈ �′ and edges (�ÿ,Ā′ ∈�′). Message passing is the fundamental operation of GNNs that models the information 

exchange among the vertices through the edges using neural networks.  

 

 
Figure 1. Graph and graph neural network (GNN) (Modified from (Kumar and Vantassel, 2022)) 
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GNN-based simulator (GNS) proposed by (Sanchez-Gonzalez et al., 2020) predicts the 

next state of the flow ýÿ�+1 ∈ ÿ�+1 at timestep � + 1 based on that of the current step ýÿ� ∈ ÿ� 

(ÿ��: ÿ� →  ÿ�+1) (Figure 2a). ýÿ� includes the information about position, velocities for five 

previous timesteps, distance to boundaries, and material properties of the �th material point at 

timestep �. GNS consists of dynamics approximator and updater. The dynamics approximator 

(Figure 2b) predicts the dynamics of material points þÿ� ∈ Ā� using three stages of operations: 

encode-process-decode. In the encode stage, ÿ� is encoded into a latent graph ÿ = (�, �) to 

represent the state of interacting material points. We use MLP as the encoder. In the process 

stage, multiple stacks of GNN layers update ÿ = (�, �) to ÿ′ = (�′, �′) through message 

passing. This stage models the interaction between grains such as energy or momentum 

exchange, which enables GNS to learn the interaction law. In the decode stage, the dynamics of 

material points þÿ� ∈ Ā� is extracted from ÿ′. We use MLP as the decoder. In the updater (Figure 

2a) takes the þÿ� ∈ Ā� and updates the current state ýÿ� ∈ ÿ� to next state ýÿ�+1 ∈ ÿ�+1. This 

process is similar to explicit Euler integration in numerical differential equation solver; therefore, 

we can consider þÿ� ∈ Ā� as time derivatives such as acceleration. GNS predicts entire trajectory 

of granular flows ÿ0, ÿ1, …, ÿā, where ÿ0 is the initial state and ÿā is the state at timestep �, 

by updating ÿ� to ÿ�+1. For more details about GNNs, message passing, and GNS, we refer 

readers to Choi and Kumar (2023).  
 

 
Figure 2. Graph Neural Network-based Simulator (GNS). 

 

Training. The encode and decode stage both use two layers of 128-dimensional MLP layers 

with learnable parameter sets �� and ��  where �� is for encode MLP, and �� is for decode MLP. 

The process stage consists of 10 stacks of graph neural networks with a learnable parameter set ��. Given the current state ÿ�, we train these parameter sets (��, �� , and ��) in GNS to minimize 

the mean squared error between the current ground truth acceleration �� and the predicted 

dynamics Ā� of material points at �. 

To create training examples (i.e., sets of ÿ� and ��), we use the material point method 

(MPM) based on CB-Geo MPM code (Kumar et al., 2019). The training examples are sampled 

from the trajectories of 106 granular flow simulations generated from MPM. The simulation 

starts with a cube-shaped mass with varying size and initial velocities, and it drops under gravity 

in the 1.0×1.0×1.0 m cube domain (Figure 3). We restrict the shape of the mass to a cube to test 

the generalizability of the trained GNS to unseen geometries that show different flow dynamics. 

The computation is conducted using a cube-shaped mesh with a length of 0.0833 m including 16 
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material points in it. Simulation �� is 1e-6 and the result is saved for every 2500 timesteps. The 

visual examples of the simulation results are sampled in the figure below in four chronological 

orders. Note that our available trajectory data for making training data (106 trajectories) is far 

less than the numbers typically required to train GNS (1000 trajectories) (Sanchez-Gonzalez et 

al., 2020).  

 

 
Figure 3. An example of the trajectory of training data. The cube-shaped mass drops and flows 

under gravity with a random initial velocity and position. 

 

Evaluation. We evaluate the performance of GNS using the granular column collapse 

experiment: a cuboid-shaped granular column is placed on a flat surface of one end of the 

boundary, and it is allowed to collapse by gravity. The collapse shows different flow dynamics 

depending on the initial aspect ratio (� = Ā0/�0 where Ā0 and �0 is the initial height and length 

of the column before collapse) of the column (Lube et al., 2005). When the column has a small 

aspect ratio (� r 1.7) (i.e., short column), only the flank of the column is mobilized during the 

failure leaving the majority of the soil mass under the failure surface static. On the other hand, 

when the column has a large aspect ratio (� s 1.7), the collapse starts with a free-fall-like drop 

at the upper part of the granular mass, mobilizing large potential energy. The potential energy 

builds large kinetic energy causing longer a runout compared to the short column. As noted 

earlier, we only train GNS on granular flows with the initial aspect ratio of 1.0 in 1.0×1.0×1.0 m 

cube domain, but we test the predictive performance of GNS for runout dynamics on a different 

simulation domain with 1.5×0.5×0.7 m, with the columns with different aspect ratios, including 

short (� = 0.8) and tall column (� = 2.0), which are unseen during training.  

 

  



 3 5 3   

 

 

Result and Discussion 
 

Short Column. Figure 4 shows flow evolution with normalized time (�/��) for the short column 

with � = 0.8 from GNS and MPM. MPM is our baseline high-fidelity simulator. The column 

includes about 10K material points. The notation � represents physical time, and �� (= √�0�  ) 

represents the critical time representing time required for the flow to fully mobilize where � is 

the gravitational acceleration. Each row of the figure is the flow at the initial state before failure 

initiates, at normalized time 1.0, 2,5, and at the final time when the flow reaches static 

equilibrium.  

The geometric evolution of the collapse shows the following three stages. (1) From �/�� = 0 to 1.0 (Figure 4a), the flow starts with the collapse at the flank of the column and 

reaches full mobilization. (2) From �/�� = 1.0 to 2.5 (Figure 4b) major flow spreading occurs. (3) 

After �/�� = 2.5, the flow deaccelerates due to frictions among the boundaries and materials, and 

finally reaches static equilibrium (Figure 4c). This geometric evolution predicted by GNS shows 

overall agreement with MPM well replicating typical flow dynamics of short columns. However, 

GNS shows a larger volume of flank mobilization compared to MPM, leaving a smaller plateau 

area at the top of the static part (Figure 3d). 

We also quantitatively investigate the GNS prediction. Error! Reference source not 

found. shows the normalized runout ((�� 2 �0/�0)) and normalized height (Ā�/�0) evolution 

with normalized time (�/��). �� is the distance from the left boundary to the front end of the 

flow, and Ā� is the distance from the base to the highest part of the column, at timestep �. The 

normalized runout evolution also shows three stages. (1) From �/�� = 0 to 1.0, runout is slowly 

accelerated as the flank of the column collapses. (2) From �/�� = 1.0 to 2.5, the major runout 

occurs. (3) After �/�� = 2.5, runout shows deacceleration. The general runout trend of GNS 

follows the result from MPM, but the smaller runout is observed as time evolves with the error of 

12% at the final time when flow ceases. For both GNS and MPM, the height remains steady 

since only the flank of the column collapses leaving a static plateau. 
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(a) 

(b) 

(c) 

(d) 

 

Figure 4. Evolution of flow with normalized time for GNS and MPM for the short column with � =  ÿ. �: (a) initial state, (b) 
��� = Ā. ÿ, (c) 

��� = ā. �, (d) final state. Units are in m. The color 

represents the magnitude of the displacement. 
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Figure 5. Normalized runout ((�� 2 �ÿ)/�ÿ) and normalized height (��/�ÿ) evolution with 

normalized time (�/��) for the short column with � =  ÿ. �. 

 

Tall Column. Figure 6 shows flow evolution with normalized time (�/��) for GNS and MPM  

for the tall column with � = 2.0. The column includes about 10K material points. Similar to the 

short column collapse, three collapse stages are observed: initial flow mobilization (from initial 

state to �/�� = 1.0), major runout (from  �/�� = 1.0 to 2.5), deceleration (after �/�� = 2.5) to 

reach static equilibrium. However, compared to the short column, a relatively larger runout is 

observed with a greater collapsing mass volume. This is because the larger potential energy 

release due to the free-fall-like drop of the mass during the initial stage and the subsequent 

kinetic energy build-up cause a substantial horizontal acceleration. In general, the geometric 

evolution of GNS for the tall column well replicates the result from MPM, but we observe a 

larger mobilized mass in GNS (Error! Reference source not found.d) leading to a lower final 

height than MPM. 

Figure 7 shows the normalized runout ((�� 2 �0/�0)) and normalized height (Ā�/�0)) 

evolution with normalized time. The GNS predicts a larger height settlement than MPM due to 

the larger collapsing mass during the flow. For the runout, GNS predictions exhibit a similar 

trend with MPM maintaining slightly smaller values compared to MPM. The GNS accurately 

estimates the final normalized runout with an error of 2%. 

 

Computation Efficiency. One of our objectives is to accomplish faster computation time than 

the high-fidelity numerical method. Here we compare the computation time between GNS and 

MPM to simulate the short and tall column collapse shown in Error! Reference source not 

found. and Figure 7. MPM was run on 56 cores of Intel Cascade 495 Lake processors in parallel, 

and GNS was run on a single RTX GPU on TACC Frontera systems. MPM requires 

approximately 6 hours to finish the computation, while GNS requires 80 s to compute the 

trajectory for 380 timesteps, which achieves 300× speed-up.  
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(a) 

(b) 

(c) 

(d) 

 

Figure 6. Evolution of flow with normalized time for GNS and MPM for the tall column with a = 

2.0: (a) initial state, (b) 
��� = Ā. ÿ, (c) 

��� = ā. �, (d) final state. Units are in �. The color represents 

the magnitude of the displacement. 
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Figure 7. Normalized runout ((�� 2 �ÿ)/�ÿ) and normalized height (��/�ÿ) evolution with 

normalized time (�/��) for the tall column with � =  ā. ÿ. 

 

 

DISCUSSION 
 

Our GNS trained on 106 granular flow trajectory data is able to generalize well to 

replicate the overall flow dynamics of granular column collapse (Figure 4 and Figure 6), 

although the boundary and the initial geometry of the granular mass diverge from the training 

data. However, we observe some differences in the quantitative values for runout and height 

evolution compared to MPM (Error! Reference source not found. and Figure 7). Specifically, 

GNS shows a larger height settlement for the tall column case, and it also shows a slightly 

shorter runout for the short column. This difference can be mainly attributed to the limited 

training data4as mentioned earlier, the number of trajectory data available is 106 while usually 

1000 trajectories are used to train GNS based on Sanchez-Gonzalez et al. (2020). Nevertheless, 

the computational efficiency of the GNS makes it valuable for use in preliminary analysis before 

conducting full-scale simulation using high-fidelity numerical methods. For example, Kumar et 

al. (2022) applied GNS as an oracle for in-situ visualization for granular flows to identify critical 

regions before running the large-scale MPM simulation, utilizing the computation efficiency of 

the GNS. 

 

CONCLUSION 
 

Traditional numerical methods, such as MPM and DEM, are computationally intractable 

in large-scale granular flow simulations, which hinders multiple scenario testing and parameter 

calibration. Typical statistical or conventional machine learning-based surrogate models mapping 

the risks associated with granular flows and affecting factors do not explicitly consider the 

underlying physics, limiting their effectiveness and generalizability. To overcome these 

challenges, we use graph neural networks (GNNs), a state-of-the-art deep learning model, to 

develop a learned simulator, GNS. The physical state of interacting granular flows is represented 

by graphs, and GNN processes the graphs using message passing which learns to model the 

complex interaction between grains. Graph representation and message passing enable accurate 

learning to predict the granular flow dynamics across different conditions, even those unseen 
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during training. We evaluate the performance of GNS on the three-dimensional granular column 

collapse experiment. GNS can be generalized to different flow dynamics stemming from varying 

initial aspect ratios in a different simulation domain not trained during the training process. In 

addition, GNS exhibits an outstanding computation speed that is 300 times faster than the 

parallelized CPU version of MPM, while maintaining reasonable accuracy. The computational 

efficiency and generalizability of GNS will make it a valuable tool for efficiently assessing 

runout hazards in a wide range of scenarios. 
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