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ABSTRACT

Reliable evaluations of geotechnical hazards like landslides and debris flow require accurate
simulation of granular flow dynamics. Traditional numerical methods can simulate the complex
behaviors of such flows that involve solid-like to fluid-like transitions, but they are
computationally intractable when simulating large-scale systems. Surrogate models based on
statistical or machine learning methods are a viable alternative, but they are typically empirical
and rely on a confined set of parameters in evaluating associated risks. Conventional machine
learning models require an unreasonably large amount of training data for building generalizable
surrogate models due to their permutation-dependent learning. To address these issues, we
employ a graph neural network (GNN), a novel deep learning technique to develop a GNN-based
simulator (GNS) for granular flows. Graphs represent the state of granular flows and
interactions, like the exchange of energy and momentum between grains, and GNN learns the
local interaction law. GNS takes the current state of the granular flow and estimates the next
state using Euler explicit integration. We train GNS on a limited set of granular flow trajectories
and evaluate its performance in a three-dimensional granular column collapse domain. GNS
successfully reproduces the overall behaviors of column collapses with various aspect ratios that
were not encountered during training. The computation speed of GNS outperforms high-fidelity
numerical simulators by 300 times.

INTRODUCTION

Landslides entail massive granular flows and cause significant damage to civil
infrastructures. Precise modeling runout caused by granular flows is critical to understand the
impact of landslides. Numerical methods, such as DEM and MPM (Kumar et al., 2017; Mast et
al., 2014; Utili et al., 2015; Yerro et al., 2019; Zenit, 2005), are often employed to assess
landslide runouts. However, these methods are computationally expensive for simulating large-
scale problems, hindering multiple full-scale simulations for a comprehensive evaluation of
runout hazard scenarios. Similarly, a back analysis to estimate material parameters requires a
broad parametric sweep involving hundreds to thousands of simulations. However, current state-
of-the-art numerical methods are restricted to, at most, a few full-scale simulations, limiting our
ability in scenario testing or back analysis.

To circumvent the computational burden, researchers build surrogate models based on
statistical or machine learning approaches. These models typically use “end-to-end” mapping
between landslide risks with influencing factors (Durante and Rathje, 2021; Gao et al., 2021; Ju



et al., 2022; Zeng et al., 2021). Despite the success in associating granular flow runout with
statistical or data-driven methods, these techniques do not directly account for the granular flow
dynamics, the fundamental physics that governs flow behavior. Consequently, the absence of this
physics consideration restricts these statistical models from extrapolating to different boundary
conditions or geometries beyond the data on which they are built.

Establishing a surrogate model that can replicate granular flow dynamics is a challenging
problem. It should capture a wide range of behavior changes—non-linear, static, collisional, and
frictional dissipation regimes involved in granular flows (Soga et al., 2016). Learning to simulate
these complex behaviors requires the surrogate model to understand fundamental interactions
between neighbors. However, traditional machine learning techniques, such as multi-layer
perceptron (MLP) or convolutional neural networks (CNN), face challenges in learning these
behaviors. Since MLPs are permutation-dependent learning, meaning that their outputs are
always associated with the order of inputs, they require unreasonably large training data to map
all the possible permutations of the grain arrangements and the interactions involved in granular
flows (Battaglia et al., 2018). CNN is restricted to learning mesh-based systems causing
challenges when it comes to learning the dynamically changing neighbors.

To overcome these limitations, we use graph neural networks (GNNs), a state-of-the-art
machine learning model (Battaglia et al., 2018; Battaglia et al., 2016; Sanchez-Gonzalez et al.,
2020), to learn the interaction law involved in granular flows. We develop a GNN-based
Simulator (GNS) that uses graphs to represent the state of interacting granular flow and learns
the fundamental interaction based on GNN. We train the GNS on the limited number of granular
flow trajectories generated from the material point method (MPM). The performance of GNS is
tested using the granular column collapse experiment in a three-dimensional domain, which
quantifies overall large-scale runout dynamics. GNS successfully predicts the overall runout
dynamics of column collapse in a different boundary condition and initial geometry beyond the
data being trained.

METHOD

Graph Neural Network-based Simulator (GNS). Graphs G = (V, E) are data that efficiently
describe interactions between objects (Figure 1a). Graphs consist of vertices v; € V representing
objects and edges e; ; € E connecting a pair of vertices (v; and v;) representing the interactions
between the objects with their direction represented with the arrows. Graph neural networks
(GNNs) (Figure 1) take the graph as an input (Figure 1a), conduct the message passing, and return
the updated graph G" = (V', E') (Figure 1b) with the updated vertices v; € V' and edges (e; ; €
E"). Message passing is the fundamental operation of GNNs that models the information
exchange among the vertices through the edges using neural networks.
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Figure 1. Graph and graph neural network (GNN) (Modified from (Kumar and Vantassel, 2022))



GNN-based simulator (GNS) proposed by (Sanchez-Gonzalez et al., 2020) predicts the
next state of the flow x{*! € X, at timestep t + 1 based on that of the current step x¢ € X,
(GNS: X, > X,,,) (Figure 2a). x¢ includes the information about position, velocities for five
previous timesteps, distance to boundaries, and material properties of the ith material point at
timestep t. GNS consists of dynamics approximator and updater. The dynamics approximator
(Figure 2b) predicts the dynamics of material points y! € ¥, using three stages of operations:
encode-process-decode. In the encode stage, X, is encoded into a latent graph G = (V, E) to
represent the state of interacting material points. We use MLP as the encoder. In the process
stage, multiple stacks of GNN layers update G = (V,E) to G' = (V', E") through message
passing. This stage models the interaction between grains such as energy or momentum
exchange, which enables GNS to learn the interaction law. In the decode stage, the dynamics of
material points y¢ € ¥, is extracted from G'. We use MLP as the decoder. In the updater (Figure
2a) takes the y¢ € Y, and updates the current state x! € X, to next state x** € X,,;. This
process is similar to explicit Euler integration in numerical differential equation solver; therefore,
we can consider y! € Y, as time derivatives such as acceleration. GNS predicts entire trajectory
of granular flows X, X1, ..., Xj, where X|, is the initial state and X, is the state at timestep k,
by updating X; to X;,,. For more details about GNNs, message passing, and GNS, we refer
readers to Choi and Kumar (2023).
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Figure 2. Graph Neural Network-based Simulator (GNS).

Training. The encode and decode stage both use two layers of 128-dimensional MLP layers
with learnable parameter sets 6. and 85 where 6, is for encode MLP, and 6, is for decode MLP.
The process stage consists of 10 stacks of graph neural networks with a learnable parameter set
8,. Given the current state X;, we train these parameter sets (¢, 65, and 6,)) in GNS to minimize
the mean squared error between the current ground truth acceleration A; and the predicted
dynamics Y, of material points at t.

To create training examples (i.e., sets of X; and A;), we use the material point method
(MPM) based on CB-Geo MPM code (Kumar et al., 2019). The training examples are sampled
from the trajectories of 106 granular flow simulations generated from MPM. The simulation
starts with a cube-shaped mass with varying size and initial velocities, and it drops under gravity
in the 1.0x1.0x1.0 m cube domain (Figure 3). We restrict the shape of the mass to a cube to test
the generalizability of the trained GNS to unseen geometries that show different flow dynamics.
The computation is conducted using a cube-shaped mesh with a length of 0.0833 m including 16



material points in it. Simulation dt is le-6 and the result is saved for every 2500 timesteps. The
visual examples of the simulation results are sampled in the figure below in four chronological
orders. Note that our available trajectory data for making training data (106 trajectories) is far
less than the numbers typically required to train GNS (1000 trajectories) (Sanchez-Gonzalez et
al., 2020).
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Figure 3. An example of the trajectory of training data. The cube-shaped mass drops and flows
under gravity with a random initial velocity and position.

Evaluation. We evaluate the performance of GNS using the granular column collapse
experiment: a cuboid-shaped granular column is placed on a flat surface of one end of the
boundary, and it is allowed to collapse by gravity. The collapse shows different flow dynamics
depending on the initial aspect ratio (a = Hy/L, where H, and L, is the initial height and length
of the column before collapse) of the column (Lube et al., 2005). When the column has a small
aspect ratio (a < 1.7) (i.e., short column), only the flank of the column is mobilized during the
failure leaving the majority of the soil mass under the failure surface static. On the other hand,
when the column has a large aspect ratio (a = 1.7), the collapse starts with a free-fall-like drop
at the upper part of the granular mass, mobilizing large potential energy. The potential energy
builds large kinetic energy causing longer a runout compared to the short column. As noted
earlier, we only train GNS on granular flows with the initial aspect ratio of 1.0 in 1.0x1.0x1.0 m
cube domain, but we test the predictive performance of GNS for runout dynamics on a different
simulation domain with 1.5x0.5x0.7 m, with the columns with different aspect ratios, including
short (a = 0.8) and tall column (a = 2.0), which are unseen during training.



Result and Discussion

Short Column. Figure 4 shows flow evolution with normalized time (t/z.) for the short column
with a = 0.8 from GNS and MPM. MPM is our baseline high-fidelity simulator. The column

includes about 10K material points. The notation t represents physical time, and 7, (= ’%)

represents the critical time representing time required for the flow to fully mobilize where g is
the gravitational acceleration. Each row of the figure is the flow at the initial state before failure
initiates, at normalized time 1.0, 2,5, and at the final time when the flow reaches static
equilibrium.

The geometric evolution of the collapse shows the following three stages. (1) From
t/t.=0to 1.0 (Figure 4a), the flow starts with the collapse at the flank of the column and
reaches full mobilization. (2) From t/t.= 1.0 to 2.5 (Figure 4b) major flow spreading occurs. (3)
After t/T,.=2.5, the flow deaccelerates due to frictions among the boundaries and materials, and
finally reaches static equilibrium (Figure 4c). This geometric evolution predicted by GNS shows
overall agreement with MPM well replicating typical flow dynamics of short columns. However,
GNS shows a larger volume of flank mobilization compared to MPM, leaving a smaller plateau
area at the top of the static part (Figure 3d).

We also quantitatively investigate the GNS prediction. Error! Reference source not
found. shows the normalized runout ((L; — Ly /L)) and normalized height (H, /L) evolution
with normalized time (t/7.). L; is the distance from the left boundary to the front end of the
flow, and H, is the distance from the base to the highest part of the column, at timestep t. The
normalized runout evolution also shows three stages. (1) From t/t.= 0 to 1.0, runout is slowly
accelerated as the flank of the column collapses. (2) From t/7.= 1.0 to 2.5, the major runout
occurs. (3) After t/7.= 2.5, runout shows deacceleration. The general runout trend of GNS
follows the result from MPM, but the smaller runout is observed as time evolves with the error of
12% at the final time when flow ceases. For both GNS and MPM, the height remains steady
since only the flank of the column collapses leaving a static plateau.
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Figure 4. Evolution of flow with normalized time for GNS and MPM for the short column with
a = 0.8: (a) initial state, (b) Ti =1.0, (¢) ti = 2.5, (d) final state. Units are in m. The color

represents the magnitude of the displacement.



1.0 1.0
D8 e e ———— ~==m=1 0.8
< 0.6 0.6 _
K 3
| I
:J‘: 0.4 - 0.4

0.2 4 0.2
MPM Runout MPM Height
—— GNS Runout —=— GNS5 Height
0.0 T T T T 0.0
0 1 2 3 4 5
i1

Figure 5. Normalized runout ((L; — Ly)/L) and normalized height (H;/L) evolution with
normalized time (£/z.) for the short column with a = 0.8.

Tall Column. Figure 6 shows flow evolution with normalized time (t/t.) for GNS and MPM
for the tall column with a = 2.0. The column includes about 10K material points. Similar to the
short column collapse, three collapse stages are observed: initial flow mobilization (from initial
state to t/t,. = 1.0), major runout (from t/7, = 1.0 to 2.5), deceleration (after t /T, = 2.5) to
reach static equilibrium. However, compared to the short column, a relatively larger runout is
observed with a greater collapsing mass volume. This is because the larger potential energy
release due to the free-fall-like drop of the mass during the initial stage and the subsequent
kinetic energy build-up cause a substantial horizontal acceleration. In general, the geometric
evolution of GNS for the tall column well replicates the result from MPM, but we observe a
larger mobilized mass in GNS (Error! Reference source not found.d) leading to a lower final
height than MPM.

Figure 7 shows the normalized runout ((L; — Ly/Lg)) and normalized height (H; /L))
evolution with normalized time. The GNS predicts a larger height settlement than MPM due to
the larger collapsing mass during the flow. For the runout, GNS predictions exhibit a similar
trend with MPM maintaining slightly smaller values compared to MPM. The GNS accurately
estimates the final normalized runout with an error of 2%.

Computation Efficiency. One of our objectives is to accomplish faster computation time than
the high-fidelity numerical method. Here we compare the computation time between GNS and
MPM to simulate the short and tall column collapse shown in Error! Reference source not
found. and Figure 7. MPM was run on 56 cores of Intel Cascade 495 Lake processors in parallel,
and GNS was run on a single RTX GPU on TACC Frontera systems. MPM requires
approximately 6 hours to finish the computation, while GNS requires 80 s to compute the
trajectory for 380 timesteps, which achieves 300x speed-up.
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Figure 6. Evolution of flow with normalized time for GNS and MPM for the tall column with a =
2.0: (a) initial state, (b) Ti =1.0,(¢) Ti = 2.5, (d) final state. Units are in m. The color represents

the magnitude of the displacement.
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Figure 7. Normalized runout ((L; — Ly)/L) and normalized height (H,/L) evolution with
normalized time (t/z.) for the tall column with a = 2.0.

DISCUSSION

Our GNS trained on 106 granular flow trajectory data is able to generalize well to
replicate the overall flow dynamics of granular column collapse (Figure 4 and Figure 6),
although the boundary and the initial geometry of the granular mass diverge from the training
data. However, we observe some differences in the quantitative values for runout and height
evolution compared to MPM (Error! Reference source not found. and Figure 7). Specifically,
GNS shows a larger height settlement for the tall column case, and it also shows a slightly
shorter runout for the short column. This difference can be mainly attributed to the limited
training data—as mentioned earlier, the number of trajectory data available is 106 while usually
1000 trajectories are used to train GNS based on Sanchez-Gonzalez et al. (2020). Nevertheless,
the computational efficiency of the GNS makes it valuable for use in preliminary analysis before
conducting full-scale simulation using high-fidelity numerical methods. For example, Kumar et
al. (2022) applied GNS as an oracle for in-situ visualization for granular flows to identify critical
regions before running the large-scale MPM simulation, utilizing the computation efficiency of
the GNS.

CONCLUSION

Traditional numerical methods, such as MPM and DEM, are computationally intractable
in large-scale granular flow simulations, which hinders multiple scenario testing and parameter
calibration. Typical statistical or conventional machine learning-based surrogate models mapping
the risks associated with granular flows and affecting factors do not explicitly consider the
underlying physics, limiting their effectiveness and generalizability. To overcome these
challenges, we use graph neural networks (GNN5s), a state-of-the-art deep learning model, to
develop a learned simulator, GNS. The physical state of interacting granular flows is represented
by graphs, and GNN processes the graphs using message passing which learns to model the
complex interaction between grains. Graph representation and message passing enable accurate
learning to predict the granular flow dynamics across different conditions, even those unseen



during training. We evaluate the performance of GNS on the three-dimensional granular column
collapse experiment. GNS can be generalized to different flow dynamics stemming from varying
initial aspect ratios in a different simulation domain not trained during the training process. In
addition, GNS exhibits an outstanding computation speed that is 300 times faster than the
parallelized CPU version of MPM, while maintaining reasonable accuracy. The computational
efficiency and generalizability of GNS will make it a valuable tool for efficiently assessing
runout hazards in a wide range of scenarios.

REFERENCES

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., and Faulkner, R. (2018). "Relational Inductive Biases,
Deep Learning, and Graph Networks." arXiv preprint arXiv:1806.01261.

Battaglia, P. W., Pascanu, R., Lai, M., Jimenez Rezende, D., and Kavukcuoglu, K. "Interaction Networks
for Learning About Objects, Relations and Physics." Proc., NIPS.

Choi, Y., and Kumar, K. (2023). "Graph Neural Network-Based Surrogate Model for Granular Flows."
arXiv preprint arXiv:2305.05218.

Durante, M. G., and Rathje, E. M. (2021). "An Exploration of the Use of Machine Learning to Predict
Lateral Spreading." Earthquake Spectra, 37(4), 2288-2314.

Gao, L., Zhang, L. M., Chen, H. X., Fei, K., and Hong, Y. (2021). "Topography and Geology Effects on
Travel Distances of Natural Terrain Landslides: Evidence from a Large Multi-Temporal
Landslide Inventory in Hong Kong." Eng Geol, 292.

Ju, L.-Y., Xiao, T., He, J., Wang, H.-J., and Zhang, L.-M. (2022). "Predicting Landslide Runout Paths
Using Terrain Matching-Targeted Machine Learning." Eng Geol, 311.

Kumar, K., Salmond, J., Kularathna, S., Wilkes, C., Tjung, E., Biscontin, G., and Soga, K. (2019).
"Scalable and Modular Material Point Method for Large-Scale Simulations." arXiv preprint
arXiv:1909.13380.

Kumar, K., Soga, K., Delenne, J.-Y., and Radjai, F. (2017). "Modelling Transient Dynamics of Granular
Slopes: Mpm and Dem." Procedia Engineering, 175, 94-101.

Kumar, K., and Vantassel, J. (2022). "Graph Network Simulator: V1.0.1 (Version V1.0.1)."

Lube, G., Huppert, H. E., Sparks, R. S. J., and Freundt, A. (2005). "Collapses of Two-Dimensional
Granular Columns." Physical Review E, 72(4).

Mast, C. M., Arduino, P., Mackenzie-Helnwein, P., and Miller, G. R. (2014). "Simulating Granular
Column Collapse Using the Material Point Method." Acta Geotechnica, 10(1), 101-116.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P. "Learning to
Simulate Complex Physics with Graph Networks." Proc., International conference on machine
learning, PMLR, 8459-8468.

Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S. (2016). "Trends in Large-Deformation
Analysis of Landslide Mass Movements with Particular Emphasis on the Material Point Method."
Géotechnique, 66(3), 248-273.

Utili, S., Zhao, T., and Houlsby, G. T. (2015). "3d Dem Investigation of Granular Column Collapse:
Evaluation of Debris Motion and Its Destructive Power." Eng Geol, 186, 3-16.

Yerro, A., Soga, K., and Bray, J. (2019). "Runout Evaluation of Oso Landslide with the Material Point
Method." Canadian Geotechnical Journal, 56(9), 1304-1317.

Zeng, P., Sun, X. P., Xu, Q., Li, T. B, and Zhang, T. L. (2021). "3d Probabilistic Landslide Run-out
Hazard Evaluation for Quantitative Risk Assessment Purposes." Eng Geol, 293.

Zenit, R. (2005). "Computer Simulations of the Collapse of a Granular Column." Physics of Fluids, 17(3),
031703.

—10-—



	ABSTRACT
	INTRODUCTION
	METHOD
	Result and Discussion
	DISCUSSION
	CONCLUSION
	REFERENCES

