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Abstract—The Common Workflow Language (CWL) is a
widely adopted language for defining and sharing computational
workflows. It is designed to be independent of the execution en-
gine on which workflows are executed. In this paper, we describe
our experiences integrating CWL with Parsl, a Python-based
parallel programming library designed to manage execution of
workflows across diverse computing environments. We propose
a new method that converts CWL CommandLineTool definitions
into Parsl apps, enabling Parsl scripts to easily import and use
tools represented in CWL. We describe a Parsl runner that is
capable of executing a CWL CommandLineTool directly. We also
describe a proof-of-concept extension to support inline Python
in a CWL workflow definition, enabling seamless use in Parsl’s
Python ecosystem. We demonstrate the benefits of this integration
by presenting example CWL CommandLineTool definitions that
show how they can be used in Parsl, and comparing performance
of executing an image processing workflow using the Parsl
integration and other CWL runners.

I. INTRODUCTION

Scientific workflows are essential for automating complex
computational tasks, enabling reproducibility, portability, and
scalability of science applications. The pervasiveness of sci-
entific workflows has led to the development of hundreds of
workflow management systems that support the development
and execution of workflows; however, most workflow systems
are not interoperable and thus workflows developed using one
workflow system are not usable in another. The Common
Workflow Language (CWL) attempts to overcome this obstacle
via a common workflow description that can be interpreted
by many workflow systems. CWL has been widely adopted,
and users have created a rich ecosystem of CWL work-
flows and tools. Importantly, the community has undertaken
the significant effort to describe tools (i.e., applications and
scripts) in CWL, including specifying input/output formats,
command line invocation arguments, and environment require-
ment. These tool definitions are a critical step, irrespective of
workflow system, in being able to programatically execute a
tool as part of a workflow.

CWL is designed such that workflow definitions are in-
dependent of the CWL runner—the workflow system that
executes the workflow. Many CWL runners have been im-
plemented, such as CWLTool [1], Toil [2], Arvados [3], and
previously Cromwell [4]. These runners provide distinct capa-
bilities and thus have distinct user communities. An advantage
of CWL is that workflows can be easily ported between these

different runners enabling users to choose a runner that best
matches their requirements.

Here, we describe work towards integrating CWL and
Parsl [5]—a parallel programming library designed to en-
able parallel Python execution across different computing
resources, from local clusters to cloud platforms. Parsl’s
dataflow model allows for intuitive definition of workflows
directly in the Python programming language. Parsl’s flexible
execution framework enables scalable and efficient execution
of workflows across many computing platforms, particularly
at scale on large HPC systems. These capabilities make Parsl
a potentially valuable runner for CWL workflows.

Our integration of CWL and Parsl aims to make it possible
for Parsl developers to programmatically import and invoke
CWL-defined tools directly in Python programs. Importantly,
this integration removes the need for Parsl developers to man-
ually specify and maintain tool definitions in Parsl’s Python-
based representation. Importing CWL tools directly into Parsl
programs enables a richer programmatic approach to compos-
ing workflows that might include CWL tools, existing tools
represented in Parsl, pure Python functions, and program logic
written in Python to manage the execution of the workflow. We
further implement a proof-of-concept CWL CommandLine-
Tool runner that enables Parsl to execute CommandLineTools
using Parsl’s robust, scalable, and performant executors.

We see several benefits of integrating CWL and Parsl:

« Portability: CWL provides a common way to describe
tools, ensuring that they can be executed on different
platforms.

o« CWL ecosystem: There are many CWL CommandLine-
Tool definitions that describe input and output formats,
command line interfaces, and environment requirements
that can be used directly in Parsl without requiring
developers to recreate these definitions in Python.

« Scalability and Performance: Parsl’s runtime engine and
various executors efficiently manage resources, allowing
workflows to scale from personal computers to high-
performance computing clusters.

o Familiarity/Productivity: Python is arguably the lingua
franca of Science. Our CWL and Parsl integration enables
the composition of workflows in Python while leveraging
the curated tool definitions from the CWL ecosystem.
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Our experiences integrating Parsl and CWL highlighted
the challenges of supporting CWL expressions—snippets of
code written in JavaScript embedded in CWL YAML work-
flow definitions—given Parsl’s Python-based environment. To
overcome this mismatch we propose a prototype extension to
CWL to support inline Python expressions in CWL workflow
definitions. Inline Python allows for dynamic logic within
workflows to be described entirely in Python.

This paper is structured as follows. §1I describes CWL and
Parsl. §III outlines our extensions to Parsl to import and run
CWL CommandLineTools. §IV presents an example workflow
and shows how the CWL workflow can be implemented in
Parsl using our integration. §V describes how we support
Python expressions in CWL. §VI compares the performance
of our integration and Python expressions with other CWL
runners. Finally, §VII describes related work and §VIII sum-
marizes our contributions.

The code described in this paper is openly available on
GitHub (https://github.com/Parsl/cwl-parsl) under the Apache-
2 license.

II. BACKGROUND

Here we describe the foci of our integration: CWL and Parsl.

A. Common Workflow Language (CWL)

The Common Workflow Language (CWL) [6] is an open
specification that is designed to address the challenges of
reproducibility and interoperability in scientific research. CWL
achieves this goal by providing a common specification for
workflows to ensure they can be shared and reused irrespective
of the underlying workflow engine used.

CWL has two main abstractions: CommandLineTools and
Workflows. CommandLineTool definitions, written in YAML,
outline the interface to a command line tool (e.g., an appli-
cation, script, or anything that can be invoked via the com-
mand line). The tool definition describes the input arguments,
environment, and output files. The definition can then be
used to invoke the command line tool, given suitable input
arguments. The tool definition format allows definitions to be
shared across workflows and referenced from registries. The
community has invested significant effort cataloging tools and
sharing definitions [7].

CommandLineTool definitions are used in a CWL Work-
flow definition, also written in YAML. The workflow links
together CommandLineTools by specifying the exchange of
input/output between tools. Importantly, while the workflow
describes the various steps (and their input/outputs), execution
of the tools is determined by dependencies rather than the
order they are specified in the workflow definition. CWL
supports software container technologies (e.g., Docker) to
abstract execution environments.

While the CWL specification is a static representation of
a workflow in YAML, there are many situations in which
dynamic decisions need to be made as a workflow progresses,
for example, to select a specific CommandLineTool to execute
based on the output of a previous CommandLineTool or to
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modify arguments passed between CommandLineTools. CWL
provides several built-in methods for common manipulations
and also supports arbitrary expressions—snippets of JavaScript
code that are evaluated during workflow execution.

A CWL workflow is executed by a CWL runner. The
runner is responsible for managing the invocation of the
CommandLineTools, determining when they can be executed,
composing the execution command, monitoring execution and
determining success or failure, and managing the exchange of
data between CommandLineTools. cwltool [1] is the reference
implementation of CWL runner. It is implemented in Python
and maintained by the CWL community. cwltool is able to
validate CWL descriptions, parsing the representation and
ensuring that it is compliant with the CWL specification. It can
also execute the workflow with user-supplied input arguments
and a workflow definition. foil-cwl-runner is a Python-based
CWL runner built on the Toil workflow engine. It validates
CWL descriptions for compliance with the CWL specification
and can execute workflows on both single-node setups and
distributed cloud environments, using user-supplied inputs and
workflow definitions.

B. Parsl

Parsl [5] is a parallel programming library for Python. Parsl
allows developers to write programs entirely in Python and
Parsl then manages execution of those programs across diverse
computing resources. Parsl abstracts the complexities inherent
in parallel computing by providing a straightforward functional
programming model at the task level while maintaining pro-
cedural Python code for the wider program and task and data
dependencies.

In Parsl, developers annotate Python functions as apps to
specify that they can be executed concurrently. When an app
is invoked, a Future is returned that tracks the asynchronous
execution of the app. Dataflow is implicitly specified when
a Future from one app is passed as input to another app.
Parsl dynamically generates a task dependency graph and then
maps the graph to available resources for execution, exploiting
parallelism where possible by managing the creation of data
objects and ensuring that app dependencies are met.

Parsl implements an extensible plugin model for its run-
time execution system called Executors. Executors imple-
ment Python’s concurrent.futures.Executor class
and are responsible for executing a task and returning a future
to the calling program. Parsl supports standard implemen-
tations of the concurrent.futures.Executor class,
such as the ThreadPoolExecutor. It also includes several Parsl-
specific Executors, such as the HighThroughputExecutor, and
interfaces with other community Executors, such as TaskVine-
Executor and RadicalPilotExecutor.

The most commonly used Executor, the HighThroughpu-
tExecutor (HTEX), employs a pilot job model to manage
the execution of tasks on a paralel or distributed computer.
This model introduces an abstraction layer that decouples
task submission from resource allocation, thereby enabling
efficient utilization of available computational resources. In the
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pilot job model, a placeholder job—referred to as a pilot—is
submitted to a batch scheduler. Tasks are then executed on
the pilot job without interfacing with the batch scheduler. The
pilot job model is particularly advantageous in environments
with high variability in job queue time.

Parsl also implements an extensible Provider interface that
facilitates the negotiation of computing resources from a range
of batch systems, public clouds, and container orchestration
systems like Kubernetes. Providers in Parsl are responsible
for managing the lifecycle of compute resources, including
provisioning, monitoring, and deprovisioning resources, thus
enabling automatic scaling to match the needs of the workflow
at runtime. This abstraction of the resource management sys-
tem, allows Parsl to run on local clusters, cloud environments,
and supercomputers with minimal configuration changes.

Parsl interacts with many other tools, such as TaskVine as
mentioned before, as well as Globus [8]. Parsl is used in a
range of scientific applications, has been shown to scale to
some of the largest supercomputers, and is used as the basis
for building other services, such as Globus Compute [9].

III. INTEGRATING CWL AND PARSL

Our integration of CWL and Parsl focuses on two primary
areas: 1) importing CWL CommandLineTool definitions in
Parsl, and 2) implementing a prototype CWL Parsl runner to
execute CommandLineTools via Parsl.

A. Importing Tool Definitions

Given a CWL CommandLineTool definition, we seek to
integrate the tool into a Parsl program such that it can be
executed like any other Parsl app and therefore interwoven
seamlessly in the program. The challenge here is that CWL
CommandLineTool definitions are written in a YAML format
while Parsl apps are represented as Python functions.

To overcome this difference we introduce a new Parsl app:
CWLApp. The CWLApp reads a CWL CommandLineTool
definition and transparently creates a Parsl BashApp that is
configured to run the CWL CommandLineTool. The process of
creating a CWLApp requires only that the developer specifies
a file containing the CWL CommandLineApp. The CWLApp
will read the definition and populate the input/output definition
for the Parsl app. The CWLApp is callable as a Python
function, allowing users to execute the tool by passing the
required input arguments. These inputs, combined with the
definitions from the CWL CommandLineTool, are used to
construct and then execute the command.

The inputs specified in the CWL CommandLineTool are
represented as keyword arguments in the CWLApp. When
invoked, these arguments are processed according to the spec-
ifications in the CWL CommandLineTool definition. Prefixes
and positions defined in the CommandLineTool’s inputBinding
definition are matched with arguments at runtime. Any inputs
that are of type “File” are converted into Parsl’s File type,
which facilitate access regardless of the location where the
app is executed.
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The outputs specified in the CommandLineTool are man-
aged as described in the definition. Both stdout and stderr
are directed to their designated files. For any new file created
during execution, a Parsl DataFuture object is created and
returned. These DataFuture objects can then be passed as
file inputs to other Parsl apps (including CWLApps) without
needing to wait for the files to be available.

CWLApps can be created once and imported, allowing them
to be reused across workflows. They can also be created in a
Python module and then imported directly into other Python
programs.

Listing 1 shows a CommandLineTool definition for the
Linux echo command. It describes the required input argu-
ment, a string called message, and the output stdout file that
is to be produced. Listing 2 shows how the CommandLineTool
definition is used to create a CWLApp in Parsl and how the
CommandLineTool can then be executed with Parsl.

cwlVersion: v1.2

class: CommandLineTool

baseCommand: echo
inputs:
message:
9 type:
10 default:
1 inputBinding:
12 position: 1
1
1

string
"Hello World"

+ | outputs:
output:
type: stdout

stdout: hello.txt

Listing 1: CWL CommandLineTool definition for “echo”

from parsl.configs.local_threads import config
from parsl_cwl.cwl_app import CWLApp

parsl.load(config)

6 | echo CWLApPD (

future echo (
9 message=
stdout=
11 )
# Wait for the

future.result ()

future before reading the outpu

16 |with open( as f:

print (f.read())

)

Listing 2: An example Parsl program that first loads a Parsl
configuration, loads the CWL CommandLineTool definition from the
echo.cwl file, executes the CommandLineTool using Parsl, waits for
the task to complete, and prints the contents of the output file.

B. Parsl CWL CommandLineTool Runner

We now describe how Parsl can act as a CWL runner
to execute a single CWL CommandLineTool definition. This
integration enables users to leverage Parsl’s scalability and
performance when running a CommandLineTool on high
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performance parallel and distributed systems. Using the Parsl
CWL CommandLineTool runner, a user can simply pass a
CWL CommandLineTool definition to run with the Parsl CWL
runner command: parsl-cwl. Currently, parsl-cwl can only
execute CWL CommandLineTools directly; in the future we
will extend this integration to support Workflow definitions.

Here, we show an example of how a CWL CommandLine-
Tool can be executed by specifying the CommandLineTool
definition (echo . cwl), defining the Parsl configuration to use
(config.yml), and specifying inputs either as command line
arguments or as a YAML file (inputs.yml):

’$ parsl-cwl config.yml echo.cwl inputs.yml ‘

’$ parsl-cwl config.yml echo.cwl --message='Hello’ ‘

We adopt a YAML-based Parsl configuration to match the
CWL ecosystem. Specifically, we use the format defined in
the TaPS benchmark suite [10] to specify key configuration
options. The configuration includes the executor and provider,
as well as various options such as number of nodes, number
of workers per node, accelerators to be used, and Python or
container environment.

IV. EXAMPLE WORKFLOW

We now present an example image processing workflow
written in CWL and ported to Parsl using our integration.

A. Image Processing Workflow in CWL

Listing 3 shows the CWL Workflow definition. The work-
flow encodes a sequence of image processing tasks: resizing
an image, applying a sepia filter, and blurring the image. Each
stage is implemented as a separate CWL CommandLineTool.
The workflow takes an image as input, and produces a blurred
and possibly sepia-filtered image as output. The three stages
of the workflow are:

1) Image Resizing (resize_image.cwl): This stage
takes an input image and resizes it to the specified
dimensions. The target size is provided as an input
parameter, allowing for flexible resizing according to
user requirements.

2) Image Filtering (filter_image.cwl): This stage
applies a sepia filter to the resized image. The filter is
controlled by a boolean parameter, enabling a user to
apply the sepia effect as needed.

3) Image Blurring (blur_image.cwl): The final stage
blurs the filtered image using a specified blur radius.
This step allows a user to soften the image, with the
degree of blurring controlled by an input parameter. The
final blurred image is saved as blurred.png.

The workflow takes four input arguments.

e input_image: The original image file to be processed.

e size: The dimensions to which the image should be
resized.

e sepia: A boolean flag indicating whether the sepia filter
should be applied.

o radius: The radius used for the blur operation.

The workflow produces one output file:

e final_ output: The final blurred image, output from
the blur_image stage.

cwlVersion: vl1.2
class: Workflow

doc: This CWL workflow processes images by
performing a series of tasks - resizing,
filtering, and blurring

requirements:
8 - class: SteplInputExpressionRequirement

0 | inputs:

1 input_image:

2 type: File

doc: The original image to be processed

size:
6 type: int
7 doc: The target sizeXsize for resizing

19 sepia:
20 type: boolean
21 doc: Whether to apply the filter

2 radius:
24 type: int
doc: The amount of blur to apply

27 | outputs:
28 final_ output:
29 type: File

30 outputSource: blur_image/output_image

32 | steps:

3 resize_image:
34 run: resize_image.cwl

: in:

36 input_image: input_image
37 size: size

38 output_image:

39 valueFrom: "resized.png"

10 out: [output_image]

41

4 filter_image:

13 run: filter_image.cwl
44 in:

45 input_image: resize_image/output_image

46 sepia: sepia

47 output_image:

48 valueFrom: "filtered.png"
49 out: [output_image]

51 blur_image:

52 run: blur_image.cwl

53 in:

54 input_image: filter_image/output_image
55 radius: radius

56 output_image:

5 valueFrom: "blurred.png"

58 out: [output_image]

Listing 3: CWL Image Processing Workflow

B. Image Processing Workflow in Parsl

Listing 4 shows the image processing workflow from List-
ing 3 implemented in Parsl by importing CWL Command-
LineTool definitions and orchestrating the execution of each
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CommandLineTool in sequence. We present this example to
illustrate how the CWL CommandLineTools can be integrated
in a Parsl program and to highlight the advantages of using a
Python interface to specify the control and data flow between
steps. In this example, we take a modular and Pythonic ap-
proach by defining a function representing the three sequential
steps, which can then be used repeatedly (e.g., in a loop or
in another function) to process multiple images concurrently.
Pars] will derive a DAG of the individual tasks and execute
them in an interleaved fashion when their dependencies are
met (i.e., it will not wait for the three steps to be completed
before running a step from another loop).

1 | import glob

from myconfigs import perlmutter_config
i | from parsl_cwl.cwl_app import CWLApp

parsl.load(perlmutter_config)

9 | resize_image = CWLApp ( )
0 | filter_image = CWLApp ( )
blur_image = CWLApp ( )

13 |def process_img(image: str) -> Future:
resized_img_future resize_image (
15 input_image=image,

size=1024,

17 )

filtered_img_future = filter_image (
20 input_image=resized_img_future.outputs[0],
sepia=True,

)

blurred_img_future blur_image (
input_image=filtered_img_future.outputs
(o1,
26 radius=1,

)

29 return blurred_img_future

final_imgs
glob(

[process_img(img) for img in glob.
, recursive=True) ]

concurrent . futures.wait (
final_imgs, return_when=concurrent.futures.
ALL_COMPLETED

Listing 4: Python Script Example

We describe in listing 4 the various parts of the Parsl
program to illustrate how one can use the CWL integration.

Configuration and Executor Setup: We first configure
a HighThroughputExecutor to manage execution of
the workflow. In this case, we load a configuration for the
Perlmutter Supercomputer at NERSC. We note that any Parsl
executor can be used in the program by using the appropriate
configuration. For example, one can easily use a configuration
for a specific machine, from their prior use of that machine,
configurations published by HPC sites or from the Parsl doc-
umentation for many ACCESS and institutional HPC clusters.

Creating CWLApps: As shown in listing 4, we create a
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Pars] CWLApp for each CommandLineTool by specifying the
CWL file.

Defining the workflow: We define the workflow by cre-
ating a Python function that includes the three stages. Each
consumes the output of the prior stage, which establishes the
dataflow graph.

Stage 1: Image Resizing: The first stage uses the CWLApp,
resize_image, to resize each image to a specified size. A
DataFuture is returned that is passed on to the next stage.

Stage 2: Image Filtering: The filter_image CWLApp
is used to apply a sepia tone filter to each resized image by
setting the sepia input argument to True. The input image to
this step is extracted from the DataFuture from the previous
resizing step A new DataFuture is returned to reference the
filtered image and is passed on to the next stage.

Stage 3: Image Blurring: The final stage involves blurring
each filtered image using the blur_image CWLApp. The
output images, obtained from the DataFutures of Stage 2, are
used as input for for the blurring operation.

Starting the workflow: As the workflow is written in
Python, we have access to the full capabilities of Python.
In this case, we use a list comprehension and a glob pattern
to identify all “png” files in the subdirectories and to start
an instance of the workflow for each. We maintain a list of
Futures for all processed images.

Wait for Results: The use of Futures enables concurrent
execution of the workflow stages for all images. Parsl handles
the workflow automatically, ensuring that the result of each
future is available before executing the subsequent stage. The
pipeline waits for all processing futures to complete before
concluding, ensuring all images are fully processed.

C. Discussion

We have shown how the image processing workflow can be
implemented in Parsl by importing the CWL CommandLine-
Tool definitions. As shown, the Parsl implementation offers an
intuitive Python implementation using the full power of the
Python programming language, enabling modular workflow
definition, simple looping over inputs, asynchronous execu-
tion, and access to Parsl’s executor and provider ecosystem.
The same workflow can therefore be easily moved between
computers and scaled from laptops to supercomputers.

V. PYTHON EXPRESSIONS IN CWL WORKFLOWS

It is clear that static workflow representations are not
suitably expressive for many scientific workflows. Indeed,
such observations motivated the development of Parsl and
it’s predecessor Swift [11], while other static specification
languages like CWL have evolved to support more dynamic
behavior via inclusion of code.

CWL supports specification of dynamic expressions within
workflow definitions. These expressions, written in JavaScript,
enable CWL workflows to adapt their behavior dynamically.
For example, expressions can be used to modify input ar-
guments to pass to CommandLineTools, modify arguments
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passed between stages, or operate on results from Comman-
dLineTools. Here, we propose a new Python-based expres-
sion that better matches the execution environment of Parsl.
Further, Python is a widely-used, easy-to-understand, and
productive language.

We approach this problem by defining a new type of expres-
sion: InlinePythonRequirement. We follow closely the CWL
InlineJavascriptRequirement used for JavaScript. We allow
inclusion of Python code, including functions, to be specified
in the InlinePythonRequirement section. As a referenceable
requirement, the expression can then be reused throughout the
workflow definition.

When invoking the Python expression, we need a way
to refer to variable attributes in the workflow (e.g., input
arguments) and to select the arguments to be passed to
the expression. We adopt a simple notation for referencing
attributes in the workflow: $ (inputs.input).Here, the
“$” indicates the reference, “inputs” the input arguments, and
“input” the specific argument. We adopt a Python f-string-
like [12] syntax to template arguments to be passed to the
InlinePythonRequirement. This allows expressions to be used
anywhere in the CWL workflow definition.

cwlVersion: v1.2
class: CommandLineTool
requirements:
- class: InlinePythonRequirement
expressionLib:
6 -
def capitalize_words (message) :

nnn

9 Capitalize each word in the given

message.
10

11 Args:

12 message (str): The input message.
13

14 Returns:

15 str: The message with each word

capitalized.
wnn

17 return message.title ()

19 | baseCommand: echo
20
o1 | inputs:
message:
type: string
arguments:

26 - f"{capitalize_words ($ (inputs.message))}"

[1

28 | outputs:

Listing 5: InlinePythonExpression capitalizing words

Listing 5 and Listing 6 show examples of how the In-
linePythonExpression can be used. Listing 5 shows a simple
CommandLineTool that calls the echo command and uses
the Python Expression to capitalize the result. Here the In-
linePythonExpression defines a capitalize_words function to
capitalize the input message (a string). The InlinePythonEx-
pression is called in the argument attribute (arguments are
used in CWL to create additional options or modify workflow
inputs for invoking a CommandLineTool). The invocation of
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the capitalize_words function is enclosed within a Python ‘f-
string’, signaling to parsl-cwl that it is a Python expression
requiring evaluation. The argument processes the user input
message, calls the InlinePythonExpression to capitalize the
input, and then invokes the echo CommandLineTool with the
capitalized message as input.

InlinePythonExpressions enable the inclusion of Python
expressions anywhere in the workflow, which is particularly
useful for input validation. Listing 6 shows this with the
use of a validate field for each input. In this example, the
CWL CommandLineTool has a validate field that invokes a
Python function valid_file to verify that the input data file is
of type ‘.csv’. This validation is done before the execution
of the CWL CommandLineTool allowing validation to be
incorporated directly within the CWL file rather than this being
handled externally.

cwlVersion: v1.2
class: CommandLineTool

i | requirements:
— class: InlinePythonRequirement
6 expressionLib:
=

def valid_file(file,

Check 1if a file is wvalid

ext):

12 Args:

13 file (str): Path to the file

14 ext (str): Expected file extension
s

16 Raises:

17 Exception: If the file is invalid

nnn

20 if not file.lower().endswith (ext):

raise Exception(f"Invalid file.
Expected ' {ext}’")

baseCommand: cat

inputs:

26 data_file:

type: File

validate: |

29 f"{valid_file($ (inputs.data_file), ’

P
30 inputBinding:
31 position: 1

.csv’)

outputs:
validated_output:
type: stdout

Listing 6: InlinePythonExpression example to verify that a given input
file is a CSV file

These Python expressions can support multiple use cases:
o Dynamic Input Validation: Python can be used to
implement complex input validation logic, ensuring data
integrity and preventings runtime errors. For example,
fields can be checked for valid ranges, formats, or de-
pendencies, with exceptions raised for invalid data.
Error Handling: Python’s exception-handling mecha-
nisms can be utilized to manage errors, enhancing work-
flow reliability.
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Fig. 1: Runtimes for CWL image processing workflow using CWLTool, Toil and Parsl-CWL on three nodes and one node

« Conditional Defaults: Inline Python allows the specifi-
cation of default values based on other inputs, enabling
dynamic parameter management. This capability is partic-
ularly useful for workflows that require adaptive default
values derived from related inputs.

External Python files: External python files can be
imported making the functions and variables available to
be used in other parts of the CWL document.

VI. EVALUATION

The primary contribution of our work is the integration of
CWL and Parsl and support for inline Python expressions
in CWL. The examples presented illustrate the functional
capabilities realized from this work. Here, we briefly explore
the performance of our CWL and Parsl integration as well as
Python expressions.

1) CLW + Parsl: We evaluate our integration by comparing
execution of a CWL workflow using Parsl with ones executed
using cwltool and Toil.

We implement a CWL workflow using the image processing
workflow detailed in Listing 3 with a wrapper to process a list
of images. The wrapped workflow uses the scatter method
to call the sub workflow on each image individually. This
approach ensures that the execution of the image processing
workflow on each image is independent, allowing cwltool and
Toil to leverage parallel execution of these independent steps.

We conducted our experiments on a high-performance com-
puting cluster located in our department. We used two con-
figurations: 1) a single-node configuration using local threads
or processes; 2) a distributed configuration using three nodes.
Each node in our cluster is equipped with two 12-core Intel
x86_64 processors (48 logical CPUs) and 126GB of RAM. We
configured cwltool with the parallel option and toil-cwl-
runner with the s1lurm batch system. We configured the Parsl
workflow using the example in Listing 4 and using the High-
ThroughputExecutor, for three nodes, and ThreadPoolExecutor
for the single-node deployment. We configured each workflow
system to use all cores available on the allocated nodes.

Figure 1 shows a linear scaling trend as the number of im-
ages increases in both three node and single node deployments.

2046

Using three nodes (Figure la), Parsl-CWL with the High-
ThroughputExecutor achieves approximately 1.5 times better
performance than CWLTool when processing a workload of
1,000 images. Similarly, on a single node (Figure 1b), Parsl-
CWL using the ThreadPoolExecutor outperforms CWLTool by
about the same factor for the same workload.

2) Python Expressions in CWL: We now consider the
time to evaluate InlinePythonExpressions compared to CWL’s
InlineJavaScriptExpressions. We use the simple workflow from
Listing 5 where the expression simply changes the case of a
set of words. We deploy the workflow on a single node on the
HPC cluster. We scale the number of words and record the
time to complete the workflow. In Fig. 2, we see a short time
to process up to 1024 words using the InlinePythonExpression,
a constant performance for the Inline Python Expressions. We
see a superlinear increase in time for JavaScript Expressions
using both cwltool and Toil.
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S 8004 —=— cwltool: InlinejavgScript

19
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Fig. 2: Runtime for CWL InlineJavaScript processing using
CWLTool, Toil and InlinePython using Parsl-CWL as we
increase number of words from 2 to 1024

VII. RELATED WORK

Many workflow systems—353 at the time of writing [13]—
enable the orchestrated execution of multiple applications at
both small and large-scale. Well-known examples include Pe-
gasus [14], Galaxy [15], Swift [11], RCT [16], NextFlow [17],
FireWorks [18], Apache Airflow [19], and Luigi [20]. These
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systems are differentiated by their language, static workflow
definition, explicit graph definition, or focus on specific do-
mains or communities. Community workflow specifications
such as CWL and WDL [21] have become increasingly popu-
lar; however, neither WDL or CWL are themselves workflow
engines, and instead they may be executed using one of several
supported workflow engines.

CWL has developed an extensive ecosystem of runners.
The reference implementation CWLTool and Toil [2] are both
implemented in Python. However, while they may be written
in Python, the runner itself does not expose the Python side of
the tool, instead providing a command line interface for users
to run CWL workflows.

To the best of our knowledge, JavaScript is the only lan-
guage supported by CWL expressions. Others have developed
tools in Python and Java to support creation of CWL defini-
tions directly from other languages and to provide parsing and
validation of CWL definitions [22].

This paper builds on previous ideas, such as the concept
of using common definitions for applications. For example, a
previous paper [23] that included some of the authors of this
paper suggested common configurations for both applications
and systems, with the idea that the owners of those applications
(developers) and systems (system administrators) could do
a small amount of work to make these resources easy for
researchers to use in their workflows.

VIII. SUMMARY

The integration of CWL and Parsl enables Parsl workflows,
written in Python, to easily leverage the ecosystem of CWL
CommandLineTool definitions. It allows users to combine
these two environments, allowing CWL CommandLineTools
to be run in the flexible and scalable Parsl environment on a
variety of computing resources. Our performance evaluation
shows that Parsl can execute CWL CommandLineTools ef-
ficiently and comparably to existing CWL runners. To bring
CWL towards the Python ecosystem we presented a proto-
type integration of Python Expressions within CWL work-
flow definitions. Our approach enhances workflow flexibility
and expressiveness, enabling researchers to implement com-
plex logic, validate inputs, and manage dependencies directly
within their workflows using Python. Our future work focuses
on developing our prototype into a robust toolkit for Parsl and
adding support in Parsl to run complete CWL workflows.
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