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Diatoms are known for their high production in nutrient-
rich, coastal ecosystems (Armbrust 2009; Uitz et al. 2010), 
where seasonal blooms provide resources that support sec-
ondary production, robust fisheries, and diverse megafauna 
(Legendare 1990; Mann 1993). Their ability to fulfill such 
an instrumental role in marine ecosystems is, in part, a result 
of their high bottom-up (Thamatrakoln 2021) and top-down 
(Bjærke et al. 2015; Pančić et al. 2019) competitive fitness. 
Diatoms have fast intrinsic growth rates (Inomura et al. 
2023), including under turbulent conditions (Köhler 1997), 
and high uptake rates (Rogato et al. 2015) and storage capa-
bilities of nitrate (Stief et al. 2022). However, their strong 
competitive fitness also results from their production of 
bioactive phytotoxins with allelopathic and anti-predatory 
effects (e.g., Caldwell 2009).

One suite of diatom-derived phytochemicals with well-
known transtrophic effects are the bioactive polyunsatu-
rated aldehydes (PUAs). PUAs are a class of oxylipins 
produced by many pelagic (Wichard et al. 2005; Vidoudez 

Introduction

Diatoms are microalgae that contribute approximately 40% 
to total marine, and 20% to total global primary production 
(Mann 1999; Falkowski et al. 2004; Harvey et al. 2019). 
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Abstract
Diatoms are key primary producers across marine, freshwater, and terrestrial ecosystems. They are responsible for pho-
tosynthesis and secondary production that, in part, support complex food webs. Diatoms can produce phytochemicals 
that have transtrophic ecological effects which increase their competitive fitness. Polyunsaturated aldehydes (PUAs) are 
one class of diatom-derived phytochemicals that are known to have allelopathic and anti-herbivory properties. The anti-
herbivory capability of PUAs results from their negative effect on grazer fecundity. Since their discovery, research has 
focused on their production by pelagic marine diatoms, and their effects on copepod egg production, hatching success, 
and juvenile survival and development. Few investigations have explored PUA production by the prolific suite of ben-
thic marine diatoms, despite their importance to coastal trophic systems. In this study, we tested eight species of benthic 
diatoms for the production of the bioactive PUAs 2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal. Benthic diatom 
species were isolated from the Salish Sea, an inland sea within the North Pacific ecosystem. All species were found to be 
producers of at least two PUAs in detectable concentrations, with five species producing all three PUAs in quantifiable 
concentrations. Our results indicate that production of PUAs from Salish Sea benthic diatoms may be widespread, and 
thus these compounds may contribute to benthic coastal food web dynamics through heretofore unrecognized pathways. 
Future studies should expand the geographic scope of investigations into benthic diatom PUA production and explore the 
effects of benthic diatoms on benthic consumer fecundity.
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et al. 2011a, 2011b), and some benthic diatom species (Jüt-
tner et a. 2010; Pezzolesi et al. 2017; Ruocco et al. 2018). 
PUAs are synthesized through the enzyme-catalyzed oxida-
tion of polyunsaturated fatty acids (e.g., eicosapentaenoic 
and hexadecatrienoic acid) that are released from diatom 
cells after cell damage (Orefice et al. 2022). PUAs are well-
studied in the pelagic marine environment because they can 
reduce consumer fecundity, namely copepod zooplankton, 
through maternal effects (see review by Russo et al. 2019). 
While adults are not observably affected by PUAs, they 
have teratogenic effects on embryo and larval stages of dia-
tom consumers, thus minimizing diatom grazing impact by 
way of reductions to female cohort sizes (i.e. future graz-
ers). Previous research has found similar negative effects 
of dissolved PUAs on a wide range of organisms and life 
history stages using dissolved PUA molecules. Examples 
include reduced sperm motility in benthic invertebrates 
(Caldwell et al. 2004), delayed sea urchin embryo devel-
opment (Romano et al. 2010; Ruocco et al. 2019), inhibi-
tion of oyster haemocyte cytoskeleton organization (Adolph 
et al. 2004), deformities in larval chordates (Lettieri et al. 
2015), and antiproliferation and generation of programmed 
cell death in human cancer cell lines (Martinez Andrade et 
al. 2018).

Despite PUAs having negative effects on disparate taxa 
and life history stages of pelagic and benthic organisms, 
studies exploring the prevalence of PUA production by ben-
thic diatoms are lacking. Extensive surveys of pelagic PUA-
producing diatom species have been performed since their 
discovery (e.g., Wichard et al. 2005; Bartual et al. 2020). 
However, comparatively little work has examined PUA 
production by benthic diatom species. Scholz and Liebezeit 
(2019) surveyed mudflat benthic diatom production of PUA 
precursor molecules, polyunsaturated fatty acids, finding 
19 of 25 species to be producers, but were unable to detect 
PUA molecules from single-species cultures. To our knowl-
edge, only three studies have detected PUA production by 
marine benthic diatom isolates (five species total), with two 
being surveys conducted in European waters (Jüttner et al. 
2010; Pezzolesi et al. 2017) and the other a result of a feed-
ing experiment (Ruocco et al. 2018). In these surveys, while 
all isolated benthic diatoms produced PUAs of 5- to 11-car-
bon chains (C5 to C11), both noted that medium chain length 
PUAs like C8 dominated the produced aldehyde pool.

In coastal regions, benthic diatoms play important roles 
in both benthic and pelagic food webs (e.g., Christianen et 
al. 2017) and carbon cycling (Serôdio and Lavaud 2020). 
Further, their consumers, organisms like mollusks and crus-
taceans, are economically important and help to sustain 
coastal economies (Cooley and Doney 2009). Given the 
importance of the marine benthic environment, knowing 
whether benthic diatoms are widespread producers of PUAs 

is necessary to gain a holistic understanding of the role ben-
thic diatoms have in coastal food web ecology. In this study, 
we examined cell-wounded (particulate) PUA production 
from eight numerically dominant diatom species isolated 
from the North Pacific Salish Sea ecosystem. We focused 
on three commonly produced, bioactive PUAs (2,4-heptadi-
enal, 2,4-octadienal, and 2,4-decadienal, hereafter referred 
to as heptadienal, octadienal, and decadienal, respectively). 
These PUAs are consistently detected in pelagic diatom PUA 
research (e.g.Wichard et al. 2005; Vidoudez et al. 2011a) 
and are shown to impact consumer fecundity or develop-
ment (e.g., Caldwell et al. 2009; Ruocco et al. 2019). These 
results will inform our understanding of prevalence of PUA 
production by benthic diatoms and their potential to influ-
ence coastal food webs through teratogenic effects.

Methods

Reagents

All reagents were purchased from commercially available 
sources and used without further purification. Concentra-
tions of standards used for instrument calibration accounted 
for the purity of individual standards.

Diatom Isolation and Cultivation

Salish Sea benthic diatom assemblages were collected from 
eelgrass blades during low tide events at Marine Park in 
Bellingham, Washington (48.7193° N, 122.5158° W) and 
from outdoor flow-through seawater tanks housed at the 
Shannon Point Marine Center in Anacortes, Washington 
(48.50805° N, 122.68427° W). Individual diatoms were iso-
lated using a micropipettor and purified by washing several 
times using 9-well wash plates filled with autoclaved filtered 
seawater (AFSW). Once isolated, diatoms were placed into 
polycarbonate bottles with AFSW amended with F/4 growth 
medium. Cultures were routinely assessed for species purity 
but were not axenic of bacteria. Diatom species were visu-
alized using a combination of dissecting, compound, and 
scanning electron microscopy (SEM), and species identified 
by cross-referencing with published sources.

Eight benthic diatom species were isolated and identi-
fied from the Salish Sea: Fragilariopsis pseudonana, Lic-
mophora communis, Licmophora flabellata, Cylindrotheca 
closterium, Fistulifera saprophila, Nitzschia sp. a, Nitzschia 
sp. b, and Navicula sp. (Ehrenberg 1839; Hassle 1965; Lob-
ban et al. 2011; Zgrundo et al. 2013; Kociolek et al. 1881; 
Fig. 1). A minor contamination in the C. closterium culture 
was found during SEM imaging, and the contaminant iden-
tified as Navicula vara (Andrzej and Ditmar 2000; Fig. 1e). 
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No SEM images were taken for Licmophora communis. 
Only F. pseudonana was deemed as a chaining diatom, 
while all others were single-celled pennate or community 
species.

Once isolated, diatom cultures were maintained in poly-
carbonate bottles (125 mL) using AFSW amended with 
F/4 growth medium. Cultures were grown in environmen-
tal incubators on a 11:13 light: dark cycle at 15 °C. Once 
per week, cultures were homogenized by gentle mixing, 
reduced by 75%, and refilled with growth medium.

Experimental Procedure

For PUA analysis, each benthic diatom species was dis-
persed into triplicate glass bowls covered with plastic wrap 
to minimize evaporation and filled with 200 mL AFSW 
amended with F/4 growth medium. After 6 days, each cul-
ture was homogenized, an aliquot (10 mL) removed for 
chlorophyll-a analysis, and the remaining volume (∽ 190 
mL) processed for PUA analysis. Preliminary experiments 
with similar culture density and volumes indicated station-
ary phase for cultures - when PUA production is expected 
to be at its maximum (Ribalet et al. 2007) - was reached 
within 6 days of inoculation. Chlorophyll-a concentrations 
and PUA production data are presented as averages from 
analysis of these triplicate cultures.

Chlorophyll-a Quanti!cation

Chlorophyll-a was used to standardize PUA production 
between the diatom cultures, as it is commonly used as 
a proxy for phytoplankton biomass (e.g., Jakobsen and 
Markager 2016) and is the primary pigment used by dia-
toms for photosynthesis (Kuczynska et al. 2015). Uniformly 
mixed culture aliquots (10 mL) were filtered onto GF/C 
(1.2 μm) glass fiber filters, placed in test tubes containing 
90% acetone, and stored at -20 °C to allow for chlorophyll 
extraction. The next day, samples were brought to room 
temperature in darkness and decanted into glass test tubes. 
Chlorophyll-a was quantified using a Trilogy fluorometer 
on acidification mode by measuring fluorescence before 
and after acidification with 1 M hydrochloric acid (Loren-
zen 1967).

PUA Extraction

Diatoms were vacuum filtered onto GF/C glass fiber fil-
ters. Vacuum was maintained under 500 mBar to prevent 
diatom cell wall disruption (Vidoudez et al. 2011a). Filters 
were transferred into glass vials containing O-(2,3,4,5,6-
pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA, 
1 mL, 25 mM) in Tris/HCl (100 mM, pH 7.0) derivatiza-
tion agent and benzaldehyde internal standard (5 µL, 1 mM) 
and frozen at -20 °C. Samples were thawed completely, and 
the freeze/thaw process was repeated twice more to ensure 
cell lysing. After the last thaw, samples were kept at room 

Fig. 1 Representative scanning electron micrographs used for iden-
tification of (a) Fragilariopsis pseudonana, (b) Nitzschia sp. a, (c) 
Licmophora flabellata, (d) Cylindrotheca closterium, (e) Navicula 

vara, (f) Fistulifera saprophila, (g) Nitzschia sp. b, and (h) Navicula 
sp. White scale bars depict 1 μm in all images but (c) and (d), which 
depict 10 μm
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measured chlorophyll-a values (nmol per µg chlorophyll-
a). MDL and MQL values for analyzed PUA molecules are 
presented in Table 1.

Results

All eight benthic diatom species surveyed produced PUA 
molecules in detectable amounts (Fig. 2). The total concen-
tration of PUAs produced varied between species, with the 
largest difference being 100 times more PUAs produced 
upon cell lysis in F. pseudonana than in C. closterium. The 
chain-forming species F. pseudonana produced the high-
est concentration of PUAs at 0.25 nmol/µg chlorophyll-a, 
almost three times more than the next highest concentration 
seen in L. flabellata at 0.085 nmol/µg chlorophyll-a. Across 
genus, L. flabellata produced almost ten times more PUA 
molecules than its counterpart L. communis, a difference 
not observed across Nitzschia species, where concentrations 
varied only 33% (Fig. 2).

Mean particulate PUA concentration also varied by 
PUA molecule, ranging from 0.6 pmol/µg chlorophyll-a 
(L. communis, decadienal) to 0.14 nmol/µg chlorophyll-a 
(F. pseudonana, octadienal). The largest inter-species PUA 
concentration range was seen in octadienal (Fig. 3). Both 
heptadienal and decadienal were produced by all eight 
diatom species, while octadienal was detected in seven of 
the eight species. Production of decadienal was two orders 
of magnitude lower than that of the other PUAs and was 
unquantifiable in some cultures. Interestingly, two diatom 
species that produced some of the highest concentrations 
of heptadienal and octadienal (F. pseudonana and L. flabel-
lata) produced unquantifiable concentrations of decadienal. 
In addition, diatom species that produced quantifiable deca-
dienal concentrations (excluding F. saprophilia) produced 
the lowest concentrations of both heptadienal and octadi-
enal (Fig. 3).

Discussion

All eight benthic diatom species surveyed produced bioac-
tive PUA molecules in detectable concentrations, with seven 
of the eight species producing all three of the monitored 
PUAs. Previously surveyed marine benthic diatom isolates 
commonly produced precursor polyunsaturated fatty acids 
but showed inconsistent production of PUAs (Pezzolesi 
et al. 2017; Scholz and Liebezeit 2012). PUA production 
surveys from pelagic diatom species showed similar vari-
ability in PUA production across species (e.g., Wichard et 
al. 2005), though the number of pelagic species surveyed 
is much higher than benthic species. Thus, it remains to be 

temperature for one hour to allow the derivatization reac-
tions of released PUAs to occur. Samples were brought up 
in methanol, acidified with sulfuric acid (6 drops, 1 M), and 
extracted three times with hexane. Samples were centrifuged 
as needed to break any emulsion created by cell disruption. 
Hexane extracts were combined and water removed by 
addition of anhydrous sodium sulfate. Extracts were trans-
ferred to clean vials and brought to dryness under nitrogen. 
Residues were brought up in hexane (95 µL), transferred to 
a GC vial, and n-hexadecane-d34 (5 µL, 0.226 mg/mL) was 
added as a recovery standard. Samples were wrapped with 
Teflon tape and stored at -80 °C until gas chromatography 
with mass spectrometry detection (GC-MS) analysis the fol-
lowing day.

GC-MS Analysis

The instrument consisted of a HP 6890 gas chromatograph 
equipped with an Agilent 7683 autosampler coupled to a HP 
5973 quadrupole mass spectrometer. Samples were injected 
in splitless mode and separated on a Agilent HP-5MS col-
umn (30 m, 0.250 mm internal diameter with 0.25 μm film 
thickness) programmed from 60 °C (2 min hold), ramped to 
240 °C at 8 °C/min, then to 285 °C at 15 °C/min. Helium 
was used as the carrier gas at a constant flow of 1.5 mL/min. 
Data was collected in selective ion monitoring mode. PUA 
identification was performed using their molecular ions: 
m/z 305 (heptadienal), 319 (octadienal), and 347 (deca-
dienal). Other monitored ions included: m/z 57 (alkanes), 
66 (n-hexadecane-d34), 181 (all PFBHA-derivatized alde-
hydes), and 276 (all PUA molecules).

PUA Quanti!cation

PUAs were quantified by comparing the benzaldehyde 
internal standard peak area to each PUA molecular ion. 
Recoveries were calculated based on peak areas of internal 
(benzaldehyde) and external (hexadecane-d34) standards, 
taking into account instrument response factors. Response 
factors were calculated via an external calibration curve. 
Method detection limit (MDL) and quantification limit 
(MQL) were determined following Glaser et al. (1981). 
These limits were used for quantifying PUAs produced by 
each culture. Quantifiable PUAs were standardized using 

Table 1 Method detection limits (MDL) and quantitation limits (MQL) 
for PUA molecules. Values were calculated using 6 replicate 0.001 
nmol mixed PUA standards. MDL was calculated as 3σ and MQL as 
10σ
Compound MDL (nmol) MQL (nmol)
2,4-heptadienal 0.00556 0.0185
2,4-octadienal 0.00526 0.0175
2,4-decadienal 0.00858 0.0286
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2005; Pezzolesi et al. 2017). This consistent result across 
all PUA producers indicates longer chain length PUAs like 
decadienal may be energetically unfavorable to form and 
are therefore produced in lower concentrations, with dia-
toms instead opting to produce shorter chain length mol-
ecules. Variation in PUA molecule production could also be 
related to the availability of precursor polyunsaturated fatty 
acids or lipoxygenase enzyme oxidation specificity (Orefice 
et al. 2022).

Some studies exploring the negative effects of PUAs 
on benthic invertebrate larvae have found a difference in 
bioactivity of PUA molecules, with decadienal having the 
highest bioactivity and octadienal the lowest (Varrella et 
al. 2014). A difference in PUA molecule bioactivity may 
explain why PUA molecules are produced in different con-
centrations within a population; higher bioactivity PUAs 
like decadienal are needed in lower concentrations to induce 
an effect (Romano et al. 2010), a finding consistent with 
the relative concentrations produced here. However, these 

determined how variable PUA production by benthic spe-
cies is compared to their pelagic counterparts. In addition, 
one species surveyed, C. closterium, had previously been 
tested and deemed a non-producer of PUAs following a sea 
urchin fecundity experiment (Ruocco et al. 2018). However, 
our results indicate C. closterium is in fact a PUA producer, 
though it consistently produced the lowest quantifiable PUA 
concentrations of all diatoms tested (Fig. 3).

Across the individual PUA molecules, octadienal, 
an 8-carbon chain length PUA (C8), was produced in the 
highest concentrations and decadienal (C10) in the lowest. 
Pelagic PUA producer surveys have found heptadienal and 
other C7 PUAs to be produced in the highest concentra-
tions (Vidoudez et al. 2011a), contrasting with our results 
and other benthic surveys, where C8 PUAs dominated (Jüt-
tner et al. 2010; Pezzolesi et al. 2017). Across both pelagic 
and benthic surveys, decadienal and other C10 PUAs were 
consistently observed in lower concentrations over C6, C7, 
and C8 PUAs, congruent with our findings (Wichard et al. 

Fig. 2 Total PUA production of benthic diatoms. Gray bars represent means of quantifiable replicates and error bars represent standard deviations. 
Each diatom species tested was cultured in triplicate and quantified as nmol PUA molecule per µg of chlorophyll-a
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1999; Ianora et al. 2004; Brugnano et al. 2016) and cause 
increased expression of stress-related genes in copepods 
in natural environments (Lauritano et al. 2016). Maternal 
copepod diets consisting of pelagic PUA-producing diatoms 
and gamete exposure to dissolved PUAs reduces egg viabil-
ity, hatching success, and embryogenesis (Ban et al. 1997; 
Ianora et al. 1999; Lauritano et al. 2016). In the benthic 
environment, diatoms are the primary food source for many 
consumers, including protists (Haynert et al. 2020), mol-
lusks (Kasim and Mukai 2006), and crustaceans (Zimba et 
al. 2016), which in turn support higher trophic level organ-
isms. Studies have found similar teratogenic effects in the 
benthic environment when female sea urchins consumed 
common benthic diatom diets unknown to be PUA produc-
ers (Ruocco et al. 2018). In addition, benthic diatoms bloom 
in early spring, when benthic diatom-consuming inverte-
brates (e.g., intertidal snails) reproduce (Pardo and Johnson 

PUA bioactivities were assessed using individual PUA mol-
ecules, whereas many species of diatoms produce mixtures 
of PUAs. Ruocco et al. (2019) showed that PUA mixtures 
have higher bioactivities in comparison to single PUAs, 
meaning diatom communities producing PUA mixtures can 
induce maternal effects at lower concentrations, increasing 
efficiency and thus their ecological fitness. This mixture 
synergy may evolutionarily explain why many diatoms can 
produce multiple PUA molecule types, a finding consistent 
with our results and other surveyed species (e.g., Wichard et 
al. 2005; Pezzolesi et al. 2017). However, the selectivity of 
diatoms opting to produce one PUA over another is yet to 
be explained.

Widespread production of PUAs in benthic diatoms of 
the Salish Sea has significant ecological implications. Stud-
ies of PUAs in the pelagic environment have shown nega-
tive impacts on consumer fecundity (e.g., Miralto et al. 

Fig. 3 Production of (a) 2,4-heptadienal (HEPTA), (b) 2,4-octadienal 
(OCTA), and (c) 2,4-decadienal (DECA) by benthic diatoms. Gray 
bars represent means of quantifiable replicates and error bars represent 
standard deviations. Each diatom species tested was cultured in trip-
licate and quantified as nmol or pmol PUA molecule per µg of chlo-

rophyll-a. Species containing replicate cultures below method quan-
titation limit are marked with an asterisk. L. communis production of 
octadienal was below method detection limit and is marked with ‘ND.’ 
Note differences in scale and units of Y axes
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duction to further understand how ubiquitous production 
of PUAs is in the benthic environment. In addition, future 
studies should continue to explore the impact that PUA-
producing benthic diatoms may have on the fecundity of 
their benthic consumers via predation. These could include 
organisms with diets dependent on benthic diatoms, or 
consumers that reproduce during seasonal benthic diatom 
blooms. These benthic consumer studies, along with con-
tinued benthic diatom PUA surveys, will allow for a greater 
understanding of the role benthic diatoms have in support-
ing secondary production in complex coastal food webs.
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