


















We extend the PE design described above to keep the FMAC

unit highly utilized. To support multithreading, we replicate

the operation generator context (one per task) and the PE’s

intermediate operation queue so that operations from multiple

tasks can be in-flight. Operations are chosen for execution

from the earliest task that has no dependences on other in-

flight operations. This ensures forward progress and avoids task

starvation. Such a design hides stalls and achieves a throughput

of one arithmetic operation per cycle.

The PE described above needs no additional hardware to

execute all other tasks in SpMV and SpTRSV. We simply

extend the operation generator FSM to produce two new

simpler operations, Add and Mul, which flow through the same

pipeline and use minimal additional logic to skip unnecessary

functionalities (e.g., reading the Accumulator SRAM in Mul).

Tasks like SendV and ReduceY map to 1–2 Add/Mul/Send

operations.

Each tile contains a small register-based buffer for storing

incoming messages. To avoid deadlocks, if the buffer becomes

full, additional incoming messages are spilled to the Data

SRAM.

B. On-chip Network

Azul uses a 2D-torus network topology. Each PE has its own

router. Each cycle, the router is able to receive a message on

all input queues and send a message on all output queues.

VI. EVALUATION

We evaluate Azul on preconditioned conjugate gradients

(PCG) with an incomplete-Cholesky preconditioner. PCG is

commonly used and is representative of many other iterative

solvers, which consist of SpMV and SpTRSV (Sec. II-B).

A. Experimental Methodology

Simulation infrastructure: We evaluate Azul using a cycle-

level simulator with detailed timing models for the PEs and

network. We model each hardware component as an object and

tick each object for each cycle, thus simulating execution cycle-

by-cycle. We faithfully simulate contention in the network and

operation interleaving in PEs due to multithreading. We ensure

functional correctness by checking the simulator’s PCG results

against a reference implementation [3].

We use RTL synthesis for Azul’s custom PE, and standard

modeling tools for the other components, combined with activity

factors from simulation, to obtain area and power figures in

7nm technology, as detailed in Sec. VI-E.

Simulated system: By default, we model the 4096-tile Azul

configuration in Table III. Sec. VI-G evaluates larger designs.

We implement PCG as shown in Listing 1, with dataflow

tasks as detailed in Sec. IV. To remove long-latency floating

point divisions from the computation’s critical path, we store

all diagonal elements d in memory as 1
d

.

Baselines: We compare Azul with three baseline architectures:

1. GPU is an NVIDIA V100 PCIe GPU running Ginkgo [3], a

state-of-the-art linear algebra library, to execute PCG with an

incomplete Cholesky preconditioner.

Matrix n nnz A b Matrix n nnz A b

s3dkt3m2 9.04e4 3.75e6 29 1 G3 circuit 1.59e6 7.66e6 59 13
cant 6.25e4 4.01e6 31 1 shipsec1 1.41e5 7.81e6 60 2
offshore 2.60e5 4.24e6 33 2 thermal2 1.23e6 8.58e6 66 10
pdb1HYS 3.64e4 4.34e6 34 1 m t1 9.76e4 9.75e6 75 1
thread 2.97e4 4.47e6 35 1 crankseg 1 5.28e4 1.06e7 81 1
apache2 7.15e5 4.82e6 37 6 bmwcra 1 1.49e5 1.06e7 82 2
ecology2 1.00e6 5.00e6 39 8 hood 2.21e5 1.08e7 83 2
tmt sym 7.27e5 5.08e6 39 6 pwtk 2.18e5 1.16e7 89 2
consph 8.33e4 6.01e6 46 1 BenElechi1 2.46e5 1.32e7 101 2
boneS01 1.27e5 6.72e6 52 1 nd12k 3.60e4 1.42e7 109 1

af 1 k101 5.04e5 1.76e7 134 4 Emilia 923 9.23e5 4.10e7 313 8
af shell8 5.05e5 1.76e7 135 4 ldoor 9.52e5 4.65e7 355 8
bundle adj 5.13e5 2.02e7 155 4 Hook 1498 1.50e6 6.09e7 465 12
msdoor 4.16e5 2.02e7 155 4 Geo 1438 1.44e6 6.32e7 482 11
StocF-1465 1.47e6 2.10e7 161 12 Serena 1.39e6 6.45e7 493 11
Fault 639 6.39e5 2.86e7 219 5 bone010 9.87e5 7.17e7 547 8
inline 1 5.04e5 3.68e7 281 4 audikw 1 9.44e5 7.77e7 593 8
PFlow 742 7.43e5 3.71e7 284 6

Flan 1565 1.56e6 1.17e8 896 12 Queen 4147 4.15e6 3.29e8 2514 32
Bump 2911 2.91e6 1.28e8 975 23

TABLE IV: Benchmark matrices used in the evaluation. Matrices
in the first section fit in 4K tiles, matrices in the mid section fit
in 16K tiles, and matrices in the bottom section fit in 64K tiles.
The A and b columns report matrix and vector SRAM footprints,
respectively, in MB.

2. ALRESCHA [4] is a prior accelerator for iterative solvers

(Sec. III). We model it as a full-utilization accelerator that

completely saturates its 288 GB/s main-memory bandwidth, and

achieves perfect reuse on all vectors, so that the only memory

traffic is from the sparse matrices in SpMV and SpTRSV. This

generously overestimates ALRESCHA’s actual performance.

3. Dalorex is modeled using the same configuration as Azul

(Table III), except that each PE is a scalar RISC-V core. The

core has a fully pipelined FPU that can do FMACs, ensuring the

same peak throughput as Azul. Sends take a single instruction.

We compile each task using gcc with -O3.

Data Mapping algorithms: We implement Azul’s data map-

ping algorithms using PaToH v3.3 [12] to perform hypergraph

partitioning. Sec. VI-C compares with prior works’ mapping

algorithms.

Input matrices: Because PCG works on symmetric positive-

definite (SPD) matrices, we select large SPD matrices from

SuiteSparse [19]. For most of the evaluation, we use the 20

largest SPD matrices that fit in 4096-tile Azul’s memory, shown

in Table IV.4 They come from diverse domains such as circuit

simulation, finite-element modeling, and computer vision.

In Sec. VI-G, we evaluate scaled-up Azul designs with 4×

and 16× more memory. These designs fit all the largest SuiteS-

parse matrices (Table IV), which we use in these experiments.

We color and permute matrices with networkx.greedy -

coloring [29] to increase available SpTRSV parallelism.

B. Performance Analysis

Speedup comparison: Fig. 20 shows the speedups of Azul,

ALRESCHA, and Dalorex over the GPU baseline when running

PCG. Matrices in this and later figures are sorted by their avail-

able parallelism (parallelism grows from left to right). As seen

4We remove near-duplicate matrices, e.g., we only take one (af shell).
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