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Abstract—Solving sparse systems of linear equations is a
fundamental primitive in many numeric algorithms. Iterative
solvers provide an efficient way of solving large, highly sparse
systems. However, iterative solvers are inefficient on existing
architectures because they perform computations with (1) poor
short-term reuse, which causes frequent off-chip memory traffic;
and (2) challenging data dependences, which limit parallelism.

We present Azul, a hardware accelerator that achieves high
arithmetic intensity by keeping data in distributed on-chip SRAM.
Azul is organized as a grid of tiles, each with a small memory
and a simple processing element (PE). This enables keeping solver
data on-chip across iterations, achieving high reuse. We present
a novel scheduling algorithm that maps data and computation
across PEs to avoid communication bottlenecks while achieving
high parallelism, and a specialized PE that achieves high utilization
of arithmetic units.

When tested on a representative set of matrices for sparse
iterative solvers, Azul is gmean 217 faster than state-of-the art
GPU implementations, 159 faster than a previously proposed
accelerator for sparse iterative solvers, and 90x faster than a
previously proposed distributed-SRAM accelerator.

Index Terms—Hardware accelerators, sparse linear algebra,
iterative solvers, all-SRAM architectures

[. INTRODUCTION

Solving sparse systems of linear equations is a key com-
putation at the heart of many numeric algorithms. In linear
algebra terms, solvers find a vector x such that Ax = b, where
A is a sparse matrix and b is a known right-hand-side vector.
Linear solves dominate the performance of optimization solvers,
physics simulations, and engineering tools.

Iterative solvers are a widely used class of methods to solve
linear systems (Sec. II). Iterative solvers make some initial
guess for x, then iteratively
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GFLOPS/s), when solving several representative sparse
matrices using preconditioned conjugate gradients (PCG), a
common iterative solver. Even on the most favorable matrix,
the GPU achieves only 0.6% of its peak throughput!

This is because a few sparse matrices dominate the memory
footprint. These matrices commonly take several tens of
megabytes. Each iteration traverses these matrices and uses
each value once, yielding no intra-iteration reuse. Conventional
architectures like GPUs fetch these matrices from main memory
each iteration, making memory bandwidth a key bottleneck and
resulting in dismal performance (Fig. 1).

We present Azul, a hardware accelerator for iterative solvers
that addresses these shortcomings. Azul relies on several key
insights:

All-SRAM architecture: We can erase the main-memory
bottleneck by building an architecture that fits operands on-chip
and can thus exploit inter-iteration reuse. Solvers run for many
iterations, with each iteration accessing the same matrices. Al-
locating enough on-chip SRAM to fit these matrices provides a
step-function in reuse. In order to provide high-bandwidth, low-
latency access to this SRAM, we adopt a distributed-memory
architecture consisting of many small, spatially distributed tiles
of memory each with a nearby processing element (PE).

SRAM is large enough: Within a single die, SRAM sizes are
limited to moderately sized matrices. However, many numeric
applications operate on matrices that fit in single-die SRAM, yet
run for hours, as they simulate systems across many (sometimes
millions of) timesteps. In Sec. II-C, we describe in detail how
solving the system state at each timestep involves at least

refine it until it converges to ol Lo one linez}r solve, and these applications’ working sets fit into
the correct solution [9, 10, chlps u'smg current SRAM technolggy. For example, analog
24, 31]. ;ﬁ 304 Loa simulation of one read and one write to a 128 x32b SRAM
Unfortunately, iterative E 2. generated by QpenRAM [28] takes Xyce [59], a state—of—the—?rt
solvers are very inefficient 5 Lo open-sourc.e.mmulat.or, 3.5 hours on a 24-core.CPU, desplFe
on existing hardware due to 104 op]y 1.7 million matrix nonzerqs. Slmllarly, n.onv-lmear magnetic
a combination of frequent ol it 0.0 simulations [55] take hours with just 3.7 million nonzeros.
main memory accesses &e"o/ 0\/@%&{0& Q@&a There is a class of applications whose system matrices are
and challenging parallelism & ° $ T still too large for current commercial SRAM technology. In

(Sec. III). Fig. 1 shows the
utilization of an NVIDIA
V100 GPU (and percentage
of peak throughput in

Fig. 1: Performance of a V100
GPU running Ginkgo Cg [3], a
state-of-the-art iterative solver, on
representative matrices.

Sec. VI, we evaluate Azul assuming SRAM sizes that do not
currently fit into single-reticle-sized dies but that would apply
to wafer-scale chips or multi-chip-modules, to show that Azul’s
techniques scale gracefully to larger system and problem sizes.
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Fig. 2: Azul’s performance on iterative solvers compared to
baseline systems.

SRAM alone is not sufficient: Prior work has proposed
distributed all-SRAM architectures for other domains, including
machine learning [1, 13] and graph processing [44]. However,
these designs are ill-suited for iterative solvers: some are
incapable of handling unstructured sparsity, while others have
PE designs that limit throughput due to control overheads. Fig. 2
shows that despite having all data on-chip, Dalorex [44], a state-
of-the-art distributed SRAM accelerator, only achieves a gmean
2.3x speedup over the GPU baseline on iterative solves.

This low performance stems from two key problems: (/)
Dalorex’s in-order cores limit throughput due to their high con-
trol overheads. Most instruction issue slots go to bookkeeping
and address calculation, leading to low compute utilization.
(2) Careful data placement is essential for high performance,
but Dalorex neglects it. (This is because Dalorex targets graph
processing, not iterative solvers.) The subset of operands present
in each tile’s memory dictates that tile’s need to exchange data
with other tiles over the network-on-chip (NoC). Poor data
placement results in low arithmetic intensity at a network level
(FLOPs/network traffic), making applications network-bound.

We contribute novel hardware and software techniques that
erase these bottlenecks. First, we design simple PEs that
leverage specialization, dataflow execution, and lightweight
multithreading to achieve high utilization of floating-point units.
Fig. 2 shows that, while Azul’s PEs improve performance
by 8x over Dalorex’s general-purpose cores, using prior data
placement techniques makes the problem communication-bound
and results in only ~ 4.5% of peak compute throughput.

Second, to increase tile-level reuse and remove the NoC
bottleneck, Azul adopts a hypergraph-partitioning based data
mapping approach. Data values (matrix nonzeros and vector
elements) are individually considered for placement at each
of Azul’s PEs. This fine-grained mapping reduces traffic by
66x gmean, and provides a 10.2x speedup (Fig. 2). While
our mapping algorithm is costlier than the simple heuristics of
prior work, its large performance gains and the long-running
nature of solvers more than compensate this cost (Sec. VI).

We evaluate an Azul implementation with 4096 (64 x 64)
small tiles, each with 96 KB of SRAM (Sec. VI). Tiles are
connected with a 2D-torus NoC. This system has 432 MB
of SRAM and an aggregate 196 TB/s of SRAM bandwidth,
with a modest 6 TB/s network bisection bandwidth. As Fig. 2
shows, Azul achieves high performance and utilization, beyond
8 TFLOP/s of double-precision computations, across a wide
range of matrices. Overall, Azul outperforms a GPU by gmean
217x, and prior accelerators for iterative solvers by 159x.
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In summary, we make the following contributions:

The observation that sparse iterative solvers are well suited
to distributed-SRAM architectures.

A novel high-quality data mapping algorithm that substan-
tially reduces communication over prior approaches.

A specialized PE design that achieves high utilization.

An accelerator, Azul, that combines these techniques to out-
perform prior accelerators by over two orders of magnitude.

II. BACKGROUND

Solving systems of linear equations, i.e., solving x such that
Ax = b given matrix A and vector b, is a dominant kernel in many
scientific applications [21, 25, 30, 54]. There are two classes
of solvers: iterative solvers work by starting with an initial
guess of x, and refining it each iteration, until they converge to
a sufficiently accurate value of x. Direct solvers, by contrast,
work by factoring the A matrix, i.e., decomposing A into factors
with a structure that makes solving Ax = b easy. For example,
LU factorization decomposes A into a product of a lower-
triangular matrix L and an upper-triangular matrix U (A = LU).
LU factorization is itself expensive, but makes solves cheap.

In this work, we focus on iterative solvers because they

dominate in important cases [31, 35, 62]. Even discounting the
high upfront cost of factorization, a common problem with direct
solvers is that factors are much denser than A. For example, in
LU factorization, the L and U matrices are much denser than A,
so nnz(L+U) >> nnz(A). In some cases, nnz(L+U) can be as
much as 1000x larger than nnz(A). These large factors cause
enormous storage and computation overheads. In contrast, at
each iteration, iterative solvers do O(nnz(A)) work. Even if the
iterative solver takes hundreds of iterations, it is often much
faster. Prior work has shown that sparse matrix factorization
is amenable to hardware acceleration [22]. Even so, iterative
solvers are still vastly more efficient on many input matrices.
Sparsity: Iterative solvers normally process extremely sparse
matrices (< 0.001% nonzeros). This is a result of problem
structure: many physical systems only have local interactions
within a large system. For example, when simulating a circuit
containing millions of nodes, each node is only connected
to a handful of neighbors. Solvers leverage this sparsity by
storing and processing only the nonzero values of these matrices.
Sparsity causes irregular memory access patterns and data
dependences, as well as variations in the amount of work, all
of which depend on the structure (sparsity pattern) of the input
matrix.
Numerical stability and preconditioning: The performance
of iterative methods is also a function of the numeric values
in A, not just its sparsity pattern. With some matrices, the
solver converges in relatively few iterations, while others make
the iterative solver diverge. To ensure convergence, iterative
algorithms rely on preconditioners: instead of solving Ax = b,
they solve PAx = Pb, where P (called a preconditioner) is chosen
using domain-specific knowledge [5, 15, 36, 49].

A. Preconditioned Conjugate Gradients (PCG) Solvers

To make our discussion of iterative solvers more concrete,
we focus on the preconditioned conjugate-gradients (PCG)
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running on one V100 GPU.

1 def pcg(A, b, L, tol=1le-10):

2 X = zerovec(), r = b # residual

3 zZ =p = trisolve(LT, trisolve(L,r))
4 while (|Ir|| > tol):

5 Ap = mvmul (A, p)

6 alpha = rz_old / dot(p, Ap)

7 x += alpha * p

8 r -= alpha * Ap

9 y = trisolve(LT, trisolve(L, r))
10 rz_new = dot(r, z)

11 beta = rz_new / rz_old

12 p =z + beta * p

13 rz_old = rz_new

14 return x

Listing 1: Pseudocode for the preconditioned conjugate gradients
(PCQG) iterative solver (with an ICC preconditioner).

algorithm. Variants of this algorithm are used as a benchmark
for supercomputers [31].

Listing 1 shows pseudocode for an implementation of PCG.
The algorithm takes as inputs the matrix A, the right-hand-side
vector b, a lower-triangular matrix L (i.e., all values above its
diagonal are zero) related to the preconditioner,! and a small
tolerance value tol used to determine convergence. A and L are
highly sparse matrices stored in a compressed format, while the
vectors are dense. Nonetheless, since each row of A and L have
several nonzeros, they are by far the largest data structures.

The for loop in lines 4-13 progressively refines vector x.
Each iteration updates x (line 7), updates a residual vector
tracking the value of Ax —b for the current x (line 8), and
chooses a new search direction (lines 9-12). Once the residual
is small enough, the loop terminates. The mathematical details
of how x is refined are not needed to understand PCG’s
performance.

PCG’s performance is dominated by the operations that
involve the large matrices, A and L: a sparse matrix-vector
multiply (SpMV) with A (line 5) and two sparse triangular
solves (SPTRSVs) using L and its transpose, LT (line 9). Fig. 3
shows a breakdown of execution time of PCG on one V100
GPU (using Ginkgo Cg [3], a state-of-the-art iterative solver),
showing that most time is spent in SpMV and SpTRSV; the
other operations are simple vector operations (e.g., dot products).

To effectively accelerate PCG (and iterative solvers in
general), we must accelerate these kernels, so we focus on them
next. Note that even though GPUs are well suited to element-

L is a matrix such that LL" = P!, Tt is computationally inefficient to store
P and directly compute PAx. Instead, we can obtain PAx as follows:

=P(Ax) » P lv=Ax— LLTv = Ax
which allows us to get v by a triangular solve with L, then one with L".

TABLE I: Maximum available parallelism for SpMV and
Fig. 3: Runtime breakdown by SpTRSV across representative matrices. Parallelism is total
kernel of PCG (Ginkgo Cg [3]), work divided by critical path length.

lar matrix L and a known right-
hand-side vector b, SpTRSV
finds x such that Lx = b.

Fig. 5: Data dependences of SpTRSV on the matrix from Fig. 4.

wise vector operations, reductions (present in vector dot product
on lines 6-8, 10, and 12 of Listing 1) consume non-trivial
amounts of time. This is because inter-thread communication
and synchronization are expensive on GPUs. Furthermore,
the all-to-all dependences on the dot products mean that the
computation must be broken up across several kernels incurring
repeated kernel launch overheads and excess data movement.
SpMYV: Sparse-matrix times vector multiplication takes a sparse
matrix M and multiplies it by a vector v to create a new vector
y. The expression for each element of y is as follows:
Z M, i jv fi
jenz(M;)

where nz refers to nonzeros. Note two interesting properties of
SpMV: (1) Each matrix element is read only once. This lack of
reuse means that SpMV is memory-bound if the matrix comes
from main memory. (2) Ample parallelism: products of any
M;; and v; are independent and can be computed in parallel.

Since GPUs have more memory bandwidth than CPUs and
can effectively parallelize this computation, they achieve sizable
speedups on SpMV [26].
SpTRSYV: Solving a triangular matrix is done by straightforward
substitution. Consider the triangular system shown in Fig. 4:
lower-triangular matrix L and vector b are known, and we seek
x such that Lx = b. Finding xq is trivial: xp = Lo However,

L
consider finding x;. By multiplying L and x, we obtain:

Loxo + Looxy = by
Rearranging, we get:
by — Lyoxp

Xy =
L

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
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creates triangular solve parallelism. Note
that while non-triangular A matrices are
shown, the triangular solves in PCG operate
on L and LT matrices with the same sparsity

pattern as A’s lower and upper triangles. mance on GPUs.

which implies a data dependence on xo. We can solve for x;
only after finding xy. In general, we have:

1 i—1
Xi = L_ (bi— ijLij>
il j=0

Observe that like SpMV, each nonzero in L is read only
once, causing similarly low arithmetic intensity. But unlike
SpMYV, SpTRSV does not have ample parallelism. In fact, the
expression indicates that x; depends on x; for all j where L;; # 0.
Fig. 5 shows the data dependence graph of the solve from Fig. 4.
The data dependence graph captures all dependences, and is
directly derived from the matrix’s sparsity pattern.
Parallelism-improving preprocessing: SpTRSV’s irregular
data dependences limit its parallelism. Different sparsity patterns
inherently imply different levels of parallelism. Consider for
example the tri-diagonal matrix shown on the left of Fig. 6.
Naively, executing triangular solve on its lower triangle is a
purely sequential computation. To solve each row, we must
solve the previous row, eliminating any possible parallelism.

Graph coloring is a well-known [2, 43, 51] technique
used to boost the parallelism of these inherently sequential
computations. This involves treating a matrix as a graph and
coloring its rows, then permuting both its rows and columns such
that same-color rows are adjacent (Fig. 6, right). By definition,
rows with the same color are independent, so placing them
next to each other eliminates many dependences. Instead of
being totally sequential, the triangular solve now has some
parallelism.

Permuting a matrix can increase the iterative solver’s iteration
count, but the parallelism benefits far outweigh this cost on
parallel architectures. Fig. 7 shows the speedups gained by
graph coloring on a GPU, which are at least 2x and often
much larger.

Table I demonstrates how graph coloring takes a parallelism-
limited computation and significantly reduces this bottleneck.
We estimate the maximum available parallelism of these compu-
tations by dividing the total number of operations by the length
of the computation’s critical path. Note that these estimates are
approximate: they ignore data-movement latency and assume
that all operations have single-cycle latency. However, it is
clear that as a highly parallel hardware accelerator, it is crucial
for Azul to take advantage of such state-of-the-art parallelism
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Fig. 7: Improving parallelism as their key kernels. Note that different preconditioners
using graph coloring signifi- have different numeric properties. Selecting the appro-
cantly improves solver perfor- priate solver and preconditioner for a specific problem

is an unsolved problem in numerical algorithms.

improving techniques. Also note that while this preprocessing
step enhances available parallelism, Table I shows that it is still
not boundless. Unless otherwise specified, all results shown
in this paper (including Fig. 1 and Fig. 3) use colored and
permuted versions of input matrices.

B. Other Solvers

Though Sec. II-A discusses PCG, the computations Azul
accelerates are very general: other iterative solvers like GMRES
and BiCGStab [50, 53] have the same kernels and challenges.
Overall, the kernels described in this section form the basis of
the vast majority of iterative solvers. Using SpMV and SpTRSV,
we can implement all the widely used algorithms shown in
Table II. Moreover, these algorithms are only a subset of the
vast universe of iterative solvers based around these kernels.

C. Understanding End-to-End Applications of Solvers

Now that we’ve introduced iterative solvers, we motivate their
importance and Azul’s focus by looking at an important class
of end-to-end applications: simulations of physical systems.

Fig. 8 shows the general structure of a physical system
simulator. Simulation proceeds in timesteps. Each timestep
begins with a solve of Ax = b; x is then used to update the
values of b and, optionally, A, for the next timestep.

The meaning of A, x, and b is application-dependent. For
example, when simulating the deformation of solid bodies (e.g.,
a car safety test), x is the vector of velocities of different points;
b is the set of instantaneous forces; and A is a stiffness matrix
that encodes how forces act upon the system. When simulating
heat transfer through an object, x is the set of temperatures at
each point; b is the heat stored at each node; and the A matrix
encodes how heat transfers across the system.

Various types of simulations up-
date b’s and A’s values differently.
In some cases, for example heat
transfer, A is static, and only b
changes over time. by, is cal-
culated by a sparse matrix-vector
product with the resulting x. Other
cases have simple updates to A,
e.g., in many rigid-body simulations,
Apext’s nonzero values are a linear function of x. Finally, for
more dynamic simulations, updating A is non-trivial (10-20% of

Initial A, b

Find preconditioner P
Solve Ax=b

J19A3U 10 Ajauey

Next timestep

Update A and b

Fig. 8: Structure of a
physical system simulator.
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total FLOPs [37]). For example, when simulating elastic bodies
(like a floppy-eared bunny), the stiffness matrix A changes with
the system state. But even then, this computation is point-wise
and highly parallelizable [8, 37].

Crucially, while A’s values may change across timesteps, its
sparsity structure is static. For example, a floppy-eared bunny
is modeled as a mesh, and its nonzeros denote the connections
of adjacent triangles; as the bunny’s ears flop around, these
connections do not change, only their stiffness values do.

Finally, when A changes over time, the preconditioner P may
need to be updated to keep convergence fast. But updating
P can be infrequent (A must change substantially to affect
convergence), and takes a small fraction of time in most
cases [11, 14, 27]. Like A, P’s sparsity pattern is constant
over time.

In summary, physical system simulation showcases why
Azul’s problem is important, and why we focus on linear solves:
1) Simulations with matrices that fit on-chip easily take hours:

with 1ps per timestep and 1000 iterations per solve, simulating

a system for only 10 seconds takes 10 billion inner-loop

iterations—hours even with a few microseconds per iteration.
2) Reuse is very high, as A and b are reused across timesteps.
3) Since the sparsity structure is static, optimizing the place-

ment of nonzeros is the right tradeoff: Azul’s placement
algorithm spends a few minutes to map each problem, but
this cost is quickly recouped when the simulation takes hours.
4) Azul already has the necessary support to run many of these
simulations end-to-end, e.g., when A is static or trivially
updated, as in heat transfer. Even when the preconditioner
needs to be updated, Azul already supports preconditioners
like Gauss-Seidel, which simply takes A’s lower triangle.
5) Azul does not support running certain types simulations

end-to-end, e.g., those requiring non-trivial updates to A

or recomputing complex preconditioners like incomplete

Cholesky. But these comutations are either easy to parallelize

or take negligible FLOPs, so simple extensions to Azul would

enable end-to-end support at high performance.

ITII. SPARSE ITERATIVE SOLVERS ARE ILL-SUITED TO
PRIOR ARCHITECTURES

Due to their importance, iterative solvers are the focus of
many prior hardware and software techniques.
GPUs: GPUs are the preferred current hardware platform
for iterative solvers given their high compute throughput and
memory bandwidth. But GPUs still suffer from the bottlenecks
identified in Sec. II-A, and suffer poor utilization as shown in
Fig. 1. Their small caches do not capture cross-iteration reuse,
causing frequent memory accesses, and their programming
model struggles with frequent data dependences.
ALRESCHA: Prior work has proposed hardware to accelerate
iterative solvers. ALRESCHA [4] is a hardware accelerator
that aims to accelerate the SpMV and SpTRSV steps within
one iteration.* Since these steps do not have any intra-iteration

2The ALRESCHA paper does not directly mention SpTRSV, but instead men-
tions symmetric Gauss-Seidel (SymGS). This is equivalent to two consecutive
triangular solves.
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reuse, ALRESCHA uses specialized processing elements (PEs)
to reduce control overheads resulting in it saturating its
main-memory bandwidth (288 GB/s in their implementation).
However, this memory bandwidth bound limits ALRESCHA’s
throughput to 48 GFLOP/s, roughly in line with GPUs.
Distributed-SRAM accelerators: As both GPUs and AL-
RESCHA are severely bottlenecked by main memory, we now
consider distributed-SRAM architectures. These consist of tiles,
each with a small SRAM and a core or PE. PEs directly access
local memory and communicate asynchronously with other PEs
over a network.

There is a rich history of systems of this type, dating
back to the J-Machine [7, 20, 42, 58, 61]. There have been
recent efforts to develop such architectures in both industry,
including Cerebras [13] and Groq [1], and academia, including
Dalorex [44] and Tascade [45]. These architecture have been
used to accelerate workloads with low arithmetic intensity, like
unbatched LLM inference and graph processing. The Cerebras
Wafer-Scale Engine has even been used to accelerate sparse
iterative solvers [64]. However, this work is limited to the
narrow class of grid-structured problems, which are completely
regular.3 This limitation is due to Cerebras hardware features,
such as a circuit-switched NoC.

Dalorex [44] generalizes the Cerebras architecture for un-
structured problems like the ones Azul targets. It features
a packet-switched 2D-torus, and uses simple in-order cores
as its processing elements. Dalorex is evaluated on sparse
algorithms (graph processing, SpMV) with large unstructured
inputs, where it achieves large speedups. However, Dalorex is
not optimized for sparse iterative solvers. Despite its all-SRAM
architecture with vastly more memory bandwidth, Fig. 9 shows
that a 4096-core 2 GHz Dalorex design running PCG achieves
limited speedups over GPUs, with at most 187 GFLOP/s, 1%
of its peak throughput (16 TFLOP/s, since each core can do 1
FMAC/cycle, and each FMAC is 2 FLOPs).

We select Dalorex as a baseline because it is the state-of-
the-art all-SRAM accelerator that targets unstructured sparse

computations. But Dalorex —
suffers from two performance BN 00
bottlenecks that make it ill- _ 1507 '
suited for sparse iterative o r0.75
solvers. First, its data map- é 1001 050
ping strategy causes exces- O 50 v
sive network traffic, making H r0.25
solvers NoC-bound. Map- P 1
ping operand values (matrix Q@}/&\%@c\ \%Q\“\@ &Q*
nonzeros and vector elements) . 7&\& ”%‘N& Q,O\“\\é‘%@

9

across tiles completely deter-
mines the amount of inter-tile
data transfer over the NoC.

Fig. 9: Dalorex performance
running PCG.

3In a grid-structured problem, the system is modeled as a regular n-
dimensional grid. While the resulting A matrix is sparse, is has a completely
regular structure. For example, in a 2D grid, each point (i, j) has four neighbors
(i£1,j=£1), so each row of A has four nonzeros at fixed offsets. Thus, solvers
like Cerebras’s map grid points to PEs and do not even materialize the matrix.
But in many cases, e.g., when simulating a car or a floppy-eared bunny, the A
matrix encodes an unstructured mesh and is irregular.
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Fig. 10: Performance on PCG of
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Dalorex’s mapping strategy, which we call Round Robin
Mapping, partitions a data structure by listing all its nonzeros
in row-major order and then assigning each nonzero i to PE i
mod P, where P is the number of PEs. Tascade [45] adopts a
variation on this approach, which we call Block Mapping, that
constructs the same list of nonzeros but instead maps sequential
blocks of [Z] nonzeros to each PE. High-performance
computing systems use similar techniques (see Sec. IV-E). Both
Round Robin and Block Mapping strategies are sparsity-pattern
agnostic, grouping nonzeros purely based on their position in
the row-major enumeration, not their matrix coordinates. As
a result, they achieve poor reuse within each tile, forcing PEs
to frequently communicate data over the NoC. This severely
limits system performance. Fig. 10 and Fig. 11 show the NoC
bottleneck in detail. To focus the discussion on network traffic
as a driver of performance, we present the results of running
PCG with Round Robin, Block, and Azul mappings on hardware
that uses idealized PEs that run each task as fast as possible.
Despite this idealization, the Dalorex and Tascade mappings
deliver only a fraction of peak compute throughput (Fig. 10)
due to their much higher network traffic (Fig. 11). In Sec. IV,
we present Azul’s data mapping strategy, which dramatically
reduces NoC traffic.

Secondly, Dalorex’s in-order cores suffer from high control
overhead when executing iterative solvers. Computation in
iterative solves features frequent address calculations and
branches. Thus, when compiling to a CPU program, the large
majority of instructions being executed are not computing
numeric results. Such high overheads result in limited floating-
point instruction throughput. In Sec. V, we present Azul’s
more specialized PE architecture that is designed to avoid these
overheads.

More specialized accelerators: FDMAX [38] is an accelerator
to solve PDEs using the finite difference method (FDM).
FDMAX uses a custom iterative solver highly specialized to
its problem domain. Importantly, FDMAX only targets grid-
structured sparsity (like Cerebras), a regular problem. FDMAX
is built around FDM-specific optimizations and follows a
systolic design to exploit problem structure. Despite being more
specialized, FDMAX is only 2.9x faster than ALRESCHA, as
it suffers the same bottleneck: memory bandwidth.
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IV. AzUL DATA MAPPING ALGORITHM

In this section, we show that effective data placement is
essential to high performance and present Azul’s hypergraph-
partitioning-based data mapping algorithm, which greatly re-
duces NoC traffic and makes most matrices compute-bound.

A. Dataflow Execution of Azul Kernels

We first show how communication arises in Azul. Azul
kernels are structured as a dataflow graph of tasks. All memory
accesses are local, and inter-tile communication occurs when a
task on one tile sends a message to another, which triggers a
task on the destination tile.

We illustrate our approach using SpMV as an example.
Suppose we want to compute the matrix-vector product shown
in Fig. 12 on a toy 2 x 2-tile Azul system. Operands are mapped
across the four tiles, so each tile holds only a subset of M, v,
and y values. Fig. 14 shows an example mapping.

Fig. 13 shows the corresponding dataflow graph of tasks for
SpMV given the illustrated mapping. Each task is a small piece
of computation that is triggered by the arrival of a message from
the parent task, which may involve sending messages to trigger
child tasks. Task execution is local to a specific tile. There are
three types of tasks for SpMV: (1) Initially, each tile sends the
input vector elements that it holds to other tiles that need them.
Specifically, each v; is multicast to tiles holding a nonzero
from M’s j'" column, using SendV tasks. (2) Receiving each
v; triggers a ScaleAndAccumCol task (SAAC in Fig. 13), which
multiplies v; with all the local M nonzeros from the j"-column
and accumulates these results into local per-row partial sums.
Listing 2 shows the pseudocode of the ScaleAndAccumCol task.
When all local values for the i/ row of M have been updated,
if the final value y; is mapped to a different tile, the partial
sum ¢; is sent to the tile. (3) Finally, each received partial sum
triggers a ReduceY task that accumulates it into the final sum.

As an example, consider the ScaleAndAccumCol task executed
on Tilejg, marked in red in Fig. 13. Since Tile;o holds Mg
and M3, Tiley first sends vy to Tilejg, as shown in Fig. 14,
The arrival of vy triggers the ScaleAndAccumCol task. The task
multiplies vy with M>o and M3p and accumulates their results
into local partial sums for rows 2 and 3, respectively, as shown
in Fig. 15. Tilejq is the home tile for y,, so it will receive row-
2 partial sums from other tiles. However, the home for y3 is
Tile, so Tilejo sends its row-3 partial sum, #3, to Tile;;. Fig. 15
shows these messages, which implement inter-tile reductions.
Execution concludes after all reductions finish, with the result
vector y stored distributed in its assigned tiles.

To write a kernel in this dataflow manner, a programmer
defines a set of tasks and a set of message types, and then
specifies the types of messages that can trigger each task and
the messages that each task can send. SpTRSV has a task similar
to SpMV’s ScaleAndAccumCol that is triggered by multicasting
solved variables, as well as additional tasks to solve the variable
and write the final result. Implementing iterative solvers also
involves some kernels beyond SpMV and SpTRSV, such as dot-
products, but these kernels consume a small fraction of overall
execution time and are thus less relevant to performance.
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Fig. 13: Dataflow graph of tasks for the
SpMYV example.

void ScaleAndAccumCol (msg_t msg) {

int n *msg.col_start;

for (int idx = 1; idx <= n; idx++) {
M_val_t Mij *(msg.col_start + idx);
ps_t* ps &partial_sums[Mij.row];
ps->val += (msg.val * Mij.val);
if (--ps->updates_remaining

send(ps->dest, ps->val);

o

}
Listing 2: The dominant task (ScaleAndAccumCol) in SpMV

This example shows that the amount of inter-tile traffic is
determined by how data are mapped across tiles. Good mappings
improve locality, so that more tasks can trigger local child tasks
instead of sending messages to other tiles.

B. Data Mapping Problem Formulation

The objective of our data mapping algorithm is to maximize
performance subject to three constraints: (/) limited capacity
at each tile’s small memory, making it important to load-
balance data across tiles; (2) limited network bandwidth,
making it important to minimize communication; and (3)
data dependences, making it important to avoid unnecessary
serialization.

We first discuss our basic formulation of the mapping
problem, which optimizes for objectives (1) and (2), and then
extend it to handle objective (3). Azul’s mapping approach
partitions all data structures in the kernel (e.g., the input matrix,
input vector, and output vector for SpMV) simultaneously, with
the goal of partitioning such that we maximize locality among
data elements that are involved in the same computation.

In the SpMV example, each element of the input vector v;
forms a communication set with all the nonzeros in column j
of the input matrix, because v; must be multiplied with each of
them. Similarly, each element of the output vector y; forms a set
with all nonzeros in row i of the matrix. If all data values in a
set are co-placed on the same tile, no inter-tile communication is
needed. However, if values are spread across multiple tiles, each
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on a 4 x4 array of Azul PEs requires each row of nonzeros it stores. If a partial
multicasting values v; to tiles holding any sum ¢; is computed on a PE that is not y;’s
nonzeros from M’s jth column.

home PE, an infer-PE reduction is needed.

input vector element must be sent to the other tiles containing
data from its set and each partial sum must be reduced into
the tile containing the corresponding output vector element.
Inter-PE communication thus grows linearly with the number
of unique tiles containing elements from a communication set.
The same locality patterns hold for SpTRSV.

We represent these locality patterns using a hypergraph.
A hypergraph is a mathematical structure with vertices and
edges (like an ordinary graph) except that a hypergraph’s edges
(hyperedges) are between sets of vertices, instead of between
just two vertices as in an ordinary graph. In this hypergraph,
each element of each data structure is represented by a vertex,
and each communication set is represented by a hyperedge that
connects all of its elements. Fig. 16 (center) shows an example
hypergraph for SpMV on a small matrix. Each nonzero data
element is a node in the hypergraph, and orange and blue lines
represent hyperedges connecting them.

Since each hyperedge connects elements of a communication
set, hyperedges encode locality and represent the one-to-many or
many-to-one communication that would occur over the network
if the vertices in the set were placed on different PEs. Note that
placing vertices in a set across N tiles induces N — 1 messages.
Thus, our goal is to keep each communication set restricted
to as few tiles as possible—other factors, like the number of
vertices mapped to each tile, do not affect communication.

Armed with this representation of the data structures, the
mapping problem reduces to finding a partitioning of this
hypergraph that load-balances vertices (matrix and vector values)
while minimizing the total number of cuts of hyperedges across
partitions. Minimizing edge-cut corresponds to maximizing row
and column locality, since cutting an edge increases the number
of unique tiles whose computation involves that row or column.

Fortunately, efficient hypergraph partitioning algorithms have
been developed, which we can leverage [12, 34, 52]. Fig. 16
(right) shows an example of partitioning our small example
hypergraph into three PEs using this approach. This particular
example actually achieves the minimum possible number of
hyperedge cuts given balanced partition sizes.
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C. Extensions for Limited Parallelism

We now introduce an extension to our hypergraph formulation
of the mapping problem that incorporates objective (3), i.e.,
maximizing parallelism in the face of data dependences, which
is important to avoid unnecessary serialization.

Partitioning using only locality and data balance as objectives
can cause poor load balance in time. For example, hypergraph
partitioning can fill specific Azul tiles with computations that are
all either early or late in the dataflow graph’s topological order.
This results in long tails where a single PE holds up the kernel’s
completion. Fig. 17 shows a clear example of this when running
PCG on the consph matrix. Our basic hypergraph partitioning
formulation distributes the computation well in terms of locality,
but poorly in terms of temporal load balance.

To integrate temporal load balancing into the hypergraph
partitioning’s objective, we bucket all nodes into ¢ quantiles
based on their associated arithmetic operation’s depth (in
the dataflow graph’s topological order). Existing hypergraph
partitioning algorithms allow for multiple balance constraints,
so instead of simply balancing all elements across partitions,
we apply a constraint to balance the elements in each quantile
across partitions.

Fig. 17 shows how using this technique with ¢ =5 eliminates
a long tail of instructions caused by PEs that are overloaded
with tasks that run late in the kernel, yielding a 3.5% speedup
on a single SpTRSV. Time-balancing helps when parallelism is
limited and dependences are common (e.g., in SpTRSV), but
does not help if parallelism is plentiful and the dataflow graph
is shallow (e.g., in SpMV).

Finally, non-local reductions are more expensive than mul-
ticasts for two reasons: (1) non-local reductions incur an
additional standalone Add operation that would otherwise be
fused into an FMAC, and (2) in SpTRSV, reduction messages
can be delayed due to queuing, delaying parallelism-revealing
variable eliminations. To address this, we assign a larger weight
to row hyperedges than column hyperedges, modeling this cost
and discouraging breaking up rows instead of columns.

D. Generating Communication Patterns

Once data has been partitioned and placed, inter-tile com-
munication patterns and PE tasks can be generated.

Implementing multicasts and inter-tile reductions naively
using point-to-point messages, as shown in Fig. 18 (left) would
cause two inefficiencies. First, it would cause redundant network
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Fig. 18: Azul uses multicast trees to distribute values, avoiding
redundant traffic over many point-to-point messages.

traffic. For example, in Fig. 18, Tilesz must send a message
to four other tiles, three of which are to its left (Tile;;, Tiles,
Tileg;). Sending separate messages would either use send
three identical messages over the same east-west link, or use
3x as many east-west links as needed. Secondly, sending
separate point-to-point messages may introduce serialization
that lengthens an algorithm’s critical path. For example, in both
SpMYV and SpTRSYV, a single PE may be responsible for sending
a value to hundreds or even thousands of other tiles. Sending
these messages individually adds cycles and hurts performance.
Instead, Azul’s compiler creates communication trees to avoid
these problems. Multicast trees are shown in Fig. 18 (right). In
this example, Tiles3 send a single east-west message to Tilesy,
which forwards it north and south. The above also applies to
reductions, where Azul implements reduction trees.

E. Hypergraph Partitioning in High-Performance Computing

While prior work [66] has used hypergraph partitioning
for partitioning sparse matrices across GPU nodes on simple
problems (i.e., SpMV), we are the first to apply it to splitting
data within a single chip and the first to use it on parallelism-
constrained problems like SpTRSV. Furthermore, these methods
have achieved limited adoption due to mismatches between the
partitioning formulation and the hardware and software con-
straints. GPUs lack the support for fine-grained communication
necessary to make these methods effective. Papers exploring
these techniques [46] explicitly state that these communication
overheads are the key obstacle to wider adoption. These meth-
ods are therefore not supported by major scientific computing
packages such as Petsc [41]. Instead, most high-performance
computing systems, including distributed-memory systems in
MPI environments, partition sparse computations across nodes
using variants of Block Mapping [32, 40, 46].
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V. AZUL MICROARCHITECTURE

Azul’s mapping strategy removes the network bottleneck by
minimizing inter-tile communication. In this section, we discuss
how Azul’s hardware architecture then removes computation
bottlenecks via specialization and fine-grained multithreading.

As illustrated in Fig. 19, Azul hardware is a tiled architecture
with distributed memories. Each tile consists of a tightly inte-
grated processing element (PE) and two scratchpad memories,
as well as a router to communicate with other tiles through an
on-chip network. The two SRAMs store data and program state,
and are small (taking 108 KB per tile). This allows fast and low-
energy accesses. Azul achieves high throughput by scaling to a
large number of tiles (4096 in our implementation). This also
provides high aggregate on-chip memory capacity (432 MB),
and bandwidth (192 TB/s). Table III details the parameters and
performance figures of our evaluated Azul configuration.

Azul’s PEs execute tasks when triggered by the arrival of
messages over the NoC. This message-driven approach is widely
used in prior work [42, 47, 60]. However, the prior system
targeting unstructured sparsity, Dalorex, uses general-purpose
in-order cores as PEs, leading to high control overheads and
low floating-point unit utilization.

A. Azul Tile

The Azul tile is designed to support dataflow execution of
task graphs. A router connects the tile to the on-chip network
and is responsible for sending and receiving messages, which
trigger tasks. The multithreaded PE is designed to execute
tasks with minimal control overhead and stalls. A Data SRAM
(72 KB) holds input operands (matrix and vector values) and
an Accumulator SRAM (36 KB) holds partial results. They are
both 96-bit wide, allowing a 64-bit floating-point value and 32
bits of metadata to be accessed each cycle.

The Azul PE is designed to maximize the throughput of
arithmetic operations, obtaining one arithmetic operation per
cycle. It achieves this primarily through specialized control flow.
We recognize that when SpMV and SpTRSV are executed
in the dataflow manner described in Sec. IV, the dominant
tasks in each kernel share the same control flow pattern
and can be implemented using just FMAC operations and
a custom Send operation. We discuss here this dominant
control flow pattern and later extend the PE to support the
remaining tasks in the SpMV and SpTRSV kernels. In SpMV,
the dominant task is the ScaleAndAccumCol task (Listing 2).
SpTRSV has a similar dominant task with identical control flow.
The SpTRSV task is triggered by multicasting solved variables,
and involves multiplying the solved variables by local column
values, accumulating them to partial sums, and sending partial
sums to the tiles that hold corresponding diagonal elements.

The shared control flow pattern is thus as follows: (/) at
the start of a task, the number of arithmetic operations to
be done (i.e., the for-loop count) given the received column
index is determined by the number of local M nonzeros in
that column (i.e., the result of the first memory access); (2)
arithmetic operations (FMAC in this case) are executed; and
(3) a branch at the end of each loop iteration (resolved at the
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Fig. 19: View of a 6 x 6 Azul system showing the 2D-torus NoC
as well as a more detailed Azul tile diagram.

Clock Frequency 2 GHz

Tiles 64 x 64 (4096 total)

Scratchpads (72436) KB SRAMs/Tile (432 MB total),
2 cycles per memory access, pipelined

Network 2D Torus, 96-bit links, 1 cycle/hop

Aggregate Compute Throughput 16 TFLOP/s (1 FMAC / PE / cycle)
Aggregate Scratchpad Bandwidth 192 TB/s (192 bits / PE / cycle)
NoC Bisection Bandwidth 6 TB/s

7-stage PE pipeline: Decode (1 stage); Data SRAM access (2 stages); Compute
and accumulator SRAM read (4 stages: accumulator read and FMAC are
partially overlapped, the fist two stages complete the read, and the last two
perform the floating-point accumulation); Writeback/send (1 stage).

TABLE III: Parameters of our evaluated Azul configuration.
Azul achieves high throughput and on-chip memory capacity
by integrating a large number of simple PEs.

output of the ALU) determines whether to send a message. Azul
hardens this control flow pattern into the control logic of each
PE’s simple scalar pipeline. Such specialization significantly
improves arithmetic throughput over a general-purpose core,
which uses bookkeeping instructions that occupy pipeline slots.

We now describe the key features of the Azul PE, which
is designed around making this dominant control flow pattern
fast. We extend it later in this section to incorporate lightweight
multithreading and other tasks. Fig. 19 shows the fully pipelined
microarchitecture of the PE. The control flow pattern described
above maps to a sequence of FMAC operations. Each operation
contains two sequentially dependent memory reads, the first to
the Data SRAM (to fetch a nonzero and its row coordinate)
and the second to the Accumulator SRAM (to fetch the row’s
partial output). After reading from the Data SRAM, the pipeline
checks for data dependences (e.g., an in-flight operation for the
same accumulator), then issues the operation, which reads the
Accumulator SRAM and performs the FMAC. Finally, the FMAC
result is either written back to the Acumulator SRAM or sent
to another tile; to allow this, the final pipeline stage connects
directly to the router.

In addition to specialized control flow, Azul also uses fine-
grained multithreading to achieve high throughput. This is
essential because even with a specialized control flow, data
dependences can still cause stalls. For example, multiple SpMV
ReduceY tasks in a row could accumulate partial results to
the same y element consecutively, creating a data dependence.
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We extend the PE design described above to keep the FMAC
unit highly utilized. To support multithreading, we replicate
the operation generator context (one per task) and the PE’s
intermediate operation queue so that operations from multiple
tasks can be in-flight. Operations are chosen for execution
from the earliest task that has no dependences on other in-
flight operations. This ensures forward progress and avoids task
starvation. Such a design hides stalls and achieves a throughput
of one arithmetic operation per cycle.

The PE described above needs no additional hardware to
execute all other tasks in SpMV and SpTRSV. We simply
extend the operation generator FSM to produce two new
simpler operations, Add and Mul, which flow through the same
pipeline and use minimal additional logic to skip unnecessary
functionalities (e.g., reading the Accumulator SRAM in Mul).
Tasks like SendV and ReduceY map to 1-2 Add/Mul/Send
operations.

Each tile contains a small register-based buffer for storing
incoming messages. To avoid deadlocks, if the buffer becomes
full, additional incoming messages are spilled to the Data
SRAM.

B. On-chip Network

Azul uses a 2D-torus network topology. Each PE has its own
router. Each cycle, the router is able to receive a message on
all input queues and send a message on all output queues.

VI. EVALUATION

We evaluate Azul on preconditioned conjugate gradients
(PCG) with an incomplete-Cholesky preconditioner. PCG is
commonly used and is representative of many other iterative
solvers, which consist of SpMV and SpTRSV (Sec. 1I-B).

A. Experimental Methodology

Simulation infrastructure: We evaluate Azul using a cycle-
level simulator with detailed timing models for the PEs and
network. We model each hardware component as an object and
tick each object for each cycle, thus simulating execution cycle-
by-cycle. We faithfully simulate contention in the network and
operation interleaving in PEs due to multithreading. We ensure
functional correctness by checking the simulator’s PCG results
against a reference implementation [3].

We use RTL synthesis for Azul’s custom PE, and standard
modeling tools for the other components, combined with activity
factors from simulation, to obtain area and power figures in
7nm technology, as detailed in Sec. VI-E.

Simulated system: By default, we model the 4096-tile Azul
configuration in Table III. Sec. VI-G evaluates larger designs.

We implement PCG as shown in Listing 1, with dataflow

tasks as detailed in Sec. IV. To remove long-latency floating
point divisions from the computation’s critical path, we store
all diagonal elements d in memory as %.
Baselines: We compare Azul with three baseline architectures:
1. GPU is an NVIDIA V100 PCIe GPU running Ginkgo [3], a
state-of-the-art linear algebra library, to execute PCG with an
incomplete Cholesky preconditioner.
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Matrix n nnz A b Matrix n nmz A b
s3dkt3m2  9.04e4 3.75¢6 29 1  G3_circuit 1.59¢6 7.66e6 59 13
cant 6.25¢e4 4.0le6 31 1  shipsecl 1.41e5 7.81e6 60 2
offshore 2.60e5 4.24e6 33 2 thermal2 1.23e6 8.58¢6 66 10
pdblHYS  3.64e4 4.34e6 34 1 m_tl 9.76e4 9.75¢6 75 1
thread 297e4 447e6 35 1  crankseg_1 5.28e4 1.06e7 81 1
apache2 7.15e5 4.82¢6 37 6 bmwcra_l 1.49e5 1.06e7 82 2
ecology2 1.00e6 5.00e6 39 8  hood 2.21e5 1.08¢7 83 2
tmt_sym 7.27e5 5.08¢6 39 6 pwtk 2.18e5 1.16e7 89 2
consph 8.33e4 6.0le6 46 1 BenElechil 2.46e5 1.32¢7 101 2
boneS01 1.27e5 6.72¢6 52 1 ndl2k 3.60e4 1.42¢7 109 1
af_1_k101 5.04e5 1.76e7 134 4  Emilia_923 9.23e5 4.10e7 313 8
af_shell8 5.05e5 1.76e7 135 4  ldoor 9.52e5 4.65¢7 355 8
bundle_adj 5.13e5 2.02¢7 155 4  Hook_1498 1.50e6 6.09¢7 465 12
msdoor 4.16e5 2.02¢7 155 4  Geo_1438 1.44e6 6.32¢7 482 11
StocF-1465 1.47e6 2.10e7 161 12  Serena 1.39¢6 6.45¢7 493 11
Fault_639  6.39e5 2.86e7 219 5  bone010 9.87e5 7.17¢7 547 8
inline_1 5.04e5 3.68¢7 281 4  audikw_1  9.44e5 7.77¢7 593 8
PFlow_742 7.43e5 3.71e7 284 6

Flan_1565 1.56e6 1.17¢8 896 12 Queen_4147 4.15¢6 3.29¢8 2514 32
Bump_2911 2.91e6 1.28e8 975 23

TABLE 1V: Benchmark matrices used in the evaluation. Matrices
in the first section fit in 4K tiles, matrices in the mid section fit
in 16K tiles, and matrices in the bottom section fit in 64K tiles.
The A and b columns report matrix and vector SRAM footprints,
respectively, in MB.

2. ALRESCHA [4] is a prior accelerator for iterative solvers
(Sec. III). We model it as a full-utilization accelerator that
completely saturates its 288 GB/s main-memory bandwidth, and
achieves perfect reuse on all vectors, so that the only memory
traffic is from the sparse matrices in SpMV and SpTRSV. This
generously overestimates ALRESCHA’s actual performance.
3. Dalorex is modeled using the same configuration as Azul
(Table III), except that each PE is a scalar RISC-V core. The
core has a fully pipelined FPU that can do FMACs, ensuring the
same peak throughput as Azul. Sends take a single instruction.
We compile each task using gcc with -03.

Data Mapping algorithms: We implement Azul’s data map-
ping algorithms using PaToH v3.3 [12] to perform hypergraph
partitioning. Sec. VI-C compares with prior works’ mapping
algorithms.

Input matrices: Because PCG works on symmetric positive-
definite (SPD) matrices, we select large SPD matrices from
SuiteSparse [19]. For most of the evaluation, we use the 20
largest SPD matrices that fit in 4096-tile Azul’s memory, shown
in Table IV.* They come from diverse domains such as circuit
simulation, finite-element modeling, and computer vision.

In Sec. VI-G, we evaluate scaled-up Azul designs with 4x
and 16x more memory. These designs fit all the largest SuiteS-
parse matrices (Table IV), which we use in these experiments.

We color and permute matrices with networkx.greedy -
coloring [29] to increase available SpTRSV parallelism.

B. Performance Analysis

Speedup comparison: Fig. 20 shows the speedups of Azul,
ALRESCHA, and Dalorex over the GPU baseline when running
PCG. Matrices in this and later figures are sorted by their avail-
able parallelism (parallelism grows from left to right). As seen

“We remove near-duplicate matrices, e.g., we only take one (af _shell).

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.



|[E3GPU CJALRESCHA [CIDalorex HElAzul

w
S
S

e S R )
S o o &
S & 3 S

Speedup over GPU

wt
1<)

0 B e e
) q ¢ X9
}b \q\; °x c &S o V)Q K z~ 0 4&\\ o‘k \\ %’\Q' S &
VR ¥ & & \‘ S F T T T G
& R \\Q P& E N SFEFITS 0, &
> B N} S DD
< & & & o AN 79

Fig. 20: End-to-end speedup comparison with baselines on PCG.

in the figure, Azul significantly outperforms all baselines, with
a gmean speedup of 217x over GPU, 159x over ALRESCHA
and 90x over Dalorex. Azul achieves gmean 7,640 GFLOP/s,
ranging from 2,541 GFLOP/s (nd12k) to 11,755 GFLOP/s
(BenElechil).

Each matrix’s performance depends largely on its sparsity
pattern. The sparsity pattern determines both the total available
parallelism as well as the available row and column locality. All
figures have matrices sorted left to right in order of increasing
parallelism. Some matrices, specifically thread, nd12k, and
crankseg 1 are parallelism-bound (even with parallelism-
improving preprocessing), which limits their compute through-
put. Nonetheless, Azul’s architecture and mapping strategy
provide large speedups over all baselines. On the other end of the
spectrum, many high-parallelism matrices such as G3_circuit
and ecology2 have only ~ 5 nonzeros per row, SO per-row
fixed costs (message sending) become noticeable.

Note that achieving these throughputs without inter-iteration
reuse of the matrices would require around 6 GB/s of off-chip
memory bandwidth for every 1 GFLOP/s achieved—a totally
infeasible 71 TB/s for BenElechil.

PE cycle breakdown: Fig. 21 shows the breakdown of
cycles spent in the Azul PEs. Overall, the PE achieves high
throughput arithmetic operations (over 40% of cycles are spent
on FMAC operations on almost all inputs). Stalls can be primarily
attributed to limited parallelism in the SpTRSV kernel. Due to
having few nonzeros per row, thermal2 and apache2 spend
a higher fraction of time on reductions (i.e., sends and adds).
Breakdown by kernel: Fig. 22 shows the breakdown of cycles
spent on SpMYV, SpTRSYV, and other vector operations for PCG.
With Azul’s acceleration, SpMV and SpTRSV are still the
dominant phases of the computation. Because SpMVs have
ample parallelism, they achieve consistently high performance
across our test matrices. On the other hand, parallelism-limited
SpTRSVs are slower and thus take a larger fraction of runtime.

C. Azul Data Mappings

To understand the impact of Azul’s data mapping strategy,
we compare against several baselines. Recall that Dalorex
uses the Round Robin mapping and both Tascade and many
distributed MPI-based systems use the Block mapping. Both
of these approaches are examples of position-based [57]
partitioning: data values are placed into partitions based on
their position in the data’s enumerated representation. These
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Fig. 22: End-to-end runtime breakdown by kernel.

approaches are fast to compute and balance data per-partition
by construction. However, they do not account for the target
algorithm’s communication patterns.

Prior work has separately proposed coordinate-based [57]
partitioning approaches. These approaches place data values
into partitions based on their coordinate in the data structure,
regardless of the underlying hardware representation (e.g.,
compressed or uncompressed). SparseP [23] is a state-of-the-
art hardware accelerator that uses coordinate-based partitioning.
It creates chunks that are contiguous in coordinate-space and
are of roughly equal size. It achieves this by first dividing the
matrix into v/P chunks of contiguous columns (where P is
the total number of partitions) such that each chunk contains
(approximately) the same number of nonzeros. Then, it further
subdivides each column chunk into v/P chunks of contiguous
rows such that each has the same number of nonzeros. This
produces P final chunks, each with roughly the same number
of nonzeros. Each partition contains rows and columns that are
contiguous in coordinate-space, but each partition may contain
a variable number of rows and columns. We select SparseP as a
baseline to represent coordinate-based partitioning approaches.

Fig. 23 shows Azul’s end-to-end throughput against all the
baseline mappings on PCG. Azul widely outperforms baseline
mappings on every matrix: it outperforms Round Robin by
gmean 10.2x, Block by 13.5%, and SparseP by 25.2x.

These large speedups happen because prior methods are based
on non-robust assumptions about matrix structure. Namely, they
only effectively minimize inter-partition communication if a
matrix is spatially correlated, i.e., adjacent rows contain similar
nonzero column coordinates. In some cases, this assumption
holds; SparseP and Block mappings are then somewhat suited to
SpMV. However, this assumption does not hold universally. As a
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Fig. 23: End-to-end throughput comparison with prior mappings.

result, Azul’s mapping strategy achieves large reductions in NoC
traffic: gmean 66x over Round Robin, 46x over Block, and
34 x over SparseP. Furthermore, prior methods are not designed
to efficiently handle triangular solves (or other computations
with data dependences).

D. Data Mapping Algorithm Costs

Azul’s data mapping approach is computationally expensive.

Across the benchmark matrices, it takes an average of 6.16
minutes to map each of them to Azul’s 4096 PEs. In contrast,
it takes on average 0.25 minutes to map matrices with Block
and 1.9 minutes to map them with Round Robin (Round
Robin is much more expensive than Block because reduction
trees become much more expensive to construct), and 0.6
minutes with SparseP. Despite Azul’s mapping algorithm taking
longer than baselines, this overhead is very well amortized:
computationally expensive numeric algorithms perform linear
solves at up to millions of timesteps, each using the same
mappings. Furthermore, the preprocessing overhead can be
amortized across different simulations using the same sparsity
pattern. For example, if a user is solving for turbulent flow over
an airplane wing in several situations, the connectivity of the
meshed wing will be unchanged across simulations.

Prior work [62] has gone much further than Azul in terms of
preprocessing costs: an FPGA-based accelerator, RSQP, goes as
far as specializing an entire FPGA design to each input sparsity
pattern, taking several hours per instance to compile.

Finally, Azul uses PaToH’s quality preset. If mapping time
is important, users could opt for a lower quality mapping by
using the default or speed presets.

E. Area and Power Estimation

Methodology: We derive Azul’s area and power at 7nm using
the following methodology. We implement Azul’s PE in RTL
and synthesize it on ASAP7 (7.5-track [17]) using Synopsys
Design Compiler with a 2 GHz target frequency.

For memory, we follow Dalorex’s methodology and use
figures from fabricated SRAM at 7nm [65], which achieves
29.2 Mb/mm? (3.75 MB/mm?). To estimate SRAM energy, we
use CACTI [6] to model each tile’s memories. Since CACTI
supports nodes down to 22nm, we scale energy down to 7nm.
This yields 10.9 pJ per 96-bit read to a 36KB memory, which
is similar to published results [33].

[ Leakage
250 4C—1 SRAM
[ NoC
200 {MEE Compute

Fig. 24: Power breakdown by component.

Component  Area

PEs 4096 x 0.0043 mm? = 17.8 mm?

Routers 4096 x 0.0016 mm? = 6.6 mm?
SRAMs 4096 x 0.0281 mm? = 115.2 mm?
1/0 15 mm?

Total 155 mm?

TABLE V: Azul area estimates.

For the network, we estimate router and link area and energy
using DSENT [56], which we scale from 22nm to 7nm, using
ASAP7 technology. The 2D torus NoC links are short (two
tile lengths, Fig. 19); and they use global wires that are routed
above logic. ASAP7 global wires achieve 112ps/mm, so link
traversal takes only 42ps, less than 10% of the cycle time.

Finally, for I/O, we conservatively estimate the area for
a 512GB/s interface by using the area of an HBM2e PHY,
15 mm? [18, 48] (note that Azul has no off-chip memory).
Results: Table V shows the area breakdown of Azul. Overall,
our Azul configuration has modest area at 7nm, about 155mm?.
As expected, SRAM takes most area, 74%.

Fig. 24 shows Azul’s power consumption for each matrix,
broken down by component (SRAM, compute, and network).
We compute power by combining activity factors from simu-
lation with energies from RTL synthesis and modeling tools,
as described above. We include leakage and dynamic power.
Azul consumes 210 W on average, and up to 288 W. SRAMs
dominate energy due to the high rate of memory accesses.
Comparison with WSE-2: Estimating area and power in a
modern technology node is necessarily approximate as we lack
access to commercial PDKs and tools, like SRAM compilers.
This said, we believe these estimates are reasonable given
available details of fabricated designs. Specifically, the Cerebras
WSE-2, built in TSMC N7, takes 38,000um? per tile [39, slide
7]. Each tile has 48KB of SRAM, a core that’s substantially
more complex than Azul’s PE, and a router. Each tile has a
peak power of 30mW at 1.1 GHz. Thus, a 4096-tile WSE-2
would take 155 mm? with a TDP of 123 W; Azul’s peak power
is higher due to its higher frequency and SRAM capacity.

Since Azul is SRAM-dominated, it’s worth considering
alternative design points. WSE-2’s SRAM has somewhat lower
density than our estimate above, 2.6 MB/mm? [39]. This is
likely because the WSE-2 SRAM is built from smaller (6KB)
banks to support two 128-bit reads and a write per cycle; even
using this SRAM, Azul would take 195 mm?, a reasonable area.
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E. Sensitivity to Hardware Parameters

To demonstrate Azul’s robustness to variations in hard-
ware implementation choices, we sweep the NoC hop latency
in Fig. 25 and SRAM access latency in Fig. 26. Increasing
NoC hop latency decreases in gmean throughput by 4% per
extra cycle, when simulating 1-4 cycles/hop. Increasing SRAM
latency decreases gmean throughput by 3% per extra cycle.
These show that Azul is barely sensitive to higher latencies.

In addition, we evaluate how much benefit our fine-grained
multithreading provides. Fig. 27 shows that multithreading
provides a 1.5x speedup over single-threaded PEs due to
avoiding stalls on data dependences, as described in Sec. V-A.

G. Scaling Up

One of Azul’s key limitations is that it can only accelerate
linear solves for matrices that fit in its distributed SRAM.
To solve larger problems, we must scale Azul up, moving to
multi-die or wafer-scale technologies. In Fig. 28 we show the
performance of running PCG on Azul configurations that are
4x and 16x larger than the default. We include matrices that
do not fit into the 64 x 64 tile version of Azul, as well as some
of the smaller system, to see how size affects scalability. The
16 x larger system can fit all SuiteSparse matrices (Table IV).

In the 128 x 128-tile system, all but one matrix (nd12k) that
fit into the 64 x 64 tile system have a > 2x speedup. nd12k
is parallelism limited even on 4096 PEs, so it is not surprising
that its performance does not improve on larger systems.

Similarly, many matrices become parallelism limited when
moving from 128 x 128 to 256 x 256. Large matrices that
only fit into 256 x 256 tiles, however, achieve very high
throughput (up to 157 TFLOPs, 60% of peak), showing that
Azul’s techniques scale gracefully to large problem sizes.
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VII. CONCLUSION

Iterative solvers for sparse linear systems of equations are an
important and performance-critical class of algorithms. However,
they are inefficient on existing architectures due to a lack of
intra-iteration data reuse and the need for low-latency fine-
grained synchronization. We have presented Azul, a hardware
accelerator with distributed on-chip memory that exploits reuse
across solver iterations and therefore overcomes the algorithms’
memory bottlenecks. To effectively utilize Azul’s hardware, we
also present novel parallelism- and communication-aware data
mapping algorithms. Through this hardware-software codesign,
Azul achieves 217x gmean speedup over a GPU baseline and
159x gmean speedup over a prior accelerator architecture.
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