
Parallelized Multi-Agent Bayesian Optimization in
Lava

1st Shay Snyder
Electrical and Computer Engineering

George Mason University
Fairfax, USA

ssnyde9@gmu.edu

2nd Derek Gobin
Electrical and Computer Engineering

George Mason University
Fairfax, USA

dgobin@gmu.edu

3rd Victoria Clerico
Electrical and Computer Engineering

George Mason University
Fairfax, USA

mclerico@gmu.edu

4th Sumedh R. Risbud
Neuromorphic Computing Lab

Intel Labs
Santa Clara, USA

sumedh.risbud@intel.com

5th Maryam Parsa
Electrical and Computer Engineering

George Mason University
Fairfax, USA

mparsa@gmu.edu

Abstract—In parallel with the continuously increasing param-

eter space dimensionality, search and optimization algorithms

should support distributed parameter evaluations to reduce

cumulative runtime. Intel’s neuromorphic optimization library,

Lava-Optimization, was introduced as an abstract optimization

system compatible with neuromorphic systems developed in the

broader Lava software framework. In this work, we introduce

Lava Multi-Agent Optimization (LMAO) with native support for

distributed parameter evaluations communicating with a cen-

tral Bayesian optimization system. LMAO provides an abstract

framework for deploying distributed optimization and search

algorithms within the Lava software framework. Moreover,

LMAO introduces support for random and grid search along

with process connections across multiple levels of mathematical

precision. We evaluate the algorithmic performance of LMAO

with a traditional non-convex optimization problem, a fixed-

precision transductive spiking graph neural network for citation

graph classification, and a neuromorphic satellite scheduling

problem. Our results highlight LMAO’s efficient scaling to

multiple processes, reducing cumulative runtime and minimizing

the likelihood of converging to local optima.

I. INTRODUCTION

Many of today’s most interesting problems require solutions
to high dimensional and non-linear systems that determine
the optimal parameter configuration. Multiple areas such as
autonomous robotics [1], graph neural networks [2], evolution-
ary algorithms [3], and physics-informed neural networks [4]
are limited by the time expenditure from individual parameter
evaluations. Rather than traditional procedural approaches like
random search [5] or grid search [6], modern techniques
employ heuristic algorithms making informed decisions from
prior knowledge, such as Bayesian optimization (BO) [7]
with roots in Bayesian statistics [8]. While BO reduces the
quantity of problem evaluations by orders of magnitude, many
problems still face runtime issues where the reduced number
of synchronous evaluations is not enough to compensate for
the immense time required by individual evaluations [9].

Intel’s neuromorphic software framework, Lava, was in-
troduced as an abstract software framework for developing
neuromorphic systems. In this work, we introduce Lava Multi-
Agent Optimization (LMAO), a novel framework for evalu-
ating parameter configurations across multiple asynchronous
processes whose results are aggregated into a single optimizer
or search algorithm. This framework is completely open-
sourced through GitHub1. We evaluate the performance im-
provements and operational characteristics of LMAO with the
Ackley function [10], a fixed-precision transductive spiking
neural network for citation graph classification [11], and a
satellite scheduling problem using quadratic unconstrained
binary optimization [12].

In summary, the major contributions of this paper are:
• We introduce Lava Multi-Agent Optimization (LMAO)

with support for distributed optimization.
• We demonstrate the performance of LMAO with the

Ackley function [10], a transductive spiking graph neural
network [11], and a QUBO optimization problem for
satellite scheduling [12].

II. ARCHITECTURE OF LMAO WITHIN THE LAVA
SOFTWARE FRAMEWORK

Intel’s neuromorphic software framework, Lava [12], pro-
vides an abstract interface for building interconnected sys-
tems of event-based computational elements. The lowest-level
building blocks are Processes which provide a blueprint of
inputs, outputs, and internal variables. Lava provides a base li-
brary of ports allowing inter-process communication. In-Ports
receive information from other processes whereas Out-Ports
transmit information to other processes. Individual Process
functionality is defined within Process Models2. Moreover,

1Code available at https://github.com/Parsa-Research-Laboratory/lmao.
2See http://lava-nc.org for details about Lava concepts like Processes and

Process Models

295

2024 International Conference on Neuromorphic Systems (ICONS)

979-8-3503-6865-9/24/$31.00 ©2024 IEEE
DOI 10.1109/ICONS62911.2024.00051

2
0

2
4

 I
n

t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 N
e

u
r
o

m
o

r
p

h
ic

 S
y
s
t
e

m
s
 (

IC
O

N
S

)
|

 9
7

9
-8

-3
5

0
3

-6
8

6
5

-9
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IC

O
N

S
6

2
9

1
1

.2
0

2
4

.0
0

0
5

1

Authorized licensed use limited to: George Mason University. Downloaded on September 29,2025 at 19:12:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Multiple independently operating agents processing different hyper-
parameters from the central search algorithm with LMAO.

Process Models are architecture specific so the same Process
can have multiple Process Models for execution on different
hardware platforms such as central processing units or Loihi
2 neurocores.

Lava Multi-Agent Optimization (LMAO) introduces the
general-purpose Solver. Serving as the single point of entry
into the LMAO framework, the Solver is a contract between
users and developers. This utility provides an abstract interface
where users define various parameters such as number of
iterations, number of initial points, parameter search spaces,
and optimization algorithm types.

Rather than being limited to sequential parameter evalu-
ations [13], LMAO introduces support for multiple, parallel
agents communicating with a central optimization or search
algorithm. A high-level flowchart of this process is presented
in Figure 1. Controlled by the numAgents parameter, users
can distribute evaluations to multiple asynchronous agents and
increase the effective number of evaluations per time step. The
LMAO backend supports this functionality by dynamically
creating pairs of In-Ports and Out-Ports for each process and
using the Lava runtime framework to distribute agents across
multiple processes.

As shown in Algorithm 1, the system is initialized by
sending a unique initial point to each agent. With agents
executing asynchronously [14], they evaluate the received
parameters and return the corresponding values on stochastic
time intervals. Simultaneously, the search algorithm probes
each In-Port from each agent process. If the port has received
an evaluated parameter combination, the data is decoded and
used to update the search algorithm. This process is repeated
until all initial points have been evaluated.

With all initial points evaluated, LMAO uses learned knowl-
edge to heuristically explore the parameter space. As shown in
Algorithm 2 and using the constant liar strategy [15], unique,
unknown points are sampled and transmitted to each agent for
parallelized evaluation. Upon completion, the evaluated points
are used to update the model. This process continues until the
desired number of iterations is reached wherein all processes
are stopped and results are returned to the user.

Algorithm 1 Agent Initialization & Initial Point Sampling
Require: numIps = {numIps → N|numIps ↑ 1}
Require: numIps ↑ numIterations
Require: numAgents → N
Require: numAgents ↑ 1

opt ↓ getOptimizer()
ipQueue ↓ opt.getInitialPoints(numIps)
completedIters ↓ 0
for i = 0 to numAgents - 1 do

outPort ↓ getOutPort(i)
nextPoint ↓ ipQueue.pop()
outPort.send(nextPoint)

end for

repeat

for i = 0 to numAgents↔ 1 do

inPort ↓ getInPort(i)

if inPort.probe() is false then

continue
end if

point ↓ inPort.recv()
opt.update(point)
completedIters = completedIters + 1

if ipQueue.nonEmpty() then

outPort ↓ getOutport(i)

nextPoint ↓ ipQueue.pop()
outPort.send(nextPoint)

end if

end for

until completedIters ↑ numIps

III. RESULTS & DISCUSSION

We evaluate the performance of Lava Multi-Agent Op-
timization with a traditional non-convex optimization prob-
lem [10], a spiking graph neural network for citation graph
classification [11], and a quadratic unconstrained binary op-
timization problem in the Lava-Optimization library [12].
All experiments were conducted with a desktop computer
equipped with an AMD Ryzen 7 3700x processor and 64GB
of quad-channel DDR4 memory.

A. Traditional Non-Convex Optimization

The Ackley [10] function is a classic non-convex opti-
mization problem with widespread usage. We evaluate this
function with Bayesian Optimization (BO) across a varying
quantity of agents. The search space is continuous, real values
across the range of each problem dimension. For a total of 50
optimization iterations, we configure the optimizer to sample
10 initial points before using BO to intelligently explore based
on prior knowledge. BO is able to successfully learn each
function and converge arbitrarily close to the global minima.
As shown in Figure 2A, we perform the same experiment
across a varying quantity of agents from 1 to 10. Given the low
computational complexity of individual function evaluations,

296

Authorized licensed use limited to: George Mason University. Downloaded on September 29,2025 at 19:12:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. (A) The runtime latency of LMAO using BO on the Ackley function [10] with varying amounts of manually induced delay. (B) The accuracy
convergence of single and multi-agent BO for citation graph classification [11]. (C) Grid search execution times with satellite scheduling [12] across different
numbers of processes.

Algorithm 2 Heuristic Search
Require: numIps = {numIps → N|numIps ↑ 1}
Require: numIter = {numIter → N|numIter > numIps}
Require: numAgents → N
Require: numAgents ↑ 1

opt ↓ getOptimizer()
completedIters ↓ numIps
repeat

numPoints ↓ min(numIter - completedIters, numAgents)
if numPoints ↗ 0 then

return

end if

unknownPoints ↓ opt.ask(numPoints)
for i = 0 to numPoints - 1 do

outPort ↓ getOutPort(i)
nextPoint ↓ unknownPoints.pop()
outPort.send(nextPoint)

end for

numComplete ↓ 0
repeat

inPort ↓ getInPort(i)

if inPort.probe() is true then

point ↓ inPort.recv()
opt.update(point)
completedIters = completedIters + 1

end if

until numComplete ↑ numPoints
until completedIters ↑ numIter

the overhead of spawning multiple processes and the latency
of updating the Gaussian model outweigh the benefits of
multiple agents and doesn’t reduce the overall runtime. To
evaluate the necessary evaluation latency for LMAO’s multi-
agent capabilities to be effective, we manually add delay to
each function evaluation. As shown in Figure 2A, we iterate
over multiple delay values: 1s, 3s, 5s, and 10s. These results
highlight the positive correlation between the performance

TABLE I
THE PARAMETER SEARCH SPACE FOR OPTIMIZING THE FIXED-POINT

SPIKING GRAPH NEURAL NETWORK [11] WITH LMAO.

Parameter Options

Paper to Paper Weight {100, 101, ..., 500}
Train to Topic Weight {1, 2, ..., 10}
Val. to Topic ω+ & ω→ {20, 21, ..., 60}

Simulation Steps {5, 7, ..., 13}

benefits from multiple agents and the latency of individual
functional evaluations.

B. Transductive Spiking Graph Neural Networks

In the second experiment, we demonstrate the performance
of LMAO with a fixed-precision spiking graph neural network.
Introduced in [2], citation graph classification is performed
with transductive learning where the spiking neural network
structure is designed based on the citation graph itself. More
recent works such as [9] and [11] demonstrate the capability
of this approach with Bayesian optimization (BO) while
intra-network computations are limited to integer precision
compatible with Loihi [16].

Using LMAO, our goal is to reduce the total optimization
time required by BO to select the optimal parameter set. As
shown in Table I, our search space consists of 4 variables: pa-
per to paper weight, train to topic weight, val to topic ω+/→ and
number of simulation steps. We perform two BO experiments
with 1 and 5 agents, with the results being averaged over 3
repetitions and 3 random seeds. Both experiments generate
and evaluate 10 random points to initialize the underlying
Gaussian process (GP). For the experiment with one agent,
the acquisition function is used to select a point to evaluate
next. This point is evaluated with the results incorporated into
the GP. This process is repeated 20 times for 30 total iterations.
Conversely, the experiment with 5 agents takes the initialized
model and selects 5 unknown points using the constant liar
strategy [15]. These 5 points are evaluated in parallel with the
results returned and used to update the GP. Distributing the

297

Authorized licensed use limited to: George Mason University. Downloaded on September 29,2025 at 19:12:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE PARAMETER SEARCH SPACE FOR OPTIMIZING THE NEUROMORPHIC

SATELLITE SCHEDULING PROBLEM [12] WITH LMAO. THE OVERALL
SPACE CONTAINS 270 PARAMETER COMBINATIONS.

Parameter Options

Turning Rate {1.0, 1.25, ..., 3.0}
View Height {0.25, 0.50, ..., 1.5}

Number of Satellites {2, 3, 4, 5, 6}

optimization across multiple agents reduces the total number
of GP model updates and expands the variety of evaluated
points. As shown in Figure 2B, this allows the experiment
with 5 agents to explore a wider area of the search space and
avoid converging to local optima as in the case with 1 agent.
Moreover, expanding the search across multiple agents reduces
the overall optimization time by 2.2x.

C. Satellite Scheduling with Quadratic Unconstrained Bi-

nary Optimization

In our last experiment, we highlight the performance impact
of multi-agent optimization for traditional grid search applied
to a novel satellite scheduling algorithm within the Lava-
Optimization library [12]. Using the 270 parameter search
space shown in Table II, we perform grid search with varying
numbers of agents, ranging from 1 to 50. As shown in
Figure 2C, LMAO’s multi-agent architecture efficiently scales
where there is an inverse correlation between the number
of agents and total search time. Specifically, increasing the
number of agents from 1 to 50 reduced cumulative runtime
by 5.57x.

IV. CONCLUSION

In this work, we introduce Lava Multi-Agent Optimization
(LMAO), a novel framework for parallelized optimization and
search algorithms within the Lava software framework. Our
results demonstrate the scalability of this system applied to a
variety of application spaces with multiple optimization and
search algorithms. Using the abstract framework provided by
LMAO, we are planning to include more algorithms such
as: evolutionary algorithms [17], hyperdimensional Gaussian
process regression [18] and distributed Bayesian search [19].
Moreover, we will expand the application space for LMAO in
areas such as automated neural network design [3] and robotic
control [20].

V. ACKNOWLEDGEMENTS

The research was funded in part by National Science
Foundation through award CCF2319619 and a gift from Intel
Corporation.

REFERENCES

[1] R. Patton, C. Schuman, S. Kulkarni, M. Parsa, J. P. Mitchell, N. Q. Haas,
C. Stahl, S. Paulissen, P. Date, T. Potok et al., “Neuromorphic computing
for autonomous racing,” in International conference on neuromorphic
systems 2021, 2021, pp. 1–5.

[2] G. Cong, S.-H. Lim, S. Kulkarni, P. Date, T. Potok, S. Snyder, M. Parsa,
and C. Schuman, “Semi-supervised graph structure learning on neuro-
morphic computers,” in Proceedings of the International Conference on
Neuromorphic Systems 2022, 2022, pp. 1–4.

[3] M. Parsa, C. Schuman, N. Rathi, A. Ziabari, D. Rose, J. P. Mitchell, J. T.
Johnston, B. Kay, S. Young, and K. Roy, “Accurate and accelerated neu-
romorphic network design leveraging a bayesian hyperparameter pareto
optimization approach,” in International Conference on Neuromorphic
Systems 2021, 2021, pp. 1–8.

[4] C. Scharzenberger and J. Hays, “Learning to estimate regions of attrac-
tion of autonomous dynamical systems using physics-informed neural
networks,” arXiv preprint arXiv:2111.09930, 2021.

[5] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. null, p. 281–305, feb 2012.

[6] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search,
genetic algorithm: A big comparison for nas,” 2019.

[7] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning, ser. Adaptative computation and machine learning
series. University Press Group Limited, 2006. [Online]. Available:
https://books.google.com/books?id=vWtwQgAACAAJ

[8] T. Bayes, “Lii. an essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in
a letter to john canton, amfr s,” Philosophical transactions of the Royal
Society of London, no. 53, pp. 370–418, 1763.

[9] G. Cong, S. Kulkarni, S.-H. Lim, P. Date, S. Snyder, M. Parsa,
D. Kennedy, and C. Schuman, “Hyperparameter optimization and feature
inclusion in graph neural networks for spiking implementation,” in
2023 International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2023, pp. 1541–1546.

[10] D. H. Ackley, “The model,” in A Connectionist Machine for Genetic
Hillclimbing. Springer, 1987, pp. 29–70.

[11] S. Snyder, V. Clerico, G. Cong, S. Kulkarni, C. Schuman, S. Risbud,
and M. Parsa, “Transductive spiking graph neural networks for
loihi,” in Proceedings of the Great Lakes Symposium on VLSI
2024, ser. GLSVLSI ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 608–613. [Online]. Available:
https://doi.org/10.1145/3649476.3660366

[12] I. Labs, “Lava software framework,” 2024, accessed: 2024-3-16.
[Online]. Available: https://lava-nc.org

[13] S. Snyder, S. R. Risbud, and M. Parsa, “Neuromorphic bayesian opti-
mization in lava,” in Proceedings of the 2023 International Conference
on Neuromorphic Systems, 2023, pp. 1–5.

[14] S. Snyder, S. Risbud, and M. Parsa, “Asynchronous neuromorphic
optimization in lava,” in Proceedings of the Great Lakes Symposium
on VLSI 2024, ser. GLSVLSI ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 776–778. [Online]. Available:
https://doi.org/10.1145/3649476.3660383

[15] C. Chevalier and D. Ginsbourger, “Fast computation of the multi-points
expected improvement with applications in batch selection,” in Learning
and Intelligent Optimization, G. Nicosia and P. Pardalos, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 59–69.

[16] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[17] K. A. De Jong, Evolutionary computation. Cambridge, MA: Bradford
Books, Mar. 2016.

[18] P. M. Furlong, T. C. Stewart, and C. Eliasmith, “Fractional binding
in vector symbolic representations for efficient mutual information
exploration.”

[19] M. T. Young, J. D. Hinkle, R. Kannan, and A. Ramanathan, “Distributed
bayesian optimization of deep reinforcement learning algorithms,” J.
Parallel Distrib. Comput., vol. 139, no. C, p. 43–52, may 2020.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2019.07.008

[20] C. Schuman, R. Patton, S. Kulkarni, M. Parsa, C. Stahl, N. Q. Haas,
J. P. Mitchell, S. Snyder, A. Nagle, A. Shanafield et al., “Evolutionary vs
imitation learning for neuromorphic control at the edge,” Neuromorphic
Computing and Engineering, vol. 2, no. 1, p. 014002, 2022.

298

Authorized licensed use limited to: George Mason University. Downloaded on September 29,2025 at 19:12:18 UTC from IEEE Xplore. Restrictions apply.

