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Abstract—In this paper we study ~ partial correction over a
t-user arbitrarily varying multiple-access channel (AV-MAC). We
first present necessary channel conditions for the ~ partially cor-
recting authentication capacity region to have nonempty interior.
We then give a block length extension scheme which preserves
positive rate tuples from a short code with zero probability of
partial correction error, noting that the flexibility of v partial
correction prevents pure codeword concatenation from being
successful. Finally, we offer a case study of a particular AV-
MAC satisfying the necessary conditions for partial correction.

Index Terms—arbitrarily varying multiple-access channel, ca-
pacity region, authentication, partial correction

I. INTRODUCTION

An arbitrarily varying multiple-access channel (AV-MAC)
combines random noise with adversarial action over a channel
with multiple senders and a single receiver. Classical commu-
nication over AV-MACs has been studied in a variety of works,
with [1]-[4] focusing on the capacity region in the two-user
case. The combination of these works establish the commu-
nication capacity region, notably showing that the region has
nonempty interior if and only if the channel does not have a
set of channel symmetrizability properties. Symmetrizability,
defined for point-to-point AVCs in [5], indicates that the
adversary can reliably trick the receiver into decoding in error.

While symmetrizability characterizes the communication
capacity of an AVC, the analogous condition of overwritability
governs the (keyless) authentication capacity of such a channel
[6]. Overwritability indicates that an adversary is not only able
to trick the receiver into an erroneous message estimate, but
that they are able to do so while remaining undetected. In [7],
Beemer et al. formalize an extension of overwritability to the
AV-MAUC, in a similar vein to the extension of symmetrizabil-
ity for communication. They show that the capacity region for
(keyless) authentication over an AV-MAC is equal to that for
communication with no adversary, provided that the channel
is not overwritable to any degree.

Other work related to authentication over an AV-MAC
includes work on MACs with byzantine users. In [8], [9],
Sangwan et al. consider a byzantine user in a two-user MAC,
proving results on the authenticated communication capacity
region. Indeed, the inner bound of the authentication capacity
region for two users over an AV-MAC in [7] was accomplished
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by fixing the byzantine user in an an extension to three users
of the scheme of [8]. In general, however, the question of a
byzantine user in a MAC is distinct from an AV-MAC, where
the adversary’s identity is known a priori.

In the present work, we give the extensions of authentication
results from [7] to the case of an arbitrary number of users,
then quickly turn our attention the idea of vy partial correction.
Partial correction over an AV-MAC was introduced in [7] to
bridge the gap between total correction and authentication.
In contrast to pure authentication, -y partial correction requires
that a ~y fraction of users’ messages be decoded correctly, even
if the remainder be discarded. The particular users who are
decoded accurately may change with each transmission: that
is, the subset of users to be decoded is not fixed ahead of time.
When v = 0, this reduces to authentication, while with v =1
the goal becomes classical communication.

To our knowledge, partial correction over an AV-MAC has
only been studied in [7]. However, we note that there may be
a connection to list decoding over AV-MACs (see e.g. [10],
[11]), wherein partial correction would require that elements
in the output list match on a certain number of users. In
[7], the authors focus on the two-user case, and give some
initial results showing that it is possible for a channel to have
a v partially correcting authentication capacity region with
nonempty interior. Here, we extend these results to an arbitrary
number of users. We give a set of necessary symmetrizabil-
ity/overwritability conditions for  partial correction, present a
case study for a particular channel satisfying these conditions,
and provide a scheme to extend block length that preserves
positive rate tuples.

Necessary background and notation is introduced in Section
II. In Section III, we present a set of necessary channel con-
ditions for partial correction capacity regions with nonempty
interior. Section IV discusses a general method for extending
the block length of a short block length code tuple with
desirable partial correction properties, and Section V provides
a case study of the construction of these short codes for a
particular channel. Section VI concludes the paper.

II. PRELIMINARIES

Let [n] := {1,2,...,n}, and let supp(x) C [n] denote the
support of a length-n vector x. Capital letters (e.g. X) will
denote random variables, script letters the alphabets they are
taken from (X)), and lower case letters their realizations (x).



Our setting will be a t-user AV-MAC, where ¢t > 2. More
specifically, a t-user AV-MAC is defined by a distribution
Wy |x,...x,s, Where legitimate channel inputs X; are taken
from alphabet X; for each j € [t], the adversary’s choice
of channel state is S € S, and the channel output is given
by Y € Y. In our model, we assume the adversary has
full knowledge of the channel statistics and all user encoding
strategies, but that S is independent of the particular message
sequence transmitted in any given time instance. We begin by
extending the definitions of [7].

Definition IL1. An (My,..., M, n) authentication code for
a t-user AV-MAC is given by encoders f1, ..., f; and decoder

b
for[Mj) = xp, 1<j<t (1)
¢ V" = ([Mi]U{0}) x - x ([M]U{0}), (@)

where an output of “0” in any coordinate indicates adversarial
interference.

We will sometimes directly discuss the codebooks C; =
fi(M;) € X in later sections. In this paper, we will be
concerned primarily with correcting some portion of the users’
messages, even if others must be discarded due to adversarial
interference.

Definition IL2. Let v € (0,1). We say that an
(M, ..., M, n) authentication code for a t-user AV-MAC is
~ partially correcting if, with high probability in n, we can
correct at least [y¢] of the ¢ messages.

We observe that the case where v = 0 reduces to the
classical notion of authentication for an AV-MAC a la [7]-
[9], while v = 1 bridges the gap to total correction of all
user messages. The use of the open interval in Definition I1.2
excludes the cases where no messages are corrected, or all are;
neither of these is partial correction. It is straightforward that
if an authentication code is  partially correcting, then it is A
partially correcting for all 0 < A < .

Let ¢~1(A) C Y represent the set of channel outputs
which decode to some element (41, ...,4%;) in the set A under
the decoder ¢, and let ¢~1(A)¢ be the complement in J"
of this set. Let x;(i) := f;(¢) denote the length-n encoding
of message ¢ by user j. Correspondingly, we let i denote
a tuple of transmitted messages from [Mp] x .- x [My],
and x(i) its encoding under (fi, fo,... ft). Given a tuple of
transmitted messages, i, and adversarial state s, where s = s
denotes that the no-adversary state sequence, we define the
probability of v partial correction error for the authentication

code (f1,..., ft,$) by:
ey (i,50) = W (o™ ({i})° | x(i),s0), 3)
and, when s # s,
ey (i;s) = W(o™(A4)° | x(i),s), 4)

where A; = {i: 1; € {0,4;} for j € [t], |supp(D)| > [7t]}.
That is, A; is the set of decoded sequences that match sent

message tuple i on every nonzero entry, and have at least a y
fraction of nonzero entries. We will assume that each message
in [Mq] x -+ x [M,] is transmitted with equal probability, so
that the average probability of error for a given adversarial
choice of s is:

1 .
€ (S) = m Z 67(1, S). (5)

We say that a rate tuple (Ry,...,R;) € RL, is achiev-
able for ~ partial correction if there exists a sequence of
(2Fan . 2Bn ) codes such that maxs e (s) approaches 0
with increasing block length n. As in a point-to-point AVC or
the two-user AV-MAC case, argmax e~ (s) is the adversary’s
best chance of inducing a decoding error.

The (t-dimensional) authentication capacity region Guun
and the v partially correcting authentication capacity region,
Gauth,~- are the closures of the sets of achievable rate tuples
for each respective goal, where the former is realized when
v = 0. Let ¥ denote the communication capacity region in
the no-adversary setting (i.e., s = sg, 7 = 1). We say that
a capacity region has nonempty interior if it contains a point
such that all coordinate values are positive.

Critical to authentication and partial correction are the con-
cepts of symmetrizability [5] and overwritability [6]: channel
conditions which determine whether a channel is amenable to
these types of communication. Below, we give extensions to
the original point-to-point definitions to a ¢-user AV-MAC:

Definition IL.3. Let ¢ > 2 and m € [t]. A t-user AV-
MAC Wy x,..x,s (denoted by W) is X; x --- x X -
symmetrizable if there exists P := Pg|x, ..x,  such that for
all @y, .o, T, 2, T LY,

ZP(S | xél, ... ,xém)W(y|xil,...,xim,s) =
S
ZP(S | $ila-~-a$im)W(y|532]v---7532,,“8)-
S

The case ¢ = 2 results in the symmetrizability conditions
of [2], which along with [1], [3] showed that (lack of)
symmetrizability completely characterizes when the AV-MAC
communication capacity region ¥ has (non)empty interior.

Definition II.4. Let ¢ > 2 and m € [t]. A t-user AV-
MAC Wy x,..x,s (denoted by W) is X; x .-+ x Xj -
overwritable if there exists P := Pg|x, ..x, such that for
all Lijqye - ‘

im

/
'7':szaxi17~"7$im7y’

ZP(S |2,z YW (yles, ... x,,s) =
S

W(’y|$;1, s 7x;ma SO)'
Again, the case of ¢ = 2 reduces to previous results: it
was shown in [7] that (lack of) overwritability completely
characterizes when the authentication capacity region %, has
(non)empty interior.
For brevity, we will say that a channel is m-symmetrizable
(resp., -overwritable) if there exists some subset of m



x X;

im

users %1, ..., %y such that the channel is X; x ---
symmetrizable (resp., overwritable).

III. NECESSARY CONDITIONS FOR NONEMPTY INTERIOR

Previous work completely classified the authentication ca-
pacity region %, for the case of two users, and established
necessary conditions for nonempty interior of the v = 0.5
partially correcting authentication capacity region Gum,0.5 in
the same setting [7]. In this section, we extend these results to
more than two users. Because the authentication rate region is
not the primary topic of this paper, and the results extend in
a straightforward way to more users, we omit the following
proof pertaining to Gyym; this result extends Lemma I11.6 and
Theorem III.7 of [7].

Theorem III.1. A t-user AV-MAC is m-overwritable for some
m € [t] if and only if Cpum has empty interior. Otherwise,
Cgamh =7

The following result on ,um,, can be seen by observing
that any v partially correcting authentication code is simul-
taneously an authentication code. The result extends Lemma
IV.2. of [7].

Lemma IIL2. For any t-user AV-MAC and v € (0,1),
(gauth,'y g %mtir

Theorem III.1 and Lemma III.2 together imply that non-
m-overwritability (for all m € [t]) is a necessary condition
for Gaum,y to have nonempty interior. Next, we give another
necessary condition for nonempty interior of Guum,y. Namely,
the channel can only be symmetrizable up to the number of
users we need not correct to achieve ~ partial correction. While
this result extends Theorem IV.3 of [7], its proof contains more
subtlety than the two-user case, so we include it here in full.

Theorem IIL3. Ler v € (0,1). If a t-user AV-MAC
Wy |x,...x,s is m-symmetrizable for any m >t — [vt], then
Gauh,y has empty interior.

Proof. Let v € (0,1). Suppose W := Wy |x,..x,5 is X; X

--x X;,, -symmetrizable, where m > t— [yt]. Without loss of
generality, let i; = 7, so that the coordinates in question are the
first m, and let P := Pg|x,...x,, be an adversarial distribution
satisfying the property of Definition II.3. Consider a sequence
of (M,...,My;,n) codes, with M; := 25" where R; > 0
for j € [t]. Let x(i) be the encodmg of message vector i, and
let v? denote coordinates a through b of a vector v. Define
A= (i iy € {00y} for j € [f],Jsupp()] > [1¢]}, as
in Section II. Finally, define M := (M7 -+ My,)(My - - - My).
Then, maxs e~ (s) is bounded below by the expected value of
e,(s) over S:

>>:£: FT AT
MZ

ZPS|X

Mey(k,s) @)

ex(s) (6)

(s ] x(i)

Y

P(s | x(®)7)W (6™ (AK)° | x(k),s) (8

! (Ax)“ | X(ii”kfnﬂ), s)

€))

where Equations (7) and (8) follow by definition, and (9) from
symmetrizability.

Now, we consider the sets Ajm: - and Ay. If i; # k;
for all j € [m], then these two sets are disjoint: indeed, any
decoded message tuple with support of size at least [¢] must
contain at least one coordinate from the first m (recall that
m >t — [yt]). In other words, ¢~ ! (Ajpper ) € ¢~ (Ax)®
when i; # k; for all j € [m]. Using that R; > 0, and thus
that the set of i*’s such that i; # k; for fixed k is nonempty,

1 m
> LS Pl x0p), (10)
iinii.;jﬁkj
W(o™ (A ) | x(i7K,44),8) (1D
1 .
== Y PG IX0P) (- e K s) ()
k,s
i z]¢k:
1 .
= M Z P(S | X(k){n) Z (1 - e'y(llnkfnJrlvs))
s, k7" kf,LH
@#k:
(13)
1 m t
> 37 Pl | x(9]) (H(Ma -0 I M- m(s))
s,k a=1 b=m+1
(14)
HZIZI(MG 1) HZ:erl Mb — maxe (S) Zkiﬂ 1
o Ml' 'Mt s v Mle
(15)
HZLZI (Ma - 1) HZ:m-‘rl Mb — maxe (S) (16)
B M- M, pahl
Altogether,
max e, (s) > oy (M M )1_]\[2 mtl b. (17
s t

The lower bound approaches 0.5 in n given that R; > 0 for
Jj € [m], bounding max; e, (s) away from zero. We conclude
that it is not possible that all R;’s, j € [m], were positive.
Thus, €,um,~ has empty interior. O

As in the two user case, it is possible that a channel is
not overwritable in any sense, but is m-symmetrizable for
some m > t — [vt]; in this case, Theorem IIL.3 tells us that
Gauih,~ has empty interior, even while €, = ¢ may not.
Furthermore, the proof of Theorem III.3 shows something
slightly stronger than what is stated in the theorem: the
projection of Gum,, onto any m symmetrizable coordinates
(m >t — [~t]) must have empty interior.



IV. BLOCK LENGTH EXTENSION SCHEME

In this section, we present a method for extending the block
length of a « partially correcting authentication code whose
probability of v partial correction error is equal to zero. We
note that unlike the classical (v = 1) message correction case,
simple concatenation of such a code will not automatically
achieve the same rate as that of the original codebook: this is
due to the fact that the particular [~¢] users whose messages
can be corrected in each time instance may vary. To adapt to
our scenario, we use a concatenated code with the inner code
tuple equal to a v partially correcting code with probability
of ~ partial correction error equal to zero, and outer codes
C.,; given by a point-to-point codes designed for an induced
erasure channel with a power constrained adversary. This
induced channel is described in detail later in this section. A
simplified version of this scheme appears in [7] for a particular
two-user AV-MAC (a channel that is extended to more users
in the case study of Section V). Here, we extend the scheme
to the case of an arbitrary number of users. We note that our
scheme is not channel-dependent beyond the assumption that
such an inner code exists.

Suppose we have a set of ¢ codebooks, each of block length
n, that have correction capability v := 7 (with zero probability
of ~ partial correction error).! If each user concatenates r
codewords from their codebook, at least u users are correctable
in any given time instance, while the remainder will be deemed
to be in erasure. Notice that at most ¢ — u users experience
erasure in each of the r time instances. Our outer codes, C. ;,
must protect against these erasures for at least v of the users.
To gain an understanding of how this induced erasure channel
functions, consider the following example:

Example IV.1. Consider a set of three codebooks that have
partial correction capability v = % and block length n, where
C; == fi(M;) = {ci1,cia} for i € [3]. To extend the block
length, we will use outer codes C. ; C IE"S. For example, let
C.,; = {100101,011101, 000101, 111010} for all j € [3]. Let
0 be replaced by the first codeword in each of the C;’s and 1
be replaced by the second codeword in each of the C;’s. For
example the first codebook would become

!
Cl = {6126110110120118127 C11C€12€12€12C11C12,
C11€11C€11€C12€C11C12, 012012012011012011}

with block length 6n and rate % = % Because the C;’s can
correct yt = 2 of the three users, there will be a maximum of
one erasure in each time instance. An example erasure pattern
is given below, where an erasure is represented by . Note
that with this erasure pattern, we can still correct two of the
three users’ messages, and thus achieve the goal of v partial
correction.

Userl & ¢ & & & €
User 2 C22 C21 C21 C22 C21 C22
User 3 c31 c32 €32 €32 €31 €31

IFor fixed ¢ and integer 1 < u < t, we take “771 <~ < % and “round”
it to %. This will not affect the number of users correctable due to the ceiling
function on [~¢].

The above erasure pattern example suggests that the ad-
versary’s best strategy will be to spread their efforts across
enough users, but not any more than needed, in order to deter
~ partial correction. Intuitively, the adversary should choose
to target ¢ —u+ 1 users to have the most erasures per affected
user while not leaving u users with zero erasures. The optimal
strategy is formalized in the proof of the following lemma.

Lemma IV2. Let t > 2 and 1 < u < t. Ifa~y = 7
partially correcting codebook tuple (with error probability
zero) is concatenated r times, at least u users will experience

at most L:(_t;f“ total erasures.

Proof. In each time instant, the adversary can attempt to erase
t —u users’ symbols. If they are always successful, there are a
total of r(t—u) erasures across all users and all time instances.
Suppose that the adversary has full control over which users
will experience erasures, and they choose to restrict these
erasures to I' of the ¢ users. First, suppose I' < ¢t — u + 1.
In this case, there are at least u users that have zero erasures,
and we are done. Now, let I' > ¢ —u+ 1. The average number
of erasures per targeted user is rltzw),

We claim that at least I'— (f—u) users have at most L:(_t;f“
erasures. Suppose not, and that at least I'—[['— (t—u)]+1 = ¢t—
u~+1 users have strictly more than L:(_t;:ij erasures. If :(_t;ﬂ
is an integer, the total number of erasures across all users and
time instances is strictly bounded below by (t—u+1) :(_t;ﬁ =
r(t — w). If it is not an integer, the total number of erasures
would be bounded below by (t —u + 1) [:(_t;ﬂ] > r(t —u).
Both cases contradict that the total number of erasures is equal
to (at most) 7(t — u).

Thus, at least I' — (f — ) users have at most L;ﬁu‘fij
erasures. The ¢ — I' non-targeted users have zero erasures.
Thus, at least t — I' + (I' — (¢t — u)) = w users have at most

r(t—u)
| =71 erasures. O

This upper bound on the number of erasures for some subset
of u = [~t] users is tight if the adversary may choose which
users to target, and if they are able to reliably erase their
targeted users. Both are advantageous assumptions for the
adversary; we note that they will not always be the case (see

Section V for a channel case study without the latter property).
Example IV.3. Consider the codebooks of Example IV.1 with
y=%= % First consider the case were the adversary targets

all users equally. A possible erasure pattern is given below:

Userl & € c¢1 c2 cu1 ci2
User2 cp ¢ € € ca C2
User 3 c31 c3 c32 c32 €& &

In this case, the decoder needs to be able to correct two
erasures (per user) in order to correct two of the three users.

Next, we look at the case were the adversary focuses their
efforts on t —u + 1 = 2 users. Per Lemma IV.2, this is the
adversary’s optimal strategy.

Userl & ¢ & ca cu1 ci2
User2 cy ¢y ¢ & & €
User 3 C31 C32 C32 C32 C31 C32



Here, the decoder needs to correct three erasures in order to
correct two of the three users.

Remark IV.4. According to Lemma IV.2, if we wish to design
C.,; with probability of «y partial correction error equal to

zero, dpin(Ce ;) > Lg(f;fij + 1 for each j € [t].

Remark IV.4 addresses the requirement of perfect correction
of C. ;. Allowing for some vanishing decoding error proba-
bility, we turn to the capacity of the induced erasure AVC.

Lemma IV.5. Let v € (0,1), n > 1, t > 2, and W :=
Wy |x,..x,s be a t-user AV-MAC. Suppose a ~ partially
correcting authentication code (M, ..., My, n) exists for W
such that M; := 285" > 1 for all j € [t] and the probability
of v partial correction error is equal to zero. Then, €y ~ has
nonempty interior.

Proof. Choose a user j € [t], and define a deterministic
erasure AVC as follows: let X = [M;], Y = [M;] U {e}, and
S ={s0,51}. Then, y =z if s = sg, and y = ¢ if s = s7. Let
u := [~t]. Importantly, the adversary is power-constrained
so that in a length-r transmission they may choose at most
L:&tgﬂj coordinates to be equal to s;; the remainder must be
equal to sg. There are no constraints on the legitimate user’s
channel input. This channel mimics the worst-case scenario for
(at least) u users in the above-described concatenation scheme:
each has at most L:ﬁ:ﬂj erasures, and in our induced channel
we assume that any time the adversary attempts to erase a user
they can do so successfully. We refer the reader to Theorem
3 of [5] to verify that this channel has positive capacity.

It remains to explain why this implies an achievable positive
rate tuple for the original AV-MAC. For each user j € [t], let
a code sequence (294", 1) achieve the capacity of the erasure
AVC. Using the concatenation scheme described earlier in this
section, with the existing zero-error ~ partial correction code
as inner code, we achieve rate ();; > 0 for user j. O

The case study in [7] calculates the exact capacity of an
induced erasure AVC, which is dependent on the AV-MAC
studied there (and extended in Section V), as well as the
specific choice of inner code for that channel. There, when
the adversary acted they had a 0.5 probability of erasing,
as opposed to the guaranteed erasure assumed in the proof
of Lemma IV.5. In other words, we believe it is possible to
be more specific about the values of the positive rate tuples
achievable using our extension scheme. We plan to address this
question, as well as the question of whether a less stringent
inner code may be utilized, in a full version of this work.

V. ZERO PROBABILITY OF PARTIAL CORRECTION ERROR
CODES CASE STUDY

In this section, we turn to a particular ¢-user channel satis-
fying the necessary conditions of Section III for authenticated
partial correction. We will work to construct short block
length codes with zero probability of ~ partial correction
error, with the knowledge that such codes can be extended
using the scheme of Section IV. To define the channel, let

Xp=--=X={0,1}, §={0,1,2,...,¢} for some £ > 1,
and Y = {0,1,...,t+/4}, whereY = X1+ Xo+- -+ X;+S.
The no-adversary state is given by so = 0. For ease of notation,
we will denote this channel by W;}. Observe that W;‘Z is
deterministic given a choice of state.

A. Necessary conditions are satisfied

We first verify that W:} satisfies the necessary overwritabil-
ity and symmetrizability conditions established in Section III.

Lemma V.1. Wj‘e is not m-overwritable for any m € [t].

Proof. Let W := W', and m € [t]. Toward contradiction,
assume the channel is m-user overwritable in the first m
coordinates, and let P be the distribution guaranteed by the
definition of overwritability. Let =} = --- = af, = 1,

r1=---=x; =0, and y = 0. Then,

¢
> P(s|1,...,)W(0][0,...,0,5) =
s=0 :

m t—m

w(|1,...,1,0,...,0,0)  (18)
—_—————

t

On the left hand side, W(0|0,...,0,s) = 1 if and only if
s = 0; otherwise it is zero. Therefore, the left side is equal to

P(0]1,...,1). On the right side, W(0|1,...,1,0,...,0,0) =
0. Thus, P(0|1,...,1) = 0.

A similar argument with mll = ... = x;n =12 =
To ==y =L 2p41 =--=x,=0,andy =m
yields P(0|1,...,1) = 1. This is a contradiction because
P(0]1,...,1) cannot be equal to both 0 and 1. Therefore,
the channel is not m-user overwritable. O

Recall that the other necessary condition for a ¢-user channel
to be ~ partially correcting is that the channel is not g-user
symmetrizable for any g > ¢ — [yt]. The following establishes
allowed values of «y given the adversary’s power constraint £.

Lemma V.2. Let ¢ < t. Then W;’e is q-user symmetrizable
for any subset of q users exactly when q < /.

Proof. Let W := W{f‘e. First we show that the channel is
g-user symmetrizable for ¢ < {. Consider the following
probability distribution: P(s|z1,...,z4) = 1if D1 2 = s,
and 0 otherwise. Notice that because each x; € {0,1}, we
have 0 < 23:1 x; < q. Because ¢ < ¢, for a fixed choice
of x;’s, P(s|r1,...,24) = 1 for exactly one choice of s.
Using this distribution in Definition II.3, the left hand size
yields W (y|z1,..., 24, Y i, «}), and the right hand size
becomes W (y|a), ..., @), Tgq1,. -, e, D gy ;). The sum
of the inputs will be the same on both sides, so either both
sides are equal to 1 if the sum of the inputs is equal to y or
both sides are equal to O if the sum of the inputs is not equal
to y. Therefore, the channel is g-user symmetrizable for the
first ¢ users. Notice that permuting the coordinates will not
change the argument, so we have shown that the channel is
g-user symmetrizable for any subset of ¢ users.



Now we will show the channel is not g-user symmetrizable
when £ + 1 < g < t. By way of contradiction, assume the
channel is g-user symmetrizable for such a g. Let P be the
distribution guaranteed by Definition II.3, and let z € S (note
that z < ¢ < t). We claim that P(z|0,...,0) = 0. Assume
vh=...=2,=0,21 = ...
zy = 0, and y = t. Then, the left hand side of the definition
is the sum over s € S of

= T¢— z—liﬁt 41 = ... =

t—=z

——
P(s]0,...,00W(t|1,...,1,0,...,0,5) (19)
~—— —_——

q t

and the right hand side is equal to the sum over s € S of

min{t—z,q} q ((t—2)—)*
—— —— —
P(s| 1,...,1,0,...,00W(0,...,0, T,...,1,0,...,0,)
q t
(20)
where we use A1 to denote max{\,0}. In Equation (19),
wi(t|1,...,1,0,...,0,s) = 1 if and only if s = =z
Therefore, (19) is equal to P(z|0,...,0). In Equation (20),
w(tlo,...,0,1,...,1,0,...,0,s) = 1 if and only if ¢t =
(t—2z—qt +s. Since s < £ < q < t, it follows that

s—q<0,and also s < t. Thus, (t — 2 —q)* +s < t, and
(20) equals 0. Therefore, P(z|0,...,0) =0forall 0 < z < ¢,
a contradiction. Therefore, no such P exists and the channel
is not g-user symmetrizable for / + 1 < ¢ < t. O

Lemmas V.1 and V.2 together establish the following:

Theorem V.3. The channel W ¢ satisfies the necessary con-
ditions for « partial correction established by Theorem III.1,
Lemma I11.2, and Theorem II1.3.

B. Zero probability of v partial correction characterization

To aid in our discussion of code construction, we next
introduce notation that will help explain when a codebook is
v partially correcting with zero probability of error for Wt'?
Let C; := f;(M;) denote the block length n codebook of user
Jj, so that each x € Cj; is equal to f;(i) for some i € Mj.
Then, define the following multisets:

t
Ag = uzzxj x; € O 1)
j=1
t
A= u=S+ZXj x; € Cj, s€ S\ {so} (22)

Jj=1

In other words, the set Ag is the set of all possible channel
outputs (with multiplicity) when the adversary does not act,
and A; is the set of all outputs when the adversary does act.

Lemma V.4. Over the channel Wt ,» a codebook t-tuple
is ~ partially correcting with zero probablllty of v partial
correction error if and only if all of the following hold:

(1) Ao N Ay =1;

(2) The elements of Ag are unique;

(3) For each w € A; that appears with multiplicity, there
exists some subset J = {j1,j2,. .. hjf"/ﬂ} C [t] such that
iferZ _1X; =wands' +Z _1Xj =W, thenx; = X
for all i € J.

Proof. Condition (1) ensures that the decoder can reliably
distinguish between the case where the adversary has acted
and the case where they have transmitted a sequence of all
zeros (so). Taken together with (2), we have e, (i,s¢) = 0 for
every message tuple i. If either condition fails, e, (i,s0) > 0.

With (1), condition (3) establishes that e, (i,s) = 0 when
s # s if there are repeated elements in A;, we are guaranteed
to be able to correct [vt] of the messages, even if the others
must be discarded. If condition (3) fails, e, (i,s) > 0. O

With this characterization in hand, we turn to short code-
book design strategies. For the remainder of the paper, we
will focus on the codebooks C; := f;(M;); thus, we will will
discuss codebook tuples of the form (C’l, oo, Cp).

C. Two users

Here we present necessary conditions for v = 0.5 partially
correcting codebook pairs over W;r 1 with zero probability of ~y
partial correction error, and bound the sizes of these codebooks
for fixed block length.

Example V.5. The codebook pair Cy = {011,100}, and
Cy = {010,101} is 0.5 partially correcting over W;:l with
zero probability of ~ partial correction error. This example
was explored extensively in [7].

The each codebook of Example V.5 has the property that
codeword supports are not contained in one another. We find
that this is true in general for partial correction over W,%,.

Theorem V.6. Let (Ci,...,C;) be a codebook tuple with
C; € {0,1}" for j € [t]. If, for some j € [t], x,y € C,;
with x #y and supp(x) C supp(y), then the codebook tuple
(C1,...,Cy) is not y partially correcting with zero probability
of ~y partial correction error over Wt—j_e for any v € (0,1).

Proof. Let v € (0,1). Suppose that for some j € [t] there
exist x # y € C; such that supp(x) C supp(y). Let supp(y)\
supp(x) be the support of the adversarial contribution s. Notice
thats € {0,1}" C 8", and s+x =y +0. Thus AgNA; # 0.
By Lemma V.4, the result follows. O

Let the partially ordered set (poset) P([n]) be the power set
of [n] together with the partial order defined by set inclusion.
Elements of the poset can alternatively be thought of as vectors
in {0,1}"; elements whose supports are contained in one
another are then related under the partial order. Theorem V.6
states that each codebook of a ~ partially correcting (with
zero probability of « partial correction error) codebook tuples
are antichains (sets of unrelated elements) in P([n]). The
following corollary is a direct consequence of Theorem V.6.

Corollary V.7. Suppose the codebook tuple (Ci,...,C})
is ~y partially correcting with zero probability of ~ partial



correction error over WJZ for some v € (0,1). If |C;| > 1,
then 0,1 ¢ C;.

While each individual codebook must be an antichain, the
disjoint union of codebooks need not be. Indeed, Example
V.5 has two (disjoint) related pairs across codebooks. The
following places a limit on such support containment.

Theorem V.8. Let (Cy,C5) be a 0.5 partially correcting
codebook pair with zero probability of ~y partial correction
error over W3t,. Provided |C4|,|Cs| > 1, C1 N Cy = 0 and
Cy U Cy has at most two pairs of related codewords having
the property that the intersection of these pairs is empty.

Proof. Let (C1,C5) be a 0.5 partially correcting codebook
pair with zero probability of ~« partial correction error over
W5, and |C1],|Cs| > 1. To show that the codebooks are
disjoint, suppose x € C1NCy. Leta#x € Cy and b #x €
C5. Note that a,b,x € S™. Observe that if either [x; = x,
X9 = b, s = a], or [x; = a, X0 = X, s = b], the channel
output is x+ b+ a. This violates condition (3) of Lemma V.4.
We have thus established that C; N Cy = ().

Next, we will show that if there are two related pairs in the
union, they have a particular structure. Let x;,Xs2,y1,y2 €
C1 U Cy be distinct such that x; < x9 and y; < ys. Making
use of Theorem V.6, and without loss of generality, we have
two cases: either x;,y; € Cq, or x1,ys € C.

Suppose x1,y1 € C1 and x5,y2 € C5. Let a,b € S™ be
such that x; +a = x5 and y; + b = y». Then,

X1 +y2+a=xa+ys=y1+X2+b, (23)

contradicting condition (3) of Lemma V.4. Thus, it must be
the case that the two smaller elements, x; and y;, must be in
distinct codebooks.

Now suppose that Xi,Xs,y1,¥2,Z1,Z22 € C; U Cy are
distinct elements with x; < x9, y1 < y2, z1 < Zo. Based on
our above structural argument, x1, y1, and z; must pairwise
belong to different codebooks, an impossibility.

O]

Theorem V.8 implies an upper bound on the size of the
disjoint union:

Theorem V.9. Let (Cy, Cs) be a 0.5 partially correcting code-
book pair with zero probability of ~ partial correction error
over Wy, with |C1,|Ca| > 1. Then |Cy U Cy| < ([,f;ﬂ) +2.

Proof. From Sperner’s theorem, the size of a largest antichain
in P([n]) is (P:/Lﬂ)' From Theorem V.8, C' := C; U Cy will
have the form of an antichain with at most two additional
elements. The result follows. O]

D. Three or more users

With the goal of constructing short codebook tuples with
zero probability of «y partial correction error over Wt'; fort >
3, in this section we develop equivalent conditions for (1) and
(3) of Lemma V.4 which are easier to check computationally.
In particular, we will reinterpret these conditions in terms of
differences of sums of legitimate codewords. This allows us to

avoid actually constructing Ay, and to instead check conditions
on the elements of Ag (i.e. sums of codewords).

In each of the results of this section, we will consider two
such sums: u = 23:1 x; and v = Z;Zlyj, where (not
necessarily distinct) x;,y; € C; are vectors of length n for
each j € [t].

Lemma V.10. Ler (C1,...,Cy) be a codebook tuple for the
channel W;TZ, where { > 1. There exist distinct u,v € Ag such
that u—v is in {0,...,0}" = 8™ if and only if AgN Ay # 0.

Proof. Suppose the vector difference u — v € {0,...,¢}"
for some choice of u,v € Ap. In this case, u — v is an
element in S™ not equal to sg; call this difference s. Then,
u = v +s. We then see that u € A; and u € Ay. This means
that Ay N Ay # 0. On the other hand, let u be an element of
nonempty Ag N Aj. Since u € A;, it must be the case that
u=v +s for some v € Ag, s # sg. Then, u — v € §”, and
we are done. O]

The following two examples illustrate Lemma V.10.

Example V.11. Consider the set of three codebooks with block
length n = 6 given below:

Cy = {100110,110110} 4)
Cs = {111010, 100101} (25)
Cs = {011111,001010} (26)

We claim that Ag N Ay # () over W3+ ¢ for this codebook. Let
u,v € Ag be given by

u = 100110 + 111010 4 011111 = 222231
v = 110110 + 100101 + 001010 = 211221

27
(28)

Then, u — v = 222231 — 211221 = 011010. Here, we can
see that u — v is an element in S™ for any { > 1. Observe
that u = v + s when s = 011010, so that Ay N Ay # 0 and
condition (1) of Lemma V.4 fails.

Example V.12. Consider the set of three codebooks with block
length n = 6 given below:

Cy = {011010,100101} (29)
Cy = {010110,101001} (30)
C5 = {001101, 110010} 31)

We claim that Ay N A7 = 0 over W3+ , for this codebook.
Consider the following choice of u and v as an example:

u = 011010 + 010110 + 001101 = 022221 (32)

v = 100101 + 101001 + 110010 = 311112 (33)
Then,

u—v=022221 — 311112 = (-3)1111(-1) (34)

Here we can see that u—v is not an element in S™. All values

of u— v can be looped through for this channel to show that
AgNA = 0.



Next, we rephrase condition (3) of Lemma V.4 in terms of
elements of Ag.

Lemma V.13. Let (Cy,...,C}) be a codebook tuple for the
channel W;rg, where £ > 1, and let v € (0,1). Let u,v € Ay
such that u = Z;Zl x; and v = Z;Zl y; and x; # y; for
at least t — [yt] + 1 values of j € [t]. If the maximum entry
of lu —v| is at most ¢, condition (3) of Lemma V.4 fails.

Proof. Let (C4,...,C}) be a codebook tuple for the channel
Wtfz, where ¢ > 1, and let v € (0,1). Let u,v € Ag such
that u = Y'_, x; and v = Z;Zlyj and x; # y; for at
least ¢ — Htﬁ + 1 values of j € [t]. If the maximum entry
of lu—v|is </ then ju—v| € §". Thus, lu—v| =s
and u; — v; = +s; for each i € [n]. Letting s; equal s on
coordinates where u; —v; is negative, and zero elsewhere, and
so = s when u; — v; is positive, and zero elsewhere, we have
u+ sy = v + s,. Condition (3) fails because the sums cannot
match on any subset of [y¢] codewords.

O

The following example illustrates Lemma V.13.

Example V.14. Consider the set of three codebooks with block
length n = 6 given below:

C, = {011010,100101} (35)
Cs = {010110, 101001} (36)
Cs = {010101,101010} (37)

We claim that condition (3) of Lemma V.4 fails over W;r , When

’y:lor'y:%.Letu,VEAobe

3
u = 100101 4+ 010110 + 101010 = 211221 (38)
v = 011010 4+ 101001 4 010101 = 122112 (39)
It can be seen that u and v differ on all three users.
|lu—v| =1211221 — 122112| = 111111 (40)

and u — v = 1(=1)(—=1)11(-1) such that u + 011001 =
v +100110. Thus, condition (3) fails due to the fact that there
is a repeated element in Ay for which no user codewords
match.

We observe that condition (2) of Lemma V.4 is straight-
forward to check on Ag alone. Combining all checks on Ag
described in this section, we can algorithmically loop through
the possible combinations of differences of elements of Ag
to test whether a codebook triple is a candidate for partial
correction with zero probability of « partial correction error.
Notably, the check of Lemma V.13 is necessary (for some such
u,v) for failure of condition (3) when there are three users
and v = % In fact, the codebook given in Example V.12 is
a good codebook triple for W57, with 4 = 2. The extension
scheme of Section I'V can thus be used to achieve positive rate
triples with arbitrary block length.

VI. CONCLUSION

In this paper, we gave necessary (non-)symmetrizability and
(non-)overwritability conditions for nonempty interior of the
~ partially correcting authentication capacity region over a t-
user AV-MAC. We presented a scheme to extend the block
length of a strong short block length code, showing that the
resulting extension can maintain the positive rates of the short
code. Finally, we examined the particular AV-MAC denoted
W{;, deriving structural results and bounds for zero ~y partial
correction error codes over this channel. Ongoing and future
directions include sufficiency of the aforementioned necessary
channel conditions for partial correction, refinement of our
block length extension scheme, and alternative paths toward
inner bounds on the v partially correcting authentication
capacity region.
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