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Aerosols have been proposed to influence precipitation rates and spatial
patterns fromscales of individual clouds to the globe. However, large
uncertainty remains regarding the underlying mechanisms and importance
of multiple effects across spatial and temporal scales. Here we review the
evidence and scientific consensus behind these effects, categorized into

radiative effects viamodification of radiative fluxes and the energy balance, and
microphysical effects viamodification of cloud droplets and ice crystals. Broad
consensus and strong theoretical evidence exist that aerosol radiative effects
(aerosol-radiationinteractions and aerosol-cloud interactions) act as drivers

of precipitation changes because global mean precipitationis constrained by
energetics and surface evaporation. Likewise, aerosol radiative effects cause
well-documented shifts of large-scale precipitation patterns, such asthe
intertropical convergence zone. The extent of aerosol effects on precipitation
atsmaller scales isless clear. Although there is broad consensus and strong
evidence that aerosol perturbations microphysically increase cloud droplet
numbers and decrease droplet sizes, thereby slowing precipitation droplet
formation, the overall aerosol effect on precipitation across scales remains
highly uncertain. Global cloud-resolving models provide opportunities to
investigate mechanisms that are currently not well represented in global
climate models and to robustly connect local effects with larger scales. This will
increase our confidence in predicted impacts of climate change.

Less than 3% of water on Earth sustains life. Precipitation is the most
important mechanism delivering fresh water from the atmosphere
to the surface. Although climate change discussions are commonly
framed interms of global temperature change, precipitation change's
significantly drive actualimpacts of climate change on the planet',,
A substantial body of literature exists describing the impact
of greenhouse gas- (GHG-) induced warming on precipitation, and
the concepts are well understood®’. By contrast, the uncertainty

regarding aerosol (nano- to micrometre-sized particles suspended
in air of anthropogenic or natural origin) effects on precipitation
(APEs) remains large. Many hypotheses describe APEs on the basis of
radiative and cloud microphysical arguments. Some are included in
current climate models; others are not (compare Fig. 1 and Table 1).
Large uncertainty remains regarding the underlying mechanisms and
relative importance of proposed effects across spatial and temporal
scales.

A full list of affiliations appears at the end of the paper.
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Fig.1|a-d, Climate model-simulated Eelative (a) and absolute (c) precipitation
changes (%) due to anthropogenic aerosol from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) Detection and Attribution Model
Intercomparison Project?® (difference between last 30 years of present-day
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hist-aer minus pre-industrial picontrol control simulations) and the
corresponding multimodel standard deviations'(b,d), respectively. Note the
significant differences between relative (a) and absolute (c) precipitation
changes, highlighted in the boxes over northern Africa and the Middle East.

This Review Article builds on the results of an expert work-
shop held under the auspices of the Global Energy and Water Cycle
Exchanges (GEWEX) Aerosol Precipitation (GAP) initiative®. It criti-
cally reviews the current evidence and scientific consensus (in the
authors’ view) for APEs and their proposed mechanisms. To facilitate
this assessment, we categorize mechanisms according to their degree
of scientific support: category A, strong evidence/broad consensus;
category B, some evidence/limited consensus; category C, hypoth-
esized/no consensus.

The physical mechanisms of aerosol effects on
precipitation

The physical drivers of APEs canbe categorized into (1) radiative effects
via modification of radiative fluxes and the energy balance, which
occur due to aerosol scattering and absorption, and (2) modification
of cloud radiative properties by microphysical effects viamodification
of cloud droplet and ice crystal number, size and morphology, which
can affect growth to precipitation-size particles, as well as latent heat
from phase changes (enthalpy of vaporization or fusion). All these
effects caninduce dynamical feedbacks across scales.

In addition to this mechanistic (bottom up) view, conservation
laws provide acomplementary (top down) perspective: conservation
of energy constrains global mean precipitation®’ as changesin latent
heat of condensation (L) associated with precipitation changes (dP)
have to be compensated by opposite changesinnet column-integrated
cooling (dQ) through adjustment of net surface or top-of-atmosphere
fluxes, and vice versa. At smaller spatial scales, net latent heating associ-
ated with precipitation changes can also be balanced through diver-
gence of dry static energy>*™° (d (V « us)) (column integrated, with u
horizontal velocity, neglecting changes in energy and liquid or:solid
water storage and kinetic energy transport), as illustrated in Fig. 2:

LdP=dQ+d(V - us) @

Conservation of water provides additional constraints. In the
global mean and for sufficiently long time scales, precipitation Pmust
be balanced by evaporation Eso P - E=0. On smaller spatial scales,
moisture (g,) flux convergence can compensate for imbalances in
P - Esothat:

dP - dE=-d(V -uq,) 2)

Thisimplies the existence of breakdown scales of budgetary con-
straints on precipitation—ascale below which energy and water budget
constraints on precipitation do not strictly apply due to efficient
horizontal transport™. In the extra-tropics, this scale is expected to
be related to the first baroclinic Rossby radius of deformation
(L =%z1,000 km, where N is the Brunt-Viisila frequency, His the scale
height and f, is the Coriolis parameter). This latitudinally dependent
precipitation constraint on aerosol perturbations implies varying
effectsinthe tropics and extra-tropics (Fig. 3). Even for regional aerosol
perturbations, energetic constraints apply to the global mean. Reduc-
tionsinsurfaceinsolation and atmospheric heating by aerosol absorp-
tion decrease global mean precipitation in both simulations, with
teleconnectionsin the tropical simulation.

Evidence from climate models shows that localized aerosol
absorption could affect tropical precipitation over thousands of kilo-
metres'. Similar scale arguments apply to the moisture budget, with
limitations on moisture convergence constraining the susceptibil-
ity of regional APEs™. The combination of energy and water budget
constraints (smallest closure scale) yields a characteristic scale for
regional precipitation responses” of 3,000 km to localized aerosol
perturbations, similar to scales of weather systems™.

Nature Geoscience


http://www.nature.com/naturegeoscience

Review article

https://doi.org/10.1038/s41561-024-01482-6

Table 1| Assessment of the Eeffect of increasing aerosol on precipitation

Physical driver of aerosol effect on Pathway Expected effecton Expected effect on Included in CMIP6 Scientific
precipitation mean intensity distribution climate models? consensus category
Surface energy budget Radiative Decrease Uncertain Yes A
Atmospheric diabatic heating Radiative Decrease Uncertain Yes A
Semi-direct effects Radiative Uncertain Uncertain Yes B
Regional-scale and monsoon dynamics  Radiative Regional shifts Uncertain Yes B

SST patterns Radiative Regional shifts Uncertain Yes B
Hemispheric asymmetry Radiative Regional shifts Neutral Yes A
CCN-mediated effects on stratiform Microphysical Neutral Uncertain Yes (significant B

liguid clouds uncertainties)

CCN-mediated effects on shallow Microphysical Uncertain Broaden No B
convection

CCN-mediated effects on deep Microphysical Uncertain Broaden No C
convection

INP-mediated effects Microphysical Uncertain Uncertain No (in most models) @

Itis important to note that this budgetary framework does not
provide direct constraints on precipitation intensity distributions,
despite constraintsonits mean. APEs could invoke an additional feed-
back mechanismthrough the radiative effects of atmospheric humidity
and clouds”. Combined, energy and moisture budget constraints can
provide physical mechanisms underpinning the ‘buffering’ of APEs™ in
equilibrium conditions, whichis also related to radiative-convective
equilibrium concepts”™,

APEs canbe decomposed into adjustments due to instantaneous
atmospheric net diabatic heating, including rapid adjustments of the
vertical structure of water vapour, temperature and clouds (hours
to days), and a slower response mediated by surface temperature
changes®?? defined as ‘hydrological sensitivity**2. Due to difficulties
inseparating fast surface temperature changes (days to months) from
rapid adjustmentsin climate models, these are commonly considered
jointly**#,

Finally, both radiative and microphysical effects and associ-
ated changes to the regional energy balance can lead to dynamical
effects and regional circulation changes with concomitant changes
in precipitation®*,

We now discuss each potential mechanism underlying APEs and
assess their evidence and scientific consensus.

Radiative effects
Surface energy budget
Aerosol-radiation interactions (ARIs) and zzaerosolfcloud interac-
tions modulate radiative surface fluxes and, consequently, sensible
and latent heat fluxes. These effects generally reduce surface insola-
tion, decreasing surface evaporation, which has been linked to a‘spin
down’ of the hydrological cycle®. This is corroborated by the observed
precipitation response to ARIs following major volcanic eruptions,
showing substantial decreases in precipitation over land and river
discharge into ocean®*?. (Near-surface absorbing aerosol can enhance
precipitation through diabatic heating, even when surface sensible
heat fluxes are reduced?.) Energetically, the net-negative total ARIs*
reduce the global mean temperature, atmospheric water vapour and
associated long-wave emissions, which is compensated by reductions
in precipitation and associated latent heat: climate models show that
negative aerosol radiative forcing masks almost all temperature-driven
GHG effects on precipitation over land up to present (with GHG effects
dominating the future)”***'. However, such radiative arguments cannot
be decoupled from dynamical feedbacks, as shown in the following.
That ARIsreduce global precipitation through changes in surface
temperature and surface fluxes builds on our physical understanding
of the energy budget, is supported by observational evidence® and

is reproduced by climate models. We assess this effect as category A,
supported by strong evidence and broad scientific consensus, although
magnitudinal uncertainties remain.

The following two mechanisms could be combined as aerosol
absorption effects, but we retain the mechanistic separation prevailing
inexisting literature.

Atmospheric diabatic heating

Atmospheric diabatic heating by aerosol absorption creates local
energetic imbalances. To ensure energy conservation, this is com-
pensated by reductions in latent heat release through precipitation,
by rapid adjustments of net surface or top-of-atmosphere fluxes or,
onsmallerscales orinthe tropics™*, through divergence of dry static
energy®**. The energetic framework provides a useful tool to diagnose
APEs®??%**3 and can explain the contrasting behaviours of absorbing
and non-absorbing aerosols®¢.

That diabatic heating of absorbing aerosol reduces global mean
precipitation is consistent with our physical understanding of the
energy budget, isreproduced by climate models but builds on limited
observational evidence. We therefore assess this effect as category A,
supported by strong evidence and broad scientific consensus but with
remaining magnitudinal uncertainties.

Semi-direct effects

Semi-direct effects””*° are rapid adjustments associated with aerosol
absorption affecting the vertical temperature and humidity struc-
ture, with potential effects on clouds and precipitation. These effects
are generally accompanied by corresponding surface flux changes
(compare Atmospheric diabatic heating). Elevated layers of absorbing
aerosol canmodify lower-tropospheric static stability and sub-tropical
inversion strength®*, suppressing boundary layer deepening and
concomitant entrainment*’, Although the focus has been on shallow
clouds®, theimpact ondeep convection and associated precipitation
has been demonstrated in cloud-resolving models (CRMs), revealing
acomplexdiurnal cycle**, and climate models®*. However, most previ-
ous research focused on semi-direct effects of shallow clouds in the
context of radiative forcing*, not precipitation. Hence, the overall
uncertainty remains large.

Semi-direct effects of absorbing aerosol on the thermodynamic
structure of the atmosphere are based on asound physical foundation
and have been well documented. However, the sign and magnitude
of the effect on clouds and subsequently precipitation are sensitive
to the vertical collocation of clouds and aerosols as well as the cloud
regime. Some consistency exists across CRM studies; however, the
observational evidence remains limited. We therefore assess this effect

Nature Geoscience


http://www.nature.com/naturegeoscience

Review article

https://doi.org/10.1038/s41561-024-01482-6

AOD
AODD

-d(A + uqv) €=

dQ

cCN

dp e s

|

dE

Fig.2|Mechanisms of aerosol effects on precipitation and their constraints
fromanenergy (red) and water (blue) budget perspective. Radiative and
microphysical effects are mediated by variations in aerosol optical depth (AOD),
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Fig.3|ldealized aqua-planet i:cosahedral non-hydrostatic?*® general circulation
model simulations of changes of precipitation and the atmospheric energy
balanceinresponse to idealized circular absorbing aerosol radiative plumes
(of10° size and identical aerosol radiative properties with peak aerosol optical

dQg,, (W m7?) d(A « us) (W m™)

depth of 2.4 and single scattering albedo of 0.8)*. Top row: plume located on the
Equator. Bottom row: plume located at 40° N. dQ;, atmospheric radiative
cooling; LdP, latent heat associated with precipitation change dP; dQgy, sensible
surface heat flux; d(V.us), divergence of dry static energy.

as category B, backed by physical conceptual models, modelling stud-
iesand limited observational evidence and some scientific consensus,
even if the magnitude and sign of the impact on precipitation remain
unclear. The following three mechanisms could be combined as aerosol
effectsonregional precipitation patterns, but we retain the mechanis-
tic separation prevailing in existing literature.

The following three mechanisms could be combined as aerosol
effects on regional precipitation patterns, but we retain the mecha-
nistic separation prevailing in existing literature.

Regional-scale and monsoon dynamics

Changesinregional-scale precipitation and monsoon dynamics have
been attributed to regional patterns in ARI-induced surface cool-
ing and atmospheric heating, both locally and remotely'>****° The
precipitation response can be attributed to a combination of the
modulation of surface fluxes over land, hence of the thermal gradi-
ent between land and sea>’"!, as well as aerosol absorption effects,
driving thermally direct circulations'>*? and moisture convergence™

(linked to extreme precipitation®**), the sea breeze circulation® and
teleconnections™.

Aerosol effects on regional-scale precipitation and monsoon
dynamics have been shown to affect precipitation patterns. This builds
on climate model and CRM simulations and general physical under-
standing, with some observational evidence. However, uncertainties
remainregarding the attribution of observed precipitationto aerosol
effects and overall strength of the effects. We therefore assess this
effect as category B, backed by some evidence and limited scientific
consensus.

SST patterns

Aerosol radiative effects on sea surface temperature (SST) patterns
have been linked to observed climatological trends*”*. Associated
changes in multi-decadal SST variability*® have previously been linked
to the Sahel drought® %, In addition to the local effects on the SST
distribution, aerosols may affect ocean dynamics and thereby SSTs.
For example, aerosol forcing was shown to strengthen the Atlantic
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Fig.4 | Cloud-resolving model intercomparison of CCN-mediated effects on deep
convection from the Aerosol, Cloud, Precipitation and Climate deep convection
study™”"*: fractional mass process rates for tracked deep convective systems for

low-and high-CCN conditions as a function of height. Results for each model,
named in the top row, are shown for low- and high-CCN conditions in individual

Condensation ® Deposition

2.0% 11% 10.2% 57% 16.4% 13.6%

® Freezing ® Evaporation Sublimation Melting

columns. The sizes of the pies are scaled logarithmically by the largest mass
production rate of the model. Significant differences in the model base state and
the response to cloud condensation nuclei perturbations illustrate associated
large uncertainties.

meridional overturningcirculation, thereby modulating SST patternsin
the Atlantic Ocean®* and affecting the Northern Hemisphere climate
and precipitation patterns®>*®, SSTs also control hurricane activity® 7,
providing amechanism for potential aerosol effects on hurricanes’”.
Forcing trends associated with European sulfur emissions as aerosol
precursor have been linked to a pronounced North Atlantic ‘hurricane
drought’ from the 1960s to the early 1990s™, during which hurricane
power dissipation, ameasure of storm damage”, was strongly inversely
correlated with European sulfur emissions. Much of the direct SST
forcing was from Saharan mineral dust, which in turn was associated
with reduced monsoonal flow resulting from high sulfate aerosol con-
centrations™.

The SST-mediated effect of aerosol onregional precipitation pat-
terns and hurricane activity builds on climate model simulations and
general physical understanding, with limited observational evidence.
We therefore assess this effect as category B, backed up by some evi-
dence and limited scientific consensus.

Hemisphericasymmetry

Hemispheric asymmetry in aerosol radiative effects” shifts the energy
flux equator to where the column-integrated meridional energy flux
vanishes’”°. The position of the energy flux equator is closely linked to
theintertropical convergence zone (ITCZ) position and associated pre-
cipitation. With anthropogenic aerosol located predominantly in the
Northern Hemisphere, associated negative/positive aerosol radiative
effects (for example, from sulfate/black carbon) lead to asouthward/

northward ITCZ shift®>’*"¥. For sulfate, this is a slow (SST-mediated)
response, whereas for black carbon adjustmentsin response to absorp-
tion éontributess. Dynamical cloud feedbacks can further amplify the
hemisphericasymmetry®’,and ITCZ shifts caninteract with local mon-
soon regimes’.

The effect of hemispherically asymmetric aerosol radiative effects
ontheenergy flux equator and ITCZ position builds on a robust theo-
retical foundation’, agrees with observational evidence®* and is
reliably reproduced by global climate models (GCMs). We therefore
assess this effect as category A, backed by strong evidence and broad
scientific consensus.

Microphysical effects

CCN-mediated effects on stratiform liquid clouds

Cloud condensation nuclei (CCN) mediate effects on stratiform liquid
clouds, including stratocumulus. Enhanced loading of CCN (hygro-
scopic or wettable aerosols of sufficient size to facilitate droplet
growth) can increase cloud droplet numbers and, at constant liquid
water content, lead to smaller droplets. This effect saturates for high
aerosol concentrations®? and/or low updraft velocities due to the deple-
tion of supersaturation by condensation. This pathway canslow droplet
growth to the threshold size for precipitation® ¢, thereby supressing
precipitation efficiency; this mechanism can also apply to the warm
phase of stratiform mixed-phase clouds”. The reduced removal of cloud
water by precipitation has been hypothesized toincrease cloud liquid
water path and lifetime®. There is clear observational evidence of an
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increase in cloud droplet numbers and associated decrease in drop-
let radii due to aerosol perturbations from aircraft data’, ship-track
observations® % and satellite remote sensing'®*'°°, This is repro-
duced in CRMs and qualitatively in climate models'®'”’. Analysis of
satellite-retrieved CloudSat'® radar reflectivity and Moderate Resolu-
tionImaging Spectroradiometer'” effective radius data provides obser-
vational evidence for droplet size dependence of precipitation onset,
with enhanced (low) drizzle rates above effective radii of 15 (10) pm.
Combined with the documented impact of CCN on effective radii, this
indicates warm-rainsusceptibility to CCN perturbations". These obser-
vationsare limited to liquid-top shallow clouds, which represent asmall
fraction of global mean precipitation™. The observational evidence for
anincrease in liquid water paths via precipitation suppression due to
increased aerosol concentrations is still disputed and cloud-regime
dependent’">*, Many climate models simulate strong liquid water
path responses to aerosol perturbations">'”, probably because their
simplified representations of warm-rain formation (‘autoconversion’)
have built-in power-law dependences on cloud droplet number but
lack small-scale feedbacks, such droplet size effects on evaporation
and associated cloud entrainment feedbacks'*"*"”. This uncertainty
propagates into climate model assessments of APEs.

CCN-mediated effects on stratiformliquid clouds, including stra-
tocumulus, have beenshown toincrease droplet numbersand suppress
warm-rain formation. This is consistent with warm-rain formation
theory, supported by observational evidence from space-born cloud
radars and reproduced by high-resolution CRMs. The expected effect
is reduced light-rain occurrence, possibly compensated by increas-
ing occurrence of stronger rain events. However, the overall impact
onlarge-scale precipitation remains unclear. We therefore assess this
effect as category B, backed by some evidence and limited scientific
consensus.

The following two mechanisms could be combined as aerosol
effects on convection, but we retain the mechanistic separation by
cloud phase prevailing in existing literature.

CCN-mediated effects on shallow convection

For shallow (liquid) convective clouds, anaerosol-mediated increasein
cloud droplet numbers has several effects: associated smaller droplet
radii enhance evaporation that increases the buoyancy gradient at
the cloud edge, creating vorticity and increasing associated entrain-
ment/detrainment™¢, whichresults inareduction of cloud size, liquid
water path, buoyancy and precipitation. At the same time, suppression
of rain production via the droplet number effect on autoconversion
can produce enhanced condensation and latent heat release due to
larger numbers of remaining cloud droplets and associated increase
in surface area, often referred to as ‘warm phase or condensational
invigoration™®'?°, It can also enhance cloud-top detrainment; subse-
quent evaporative cooling can destabilize the environment'?. Both
mechanisms could generate deeper clouds'” with potentially enhanced
precipitation. The net effect on mean precipitation could therefore be
small'*” or even positive, depending on environmental conditions:
high-resolution large-eddy simulations demonstrate anon-monotonic
precipitation response with increases at low aerosol concentrations up
toanoptimal aerosol concentration, followed by a precipitation decre
ase712013715 For larger spatio-temporal scales, idealized simulations
of shallow convection approach a radiative-convective equilibrium
state”. Although the transient behaviour approaching equilibrium
responds toincreasing cloud droplet number concentrations through
deepening and delays precipitation onset'”, in the equilibrium state,
associated decreases in relative humidity and faster evaporation of
small clouds compensate for much of the radiative effects with broader
intensity precipitation distributions'. The overall effect depends on
therelative importance of transient and equilibrium states*'”, with
recentevidence highlighting limitations of idealized simulations that
unrealistically favour equilibrium states'?®. However, contrasting

environmental factors, such asboundary layer development or humid-
ity, can influence the overall effects*'.

CCN-mediated effects on shallow convection have been shown
to increase droplet numbers and slow warm-phase precipitation for-
mation. This is based on high-resolution CRMs and observational
evidence. It is important to note that convection parameterizations
in most GCMs do not represent any microphysical aerosol effects
on convection. The overall effect on precipitation is less certain. We
assess this effect as category B, backed by some evidence and limited
scientific consensus.

CCN-mediated effects on deep convection

Fordeep (liquid and ice phase) convective clouds, ‘convective invigora-
tion’is widely discussed, generally referring to enhanced aerosol levels
causing stronger updrafts or higher clouds and an associated increase
in precipitation®°%*°%¢ Several hypotheses about underlying mecha-
nisms exist. Often overlooked, these share a common starting point
with shallow convection in the liquid base of clouds: the suppression
of warm-rainformation fromreduced autoconversion with enhanced
CCNinthelower, liquid part of the cloud””*, with an associated reduc-
tionindropletsize and resulting entrainment/detrainment feedbacks.
Subsequentinvigoration hypothesesinclude enhanced condensation
and associated latent heat release (warm-phase invigoration; com-
pare CCN-mediated effects on shallow convection)"8"*3%1%: enhanced
evaporation and downdraft formation affecting cold-pool strength and
surface convergence'"'*%; delay of warm-phase precipitationincreasing
the amount of cloud water reaching the freezing level, enhancing the
release of latent heat of freezing®?%'*, although the importance of this
(‘cold-phaseinvigoration’) is disputed*’; that depletion of cloud water
through precipitationinlow-aerosol environments could generate high
supersaturations and subsequent activation of small aerosol particles
into cloud droplets, enhancing condensation and (warm phase) latent
heat release'** (a hypothesis shown to be inconsistent with a limited
set of observations)'*; and that enhanced CCN levels increase envi-
ronmental humidity through clouds mixing more condensed water
into the surrounding air, preconditioning the environment for invig-
orated convection'®. The last hypothesis is probably a:consequence
of idealized equilibrium simulations as it is not observed in realistic
simulations across awide range of environmental conditions'””. Feed-
backs between convective clouds and their thermodynamic environ-
ment may modulate or buffer APEs. Overall, the strength and relative
importance of mechanisms underlying convective invigoration are
disputed'*—itis sensitive to uncertain microphysical effects"*'*’ and
strongly dependent on environmental regimes****159752 In addition,
the excess buoyancy associated with the respective mechanisms can
be partially offset by negative buoyancy associated with condensate
loading™*"*, with the net effect dependent on condensate offload-
ing through precipitation. The role of condensate loading has been
explored through theoretical calculations that show the potential of
aerosol-induced invigoration is significantly limited for cold-based
storms and that aerosol-induced cold-phase processes weaken, rather
than strengthen, the updrafts in warm-based storms (referred to as
aerosol enervation)'. The first systematic multimodel assessment
of these competing aerosol effects on deep convective updrafts™* has
been performed as part of adeep convection case study™ over Houston,
Texas, USA, under the umbrella of the Aerosol, Cloud, Precipitation
and Climate initiative (Fig. 4). This intercomparison revealed updraft
increases by 5-15% in the mid-storm regions (4-7 km above ground)
withincreased CCN, driven primarily by enhanced condensation, with
waning and mixed differenceinlevels above. Condensate loading con-
tributions are generally limited. Despite this apparent invigoration, six
of seven models produce precipitation decreases (of 10-80%), high-
lighting the complexity of precipitation responses to aerosol pertur-
bations. There are indications that microphysical effects strengthen
deep and weaken shallow clouds in convective cloud fields, thereby
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broadening the precipitation intensity distribution'®**. Observations
and modelling suggest a non-monotonic effect, with precipitation
peaking at an optimal aerosol concentration™**’, It should be reit-
erated that even high-resolution CRM simulations of aerosol effects
on deep convection remain subject to large uncertainty, particularly
withmixed-phase and ice-cloud microphysics, affecting the simulated
base states as well as their response to aerosol perturbations®”*158
(Fig. 4). Few current climate models include aerosol-aware convec-
tion parameterizations, and their early results indicate limited aerosol
effects on convective precipitation on the global scale™*°, However,
the associated uncertainties remain large, providing challenges for
the next generation of cloud-resolving climate models.

CCN-mediated effects on deep convection consistently show
increased droplet numbers and reduced warm-rain formation in the
lower parts of the cloud. This builds on arobust theoretical foundation,
issupported by limited observations and is consistently reproduced by
CRMs. The propagation of these perturbations through the mixed- and
ice-phase microphysics of clouds remains uncertain across models,
with limited observational constraints. Several hypotheses exist on
associated changes inbuoyancies leading to invigoration, with models
consistently simulating anincrease in latent heating of condensation
duetotheincreased surface area of enhanced droplet numbers. How-
ever, their importance remains highly uncertain. The overall effect
on aggregated precipitation remains highly uncertain. We therefore
assess this effect as category C, backed by plausible hypotheses but
with limited evidence and limited scientific consensus.

INP-mediated effects

Ice-nucleating particle (INP) effects on clouds arelikely to be significant,
but still highly uncertain, given the unknown proportion of cloud ice
between-38and 0 °Cthat forms by INP-induced heterogeneous freezing
or remains supercooled. Clouds glaciate below approximately -38 °C,
wheredropletsfreeze homogeneously. Increased concentrations of INPs
(generally solid or crystalline aerosols that provide a surface onto which
water molecules are likely to adsorb, bond and formice-like aggregates)
have been proposed to enhance the glaciation of clouds’”*"'*?, with an
associatedincrease in precipitation efficiency and reduction of cloud life-
time'**. Low INP concentrations in remote marine environments consist-
entlyinhibit precipitation'*. However, the complexity of microphysical
pathwaysin mixed-and ice-phase clouds s significant'*’, with potential
compensating pathways buffering the response, leading to low precipita-
tion susceptibility'®’. Modification of precipitation through controlled
INP emissions (‘cloud seeding’) has been extensively attempted in the
weather modification community, withdemonstrated impact on cloud
microphysical processes'’; however, limited evidence exists for its effec-
tivenessin terms of large-scale precipitation modulation'”, The role of
INPsis further complicated by secondaryice production processes that
areill constrained but can lead to rapid cloud glaciation'®’,

INP-mediated effects have been shown to affect cloud phase and
microphysics. Anumber of hypotheses exist on subsequent effects on
precipitation. However, there is no complete theoretical framework,
and evidence frommodelling and observations is limited. We therefore
assess this effect as category C, backed by plausible hypotheses but
only limited evidence and limited scientific consensus.

It is important to reiterate that occurrence and strength, and
spatio-temporal extent, of radiative and microphysical APEs are modu-
lated by environmental conditions**"*>»5°171" gs well as energy/water
budget constraints***, which complicates their detectability. In
addition, the potential exists for compensation between individual
mechanisms, buffering the overall precipitation response’.

Detectability and attribution of precipitation
changes

Insitu observations provide the most detailed insights into processes
underlying APEs and are invaluable for the development and evaluation

oftheories and models. However, due to theinhomogeneous and inter-
mittent nature of precipitation, it is generally impossible to measure
areal average precipitationreliably. Representation errors’?are likely
to exceed the expected magnitude of aerosol effects.

Statistical analysis of satellite-retrieved aerosol radiative proper-
ties and precipitation shows higher precipitation rates with higher
aerosol optical depth™* with potentially non-monotonic behaviour'”.
Confounding factors (as aerosol extinction, cloud and precipitation
are controlled by common factors, such as relative humidity', and
precipitationis the predominant aerosol sink'”) complicate the inter-
pretation. More fundamentally, remotely sensed aerosol properties
arenot always representative of the relevant aerosol perturbations'®,
and statistical analyses rely on assumptions of spatial representative-
ness of not co-located retrievals”’”"’%, However, satellites provide the
only source for global observational constraints, and the abundance
of data permits robust statistical relationships. When environmental
conditions are controlled for"”’, the apparentincrease in precipitation
with aerosol extinction is significantly reduced, although a positive
relationship remains for cloud regimes’® with tops colder than
0 °C, suggesting arole of ice processes™’. Furthermore, satellite data
provide constraints on microphysical processes: TRMM and Cloud-
Sat observations show a systematic shift in the relationship between
raindrop size distributionand liquid water path with enhanced aerosol
concentrations off the coast of Asia'®’.

Situations with well-characterised aerosol perturbations can serve
as analogues for APEs'. Aerosols emitted from point sources, such
as ships, volcanoes, industrial sites or cities, can cause distinct tracks
in clouds that can be analysed from satellite data'®'**'%, even when
invisible'*®. The analysis of cloud droplet size in ship-track datashows
a consistent effective radius reduction in the track®'”, consistent
with observed effective radii reductions in response to SO, emissions
from a degassing volcano'¥. In general, cloud droplet effective radius
is expected to be positively correlated with precipitation formation
through warm-rain formation™®. However, the precipitation in ship
tracks reveals a differentiated response across cloud regimes'”. Satel-
lite observations of lightning enhancement over shipping lanes'** also
provide strongindications of aerosol effects on convective microphys-
ics and potential aerosol-driven mesoscale circulations, although APEs
themselves remain more elusive'°, and contributions from dynamical
factors cannotbe ruled out.

The difficulty remains to consistently reconcile observations
with modelling data: any shift in the precipitation intensity distribu-
tionalsoimplies ashiftinthe fraction of rain detectable fromradar or
microwave data'’. In addition, the formation of detectable perturba-
tionsin cloudsis limited to a subset of environmental conditions'**'*
with overall limited precipitation amounts, thereby limiting the global
representativeness of such observations.

Onlarger scales, observational uncertainty and low signal-to-noise
ratios complicate the attribution of observed changes of regional
APEs™?, Detection and attribution techniques'® use GCMs to estimate
spatio-temporal response patterns (‘fingerprints’) of precipitation to
aerosol perturbations, which then can be compared with observed
precipitation changes. However, observational and modelling uncer-
tainties still obscure unambiguous evidence of such fingerprints of
aerosol on regional-scale precipitation’*,

Overall assessment and new frontiers

This article reviews the evidence and scientific consensus for APEs
and the underlying set of physical mechanisms. Broad consensus and
strong theoretical evidence indicate that because global mean pre-
cipitation is constrained by conservation of energy® and water'> as
well as surface evaporation®, aerosol radiative effects act as direct
drivers of precipitation changes®. Likewise, aerosol radiative effects
cause well-documented shifts of large-scale precipitation patterns,
suchasthelTCZ. The extentto which APEs are (1) applicable to smaller
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scales and (2) driven or buffered by compensating microphysical and
dynamical mechanisms and budgetary constraintsisless clear. Despite
broad consensus and strong evidence that suitable aerosols increase
cloud droplet numbers and reduce warm-rain formation efficiencies
across cloud regimes, the overall aerosol effect on cloud microphysics
and dynamics, as well as the subsequentimpact onlocal, regional and
global precipitation, is less constrained. Air-pollution control measures
will reduce aerosol levels in the future, with an expected reversal of
aerosol effects on regional precipitation patterns'”’.

Research on APEs has been limited by the fact that, locally to
regionally, precipitation is controlled by complex nonlinear interac-
tions with multiple microphysical, radiative and dynamical feedbacks;
the expected aerosol-induced change in precipitation is potentially
smaller than the internal variability'® and uncertainty in current
observations; current observations can constrain only some of the
processes involved (satellite retrievals are often limited to proxies
of the parameters involved and in situ measurements are limited, in
particular in convective updrafts); isolating causal effects of aerosol
on precipitation in the presence of multiple confounding variables
remains challenging (itis easier toidentify a strong ‘effect’ than to prove
that it is the consequence of confounding); and finally, the represen-
tation of clouds in current climate models is inadequate to represent
key microphysical processes and, importantly, the coupling between
microphysics and cloud dynamics. Consequently, significant uncer-
tainty remains, limiting our ability to quantify and predict past and
future precipitation changes.

We emphasize that, in terms of localimpacts on humansand eco-
systems, absolute precipitation changes are likely to be lessimportant
than relative precipitation changes in the mean and the frequency of
occurrence of extremes. To illustrate this point, the absolute precipi-
tation changes over the Sahel region simulated by the Coupled Model
Intercomparison Project Phase 6 multimodel intercomparison seem
negligible but constitute ~40% of the local precipitation (Fig. 1). Like-
wise, localimpacts may be dominated by regional shifts of precipitation
patternsrather than precipitation process changes. These aspects have
not been given sufficient attention.

Out of ten mechanisms reviewed, only three have been assessed
tobesupported by strong evidence and broad consensus, and two are
based primarily on hypotheses without consensus (Table 1). Future
research should define critical tests for numerical models based on
observations, in particular of convective updraft microphysics and
thermodynamics, including observational simulators for compara-
bility. Active remote sensing and systematic in situ observations'?>?°°,
including fromuncrewed aerial vehicles, will provide novel constraints
onparticularly uncertain mixed-phase cloud microphysics and dynam-
ics. Advanced geostationary satellites and cube-sat fleets will allow
monitoring of the full cloud life cycle. Idealized aqua-planet®?“ or
radiative—convective equilibrium simulations'®?%?, such as the GAP
Radiative Convective Equilibrium aerosol perturbation model inter-
comparison'*’, connect evidence from local-scale effects to regional
and global precipitation. The availability of global CRMs*** and digital
twin Earths*** provides significant opportunities to overcome our reli-
ance on climate models with parameterized local-scale processes and
inadequate microphysics, which currently donot represent three of the
tenmechanismsreviewed here (Table1). However, even CRMs have large
uncertaintiesin cloud microphysical processes that canobscure aerosol
effects'*®and remain to be systematically constrained by observations.
The shift to global CRMs, which will be a focus of the GAP initiative®,
will also allow for robust quantification of the connection between
local ACIs and large-scale dynamical feedbacks and teleconnections.
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