)

Check for

updates

Scratch Copilot: Supporting Youth Creative Coding with Al

Stefania Druga
Google DeepMind
Google
Seattle, Washington, USA
stefania@hackidemia.com

Amy J Ko
The Information School
University of Washington
Seattle, Washington, USA
ajko@uw.edu

= Code &7 Costumes o» Sounds

change my vanable oy @
[SLECCOR show variable my variable v %
® "
hide variable ~my variable v

Make a List

Variables

My Blocks

Y. 4 My Blocks

Vision

Training Make a Block (- ‘

play sound Meow v until done

Text Training Vision Training

' E turn video on v
Feelings
L 4
Set API key to
Twitter E vio @)
RUSANR IT7 onoose mage modet:
Text
" Choose pre-trained model
Text to Q@
Speech

i E Take photo from webcam
Translate
= E SR add link here =

Backpack

Sprite

(o}

:

cat

more fun, or generate images
for your project - just type
"generate image" followed by
what you want to see!

generate image of kitten

: Lak
Stage
Y Save Image

Here's your image! Click the
Save Image button to keep it
for your project!

cat x 5y -

[%]) Size 100 Direction 90

Backdrops

how can | make my cat meow?

Use the "play sound [meow]"
block! &I

O 0

Figure 1: Cognimates interface showing coding blocks, AI chat, and image generation features.

Abstract

Creative coding platforms like Scratch have democratized program-
ming for children, yet translating imaginative ideas into functional
code remains a significant hurdle for many young learners. While
Al copilots assist adult programmers, few tools target children in
block-based environments. Building on prior research [13, 14, 17],
we present Cognimates Scratch Copilot: an Al-powered assistant
integrated into a Scratch-like environment, providing real-time sup-
port for ideation, code generation, debugging, and asset creation.
This paper details the system architecture and findings from an ex-
ploratory qualitative evaluation with 18 international children (ages
7-12). Our analysis reveals how the AI Copilot supported key cre-
ative coding processes, particularly aiding ideation and debugging.
Crucially, it also highlights how children actively negotiated the use

@0&e

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

IDC °25, Reykjavik, Iceland

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1473-3/25/06

https://doi.org/10.1145/3713043.3727051

140

of Al, demonstrating strong agency by adapting or rejecting sug-
gestions to maintain creative control. Interactions surfaced design
tensions between providing helpful scaffolding and fostering inde-
pendent problem-solving, as well as learning opportunities arising
from navigating Al limitations and errors. Findings indicate Cogni-
mates Scratch Copilot’s potential to enhance creative self-efficacy
and engagement. Based on these insights, we propose initial design
guidelines for Al coding assistants that prioritize youth agency and
critical interaction alongside supportive scaffolding.

CCS Concepts

+ Human-centered computing — Usability testing; User cen-
tered design; Interface design prototyping; Field studies; Sound-
based input / output; Human computer interaction (HCI); User
studies; « Social and professional topics — Children.

Keywords
Al Assistant, Children, Families, Creative Coding

ACM Reference Format:
Stefania Druga and Amy J Ko. 2025. Scratch Copilot: Supporting Youth
Creative Coding with Al In Interaction Design and Children (IDC °25), June

https://orcid.org/0000-0002-5475-8437
https://orcid.org/0000-0001-7461-4783
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3713043.3727051
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713043.3727051&domain=pdf&date_stamp=2025-06-23

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

23-26, 2025, Reykjavik, Iceland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3713043.3727051

1 Introduction

Creative coding platforms, such as Scratch [32], have become in-
strumental in democratizing computer programming, empowering
millions of young learners to express themselves creatively through
code. Scratch, with its block-based visual interface, significantly
lowers the entry barrier to coding, making it accessible to children
as young as 7 years old. However, despite the platform’s accessi-
ble visual programming interface, novice middle school learners
often encounter difficulties in translating their imaginative ideas
into functional code and require scaffolding and guidance [23, 56].
These challenges range from grappling with programming logic to
debugging errors and effectively utilizing the platform’s features.
Consequently, young coders require robust support mechanisms
to navigate these hurdles, fully realize their creative potential, and
develop crucial computational thinking skills [41, 53].

The rise of Artificial Intelligence (AI) presents a unique opportu-
nity to address these challenges and enhance the creative coding
experience for youth. Al-powered coding assistants have shown
promise in supporting adult programmers and university students
in various aspects of software development [11, 31, 45]. Tools like
GitHub Copilot and Cursor Al demonstrate the potential of Al to
boost coding productivity in text-based environments [3, 47]. How-
ever, a significant gap exists in the development and research of
Al-powered coding tools specifically designed for young learners
within visual programming contexts. While platforms like MIT
RAISE Al Playground [1] and eCraft2Learn extensions [5] enable
children to create Al projects by integrating Al features into block-
based coding, they do not provide Al-driven assistance within the
creative coding process itself. To the best of our knowledge, no Al
Copilot tool has been explicitly tailored to support middle-schoolers’
creative coding with visual programming languages like Scratch.

We address these limitations through our Cognimates Scratch
Copilot Tool!, an Al assistant that:

e Integrates directly with Scratch’s visual programming lan-
guage through natural language dialogue

e Employs a question-driven pedagogy to scaffold creative
problem-solving

o Adapts responses to childrens’ cultural contexts

Cognimates Scratch Copilot is a fully functional Al-powered as-
sistant designed to enhance creative coding experiences for youth
on the Cognimates platform. It provides multifaceted support, in-
cluding ideation assistance, intelligent code generation, debugging
guidance, and code explanation, all within the familiar Scratch en-
vironment. The development of Cognimates Scratch Copilot was
guided by insights from our prior participatory design study with
10 children aged 7-12 and 9 parents from 6 different US states [15].

This study details the system architecture of Cognimates Scratch
Copilot and presents findings from an evaluation with an interna-
tional group of 18 children (ages 7-12) from 11 different countries,
focusing on how Cognimates Scratch Copilot supports their creative
coding processes. Our evaluation employs qualitative methods to
assess the impact of the tool on various aspects of creative coding.

The Scratch Copilot platform is accessible at: http://cognimatescopilot.com/

141

Druga, et al.

Our preliminary findings indicate that participants found Cogni-
mates Scratch Copilot to be a constructive tool, readily adopting
it for their creative projects and expressing sustained engagement.
The AI Copilot proved to be effective in aiding ideation, code imple-
mentation, debugging, and answering open-ended queries. Partici-
pants appreciated the copilot’s interactive approach, particularly
its tendency to ask clarifying questions, fostering a more engaging
learning experience.

However, the study also revealed significant variations in chil-
dren’s prior exposure to Al technologies and Al literacy across
different geographic regions, highlighting the importance of cultur-
ally responsive design [36, 48]. Participants also provided valuable
feature requests for future platform design iterations.

Our contributions include:

(1) The first tool for Al-assisted visual programming in middle
school education
(2) Empirical evidence of cross-cultural effectiveness from 18
international participants
(3) Ethical design principles for child-AI co-creative program-
ming grounded in constructionist learning theory
Overall, our findings underscore the potential of Al-powered
copilots like Cognimates Scratch Copilot to significantly enhance
youth creative coding experiences and fill a critical gap in exist-
ing Al education tools. We present initial design guidelines for
Al-assisted coding tools targeted at young learners, emphasizing
user-centered design, scaffolding, and culturally responsive ap-
proaches. By fostering creative self-efficacy, boosting engagement,
and facilitating computational thinking skills, Cognimates Scratch
Copilot can enable the next generation of digital creators.

2 Related Work

Our work builds upon existing research in Al-powered coding
tools, inclusive Al education for youth, creative coding pedagogies,
and ethical design considerations for Al in education. However, a
key novelty of our work lies in addressing the gap of Al-powered
copilots specifically designed for programming environments for
middle school learners, an area underexplored by prior studies.

2.1 Al-Powered Coding Assistants for Youth:
Addressing the Novelty Gap

Existing Al-powered coding assistants, such as GitHub Copilot [47]
and Cursor Al [4], have demonstrated significant benefits for profes-
sional software development, enhancing productivity and stream-
lining workflows in text-based coding environments. These tools
leverage advanced Al to provide code suggestions, auto-completion,
and debugging support, primarily targeting adult programmers and
university-level computer science students. Research has validated
the effectiveness of LLMs in enhancing code authoring and under-
standing for these demographics [24, 28]. However, these tools are
not designed to address the unique needs of younger learners, such
as metacognitive scaffolding [29].

While some platforms like PictoBlox [6] and RAISE AI Play-
ground [1] integrate Al and machine learning features into block-
based environments, they do not offer Al as a copilot to assist youth
directly within the coding process. For example, MIT RAISE Al
Playground provides extensions for Scratch to enable children to

https://doi.org/10.1145/3713043.3727051
https://doi.org/10.1145/3713043.3727051
http://cognimatescopilot.com/

Scratch Copilot: Supporting Youth Creative Coding with Al

program Al functionalities, but it lacks an embedded AT assistant
that guides coding, debugging, and creative ideation within Scratch
projects. Similarly, while tools like Teachable Machine [7] empower
children to build machine learning models, they are separate from
visual programming environments designed for broader creative
expression. Therefore, Cognimates Scratch Copilot distinguishes it-
self by directly addressing the gap in Al-powered coding assistance
tailored for youth creative coding within a visual programming
language, offering a novel approach to supporting young learners
in this domain.

2.2 Culturally Responsive and Inclusive Al
Education for Youth

Creating equitable and effective Al education tools for youth re-
quires careful consideration of cultural responsiveness and inclu-
sivity. Research highlights significant socio-cultural disparities in
children’s access to and perceptions of AI [20, 26]. Studies show
that students from diverse cultural backgrounds exhibit varying
levels of Al literacy and different attitudes towards Al technologies,
influenced by factors such as geographic location, socioeconomic
status, and prior exposure to technology [18, 19]. A meta-review
of Al education in the Asia-Pacific region underscores the need
for culturally adapted curricula to ensure equitable access to Al
literacy for K-12 students [19].

Furthermore, developmental psychology emphasizes the impor-
tance of age-appropriate design in technology for children [39]. Al
tools for young learners must be designed to scaffold cognitive load,
foster creative self-efficacy, and align with children’s developmental
stages [16, 39]. Existing Al education resources often lack specific
adaptations for diverse cultural contexts and may not fully address
the developmental nuances of middle school learners. In contrast,
Cognimates Scratch Copilot is designed with these considerations
in mind.

Our tool design was based on a participatory design study the in-
volved children with a wide range of socio-economic backgrounds
and who spoke 5 languages other than English [15], informing
the development of a tool that aims to be culturally responsive
and developmentally appropriate. By providing multilingual sup-
port, adapting to different levels of Al literacy, and focusing on
fostering creative self-efficacy, Cognimates Scratch Copilot seeks to
contribute to more inclusive and equitable Al education for youth
globally.

2.3 Creative Coding Pedagogies and Al Support

Creative coding pedagogies emphasize a bricolage approach to
learning, where programming is viewed as an iterative process of
tinkering, experimenting, and improvising [34, 51]. Platforms like
Scratch are designed to support this style of learning, encourag-
ing exploration and playful experimentation [32]. However, while
creative coding environments are inherently engaging, they do
not automatically guarantee the development of computational
thinking skills [54].

Novice learners often require scaffolding and guidance to ef-
fectively translate their creative ideas into functional code and to

142

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

develop robust problem-solving strategies within these environ-
ments [9]. Prior research on Creative Support Tools (CSTs) high-
lights the importance of tools that are integrated into creators’
daily practices and support various stages of the creative process,
including ideation, implementation, and reflection [21, 25]. While
some CSTs exist for creative domains like music and visual arts, few
are tailored to support creative coding for youth, particularly in
visual programming environments. Furthermore, existing Al tools
in education often focus on structured learning environments and
outcome-oriented tasks, potentially overlooking the more open-
ended and exploratory nature of creative coding.

Cognimates Scratch Copilot aims to bridge this gap by providing
Al support that is specifically aligned with creative coding pedago-
gies. By offering ideation prompts, debugging assistance, and code
explanations within the Scratch environment, Cognimates Scratch
Copilot seeks to enhance the creative coding process while foster-
ing computational thinking skills in a way that is congruent with
constructionist learning theories [41, 44]. Moreover, by focusing on
question-asking and iterative refinement, Cognimates Scratch Copi-
lot encourages an exploratory and iterative approach to learning,
rather than simply providing direct answers, thus aligning with
constructionist learning principles and the spirit of creative coding.

2.4 Ethical and Design Considerations for Al
Copilots in Education

As Al tools become increasingly integrated into education, ethical
and design considerations are paramount. Current Al ethics frame-
works emphasize mitigating harmful biases and ensuring fairness,
accountability, and transparency [40]. However, in the context of
AT for youth creative coding, ethical considerations extend beyond
bias mitigation to include promoting positive development, foster-
ing agency, and ensuring responsible use. Concerns exist about the
potential for over-reliance on Al, which might hinder the develop-
ment of fundamental problem-solving and critical thinking skills in
young learners [46]. Furthermore, the “black box” nature of some
Al systems can make it difficult for children to understand how
Al suggestions are generated, potentially undermining trust and
sense-making [52]. While guidelines for ethical Al in education
are emerging [22, 40], actionable strategies for designing Al tools
that promote positive youth development and agency in creative
coding are still needed. Moreover, the potential for Al to influence
children’s creative self-efficacy and sense of authorship requires
careful consideration [2, 40]. Cognimates Scratch Copilot is de-
signed with these ethical and design considerations in mind. We
prioritize transparency by providing code explanations and encour-
aging user interaction through question-asking. To foster agency
and avoid over-reliance, Cognimates Scratch Copilot requires ac-
tive user confirmation for Al suggestions and promotes iterative
refinement of code. Furthermore, we aim to evaluate the impact of
Cognimates Scratch Copilot on children’s creative self-efficacy and
to develop design guidelines that promote responsible and ethical
use of Al in youth creative coding education. By addressing these
ethical and design challenges, Cognimates Scratch Copilot seeks to
contribute to the responsible and beneficial integration of Al into
creative learning environments for young people.

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

3 Method

Our study addressed the question: How might we support children
to engage in collaborative creative coding with an Al Copilot? To
answer this, we developed an Al-assisted coding platform for youth,
building on our prior empirical work that identified priority needs
in this space while promoting creative self-efficacy [15].

3.1 Selection and Participation of Children

We recruited 18 children aged 7-12 from diverse backgrounds (11
countries: USA, Spain, Singapore, China, Mexico, Romania, Jamaica,
Canada, India, Israel, New Zealand). This 7-12 age range was se-
lected to capture perspectives across late elementary and early
middle school, a key developmental period for introducing creative
coding concepts and exploring interactions with emerging tech-
nologies like Al Children had a variety of experiences with Al tools
and programming, which was captured through intake question-
naires. The study occurred via video conference, with participants
grouped by age and prior experience to enable better analysis of
demographic interactions with the AI Copilot. All parents and
children older than age 7 signed consent forms. The first author
explained the study details to participants before obtaining consent.
All sessions were conducted individually between one researcher
(the first author) and one child participant. The University of Wash-
ington Institutional Review Board reviewed and approved the study
protocol.

3.2 Study Procedure

Each study session, including the pre-coding, Al-enhanced coding,
and reflection phases, lasted approximately 40 to 50 minutes.

Phase 1: Pre-Al Coding. Participants began by discussing their
prior Scratch experience, then created a simple project (e.g., making
a sprite say “Hello”) without Al assistance. This established baseline
coding skills and familiarity with the platform interface (Figure 1).

Phase 2: AI-Enhanced Coding. After completing initial tasks,
participants chose to either modify their projects using the Al
Copilot or start new ones. During this phase, participants typi-
cally focused on developing a single project, allowing for deeper
engagement with the AI Copilot’s features within that context.
Researchers suggested Al use when participants asked coding or
platform-related questions (e.g., “How do I make my cat meow?”).
Our goal was to understand how children might engage with the Al
Copilot. We did not force them to use it, but rather encouraged use
of the assistant when it might help them get unblocked, to observe
their interaction with it in a semi-authentic collaborative context. If
the AI provided unhelpful responses after two attempts, we offered
direct assistance. This researcher scaffolding occurred in approx-
imately 10 instances where help was sought, often to clarify Al
suggestions or guide platform navigation, particularly for younger
participants or those entirely new to Scratch.

Phase 3: Post-Al Reflection. Participants reflected on their Al
experiences through semi-structured interviews covering:

AT’s role in their creative process (likes/dislikes)
Perceptions of Al capabilities and limitations
Ideas for improving AI collaboration

°
°
°
e Broader views on AI’s future in coding education

143

Druga, et al.

All sessions concluded with participants retaining platform access,
as many preferred continuing Al use rather than stopping abruptly.

Systematic Study Scaffolding. To accommodate varying par-
ticipant experience levels, we implemented the scaffolding strat-
egy described above. The first author (who conducted all sessions)
adopted a structured approach: when participants asked coding or
platform questions, they first were encouraged to use the AI Copi-
lot. If AT was unsuccessful after two attempts, researcher support
followed. This was framed as an invitation to explore the capabili-
ties of the AI Copilot and as an option to try another modality of
support when needed, rather than as an explicit instruction to use
the AL

This scaffolding prioritized Al as first responder to:

e Encourage Al capability exploration aligned with research
goals

e Maintain consistent support across sessions

e Minimize researcher bias in problem-solving

This approach of providing researcher support and scaffolding was
motivated by the exploratory nature of our research. Our primary
goal was to investigate the potential of Al Copilot for creative
coding, as opposed to conducting a summative evaluation of the
prototype.

3.3 Al Copilot Platform

The AI Copilot Tool, depicted in Figure 2, was developed as a web-
based platform integrating a visual coding environment with an
integrated AI chat assistant. The client-side of the platform is built
using React, a JavaScript library for building user interfaces, and
Chakra U, a component library providing a set of accessible and
composable building blocks. The AI Copilot directly interfaces with
the OpenAlI AP], leveraging the capabilities of GPT-4o for text-based
chat and DALL-E 3 for image generation.

The platform presents two main interactive areas: a coding area
and an Al chat area (see Figure 1). The Coding Platform includes
a Coding Blocks Library and a Coding Area. The Coding Blocks Li-
brary features a collection of pre-built visual blocks representing
various programming actions, similar to the popular Scratch pro-
gramming environment. The Coding Area serves as an interactive
canvas where users can arrange and connect these visual blocks to
create a functioning program controlling a sprite, visualizing the
program’s output in real-time.

The AI Chat component provides a user interface for interacting
with the Al Copilot. It includes a text-based chat window where
users can enter natural language prompts to seek assistance, explore
ideas, or request images. These prompts are processed by the GPT-
40 model. Markdown rendering is used to display rich text and
code snippets. To generate images, users can enter “generate image
of” followed by a description of the desired image. This triggers
DALL-E 3, which generates an image based on the prompt, allowing
the user to preview the image and download the assets directly.
The chat window is positioned next to the coding area to create an
integrated workflow, and facilitate a fluid interaction with the Al
Copilot.

To ensure safe and reliable use, the AI Copilot integrates several
safety mechanisms. Content filtering through OpenAI’s built-in
safety system protects against prompts containing inappropriate or

Scratch Copilot: Supporting Youth Creative Coding with Al

harmful content. By “inappropriate or harmful” we mean content
that is not youth appropriate, promotes violence, involves hate
speech, or reveals personally identifiable information about other
individuals. To make the user experience more accessible, the plat-
form delivers kid-friendly error messages when the Al is unable
to process a request. A “kid-friendly” interface is one where text
is simplified and actions are easily discoverable. It prioritizes ease
of use and avoids jargon, ensuring children easily understand and
navigate the content. Furthermore, rate limiting handling and se-
cure API key management mechanisms are in place to guarantee a
high level of security and prevent misuse.
The workflow of using the Al Copilot Tool is as follows:

(1) Users create visual programs in the Scratch coding area.

(2) When users require assistance, they type a prompt in the AI
Chat area.

(3) User prompts are transmitted to the back-end server.

(4) The AI Copilot, based on the user’s message, can perform
one of these operations:
e Provide coding help and answers
o Generate images

(5) Responses from the AI Copilot, including images, are re-
turned to the application and displayed in the chat area.

(6) Users can see their conversation history in the chat window
and interact with the AI Copilot as needed.

The system architecture, as illustrated in Figure 2, consists of
a client-side application, a server, and Al services. On the user’s
computer, a React application renders the entire platform within a
web browser, including components for chat, image display, and the
Scratch coding interface. The Web Server is built using Express.js,
which handles incoming user messages through defined routes and
manages the logic to communicate with the Al services. Finally, the
Al Services include OpenATI’s GPT-4o for text-based responses and
DALL-E 3 for generating images.

3.4 Al Copilot Persona

The Al Copilot’s persona was designed to be a supportive peer and
helpful coding assistant, drawing upon prior research on social
robots and educational agents to create a positive and engaging
learning environment. The system prompt was carefully crafted
to encourage guiding questions and positive feedback rather than
direct answers, following our prior co-design study [15] where
children indicated they preferred Al assistants that would offer
them support while encouraging them to find solutions indepen-
dently. The system prompt refers to a set of instructions provided
to the LLM (Large Language Model) that dictate how the AI should
respond to user inputs. In this instance, the Al assistant’s role is
to provide a starting point, offer timely advice, give code debug-
ging tips, and encourage a positive learning process that allows for
multiple iterations and experimentation.

The AI Copilot’s responses were designed to be brief and child-
friendly to avoid complex sentences that might overwhelm young
learners. According to the system prompt, the AI Copilot’s main
objective is to ask questions instead of giving answers, and provide
direct help by re-asking the same questions multiple times, only if
the user appears to be stuck.

144

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

The system prompt was based on feedback from children in our
prior study [15]:

"You are a helpful assistant for middle school students
working on Scratch projects. Keep responses to a sin-
gle short phrase that’s easy for kids to understand
and try to first ask kids a question so they can find the
answer by themselves. If they don’t find the answer
and ask the same questions more than 2 times, give
them the answer. If someone asks what you can do,
say exactly: 'I can help you debug and explain scratch
code, give you ideas for making your game more fun,
or generate images for your project - just type
“generate image; followed by what you want to see!’
For code questions, give one specific tip or ask one
guiding question. For project ideas, suggest one fun
addition. For code explanations, explain one concept
at a time. Remember to keep everything super friendly
and encouraging!”

The Al Copilot is also programmed to respond to the user request,
“What can you do?” with the phrase, ‘I can help you debug and explain
scratch code, give you ideas for making your game more fun, or
generate images for your project - just type “generate image” followed
by what you want to see!”. This allows users to understand the full
capabilities of AI Copilot. This approach was based on findings from
a prior Al coding assistant co-design study [15], where children
reported that they appreciated Al assistants that provided positive
reinforcement, while also offering guidance and suggestions, rather
than directive answers.

By offering timely advice and using positive and encouraging
language, the AI Copilot acts as both a helpful coding assistant and
a friendly peer. This approach seeks to balance providing useful
assistance and respecting the user’s agency in the creative coding
process.

While most participants appreciated this design, some partici-
pants wanted to personalize the AI Copilot’s persona further, for
example, preferring the Al to “‘always give me 3 ideas so I can
select the best”(L. age 12 (Romania)). We plan to allow users to add
a system prompt to personalize the Al Copilot in future iterations,
allowing users more fine-grained control over the Al's behavior,
therefore tailoring the AI Copilot to match their specific preferences
and learning styles.

3.5 Data Collection and Analysis

We collected video recordings of 20 study sessions, including two
participants who engaged in two sessions each due to initial tech-
nical issues, resulting in a rich dataset. Children were encouraged
to think aloud [10] during the collaborative creative coding activi-
ties. After the activities, children participated in semi-structured
interviews to further explore their experiences and perceptions of
coding with the AI Copilot.

Our analysis is primarily qualitative, focusing on the detailed
insights gained from the video recordings and interview transcripts.
The video data yielded transcripts of 178,105 words. We conducted
the sessions in English, Spanish, French, and Romanian. For non-
English sessions, the first author transcribed the videos in their
original language and subsequently translated them into English to

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

£2Al Copilot Tool {Web Server

-] 0

Code Editor Al Chat Send Msg

Druga, et al.

@Al Services

e @
7 — @ &
Response LLM Support Generate Art

Figure 2: Cognimates Scratch Copilot System Architecture

facilitate analysis across all sessions. The first author transcribed
all videos, and the transcripts included detailed notes on partic-
ipants’ body language and non-verbal cues to capture a holistic
understanding of their interactions.

Our analysis followed an iterative and thematic process. Initially,
the authors independently reviewed a subset of the data, focusing
on the nuances of collaborative creative coding with the AI Copilot.
This involved applying both etic codes (informed by prior literature
on creative self-efficacy[50]) and emic codes (emerging inductively
from the data itself) [35, 42].

Following this independent review, the authors developed a
comprehensive coding frame collaboratively. The first author then
coded the majority of the transcripts using the agreed-upon frame,
with the second and third author coding a smaller subset to val-
idate the frame. New codes were allowed to emerge throughout
this process. When new codes were identified or discrepancies in
coding were noted, all authors engaged in discussions to refine code
definitions and ensure consistent application. This iterative process
resulted in revisions to the coding frame and subsequent re-reading
of transcripts to ensure that all data was coded according to the
refined structure. The final coding frame, including code definitions
and their occurrence frequency, is shown in Table 1.

The coded data was then synthesized to develop categories,
which were conceptualized into broader themes through ongo-
ing discussions among the authors. We employed thematic analysis
techniques, drawing upon the principle of saturation [8], where
the emergence of no new themes towards the end of the analysis
indicated that the major themes relevant to our research question
had been identified. These themes are presented in the Findings
section below.

4 Findings

Our analysis of the youth creative coding sessions, grounded in our
codebook analysis (Table 1) of session transcripts and observational
notes, revealed key patterns in how children interacted with and
perceived the AI Copilot. The projects undertaken by children
varied, including multiplayer games, maze games, storytelling and
animation projects, sports games, and collecting games. Across the
18 participants, children used the AI Copilot between 3 and 12 times
per session during the 20-30 minute Al-enhanced coding phase.
From our coded data, we identified three overarching themes that
capture both the benefits and the design tensions observed:

145

4.1 Theme 1: AI-Enhanced Ideation and Asset
Creation

(Related to *Conceptual Support’ and ’Design Support’ codes, Table
1) Children used the Al to brainstorm project ideas or generate
assets for their projects ("Conceptual Support’, 12 instances; 'Design
Support’, 33 instances).

Influence on Idea Generation. The AI Copilot effectively sup-
ported youth in brainstorming project ideas with 13 out of 18 par-
ticipants explicitly asked the AI Copilot to propose ideas. When
participants expressed initial uncertainty or sought inspiration, the
Al Copilot offered targeted suggestions and prompts to initiate their
creative coding process. For instance, when D. (age 7, USA) was
unsure how to expand his game, the Al suggested “adding secret
levels that players can discover,” sparking the idea of hidden tunnels
within his maze. Similarly, when G.(age 11, USA) was looking for a
project idea, the Al Copilot proposed both a “memory card game”
and a “virtual pet game”. These suggestions served as valuable start-
ing points, helping children overcome blank canvas syndrome and
envision potential projects. Beyond initial project ideation, the Al
Copilot also assisted with specific game mechanics. When S. (age
11, Mexico) was developing a space-themed project, the AI Copi-
lot suggested adding a mini-game where the player has to “dodge
asteroids”, enriching the gameplay (Figure 3-a):

“T'was stuck until it said “secret levels” — then I imagined
hidden tunnels in my maze!” — D., age 7 (USA)

While the AI Copilot proved valuable for ideation, its suggestions
were not always perfectly aligned with the child’s evolving vision:

“Perfect! Now your sprite can move left and right. Want
to add up and down movement too?” — Al Copilot
asking J. a follow-up question after a successful im-
plementation of its suggestion.
“Not really” — Responded J., age 14 (New Zealand)
who proceeded to add a different game feature (Figure
4).
Youth used the Al to also brainstorm character names or ideas
for creating new project backgrounds:

“T was expecting it to give something more unique.” —
C., age 10 (Canada) after they received Griffin) as a
character name suggestion from the Al (Figure 3-b).

“What do you think will happen if we ask again?” —
asked the researcher.

“Maybe it will give something else(...)Sky Beak is good!”
— C., age 10 (Canada) after trying to get another name
idea.

Scratch Copilot: Supporting Youth Creative Coding with Al

IDC °25, June 23-26, 2025,

Reykjavik, Iceland

Code Definition Example Count
Conceptual Support E,Zlapss generate project “What about adding secret levels that players can discover?” 12
. Visual design support « . .
Design Support . Generate a crab image... make the maze background less complex 33
and asset generation
Provides coding e Dt B ; ; -
Code Support and debugging help Use ’forever loop’ with "move 10 steps’ for continuous motion 46
Positive Encouragement Offers motivational “Great idea! Let’s try making the ghost character green” 8
feedback
Guides interf:
Platform Navigation uides intertace “Find the ’switch backdrop’ block in the Looks category” 12
exploration
ful
Al Failure Ur}succe'ss wor “Generated maze with unwanted portals despite ’simple’ request” 20
misleading suggestions
Child chooses not to use
Child Agency the AT and prefers to “Tdon’t need the Al for this part, I want to figure it out myself” 9
work independently

Table 1: Codebook with code definitions, examples, and occurrence frequencies from 18 participants. Counts reflect total
instances across all transcripts.

emocionante! 4Qué tal *
si agregas un mini

juego en el que tienes

que esquivar

asteroides en tu

proyecto del espacio?

como se hace (-]

¢Has intentado usar
Ios bloques de

movimiento para mover
un objeto en tu
° escenario y el bloque

de si toca’ para
‘comprobar si tu
personaje ha chocado

con los asteroides?

Figure 3: Examples of youth-AI Copilot interaction during the study: (a) S., age 11 (Mexico) asking AI for code help for his
asteroid game in Spanish , (b) C., age 10 (Canada) brainstorming name ideas for her Griffin character with AI, (c) L., 7 years old
(Jamaica) asking AI for intro coding guidance about control blocks.

These examples highlight the importance of iterative prompting
and refinement in Al-assisted ideation.
Support with Visual Creation and Design.

A significant contribution of the AI Copilot was in facilitating vi-
sual creation and design. The tool enabled youth to generate visual
assets for their Scratch projects, including characters, background
images, and props, enhancing the aesthetic appeal and personaliza-
tion of their creations:

‘T want like a zombie. All like zombies all around it” —
P., age 7 (USA) prompting the Al to generate zombie
images for her game.

Similarly, W.(age 7, USA), when brainstorming what characters
to use in his multiplayer game, considered, “Um, I don’t know. A
crab maybe. Yeah, they doesn’t have crab (after checking gallery
of sprites).” The lack of pre-existing specific sprites lead him to

146

use the Al-assisted generation of a crab character. The ability to
quickly generate diverse visual elements lowered barriers to entry
and allowed children to rapidly prototype and visualize their game
worlds.

However, the Al-generated images were not always immedi-
ately usable and sometimes required refinement. G. (age 12, Roma-
nia/USA) described an initial generated image of a basketball player
as “kind of funny and weird”, indicating the initial output needed
improvement to match his creative vision (Figure 5).

When image generation diverged from expectations, participants
developed problem-solving strategies. Furthermore, as highlighted
by a participant from Mexico working with monsters images, cul-
tural nuances in design were not always captured by the Al neces-
sitating manual customization using in-platform drawing tools:

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

]
]
- @D - @ =

n-guq.

next costume:

@[fzmﬁ;\f o . (T
Sprite Sprite1

] ()
o

Druga, et al.

Use "change x by -10" to
move left. Try it out! @

o

~ o
Iy (=)
-~ O]

Perfect! Now your sprite can
move left and right. Want to
add up and down movement

\ too?

not really

o

No worries! Enjoy your game.
Backdrops ° If you need more help, just
ask! © ;|

Ask for hel

p or ideas, images fo

Figure 4: Example of ideation support where the child refuses the AI Copilot suggestion.

‘T asked for a Mexican monster, but it made cartoon
dragons. I had to draw the patterns myself.” — S, age
10 (Mexico). ‘First I said ’simple maze,’ then added 'no
portals, for kids’ — it worked better!”

— G., age 11 (USA)

Balancing Inspiration vs. Over-Reliance. A key tension emerged
around whether children might over-rely on Al-provided ideas or
assets [55]. While children often used the AI’s suggestions as a
spark before extending or altering them—mitigating the risk of
uncritical acceptance—some older participants (ages 10-12) voiced
concern about losing originality. This indicates a potential design
tension: children appreciate the assistance for overcoming creative
blocks, yet desire to maintain ownership over the creative direction.

4.2 Theme 2: Contextual Debugging and System
Navigation

(Related to *Code Support’ and "Platform Navigation’ codes, Table 1)
All participants encountered challenges, whether with coding logic
or navigating the platform interface ("Code Support’, 46 instances;
"Platform Navigation’, 12 instances), prompting them to consult
the AI Copilot. In these instances, the Al responded with clarifying
questions and tips aimed at guiding the child to find the solution
themselves.

Coding and Debugging Support. The Al Copilot provided cru-
cial support for coding and debugging, acting as a readily avail-
able source of guidance. It offered specific coding instructions and
troubleshooting assistance across various coding challenges. For
example, when facing difficulty resizing a sprite, L., age 7 (Jamaica)
was prompted by the Al:

“How can I make my character smaller?” —L., age 7 (Ja-
maica) “Have you tried changing the size of your sprite
by using the set size block?” — Al Copilot responding
to W., age 7 (USA).

147

Similarly, when L.(age 7, Singapore) needed to implement a re-
peating action, the Al suggested: “Have you tried using a forever loop
with a move block inside?” For more complex coding concepts, like
making a sprite bounce, the Al provided step-by-step explanations:
“To make a Sprite bounce back, you need to change the direction of the
Sprite by 180 degrees. When it it bounce, it touches the edge.” This
support extended to explaining how to achieve specific actions like
“How to make a sprite disappear,” “How to move a sprite,” or “How
to make a sprite bounce,” effectively demystifying coding tasks for
novice users.

However, the Al Copilot’s code support was not without limi-
tations. At times, it struggled with nuanced or ambiguous queries,
providing inaccurate, overly general, or incomplete guidance. For
instance, when W.(age 7, USA) asked to make a crab smaller, the Al
initially misunderstood the question and did not provide a useful
answer, prompting the researcher to clarify: ‘It did not understand
your question. What did it say? Maybe you can ask to make the crab
smaller in Scratch? ”

When coding answers were not helpful for their particular project
needs, older participants articulated strategic help-seeking:

“T’ll ask for the loop structure but write the variables.”
— K., 10 (Romania/USA).

Several participants (10 out of 18) expressed the desire for the Al
Copilot to be able to observe what they do on the screen and nudge
them if they are doing something wrong or better understand their
questions:

“You know what, I need this also. I need this thing there.
It should be able to fit through the gap.” — W., age 7
(USA)

These findings highlight the need for more robust intent recog-
nition and context awareness when designing Al coding assistants
for children.

Scratch Copilot: Supporting Youth Creative Coding with Al

Support with Platform Navigation & Onboarding Beyond
coding-specific assistance, the AI Copilot also served as a valu-
able navigation aid within the Scratch environment. For children
new to the platform, navigating the block palettes and understand-
ing the interface presented an initial hurdle (Figure 3-c). The Al
Copilot helped overcome this by guiding users to specific block
categories and functionalities. When L. (age 7, Singapore) needed
to change the background, the Al directed him:

“Did you see that block that says switch background
too in the looks category” — Al Copilot to L., age 7
(Singapore).

Additionally the AI Copilot supported youth to discover how

to save their project, how to edit the background of characters,
how to search for sounds or load a local file to the background.
While helpful, platform navigation remained a learning process.
Children were novices to Scratch, and even with Al guidance, some
instructions required further scaffolding from the researcher. For
example, the first author suggested using copy-paste command for
text of prior questions to Al: “You can duplicate your text from above
and edit it ” to T. (age 7, Romania), assuming a certain level of digital
literacy that might not be universal among young learners. The Al
Copilot acted as a supplementary tool, easing the initial navigation
learning curve, but not fully replacing the need for some direct
scaffolding, especially for younger or less digitally experienced
users.
Researcher Facilitation Frequency. On average, the Al success-
fully answered about 70% of queries (estimate across sessions). In
the remaining 30% (Al Failure’ code, 20 instances total), the first
author had to intervene — occurring two to three times per session
on average — to clarify ambiguous Al feedback, correct incomplete
instructions, or help when the Al misunderstood the child’s intent.
This scaffolding approach provided support while still giving the
Al the first chance to help.

4.3 Theme 3: Preserving Child Agency and
Addressing Potential Negative Effects

(Related to *Child Agency’ and ’Al Failure’ codes, Table 1) In some
cases, children chose to adapt or not use Al suggestions(’Child
Agency’, 9 instances) and we also identified several examples when
the Al did not provide useful suggestions or it was misleading (Al
Failure’, 20 instances).
Adapting or Rejecting Al Suggestions. Despite appreciation for
the AT’s assistance, participants across the entire age range (7-12)
demonstrated strong ownership over their projects ('Child Agency’
code explicitly noted 9 times, but observed more broadly). Children
frequently evaluated Al suggestions, adapting or rejecting them to
fit their vision. In 9 of 18 cases, children explicitly declined an AI's
suggestion:

Participants highly valued the AI Copilot’s assistance, yet they
consistently emphasized the importance of maintaining their own
creative ownership and control throughout the coding process:

“It’s like a teammate who knows coding tricks, but I'm
the captain.” — K., age 10 (Romania/USA)

Older children, like K. above, articulated a nuanced perspective
on human-AI collaboration. This metaphor of being the captain

148

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

highlights the child’s desire to remain the creative director, lever-
aging the Al as a helpful assistant rather than a co-creator.
Younger children demonstrated their agency through more action-
oriented behaviors. For instance, W. (age 7, USA), despite receiving
Al-generated code suggestions, would often physically drag the
suggested blocks aside to manually experiment and understand
their function before integrating them into his project. This hands-
on exploration reflects a desire to deeply learn and internalize the
coding concepts, rather than simply accepting Al-provided solu-
tions. Crucially, children sometimes actively chose to diverge from
Al suggestions to pursue their own creative visions, even if it meant
deviating from a potentially more technically “optimal” path:

“The bouncing code worked, but I wanted my crab to

flip upside-down!” — W., age 7 (USA)

This deliberate choice to prioritize personal creative expression
over Al-guided efficiency underscores the importance of designing
Al tools that enable, rather than replace, child agency in creative
coding.

Youth manifestation of agency when interacting with the Al
Copilot revealed three patterns: direct rejection of Al suggestions,
adaptive integration when children would modifying the Al sug-
gestions, and preemptive control:

“No, that’s not my idea!” — N., age 8 (USA), reacting
to AI Copilot coding suggestion to add a timer to his
game.

“Wait, let me try first.!” — G., age 12 (Romania), refus-
ing the researcher’s suggestion to ask the Al for help
when trying to debug his code.

Children actively governed Al use, with 9 out 18 rejecting at least
one suggestion.

Potential Over-Reliance and Navigating AI Errors. Some chil-
dren initially appeared to assume Al suggestions were always cor-
rect. However, encountering instances where the Al provided in-
correct code, misunderstood context, generated unusable images,
or gave incomplete responses surfaced a tension: Al can accelerate
progress, but also derail novices who might overtrust it. Examples of
Al failure included:

(1) Misunderstanding Intent: The AI Copilot Tool often strug-
gled with understanding the user’s underlying intention,
especially with vague questions:

“Make it bigger?” — T., age 9 (Israel), referring to her

onscreen character.

Generating unusable or unexpected images: At times,
the Al generated images that did not align with the user’s
expectations, such as creating a maze with portals, even after
the child tried to get the maze to be less complex, or gener-
ating an image of a character that looked like a Minecraft
world, instead of a Roblox avatar:

“Generate image of Roblox” — L., age 7 (Jamaica)
Incomplete responses: Although AI Copilot Tool pro-
vided helpful solutions, it sometimes gave incomplete in-
structions on how to achieve that specific step.

“I'don’t know where the “hide” block is."— T., age 7 (Ro-

mania)

—
S
~

—
SY)
=

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

Sprite Sprite1
show @ B Size
! :
Basketball Sprite1

Druga, et al.

generate image of a e
basketball cartoonish sprite

Here's your image! Click the
Save Image button to keep it
for your project!

Z

o

10 3y st S what should | do with this
2 sprite to make this a basket
Drctoa (_* m ball game
Backdrops
2 Have you thought about

creating a script that moves
the basketball sprite when you
° click it or press a certain key?
You could make it simulate
shooting a basketball!

Figure 5: Example of visual creation support for G., age 12 (Romania) who wanted a custom basketball player character.

Instances where the AI Copilot did not meet expectations, or
demonstrably “failed,” were not simply negative outcomes but of-
ten transformed into valuable learning opportunities. These break-
downs prompted productive troubleshooting and deeper engage-
ment with the coding process. When Al image generation produced
unsatisfactory results, participants actively refined their prompts,
engaging in iterative problem-solving. C (age 10, Canada) recounted
her prompt refinement process for an elf character generation: “
I asked for an elf then added ’full body and no background.” This
trial-and-error approach to prompt engineering not only improved
the AI’s output but also fostered metacognitive skills in articulating
intent and understanding the AI’s limitations.

Furthermore, Al failures sometimes surfaced fundamental pro-
gramming concepts in a more tangible way. When K. (age 10, Roma-
nia/USA) encountered difficulties positioning Al-generated sprites,
it led to a moment of insight about coordinate systems:

Why does X=0 put it in the middle? That’s confusing...
Oh, wait! Maybe like a number line!” — K., age 10
(Romania/USA)

This “aha” moment, triggered by an Al-related challenge, demon-
strates how breakdowns can also create “teachable moments,” prompt-
ing deeper conceptual understanding.

4.4 Final Interview Reflections: AI Copilot
Perceptions and Prior Al Exposure

Following the coding sessions, semi-structured interviews provided

valuable insights into children’s perceptions of the AI Copilot, their

Al literacy, and their broader experiences with Al in their lives.

Overall, children expressed positive perceptions of the Al Copilot,

149

consistently describing it as “helpful,” “good,” “cool,” and “fun.” This
positive sentiment was often linked to the AI’s ability to provide
coding assistance when needed, acting as a readily available guide
to overcome coding hurdles and generate creative assets:

“Well I feel like the Al really helped.” — P., age 7 (USA)
when asked by the researcher to describe the interac-
tion with AL

The interviews also revealed diverse levels of Al exposure and
real-world Al experiences among the participants. Most children
had heard of Al and their definitions often centered on Al as a
“human made” technology capable of “thinking for itself” but ulti-
mately “programmed kind of,” as described by W. (age 7, USA). L.
(age 7, Singapore) succinctly defined Al as T think Al is a robot,”
reflecting a common association of AI with embodied intelligent
agents. Children from North America demonstrated greater famil-
iarity with real-world Al applications. N (age 8, USA) mentioned
using Al “sometimes with my dad at home” and being aware of
“Chat GPT”. In contrast, children from other regions often had more
limited direct experience, with L (age 7, Singapore) stating his Al
experience was “Only for Google,” and others participants like L
(age 7, Spain) and L. (age 7, Jamaica) having no prior Al interaction
of any kind. This variability in Al exposure levels highlights the
importance of contextually appropriate Al education and design
considerations for diverse youth populations.

5 Discussion

Our work asked, How might we support children engaging in collab-
orative creative coding with an Al Copilot? Our study of Cognimates
Scratch Copilot revealed that such a tool can provide multifaceted

Scratch Copilot: Supporting Youth Creative Coding with Al

support across the creative coding process, but its integration re-
quires careful consideration of pedagogical goals, user agency, and
potential challenges. We discuss our findings in relation to our three
core themes: Al-enhanced ideation and creation, contextual debug-
ging and navigation, and preserving child agency while addressing
potential negative effects.

AT’s Role in Ideation, Creation, and Potential Over-reliance:
The AI Copilot proved particularly effective in supporting the initial,
often challenging, phases of creative work (Theme 1). By offering
targeted suggestions for project ideas, game mechanics, and charac-
ter concepts, it helped youth overcome the “blank canvas” problem
and translate abstract ideas into starting points, aligning with prior
work highlighting the need for scaffolding in creative tasks [21, 25].
The integrated image generation was highly engaging, lowering
barriers to visual design and allowing rapid prototyping. However,
this support surfaced a key tension: the potential for over-reliance.
While participants often adapted or iterated on Al suggestions,
preserving their vision, the ease of generation necessitates designs
that encourage customization and critical evaluation, rather than
passive acceptance. The need for prompt refinement and manual
editing when AI outputs were unsatisfactory highlighted both a
limitation and a learning opportunity, fostering nascent prompt
engineering skills.

Contextual Support, Scaffolding, and AI Limitations: Cog-
nimates Scratch Copilot served as a readily available resource for
debugging and navigating the coding environment (Theme 2), of-
fering timely suggestions and explanations that could demystify
coding concepts for novices. These results align with previous re-
search highlighting the benefits of collaboration, scaffolding, and
exploration in creative coding experiences for children [37, 43]. By
actively involving Al in the creative process, the AI Copilot Tool
allowed youth to bridge the gap between their ideas and the actual
implementation of code. This is particularly important for young
learners, as translating abstract ideas into concrete code can be a
significant hurdle [27]. As Ko et al. point out, novice programmers
face learning barriers related to syntax, programming concepts,
and debugging, and these are even harder to overcome for children,
given less prior knowledge and less developed metacognition. Fur-
thermore, Al tools can serve as both a starting point for novices
and provide support to more advanced users, by offering more com-
plex recommendations and by guiding them through more intricate
programming tasks.

However, there were several limitations to AI Copilot support,
showing a need for future research to consider nuanced challenges,
diverse user needs and preferences, and the impact of Al in creative
coding. Participants wanted the AI Copilot to be more precise, to
provide options instead of a single solution, to understand nuances
of language, and to understand the context of the game they were
trying to build. They also expressed a desire for the Al to tailor
its support to their specific needs and prior experiences, echoing
findings in personalized learning research [49].

Agency, Ethical Considerations, and Learning from Fail-
ure: Perhaps the most critical finding relates to the preservation
of child agency (Theme 3). Participants consistently demonstrated
a desire to remain “the captain” of their creative process, actively

150

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

rejecting, adapting, or preempting Al suggestions to maintain con-
trol. This aligns with constructionist learning principles empha-
sizing learner control and exploration [41, 44] and resonates with
ethical considerations for Al in education that prioritize learner
empowerment [38, 40]. Children wanted Al to provide support for
problem-solving, but not solve the problem for them. They also
emphasized the importance of transparency to understand how
their code works and to make their own informed creative deci-
sions, highlighting the importance of balancing AI support with
user agency. This desire for agency and transparency is consistent
with ethical considerations for Al in education, emphasizing the
need for Al to be interpretable and to empower learners rather
than replace them [38, 40]. Children’s explicit concerns about “get-
ting lazy” or losing originality highlight their own awareness of
the potential downsides of over-reliance. Furthermore, Al failures
were not merely obstacles but often transformed into productive
learning moments, prompting deeper engagement with debugging,
prompt refinement, and even conceptual breakthroughs (like under-
standing coordinate systems). This suggests that encountering and
overcoming Al limitations can foster resilience and critical thinking,
turning potential negative effects into pedagogical opportunities.
Designing for transparency and encouraging critical evaluation
of Al outputs seem crucial for mitigating risks like the uncritical
acceptance of potentially flawed suggestions.

The study sessions also showed children had a clear understand-
ing of Al as a tool for learning, while expressing the need to not rely
too heavily on the tool, to maintain agency and control over their
learning experience. These results build upon prior work about how
children learn with and about AI [12, 30, 38]. Children recognized
the copilot as a helpful learning resource but also wanted to develop
their own problem-solving abilities.

Furthermore, these findings were reinforced by parental feedback
shared via emails after the sessions. For example one parent noted
that their child “totally rejected the idea of becoming too dependent
on it [referring to the AI Copilot] and perhaps not remembering or
learning how to do it on her own. She said that she would just use
it to learn”. Another parent also mentioned that participation in the
study for their child “has stimulated her desire to do some coding
at home in Scratch”, suggesting the potential of AI Copilots to have
a positive influence in the learning journey of youth by sparking
interest and motivation.

Need for multimodal inputs and outputs: The system, at
times, did not always meet the user’s creative vision, leading some-
times to children having to make use of drawing tools in the in-
terface or re-generate images to better fit their project needs. This
indicated that image creation capabilities should be fully integrated
with the coding process, and not be an afterthought. Children also
expressed a desire for voice-based interaction, although they still
said they preferred the text-based chat, showing a preference for
modalities to be flexible in Al interfaces. This aligns with research
on multimodal learning environments, suggesting that offering var-
ied input and output modalities can enhance engagement and cater
to diverse preferences [33].

Designing culturally responsive tools: Furthermore, our study
revealed diverse responses based on experience levels, which high-
lighted the need for better Al personalization. Children who had
more previous experience with block-based coding and who had

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

been exposed to Al in their day to day, had different expectations
from the Al assistant, requiring more advanced features (i.e. custom
system prompt) that allowed them more control and customization.
Moreover, exposure to Al varied among participants depending on
geographical location, which affected their level of fluency in inter-
acting with the AI Copilot. Children from North America had more
familiarity with various Al technologies compared to children from
the other regions. These findings underscore the importance of
culturally responsive computing education and the need to design
Al tools that are adaptable and inclusive, supporting a wide range
of learners with varying prior knowledge and experiences [48].
Overall, our findings suggest that Al copilots like Cognimates
Scratch Copilot hold significant potential to enhance youth creative
coding by providing timely support for ideation, implementation,
and debugging. However, realizing this potential requires designs
that actively prioritize child agency, offer flexible and context-aware
support, balance guidance with challenge, and frame the Al as a
collaborative partner rather than an infallible authority.

5.1 Design Guidelines

Based on the findings of our study we propose that future designs of
Al Copilots for youth should take into consideration the following
design guidelines:

e Prioritize user agency: Young learners value having con-
trol and not seeing Al do all the work. The AI should serve
as a helper, not a replacement of their own creative work.

e Balance support and challenge: Provide Al support but
with enough open-endedness for exploration and problem-
solving, to provide a balance between challenge and assis-
tance.

o Al as a Motivator and Starting Point: Al can help kids get-
ting started, but also allow them to learn faster by providing
a starting point and scaffolding their learning process.

o Allow Flexibility and Customization: Al Copilot plat-
forms should allow for multiple ways for a user to learn and
interact with the tool and choose if they want to use voice or
text for input, if they want to allow the Al to move blocks or
not, and allow youth to customize the type of responses they
get via an editable system prompt (i.e. “I want it to always
give me 3 ideas”).

e Design Al tools to support visual creativity in-situ: The
image generation aspect of the platform is highly engaging,
and needs to be more integrated with the coding platform
context so that generated images can be directly added as
platform characters or backgrounds and would be the visual
style that youth expects from the platform (i.e. more like a
cartoon rather than a realistic image, without background
and full body).

e Support Multimodal Al capabilities: Al should be able
to generate both text and sounds, and also to be able to
understand voice input, while allowing users to select their
preferred way of interaction with the tool.

e Al should acknowledge the user’s preferences and lim-
itations: The system should allow users to personalize its
prompt and responses, to address diverse youth needs and
preferences.

151

Druga, et al.

5.2 Limitations and Future Work

Our work had certain limitations. First, we conducted a small sample
study with 18 participants in a relatively short time frame. Future
work should examine these effects across more users, different de-
mographics, and over longer periods of time. Second, the study
did not focus on code sharing and collaboration, but only on indi-
vidual sessions with the AI Copilot. More work is needed on how
to support collaboration and co-creation through Al-driven tools.
Finally, the study focused on a single tool (a visual programming
environment similar to Scratch) and may not generalize well to
other creative coding environments. Future work should also focus
on how to adapt our design guidelines for other platforms with
different features and specific affordances.

While not a primary focus of our coded analysis, our observa-
tions suggested potential developmental differences in how children
interacted with the AI Copilot. Younger participants (ages 7-9) ap-
peared to engage with the Al more conversationally, appreciating
its immediate responses and perceiving it as a helpful companion.
They also expressed high satisfaction with the AI’s basic function-
alities. In contrast, older participants (ages 10-12) exhibited greater
independence, utilizing the AI for more complex problem-solving
and advanced creative explorations. These preliminary observa-
tions suggest that future research should systematically investigate
developmental nuances in Al-assisted creative coding, exploring
how AI Copilots can be designed to adapt to varying developmental
stages, expectations, and prior experiences. Further studies with
larger, age-stratified samples are needed to validate these initial
observations and develop age-appropriate design guidelines for
Al-powered learning tools for youth.

Some of our study participants expressed awareness of some of
the challenges of Al in particular about the risks of misinformation
or the potential for it to be used to produce fake content demonstrat-
ing a nascent critical Al literacy interest even in young children.
Future studies should further investigate childrens’ perceptions of
Al risks in the context of code assistance for youth.

6 Conclusion

This paper presented Cognimates Scratch Copilot, an Al-powered
assistant designed to support youth creative coding within a visual
block-based environment. Our exploratory study with 18 interna-
tional children demonstrated that such a tool can effectively scaffold
the creative coding process by aiding ideation, providing coding
and debugging assistance, facilitating asset creation, and helping
with platform navigation. However, our findings also highlight the
critical importance of designing these tools to preserve child agency,
foster critical engagement, and manage potential challenges like
over-reliance or navigating Al errors.

The results underscore that Al copilots, when designed thought-
fully according to principles like prioritizing user control, balancing
support with challenge, and promoting transparency, have the po-
tential to empower youth, enhance their creative self-efficacy, and
deepen their engagement with computational thinking. They can
act as valuable partners in the learning journey, offering guidance
while encouraging creative independence. Future work must con-
tinue to refine these tools, focusing on contextual awareness, per-
sonalization, collaborative support, and fostering critical Al literacy,

Scratch Copilot: Supporting Youth Creative Coding with Al

to ensure that Al truly serves to augment, rather than diminish, the
creative and learning processes of the next generation of creative
coders.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. 1539179, 1703304, 1836813, 2031265,
2100296, 2122950, 2137834, 2137312, 2318257, 2417014 and unre-
stricted gifts from Microsoft, Adobe, and Google.

References

(1]

=
&

[13]

[14]

[15]

[16]

[17

(18

[19]

[20]

[21]

[24]

2020. RAISE Al Playground - MIT Media Lab. mit.edu (2020). https://mit.edu/
raiselab/ai- playground/

2024. Can Al Help Kids Feel Creative? - Joan Ganz Cooney Center. joanganz-
cooneycenter.org (2024). https://joanganzcooneycenter.org/2024/09/24/can-ai-
help-kids-feel-creative/

2024. Codeium: Free Ai Copilot Alternatives. restack.io (2024). https://restack.
io/alternatives/comparisons/github- copilot-vs-codeium

2024. Cursor AI: Al-first code editor. cursor.sh (2024). https://cursor.sh/

2024. eCraft2Learn Library for Snap! github.io (2024). https://github.com/
ecraft2learn/eCraft2Learn-Snap

2024. PictoBlox: Block Coding & Al play.google.com (2024). https://play.google.
com/store/apps/details?id=com.thestempedia.pictoblox&hl=en_US
2024. Teachable Machine. teachablemachine.withgoogle.com (2024).
//teachablemachine.withgoogle.com/

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77-101.

Karen Brennan and Mitchel Resnick. 2015. Balancing Structure and Agency in
Computational Tools and Activities for Novices. (2015).

Elizabeth Charters. 2003. The use of think-aloud methods in qualitative research
an introduction to think-aloud methods. Brock Education: A Journal of Educational
Research and Practice 12, 2 (2003).

Po-Nien Chen, Colin Zhang, Nazneen Rajani, Xi Zhang, Yi Tang, Jure Leskovec,
and Christopher D Manning. 2023. Teaching large language models to self-debug.
arXiv preprint arXiv:2304.05178 (2023).

Stefania Druga, Fee Lia Christoph, and Amy J. Ko. 2022. Family as a Third Space
for Al Literacies: How do children and parents learn about Al together?. In CHI
Conference on Human Factors in Computing Systems. 1-17.

Stefania Druga and Amy J Ko. 2021. How do children’s perceptions of machine
intelligence change when training and coding smart programs?. In Interaction De-
sign and Children. ACM, Athens Greece, 49-61. https://doi.org/10.1145/3459990.
3460712

Stefania Druga and Amy J Ko. 2023. AI Friends: A Design Framework for AI-
Powered Creative Programming for Youth. arXiv preprint arXiv:2305.10412 (2023).
Stefania Druga and Amy J. Ko. 2023. Al Friends: A Design Framework for AI-
Powered Creative Programming for Youth. arXiv:2305.10412 [cs.HC] https:
//arxiv.org/abs/2305.10412

Stefania Druga and Nancy Otero. 2023. Scratch Copilot Evaluation. ArXiv
abs/2305.10417 (2023). https://arxiv.org/abs/2305.10417

Stefania Druga and Nancy Otero. 2023. Scratch Copilot Evaluation: Assessing
Al-Assisted Creative Coding for Families. arXiv preprint arXiv:2305.10417 (2023).
Stefania Druga, Sarah T Vu, Eesh Likhith, and Tammy Qiu. 2019. Inclusive
Al literacy for kids around the world. In Proceedings of FabLearn 2019. ACM,
104-111.

T. K. F. Chiu et al. 2023. Systematic Review of Al in Education. Computers &
Education: AI 4 (2023), 100118.

Alfonso Freire-Sanchez and Jesus Lopez-Gonzalez. 2023. Intergenerational Dif-
ferences on the Cultural Imagery of Al In Proc. of Semanticscholar. https:
//api.semanticscholar.org/CorpusID:271290607

Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose
Biskjaer, and Peter Dalsgaard. 2019. Mapping the Landscape of Creativity Support
Tools in HCIL In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19, Paper 389). Association for
Computing Machinery, New York, NY, USA, 1-18.

ARIEL HAN, ZHENYAO CAI SEUNGMIN JEONG, and SUN MYUNG CHOL. 2023.
AlStory: design implication of using generative arts Al for visual storytelling.
Yerika Jimenez, Amanpreet Kapoor, and Christina Gardner-McCune. 2018. Us-
ability challenges that novice programmers experience when using scratch for
the first time. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 327-328.

Mohsen Kazemitabaar, Theodoros Sapounidis, Robert Weidmann, and Michail
Giannakos. 2023. Studying the Effects of Code Generation Tools on Middle

https:

152

[25

(28]

[29

[30

[32

(33]

[34

[35

(36]

@
=)

[38

[39

[40

[41

[42

[43

[44

[45

=
&

[47

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

Schoolers’ Programming Performance and Learning. (Apr 2023), 1-14. https:
//doi.org/10.1145/3583131.3590429

Joy Kim, Maneesh Agrawala, and Michael S Bernstein. 2017. Mosaic: Designing
Online Creative Communities for Sharing Works-in-Progress. In Proceedings of
the 2017 ACM Conference on Computer Supported Cooperative Work and Social
Computing (Portland, Oregon, USA) (CSCW ’17). Association for Computing
Machinery, New York, NY, USA, 246-258.

J. Kim and S. Lee. 2023. Socio-Cultural Factors in Middle-Schoolers’ Attitudes
Toward AL Springer Journal of Educational Technology (2023). https://doi.org/10.
1007/510639-023-12172-y

A Ko, B Myers, and H Aung. 2004. As programming skills increase in demand and
utility, the learnability of end-user programming systems is of utmost importance.
However, research on learning barriers in programming systems has primarily

focused on languages, overlooking potential barriers in Anal. Sci. Technol
(2004).
Juho Leinonen, Sébastien Sarsa, Nazneen Rajani, and Hannu Toivonen. 2023.

Using gpt-3 to generate explanations of code: a comparative study with human-
generated explanations. (2023), 1-14.

Dastyni Loksa, Lauren Margulieux, Brett A Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and self-regulation in
programming education: Theories and exemplars of use. ACM Transactions on
Computing Education (TOCE) 22, 4 (2022), 1-31.

Duri Long, Anthony Teachey, and Brian Magerko. 2022. Family Learning Talk
in Al Literacy Learning Activities. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. 1-20.

Aman Madaan, Uri Alon, Kevin Lu, Daniel Luan, Alexander L Gaunt, Graham
Neubig, and Noam Zamir. 2023. Learning to improve code performance. arXiv
preprint arXiv:2304.03731 (2023).

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1-15.

RE Mayer. 2005. Cognitive theory of multimedia learning. The Cambridge Hand-
book of Visuospatial Thinking/Cambridge University Press.

Andrew Mclean and Geraint A Wiggins. 2012. Computer as material: Bricolage
and metaphors for construction. Digital Creativity 23, 1 (2012), 23-39.

Matthew B Miles and A Michael Huberman. 1984. Drawing valid meaning from
qualitative data: Toward a shared craft. Educational researcher 13,5 (1984), 20-30.
José Morales-Chicas and Jane Leonard. 2019. Computing for cultural relevance:
Recommendations for creating culturally responsive computing curriculum. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
740-746.

Luis Morales-Navarro and Yasmin B. Kafai. 2024. Investigating Youths’ Every-
day Understanding of Machine Learning Applications: a Knowledge-in-Pieces
Perspective. arXiv:2404.00728 [cs.CY] https://arxiv.org/abs/2404.00728

Luis Morales-Navarro and Yasmin B Kafai. 2024. Unpacking Approaches to
Learning and Teaching Machine Learning in K-12 Education: Transparency,
Ethics, and Design Activities. Proceedings of the 19th WiPSCE Conference on
Primary and Secondary Computing Education Research, Article 3 (2024), 10 pages.
https://doi.org/10.1145/3677619.3678117

Mathilde Neugnot-Cerioli and Olga Muss Laurenty. 2024. The Future of Child
Development in the Al Era. ArXiv abs/2405.19275 (2024). https://arxiv.org/abs/
2405.19275

Michele Newman, Kaiwen Sun, Ilena B Dalla Gasperina, Grace Y Shin,
Matthew Kyle Pedraja, Ritesh Kanchi, Maia B Song, Rannie Li, Jin Ha Lee, and
Jason Yip. 2024. " I want it to talk like Darth Vader": Helping Children Construct
Creative Self-Efficacy with Generative AL In Proceedings of the CHI Conference
on Human Factors in Computing Systems. 1-18.

Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

Michael Quinn Patton. 1990. Qualitative evaluation and research methods. SAGE
Publications, inc.

Mitchel Resnick. 2007. All I really need to know (about creative thinking) I
learned (by studying how children learn) in kindergarten. In Proceedings of the
6th ACM SIGCHI conference on Creativity & cognition. 1-6.

Mitchel Resnick and Eric Rosenbaum. 2013. Designing for tinkerability. Design,
make, play: Growing the next generation of STEM innovators (2013), 163-181.
Sébastien Sarsa, Juho Leinonen, Anders Petersen, Shang Wang, Samia Khademi,
Henri Vartiainen, Ville Valtonen, Hannu Toivonen, Nazneen Rajani, et al. 2022.
Automatic generation of programming exercises with large language models.
arXiv preprint arXiv:2208.07833 (2022).

Sayeda Sapna Shah and Muhammad Mujtaba Asad. 2024. Impact of Critical Think-
ing Approach on Learners’ Dependence on Innovative Transformation Through
Artificial Intelligence. In The Evolution of Artificial Intelligence in Higher Educa-
tion: Challenges, Risks, and Ethical Considerations. Emerald Publishing Limited,
161-182.

GovTech Singapore. 2024. Gen-Al in Public Sector Software Development. ArXiv
abs/2409.17434 (2024). https://arxiv.org/abs/2409.17434

https://mit.edu/raiselab/ai-playground/
https://mit.edu/raiselab/ai-playground/
https://joanganzcooneycenter.org/2024/09/24/can-ai-help-kids-feel-creative/
https://joanganzcooneycenter.org/2024/09/24/can-ai-help-kids-feel-creative/
https://restack.io/alternatives/comparisons/github-copilot-vs-codeium
https://restack.io/alternatives/comparisons/github-copilot-vs-codeium
https://cursor.sh/
https://github.com/ecraft2learn/eCraft2Learn-Snap
https://github.com/ecraft2learn/eCraft2Learn-Snap
https://play.google.com/store/apps/details?id=com.thestempedia.pictoblox&hl=en_US
https://play.google.com/store/apps/details?id=com.thestempedia.pictoblox&hl=en_US
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3459990.3460712
https://arxiv.org/abs/2305.10412
https://arxiv.org/abs/2305.10412
https://arxiv.org/abs/2305.10412
https://arxiv.org/abs/2305.10417
https://api.semanticscholar.org/CorpusID:271290607
https://api.semanticscholar.org/CorpusID:271290607
https://doi.org/10.1145/3583131.3590429
https://doi.org/10.1145/3583131.3590429
https://doi.org/10.1007/s10639-023-12172-y
https://doi.org/10.1007/s10639-023-12172-y
https://arxiv.org/abs/2404.00728
https://arxiv.org/abs/2404.00728
https://doi.org/10.1145/3677619.3678117
https://arxiv.org/abs/2405.19275
https://arxiv.org/abs/2405.19275
https://arxiv.org/abs/2409.17434

IDC ’25, June 23-26, 2025, Reykjavik, Iceland

[48]

[49]

[50]

(51

[52]

Jenni Solyst, Michelle Wilkerson, Bryan Melton, Gautam Biswas, and Sean Brophy.
2022. Insights from culturally responsive computing: What are we learning and
where do we go from here? Journal of the Learning Sciences 31, 1 (2022), 155-198.
Leonard Tetzlaff, Florian Schmiedek, and Garvin Brod. 2021. Developing per-
sonalized education: A dynamic framework. Educational Psychology Review 33
(2021), 863-882.

Pamela Tierney and Steven M Farmer. 2002. Creative self-efficacy: Developing
and testing a measurement. Personnel Psychology 55, 1 (2002), 113-134.

Sherry Turkle and Seymour Papert. 1990. Epistemological pluralism: Styles of
minority cultures within American computing. American Association for the
Advancement of Science.

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang,
Philip S Yu, and Qingsong Wen. 2024. Large language models for education: A

153

[53

[54

[55

]
]

Druga, et al.

survey and outlook. arXiv preprint arXiv:2403.18105 (2024).

Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35.

Hyunju Woo, Jody Clarke-Midura, Tamar Orkin, and Marina Bers. 2022. Problem-
solving strategies in creative coding: Novice animators’ code construction and
debugging processes in scratch. Journal of Science Education and Technology 31,
2 (2022), 249-268.

Chunpeng Zhai, Santoso Wibowo, and Lily D Li. 2024. The effects of over-reliance
on Al dialogue systems on students’ cognitive abilities: a systematic review. Smart
Learning Environments 11, 1 (2024), 28.

LeChen Zhang and Jalal Nouri. 2019. A systematic review of learning compu-
tational thinking through Scratch in K-9. Computers & Education 141 (2019),
103607.

	Abstract
	1 Introduction
	2 Related Work
	2.1 AI-Powered Coding Assistants for Youth: Addressing the Novelty Gap
	2.2 Culturally Responsive and Inclusive AI Education for Youth
	2.3 Creative Coding Pedagogies and AI Support
	2.4 Ethical and Design Considerations for AI Copilots in Education

	3 Method
	3.1 Selection and Participation of Children
	3.2 Study Procedure
	3.3 AI Copilot Platform
	3.4 AI Copilot Persona
	3.5 Data Collection and Analysis

	4 Findings
	4.1 Theme 1: AI-Enhanced Ideation and Asset Creation
	4.2 Theme 2: Contextual Debugging and System Navigation
	4.3 Theme 3: Preserving Child Agency and Addressing Potential Negative Effects
	4.4 Final Interview Reflections: AI Copilot Perceptions and Prior AI Exposure

	5 Discussion
	5.1 Design Guidelines
	5.2 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References

