t')

Check for
Updates

Programmable MCMC with Soundly Composed Guide
Programs

LONG PHAM, Carnegie Mellon University, USA

DI WANG®, Peking University, China

FERAS A. SAAD, Carnegie Mellon University, USA
JAN HOFFMANN, Carnegie Mellon University, USA

Probabilistic programming languages (PPLs) provide language support for expressing flexible probabilistic
models and solving Bayesian inference problems. PPLs with programmable inference make it possible for
users to obtain improved results by customizing inference engines using guide programs that are tailored to a
corresponding model program. However, errors in guide programs can compromise the statistical soundness
of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of
user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms.
Our approach rests on a novel type system for describing communication protocols between a model program
and a sequence of guides that each update only a subset of random variables. We prove that, by translating
guide types to context-free processes with finite norms, it is possible to check structural type equality between
models and guides in polynomial time. This connection gives rise to an efficient type-inference algorithm for
probabilistic programs with flexible constructs such as general recursion and branching. We also contribute a
coverage-checking algorithm that verifies the support of sequentially composed guide programs agrees with
that of the model program, which is a key soundness condition for MCMC inference with multiple guides.
Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms efficiently
infer types and detect sound and unsound guides for programs that existing static analyses cannot handle.

CCS Concepts: » Theory of computation — Probabilistic computation; Type theory; Grammars and
context-free languages; « Mathematics of computing — Bayesian computation.

Additional Key Words and Phrases: probabilistic programming, Bayesian inference, type systems, coroutines,
context-free types

ACM Reference Format:

Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann. 2024. Programmable MCMC with Soundly Composed
Guide Programs. Proc. ACM Program. Lang. 8, OOPSLAZ2, Article 308 (October 2024), 30 pages. https://doi.org/
10.1145/3689748

1 Introduction

Probabilistic programming languages (PPLs) enable users to write probabilistic models as programs
and solve Bayesian-inference problems. PPLs have been successfully used in numerous applications,
ranging from robotics [38] and computer vision [28] to cognition [7] and data science [42].

“Corresponding author.

Authors’ Contact Information: Long Pham, Carnegie Mellon University, Pittsburgh, USA, longp@andrew.cmu.edu; Di Wang,
Peking University, Beijing, China, wangdi95@pku.edu.cn; Feras A. Saad, Carnegie Mellon University, Pittsburgh, USA,
fsaad@cmu.edu; Jan Hoffmann, Carnegie Mellon University, Pittsburgh, USA, jhoffmann@cmu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART308

https://doi.org/10.1145/3689748

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:2 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

Programmable inference. Traditional PPLs provide generic inference algorithms that apply to
almost any model that can be expressed in the languages [6, 18, 53]. However, these inference
algorithms may fail to return accurate results within a reasonable time frame. To circumvent
this problem, modern PPLs support programmable inference, which lets users develop custom
guide programs that are customized to the model programs [3, 12, 33]. Custom guide programs are
supported by both variational and Monte-Carlo-based inference algorithms, enabling substantial
improvements in accuracy and runtime performance as compared to generic algorithms [11].
However, they also create room for users to introduce bugs that invalidate the statistical soundness
of the inference, causing the inference algorithms to crash or even silently return invalid results.

Verifying guide programs. A number of static-analysis methods have been recently developed to
verify the correctness of user-implemented guide programs. At a high level, guide programs have
to satisfy certain compatibility conditions with respect to model programs. Lee et al. [30] propose a
static analysis that checks if a model-guide pair is compatible for variational inference in Pyro [3].
Lew et al. [31] develop a type system for traces of probabilistic programs to ensure that well-typed
model-guide pairs are compatible for both Monte Carlo and variational inference. A limitation of
these approaches is their lack of support for general conditional statements and recursive procedure
calls. Li et al. [32] overcome the limitation for variational inference by extending trace types.
Another approach is using coroutine-based programmable-inference [52], where model and guide
programs are treated as coroutines that communicate by exchanging messages about branching
and recursion. Communication protocols are automatically inferred and imposed via guide types.

In this article, we consider the problem of statically verifying the soundness of Markov-Chain
Monte Carlo (MCMC) inference algorithms, and in particular the multiple-block Metropolis-Hastings
[BMH; 8, §4.4] algorithm. The well-known Gibbs sampling and Metropolis-within-Gibbs algorithms
are special cases of BMH [17]. MCMC, including BMH, simulates a Markov chain whose transition
kernel is specified by one or more guide programs. MCMC repeatedly draws samples from these
guide programs, which form successively better approximations of the posterior distribution of a
model program. As the number of iterations becomes large, the samples from the Markov chain
resemble samples from the target distribution.

Model-guide compatibility. A BMH sampler is said to be sound if the limiting distribution of
the Markov chain is the target posterior distribution. Informally, a sufficient condition for the
soundness of BMH is that a sequential composition of guide programs should be able to propose any
sample in the support of a model program. If this condition does not hold, the Markov chain has a
risk of never proposing a sample in the support of a model program. For example, suppose a model
program draws a sample from a Normal distribution NormMAL(0, 1), which has full support over
R. If a guide program draws a sample from a Gamma distribution GAMMA(1, 1), whose support is
R0, then the Markov chain induced by this guide program cannot propose negative values. Hence,
the Markov chain cannot faithfully converge to the target distribution. Checking the compatibility
of model and guide programs in BMH is especially challenging because it requires reasoning
about the sequential composition of multiple guide programs, where each guide may propose a
different subset of random variables and may use random control flow, recursion, and other flexible
programming constructs.

This work. To verify the soundness of BMH algorithms, this article extends the coroutine-based
programmable inference of Wang et al. [52] from handling only a single-guide program to handling
the sequential composition of multiple guide programs. We build our framework on trace-based
probabilistic inference programming [33], where a probabilistic program defines a distribution over
execution traces that record samples for random variables. A guide program can also access (and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:3

reuse) the execution trace of the previous guide program, and the BMH algorithm sequentially
executes the guides to propose a new trace from the current one. We reduce the model-guide
compatibility check to the following verification task: given any initial trace, can the sequential
composition of guides propose every possible new trace with a non-zero probability? A major challenge
is to augment the model-guide communication with a third party: a guide program now can
communicate with both the model and the previous guide. We formulate a novel operational
semantics for sequentially composed guides that is capable of monitoring and aligning the control
flows of previous and current guides. Our semantics deals with the issue that the guides’ control
flows may diverge.

We then adapt guide types and automatic type inference from Wang et al. [52] to our new
semantics. There are two challenges: (i) different guides may have different control-flow structures
as long as their types are structurally equal (whereas the guide-type system in Wang et al. [52]
only supports nominal types); (ii) a guide may sample a subset of random variables (whereas Wang
et al. [52] only consider complete samples). For challenge (i), we develop a type-equality checking
algorithm for guide types with structural equality. In our setting, guide types correspond to context-
free types [47], which have infinite state spaces. By translating guide types to context-free processes
with finite norms, whose bisimilarity is decidable in polynomial time [21], we prove that guide-
type equality is decidable in polynomial time. For challenge (ii), we devise a coverage-checking
algorithm for verifying that sequentially composed guides satisfy the compatibility condition that
“the composition covers all possible sample traces in the model” We reduce coverage checking to
verifying that every random variable in any control-flow path is freshly sampled by at least one
guide. Our coverage-checking algorithm essentially bisimulates guide types alongside structures of
guide programs.

We have implemented type-inference, type-equality-checking, and coverage-checking algorithms.
An empirical evaluation of our system on a diverse benchmark set shows that the type-inference
algorithm is more expressive than the algorithm from Wang et al. [52] and that the coverage-
checking algorithm can efficiently handle many benchmarks in practice.

Contributions. This article makes the following contributions:

o We present a flexible coroutine-based framework for programmable inference with sequentially
composed guides that can access and reuse previous traces (§3). Our system handles expressive
constructs such as conditional branching and general recursion in both models and guides.

e We prove that—by translating guide types to context-free processes with finite norms—structural-
type-equality checking in our framework is decidable in polynomial time (§4 and Theorem 4.7).
This connection enables more expressive automatic type inference while remaining efficient.

e We present a novel coverage-checking algorithm (§5) for verifying that sequentially composed
guide programs have full coverage over the support of the target model program; along with a
proof that our algorithm is sound (Theorem 5.1).

e We implement and evaluate type-equality and coverage-checking algorithms on a diverse
benchmark set (§6), showing that our system (i) can analyze programs beyond the reach of
previous static analyses; and (ii) efficiently identifies both correct and incorrect guide programs.

2 Overview
2.1 Bayesian Inference, Markov-Chain Monte Carlo, and Block Metropolis-Hastings

Bayesian inference is the problem of conditioning a probabilistic model on observed data and
computing (or approximating) a posterior distribution on latent variables, which encode information

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:4 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

about the “ground truth” that cannot be observed directly. Probabilistic programming [2, 19]
provides a framework for implementing probabilistic models and performing Bayesian inference.

Markov-Chain Monte Carlo (MCMC) is a family of algorithms that generate a sequence {lat; }i=1, T
of correlated samples of latent variables from a suitable Markov chain whose stationary distribution
is the target posterior. MCMC uses kernels to generate a new state lat; from the previous state
lat;_1. The Metropolis-Hastings (MH) algorithm [20, 34] is a generic method to construct kernels via
custom proposal distributions (called guide programs in probabilistic programming), which generate
new values for latent variables. In each iteration, MH computes an acceptance ratio for a proposed
state and then accepts it with a probability equal to the ratio.

The program Model in Figure 1a describes a probabilistic model on random variables specified
by commands sample(@?, d), where ¢ is a label that uniquely identifies a random variable and
d is a primitive distribution, such as CAT (categorical) distributions whose support is the integer
ring Ny (where k is the number of categories), NormAL distributions whose support is the real
line R, and INvGAaMMA (inverse-gamma) distributions whose support is the positive real line R,.
The program specifies a regression model with univariate polynomials with degree at most two.
Figure 1b plots 50 randomly generated polynomials. Figure 1d implements a proposal distribution
for this model as a guide program Guide;. The program takes the previous sample trace—which
records the values of latent variables from the previous iteration—as its input and generates a new
trace that is compatible with the regression model. By “compatible,” we mean (informally) that this
guide program generates latent variables from a distribution with the same support as the model.
This program implements a single-block MH proposal in the sense that it generates new values for
latent variables jointly as one block. The left of Figure 1c plots the last 50 posterior samples from
this run.

In a high-dimensional space of latent variables, using a single proposal can suffer from low
acceptance rates during MCMC sampling, which leads to slow convergence. A run of MH using
the single-block proposal in Figure 1d for 5,000 iterations resulted in a poor acceptance rate of only
2.3%. Figure 1f shows three trace plots for three latent variables (@cy, @c;, and @c;) from the 5,000
samples, where the red lines plot the ground-truth values for them. We can see from the plots that
this particular run was inefficient in exploring the posterior and did not seem to mix at all.

Multiple-block MH. A generalization of single-block MH is multiple-block Metropolis-Hastings
(BMH), also known as Metropolis-within-Gibbs [17]. Algorithm 1 shows a simplified case of BMH
where the target distribution 7(x) is defined over a fixed-dimensional space R?. The latent variables
are partitioned into B > 1 blocks (x1, ..., xp), where each x;, € R™ and n; + - - - + ng = d. At each
iteration, BMH updates a subset (block) of variables x; by sampling from a proposal distribution
qp (b =1,...,B). BMH makes more local steps in each iteration as compared to single-block MH
and often obtains higher acceptance rates. The well-known (block) Gibbs sampling algorithm is a

Algorithm 1 Multiple-Block Metropolis-Hastings (BMH)

Require: target distribution 7 (xy, ..., xp); proposal distributions (g, . . ., qs).
1: Initialize x° — (x),...,x}).
2: for j=1,2,... do
; j-1 j-1
3 x) — (x1 N
4: forb=1,...,Bdo
5: Propose a new value X5 ~ qp(—; x/) for block b.
. j-1._J &
7 (Xp,x7,) qu(xy 5x7,, Xp)
_ m(x7) qp(Xp; x7)
7. Update x] « %, with probability min(1, @).

6: Compute the acceptance ratio o «

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs

308:5

1 proc Model(xs : vec[5](R)) =
2 degree « sample(@d, CAT(0.3;0.5;0.2)); ol
3 ¢g « sample(@co, NOoRMAL(0, 2));
4 f(10
5 if degree = 0 then
6 return(Ax. cp) 1
7 else 104
8 c; « sample(@ci, NorMAL(0,2));
9 if degree = 1 then -
10 return(Ax. co + ¢1 * x)
1 else (b) 50 prior curves drawn randomly from Model.
12 ¢y « sample(@c2, NorMAL(0, 2));
13 return(Ax.co +c1 * x +Cg % X % Xx) Single-Block MH Multiple-Block MH
14) 04 p 04
15 noise2 « sample(@n, INvGaAMMA(1, 1));
16 noise « return(sqrt(noise2)); ~10 / N
17 ys « foreach (i,x) in xs (
18 y < sample(@y;, NOorRMAL(f (x), noise)); 1 -
19 return(y) ~301 —30
20)
21 return(ys) S S R s S S
(a) Probabilistic program Model over curves. (c) 50 posterior curves given data.
1 proc Guide;(o : trace) = 1 proc Guidey 4(o : trace) =
2 degree « sample(@d, Cat(1/3;1/3;1/3)); 2 degree «— sample(@d, CAT(2/5;119/200;1/200));
3 ¢o « sample(@co, NORMAL(o[@c],0.5)); 3 if degree = 0 then return() else
4 4 c1 « (if degree < o[@d] then return(o[@c;])
5 if degree = 0 then 5 else sample(@c;, NORMAL(0, 0.5)));
6 return() 6 if degree =1 then return() else
7 else 7 ¢y « (if degree < o[@d] then return(o[@c;])
8 ¢1 < sample(@c1, NORMAL(c[@cq] or 0,0.5)); 8 else sample(@cz, NorMAL(0, 0.5)));
9 if degree = 1 then 9 return()
10 return() 10 proc Guidey (o : trace) = (fori=0,1,2)
11 else 11 ¢; « (if o[@d] < i then return(0)
12 ¢y « sample(@c2, NORMAL(o[@c2] or 0,0.5));]| | 12 else sample(@c;, NorMAL(o[@c;],0.5)));
13 return() 13 return()
14) 14 proc Guidey ,(o : trace) =
15 noise2 « sample(@n, INvGAMMA(1, 1)); 15 noise2 « sample(@n, INvVGAMMA(1,1));
16 return() 16 return()
(d) Proposal program Guide; for Single-Block MH. (e) Proposal programs Guide,, . for Multiple-Block MH.

‘o

I=\IR

0.0 4

—0.54

—1.54

—2.01

0

2000 4000

Iteration

2000 4000 0

Iteration

2000 4000 0

Iteration

T .5
1000 0

2000 4000

Iteration

2000
Iteration

0 2000 4000 0

Iteration

(f) Trace plots for @cop, @c1, @cz (Single-Block MH). (g) Trace plots for @co, @c1, @cz (Multiple-Block MH).

Fig. 1. Bayesian inference for a regression model over polynomial curves of order up to 2.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:6 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

special case of BMH, where the proposal distribution for a block of latent variables is its conditional
distribution given the observed data and latent variables in all other blocks.

Figure 1e demonstrates a sequence of guide programs, each of which implements a block proposal
distribution ¢, for the regression model. The proposal Guide,, with a subscript ¢ is intended to
mutate the value of the random variable @¢. We sequentially compose these proposals—each
of which is followed by an MH acceptance routine—to obtain an MCMC kernel. Similar to the
single-block proposal, these proposals must be compatible with the model; that is, after each guide
program mutates a block of random variables, the mutated trace is valid with respect to the model.
The proposal Guide, 4 is intended to mutate @d, which is the degree of the regression polynomial,
but it needs to take care of missing coefficients (see lines 5 and 8). Note that we deliberately
implement Guide, 4 to sample @d from a “bad” distribution Cat(2/5, 119/200, 1/200), which leads
the inference to explore quadratic functions with a very small probability.

Figure 1g shows the trace plots for the random variables @cy, @c;, and @c; from a run of 5,000
iterations of the composition of the block proposals. Compared with Figure 1f, BMH is much more
efficient in exploring the sample space: the acceptance rate is about 38.6%. The trace plots for all
three coefficients indicate that the run mixes well. We plot the last 50 samples of this BMH in the
right of Figure 1c. These curves capture uncertainty better and present more diverse samples than
the single-block MH run. Note that though we use a “bad” proposal for @d, BMH is robust enough
to converge after the first few hundreds of iterations that do not explore quadratic functions at all.

A number of case studies in the literature of PPLs demonstrate the benefit of BMH, where
each constituent proposal mutates a different block of random variables. For example, Chib and
Greenberg [9, §7.2] describe BMH involving two distinct block proposals to compute a posterior
distribution of a stationary second-order autoregressive time-series model. More recent examples
include discovering models (encoded as probabilistic context-free grammars) for time-series data
by Mansinghka et al. 33, §3.1] and Cusumano-Towner et al. [12, §7.2] and linear regression with
outlier detection by Mansinghka et al. [33, §3.2] and Cusumano-Towner et al. [12, §3.2].

Sound and unsound guides. In order for BMH to be sound (i.e., it defines a Markov chain that
converges to the conditional distribution of a model given observed data), the sequential composition
of guide programs in BMH must be compatible with the model program. More concretely, every set
of positive-probability traces under the target distribution should have positive probability under
the distribution defined by a sequential composition of guide programs [48, Theorem 1]. If this
compatibility condition is not satisfied, then BMH may fail to explore positive-probability regions
in the target distribution.

To illustrate unsound guide programs, consider Guide, ., from Figure le. Suppose we modify the
expression NORMAL(o[@c1], 0.5) in line 12 by replacing the random variable @c; with @c,. This
change could easily result in a runtime error, because the random variable @c; is not guaranteed
to exist in the previous trace. A more subtle example of unsound BMH is obtained by removing
Guide; ., from the sequential composition of guide programs. Then the random variable @c; is
never resampled, unless Guide, 4 increases the polynomial degree from 1 to 2. Likewise, if we
replace the expression NORMAL(o[@c;], 0.5) in line 12 with a Gamma distribution, whose support
is R, rather than R, the modified guide is unsound. This is because, if the preceding guide program
Guide; 4 keeps the random variable @d unchanged, the resulting Markov chain cannot sample a
negative value for the random variable @c;, yielding a mismatch with the set of traces admitted by
the model program Model. Figure 2 displays the Bayesian inference result of the unsound sequential
composition of guide programs, where the Normal distribution in Guide; ., has been replaced with
a Gamma distribution. The posterior samples in Figure 2a fit poorly with the observed data (red
points) as compared to the samples from sound BMH in Figure 1c, reflecting a failure of convergence

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:7

Unsound Multiple-Block MH Co 1 C2

—20 0 —0.5 4

-30 6 —2 -1.04

T T T T T T T T T
—40 1 0 2000 4000 0 2000 4000 0 2000 4000
—4 -2 0 2 4 Tteration Tteration Iteration

(a) 50 posterior curves. (b) Trace plots of the three polynomial coefficients.

Fig. 2. Results using an unsound BMH guide program for the inference problem in Figure 1.

to the targe distribution. In addition, the trace plot of the random variable @c; in Figure 2b indicates
that the unsound BMH does not converge to the ground-truth value (denoted by the red horizontal
line).

Programming BMH proposals is more difficult than programming single-block MH ones. To
ensure the model-guide compatibility, each block-proposal guide needs to take care of the change
in the model’s control flow that might lead to different sets of random variables. The next sections
discuss how our new framework achieves sound BMH via coverage-annotated guide types.

2.2 Programmable Block MH via Guide-Typed Coroutines

Guide-typed coroutines. We adapt a coroutine-based paradigm for implementing models and
guides from Wang et al.’s work, which supports sound programmable single-block MH. The idea is
to treat the model and guide as two communicating coroutines: the model determines the control
flow (which influences the set of latent variables), so it sends branching information to the guide;
meanwhile, the guide determines proposals for latent variables, so it sends sampling information
to the model. Such message-passing communication can be easily realized through coroutines
connected by bidirectional channels. Figure 3b reimplements the model shown in Figure 1a by
making the communication explicit: the sampling (sample(...)) and branching (if ...) commands
are annotated with rv (resp., sd) to indicate receiving (resp., sending) information, as well as the
name of a channel on which the communication takes place. The model consumes a lat channel for
communication with the guide, and provides an obs channel for identifying observed data.

Wang et al. [52] proposed guide types to enforce that the model and guide follow a communication
protocol, which describes the support of the model distribution. The type 1 specifies an ended
channel. The type 7 A A means the channel provider draws and sends a random sample of type 7, and
proceeds with a type-A protocol. The obs channel is given a guide type Obs ;== RARARARARAL
The type A & B means the channel provider receives a branch selection and proceeds with a type-A
or B protocol accordingly. Figure 3a defines a guide-type operator Coeffs[-] that corresponds to the
communication carried out from lines 7 to 15 of Figure 3b. The type operator is parameterized by a
continuation type that specifies the communication after the protocol described by the operator.
The lat channel is given a guide type Lat := N3 A R A Coeffs[R, A 1]. We instantiate Coeffs with
R, A 1 because the model samples @n—whose type is R, —after it samples the coefficients.

Figure 3c provides a template to implement MH proposals as guide coroutines. Ignoring the code
with a yellow background, the template yields a reimplementation of the single-block MH proposal
shown in Figure 1d. The compatibility is justified by the fact that the Guide coroutine provides the lat
channel whose guide type is Lat, which is the same as Model’s signature. Dual to the model coroutine,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:8

Lat % N3 A R A Coeffs[Ry A 1]
Coeffs[X] £ X & (R A (X & (RAX)))
Obs ®RARARARARAL

OLat ¥ N; A R A OCoeffs[Ry A 1]

Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

1 proc Guide(o : trace)
2 consume old : OLat
3 provide lat = Lat =

4 old_d < oldsample{old}(); degree «— sample 4 {lat} (O;);
OCoefis[X] ¥ X @ (RA (X ® (RAX))) 5 old_cy < oldsample{old}(); ¢y < sampley,{lat}(0,);
(a) Definitions of type operators. 2 J;f:{(lat} « then
1 proc Model(xs : vec[5](R)) 8 oldif,,{old} same then return() else return()
2 consume lat : Lat 9 else
3 provide obs :: Obs = 10 oldif {old} same then
4 degree < sample, {lat}(CaT(0.3;0.5;0.2)); 11 old_c; < oldsample{old}(); c; < sample_4{lat} (O3);
5 c¢o < sample, {lat}(NorMAL(0,2)); 12 if, {lat} % then
6 f—(13 oldif,,{old} same then return() else return()
7 ifsq{lat} degree = 0 then 14 else
8 return(Ax.cp) 15 oldif,,{old} same then
9 else 16 old_c, < oldsample{old}(); c; < sample 4 {lat}(04);
10 ¢y « sample,, {lat} (NorMAL(0,2)); 17 return()
11 ifyq{lat} degree = 1 then 18 else
12 return(Ax. ¢y + ¢ * x) 19 cy < sample y{lat} (O¢);
13 else 20 return()
14 ¢y < sample, {lat} (NORMAL(0,2)); 21 else
15 return(Ax.co+cy *x +cy * X % X) 22 ¢y « sample{lat}(07);
16); 23 if,, {lat} % then
17 noise2 « sample, {lat} (INvVGAMMA(1,1)); 24 return()
18 noise < return(sqrt(noise2)); 25 else
19 ys « foreach (i,x) in xs (26 c < sample y{lat} (O3);
20 y < sample {obs} (NoRMAL(f(x), noise)); 27 return()
21 return(y) 28)
22); 29 old_n < oldsample{old}(); noise2 < sample{lat}(Os);
23 return(ys) 30 return()

(b) The model coroutine. (c) A template of guide coroutines.

Fig. 3. Guide-typed coroutines for the regression model and MH proposals.

the guide samples and sends random values on the lat channel, and receives branch selections from
the same channel (see lines 7 and 12). The % symbol serves as a placeholder and it indicates that the
branch selection is sent by the consumer of the lat channel, i.e., the model coroutine. We instantiate
the boxes O; for i € {1,...,5} as follows: O; = CaT(1/3,1/3,1/3),0, = NorMAL(c[@cy],0.5),03 =
NorMAL(c[@cq] or 0,0.5),04 = NORMAL(c[@cy] or 0,0.5), 05 = INvGAMMAC(1, 1).

Towards multiple-block MH. To support BMH proposals, a natural approach would be to introduce
point distributions, e.g., DELTA(v) whose support is {v}, and refine the guide-type system to deal
with such distributions. Using this construct, single-site proposals m, and m, for random variables
@x and @y, respectively, could be expressed as follows (where o denotes the previous trace):

me = sample_,{lat} (NorRMAL(c[@x],0.5)); _ < sample_ {lat} (DELTA(0[@Y])); return()
my L sample_,{lat} (DELTA(0[@x])); _ « sample_ {lat} (NORMAL(c[@y], 0.5))); return()
For a target distribution with full support over R?, the sequential composition m, and m, yields
a sound kernel because it also has full support over R%. Unfortunately, there are fundamental
challenges with designing a type system that can reason about arbitrary user-specified delta distri-
butions. Consider changing the second command of m, to instead be sample_,{lat} (DELTA(42)).
Clearly, the single-site update m, is no longer sound, because every move for @x would be rejected

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:9

(except when the previous trace o satisfies o[@y] = 42, which has probability zero under the target
distribution). To correctly reason about the model-guide compatibility of BMH in the presence
of general point distributions DELTA(e), the type system would therefore need to analyze the
expressions e and distinguish between cases such as DELTA(o[@y]) and DELTA(42). This approach
is as hard as checking for the semantic equivalence of two expressions, and also requires finding
the locations of all point masses (if any) in the target distribution.

BMH guides as coroutines. The previous example suggests that our system should properly align
the previous trace within a block proposal coroutine and add a command for “keeping the value of a
random variable unchanged,” which is a restricted type of point distribution. To deal with alignment,
we grant BMH guide coroutines the access to another read-only channel, e.g., old, that records the
messages exchanged between the model and a previous guide coroutine. To support this “keeping
unchanged” behavior, we add two kinds of commands: one for retrieving an old sample from the pre-
vious trace, written oldsample{old} (), the other for forwarding an unchanged sample to the model,
written sample_,{/at} (KEEP). Meanwhile, the alignment of branching is nontrivial: the control flow
of the model with respect to the previous guide could diverge from the model’s flow with respect to
the current guide. In our system, we deal with branch alignment by imposing the following structure:

ify{lat} » then oldif,, {old} same then mirye true else Myirye false
else oldify, {old} same then meyise false €1s€ Mialse true
We introduce the oldif,,{old} same ... command to read a branch selection from the old channel.
Such a structure identifies four branches my, j, with by, b, € {true, false}, where b; is the branch
selection received from the model, and b, is the one read from the previous trace. When b; # b,
the command my, j, cannot access the previous trace, because the control flow diverges.

Ignoring the code with a red background, Figure 3c can be used to reimplement the block guides
shown in Figure le. The code with a yellow background deals with alignment. Below presents
instantiations of boxes that correspond to the block-proposal guide programs given in Figure 1e.

Guidey g : 01 = CaT(2/5;119/200;1/200), 02 = O3 = O4 = O5 = KEEP, O = O7 = O3 = NORMAL(0, 0.5)
Guideyc, : Oz = NorMAL(old_co,0.5), 01 = O3 = 04 = O5 = KEEP, O = O7 = Og = NoRMAL(0, 0.5)
Guidez ¢, : O3 = NormAL(old_c1,0.5),0; = Oy = O4 = O5 = KEEP, Og = O7 = Og = NORMAL(0, 0.5)
Guideg,CZ : O4 = NorMAL(old_cp,0.5),01 = Oy = O3 = O5 = KEEP, O = O7 = Og = NORMAL(0, 0.5)
Guidez, : Os = INVGAMMA(1,1),07 = Oz = O3 = O4 = KEEP, O = O7 = Og = NORMAL(0, 0.5)
They all fill in O, O7, and Og in the same way: those sampling commands are in the branches where
the current control flow diverges from the previous trace. For other boxes, the guide coroutines

resample the random variable of interest and use sample(KeEP) for other unchanged variables.

2.3 Coverage-Annotated Guide Types for Soundly Composed Guides

Coverage annotations. We now consider the guide types of the block guides shown above. Fig-
ure 3a defines a guide type OLat that prescribes the communication through the old channel. Dual
to the & type constructor, the type A @ B specifies a channel whose receiver receives a branch
selection and proceeds with a type A or type B protocol. The type OLat has the same structure as
the type Lat; the difference is that OLat can be obtained by replacing all the & constructor in Lat
with @.

The lat channel has a variant of the Lat guide type where primitive types (e.g., R) are annotated
with coverage annotations in subscripts. An annotation ¢ (“covered”) means a random variable
is freshly resampled in this guide, and an annotation u (“uncovered”) means an old value of the
random variable, if exists in the previous trace, is reused. Below summarizes the coverage-annotated
types for the five coroutines.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:10 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

Laty g = (N3)e A Ry A Coeffsy g[(Ry)y A 1] Coeffsy g = X & (Ry A (X & (Ry A X))

Latg,c, & (N3)y A R A Coeffsy e [(Ry)y A1], Coeffsg.e, = X & (Ry A (X & (Ry A X)))
Latye, & (N3)y A Ry A Coeffsye, [(Ry)y A1], Coeffsze, & X & (Re A (X & (Ry, A X))
Latye, & (N3)y A Ry A Coeffsye, [(Ry)y A 1], Coeffsge, & X & (Ry A (X & (R¢ A X))
Laty, & (N3)y A Ry A Coeffsye, [(Ry)e A1, Coeffszn = X & (Ry A (X & (Ry, A X)))

Type-equality checking. To satisfy the model-guide compatibility, the model and guide(s) must
have equal guide types for the lat channel. To this end, it is not enough to check their syntactic
equality. For example, if for the Guide, , coroutine we want the proposal distribution for the noise
variable to depend on the degree of the polynomial, we would move the sample command in
line 29 of Figure 3c into the branching commands and derive its guide type for the lat channel as

Lat),, & (N3)u A Ru A (R AD) & (Ry A (Re)e A1) & (Ry A (Ri)e AD))),
which is structurally equal to Lat, ,. Wang et al. [52] developed a nominal type system, which cannot
check the equality between Lat,, and Laty,. Generally, guide types may have infinite state spaces,
which enable guide types to express complex probabilistic models such as probabilistic context-free
grammars [26]. However, infinite state spaces also pose a challenge to deciding structural type
equality. In §4, we show that structural type equality is decidable in polynomial time by translating
guide types to context-free processes with finite norms.

Coverage checking. In addition to the model-guide type equality, we must verify that every
random variable is freshly sampled by at least some guide in the sequential composition. It is not
enough to compute the superposition of all coverage-annotated guide types and check that the
superposition is fully covered (i.e., all random variables come with subscript c¢). This is because old
samples of one random variable can be reused for another random variable on a different execution
path (§5.2). In §5, we present a coverage-checking algorithm that verifies the full coverage of
sequentially composed guides by bisimulating guide types alongside the code of guides.

2.4 A Surface Syntax for Automatic Generation of BMH Guides

So far, block guide coroutines are verbose. As Figure 3¢ demonstrates, if guide coroutines share
an identical structure that can be captured by a template, it is possible to automate block-guide
generation. We propose a lightweight surface syntax to aid the users to implement such canonical
guide coroutines easily. Figure 4 demonstrates a reimplementation of the model and proposal
programs in Figure 1a and Figure 1le in our surface syntax. The model coroutine shown in Figure 4b
is almost identical to the one shown in Figure 3b, except that the code with a blue background
explicitly assigns a unique label to each sample site. We use those labels only to guide the elaboration
of guide coroutines shown in Figure 4c into the form shown in Figure 3c. In essence, the elaboration
process automatically

e transforms the model program with labels (Figure 4b) to two programs: a model coroutine
without labels (Figure 3b) and a template of guide coroutines (Figure 3c); and then

e translates each guide program in the surface syntax (Figure 4c) to an instantiation of boxes,
e.g., O;fori e {1,...,8} in the template program shown in Figure 3c.

The first step can be realized by a straightforward syntax-directed transformation. The second
step needs to translate each resample and resample_if_none command to an instantiation of
one or more boxes. Both kinds of resampling commands are parameterized by a channel name
and take two arguments: (i) the label for the random variable to be resampled, and (ii) a function
that computes a proposal distribution from available random variables of the previous trace. A
resample command is intended to mutate a random variable whose value is present in the previous
trace, whereas a resample_if_none command is intended to generate a value for a random variable

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:11

Lat jéi N3 AR A Coeffs[R+ A 1] 1 proc Guide, 4() provide lat = Lat =
Coeffs[X] = X & (RA (X & (RAX))) 2 degree «— resample{lat}(@d,
Obs ®RARARARARAL 3 Jold_d.Car(2/5;119/200;1/200));
(a) Definitions of type operators. 4 ¢ — resample_if_none{lai(@c,
5 Aold_d. Aold_cy. NoRMAL(0, 0.5));
1 proc Model(xs : vec[5](R)) 6 ¢y < resample_if none{lat(@c,,
2 consume lat : Lat 7 Aold_d.Aold_cy. Aold_ci.NOoRMAL(0,0.5));
3 provide obs :: Obs = 8 return()
4 degree < sample,, {lat} (@d, CAT(0.3;0.5;0.2));
5 ¢ « sample,, {lat} (@¢cg, NorMAL(0,2)); 1 proc Guide () provide lat :: Lat =
6 f(2 ¢o « resample{lat}(@cy,
7 ifsg{lat} degree = 0 then 3 Aold_d. Aold_cy. NorMAL(0ld_cy,0.5));
8 return(Ax.c)) 4 return()
9 else
10 ¢ < sample,, {lat}(@¢ci, NorMAL(0,2)); 1 proc Guidey ¢ () provide lat :: Lat =
11 ifgq{lat} degree = 1 then 2 c; < resample{lat}(@c;,
12 return(Ax. ¢o + cq * x) 3 JAold_d.Aold_cy. Aold_c;.NorMAL(old ¢y, 0.5));
13 else 4 return()
14 ¢y < sample, {lat} (@cz NorRMAL(0,2));
15 return(Ax.co+c1 * X+ ¢ * X * Xx) 1 proc Guide, c,() provide lat = Lat =
16); 2 ¢y « resample{lat}(@c;,
17 noise2 «— sample, {lat} (@n, INvGaMMA(1,1)); [|3 Aold_d. Aold_cy. Aold_c;. Aold_c,. NormAL(old_cy, 0.5));
18 noise < return(sqrt(noise2)); 4 return()
19 ys « foreach (i,x) in xs (
20 y <« sample y{obs}(NorMAL(f(x), noise)); 1 proc Guidey () provide lat = Lat =
21 return(y) 2 noise2 « resample{lat}(@n,
22) 3 Aold_d.Aold_cy. Aold_n.INvGamMA(1,1));
23 return(ys) 4 return()
(b) The model coroutine. (c) The guide coroutines.

Fig. 4. Guide-typed coroutines (in the surface syntax) for the regression model and BMH proposals.

whose old value is not present. The set of available random variables is an under-approximation
based on the data flow of the model program; for example, the values of @d, @cy, @c;, @c; are
available for resampling @c; and the values of @d, @c, are available for resampling @n. In
this way, we can associate each resampling command with one or more boxes. For example, for
the guides in Figure 4c and the template in Figure 3c: resample{lat}(@d, ...) corresponds to
01, resample_if_none{lat}(@cy,...) corresponds to O7, resample_if_none{lat}(@c,...) cor-
responds to Og and Og, resample{lat} (@cy, . . .) corresponds to O, resample{lat} (@c, . . .) corre-
sponds to O3, resample{lat} (@c, . . .) corresponds to O4, and resample{lat} (@n, . . .) corresponds
to Os.

In this article, we will focus on the more verbose core calculus demonstrated in Figure 3. Such
verbosity allows the user to implement block guides more flexibly; for example, inside a program
fragment that does not involve branching, the user can first read all the old samples and then use
them to propose a value for a particular random variable.

3 Core Calculus for Coroutine-Based Programmable Inference

In coroutine-based programmable inference, model coroutines dictate control flows, while guide
coroutines specify user-customized distributions of latent variables. Given a model M and a se-
quential composition of guides Gy, . . ., Gy, Figure 5 illustrates the communication among a guide
Gi, the model M, and a guide G;_; (i = 2, ..., n). The guide G; sends samples of latent variables to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:12 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

bi a; ObS,’
Gi-1 ® G @ M e
old branch selections branch selections samples observed samples
old samples
Fig. 5. Sequential composition of guides G; (i = 1,.. ., n). Black circles indicate the channel providers.

the model M across a channel a;, and the model sends back branch selections to the guide. The
model M sends samples of observed variables on a channel obs;. A novelty of our new framework
is that the guide G; now has access to the old sample trace from the previous guide G;_; and can
choose to reuse old samples. The guide G; receives old samples and branch selections from the
previous guide G;_; on a channel b;.

3.1 Syntax

The core calculus consists of two layers: functional and coroutine layers. The former is a standard
functional programming language augmented with probability distributions. The latter defines
model and guide programs that communicate with each other by message passing across channels.

Functional layer. Types 7 and expressions e in the functional layer are formed by this grammar:

=112 R[R1) | R+ [Ny [N] 71 — 72| dist(r) base, arrow, and distribution types
e 1= x | triv | true | false | if (e;eq;e2) | 7 | 7i | op, (e1; €2) expressions; 7 € R, € N

| A(x.e) | app(er;ez) | let(x;e;.ez)

| BEr(e) | UNIF | BETA(e1, €2) | Pors(e) | - - - distribution expressions.

Probability distributions have types dist(7), where 7 is the type of the supports of distributions.

Guide types. In the coroutine layer, guide types describe communication protocols between two
endpoints of channels. Fix a set X of type variables and a set T of unary type operators. Guide
types A are defined by

ti=1| 1| normal and coverage-annotated functional types
Ax=X|1]|T[A] type variable, termination, and type application; X € X,T € T
|[tANA|tDA send and receive samples
| A1 @Ay | A& Az send and receive branch selections
_
T = typedef(T.X.A) mutually recursive type definitions.

Type t is either an unannotated type 7 from the functional layer or a coverage-annotated type (z.
or 7,), which ranges over coverage-annotated analogues (1, 1, R., Ry, ...) of the normal types.
The subscript ¢ (“covered”) means the random variable is freshly sampled, and the subscript u
(“uncovered”) means the random variable is reused, whenever available, from the previous trace.
Coverage-annotated guide types are only used for channels a; that connect model and guide
coroutines (Figure 5). Channels b; are typed with unannotated guide types.

The guide type 1 means termination, X € X is a type variable, and T[A] is a unary type operator
T € T applied to a guide type A. For each channel, we designate one of its two endpoints as a
provider! and the other endpoint as a client. The guide type of a channel is described from the
channel provider’s viewpoint. Guide type ¢ A A means the provider sends a sample of type ¢ to
the client, and guide type t O A means the provider receives a sample of type ¢ from the client.
Guide type A; @ Az means the provider sends a branch selection v € {true, false} and proceeds

1Although the two endpoints of a channel can send messages in both directions, they are assigned different roles (i.e., a

provider and a client). These different roles are needed because guide types are based on binary session types, which in turn
correspond to intuitionistic linear logic [5].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:13

with guide type A; (if v = true) or A, (otherwise). Guide type A; & A, means the provider receives
a branch selection and proceeds with guide type A; or A;. Vector 7 stores mutually recursive type
definitions of the form T[X] = A.
Coroutines. Given a set F of procedure identifiers, commands m for model coroutines are
m := ret(e) | bnd(my;x.my) | call(f;e) return a value, let-binding, and procedure call; f € F

| sample,, {a}(e) | samplesy{obs}(e) receive a sample and send a sample

| cond(e; my1;mg) conditional command for models
Dy = fix(f.x.m) mutually recursive procedure definitions.

The syntax for model coroutines has two sampling commands: sample,, {a}(e) and sample{obs}(e).
The former receives a sample from a guide on channel a. The latter draws a fresh sample for an
observed variable, sending it on channel obs. Conditional command cond(e; my; m;) branches on
a Boolean expression e and proceeds to either command m; or m,. Vector Dy stores mutually
recursive procedure definitions of the form f(x) = m.

Given a set F of procedure identifiers, commands m for guide coroutines are defined by

m = ret(e) | bnd(my;x.ma) | call(f;e) return a value, let-binding, and procedure call; f € F
| sample(e) | sample(keep) draw a fresh sample and reuse an old sample
| oldsample return an old sample

| cond(x;mq;my) | oldcond(my;mz) conditionals for current and old branch selections

_—
Dg = fix(f.x.m) mutually recursive procedure definitions.

Guide coroutines have two sampling commands?: sample(e) and sample(keep). The former draws
a fresh sample from a distribution e, whereas the latter reuses the old sample. Command oldsample
returns the old sample. Conditional commands cond(%;my; my) and oldcond(m;; my) are used
inside guide programs. The first conditional command cond(*; my; m;) branches on the current
branch selections sent from the model M, while the second conditional command oldcond(my; m,)
branches on the old branch selections from the previous guide.

Finally, an inference program for BMH is P = (D U Dg, my, (MG 1, - - -, M), consisting of a
collection Dy U D¢ of procedure definitions, a model coroutine my,, and a sequential composition
of guide coroutines mg, ..., Mg, (n = 1) interleaved with the MH acceptance routines.

3.2 Operational Semantics

We adapt the trace-based semantics of models and guides from prior work [52]. To support BMH,
we propose a novel semantics of guide programs that access and reuse old samples.

Guidance traces. A guidance trace records the sequence of messages exchanged between two
coroutines across a channel. Formally, a trace o is a finite sequence of two kinds of messages:
(i) val(v) containing a sample v and (ii) dir(v) containing a branch selection v € {true, false}.

Models. The big-step operational semantics of a model program m is given by a judgment
Vi{a:0a1} Frm ™Y v;{a: 042}, (3.1)
where V is an environment (i.e., a mapping from variables to values), a is a channel between the
model and guide (Figure 5), o,; (i = 1,2) is a trace on the channel a, w € [0, 1] is a density associated
with m’s run, and v is the final output. The judgment (3.1) means that, with an initial trace o,
2The sampling commands in guide coroutines are not annotated with the directions of messages or channel names, unlike the

sampling commands sample,, {a} (e) and samplegy{obs} (e) in model coroutines. This is because the sampling command
sample(e) and sample(keep) in guide coroutines are always sent from a guide to a model on channel a.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:14 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

E:SAMPLE E:SampLE:KEEP
Vield v € d.support w = d.density(v) v =get(Q, op)
Vi{a: (val(v) = 04),b:0p};0+ Vi{a: (val(v) 2 04),b:0p};0+
sample(e) |™ v;{a: 04,b: op}; pop(Q) sample(keep) || v;{a: 04, b: 03 }; pop(Q)

E:OLDSAMPLE

Vi{a: o4 b : (val(v) = o)}; O r oldsample ||! v;{a : 04,b : o3 }; push(Q, v)

Vq = Up i =ite(vg, 1,2) Vi{a:oa1,b:0p1}:01Fmig UV vi{a:042.b:0p2}:Q2

Vi{a: (dir(vg) = 0g1),b: (dir(vp) = op1)}; 01+
cond (x;oldcond(my,1;my2);oldcond(ma1;ma2)) U™ vi{a: 042,b:0p2}; 02

E:Conb:EQ

Vg # Up i =ite(vg, 1,2)
j =ite(vp, 1,2) Vi{a:oa1};- Fmip 1Y v;{a:042};- Vi{b:op1}:Q1Fmj U= 5{b:0p2};Q2

Vi{a: (dir(vg) = 041), b : (dir(op) = 0p1)}; 01+
cond (x;oldcond (my,1;my2); oldcond (mg1;mz2)) U™ v;{a: 042,b:0p2}; Q2

E:ConD:NEQ

Fig. 6. Key rules for the operational semantics of guide programs.

on the channel a and an environment V, the model m runs successfully (without any deadlocks)
with a density w, an output value v, and a continuation trace o,3. The judgment (3.1) in Wang et al.
[52] additionally mentions a channel obs for observed variables (Figure 5). But because observed
variables are not important in this article, for brevity, we omit the channel obs from the judgment
(3.1). Because we do not modify the semantics of model programs, the judgment (3.1) has the same
definition as in Wang et al. [52].

Guides. For a guide program m, its new big-step operational semantics is given by a judgment

Vi{a:oa1,b:0p1}:01Fm U™ vi{a: 042,b:0p2}: Qo (3.2)
where V is an environment, a is a channel between the guide and model, b is a channel between
this guide and the previous one, w € [0, 1] is a density associated with m’s run, and v is an output
value. The judgment (3.2) means that, with initial traces o, and o (i.e., old trace containing old
samples and branch selections) and an environment V, the command m runs successfully with
a density w, an output value v, and continuation traces o, and o} 2. Additionally, the judgment
(3.2) contains an initial queue Q; and a continuation queue Q;. The queues are used to track old
samples. When the guide runs a command sample(keep), the old sample is sent to the model. Here,
the queue comes in: the guide pops an element off the queue and sends it to the model.

The queue Q in the judgment (3.2) takes one of two forms: (i) b : [vy,...,v,] and (ii) a : n for
some n € N. To illustrate them, consider the communication between a guide G; and a model M.
Suppose the guide G; has received n € N more samples from the previous guide G;_; than G; has
sent to the model M. In such a scenario, the n old samples vy, ..., v, that have been received by
the guide G; but not yet sent to the model M are stored in a queue Q = b : [0y, ..., 0,]. Conversely,
if the guide G; has sent n € N more samples to the model M than has received from the previous
guide G;_1, the queue takes the form Q = a : n.

Definition. Figure 6 displays key rules for the operational semantics of guide programs. The rule
E:SAMPLE evaluates expression e to a distribution, draws a sample from it, and pops the queue Q.
The rule E:SampLE:KEEP gets the old sample v = get(Q, 0p) from the previous guide G;_;. In this
rule, both the queue Q and trace o}, are necessary because the old value v is stored inside either the
queue Q or the trace o;, depending on which of the channels a and b is ahead of the other. The
rule E:OLDSAMPLE returns the old sample, which is the first element of the old trace o;,. We also
push it to the queue Q so that it can later be sent to the model M if necessary.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:15

The rules E:ConD:EQ and E:ConND:NEQ concern a doubly nested conditional command that has
four branches. The outer conditional cond(x;-; -) branches on the model M’s branch selection, and
the inner conditional oldcond(-; -) branches on the previous guide’s branch selection. In branch
mij (i, j € {1,2}), i indicates the branch taken by the model M, and j indicates whether the model
and previous guide have the same branch selection (j = 1 means identical branch selections).

If the model and previous guide have the same branch selection, the rule E:ConD:EQ applies,
proceeding with a command m; ;. Conversely, if the model and previous guide have different branch
selections, the rule E:CoND:NEQ applies. Because the current and previous traces diverge, the guide
no longer has access to the old trace. Hence, we run m;, without access to the channel b for the
old trace. At the same time, we run m;; with trace o3; on the channel b in order to determine the
continuation trace oj 2 and continuation queue Q;. When we exit the doubly nested conditional
command, the current and previous traces join back, and the old trace o}, becomes accessible to
the guide again.

Sequential composition of guides. The operational semantics of a sequential composition of closed
guide coroutines Gy, ..., G, is defined as follows. For i = 1,...,n, channel a; connects model M
and guide G;, and channel b; connects guides G;_; and G; (Figure 5). Consider an initial trace o
that the model M can generate with a positive density waro > 0 and an output value vs:

s{a:oot FM "™ opos{a:[1} (3.3)
The initial trace oy is fed to the first guide G; on the channel b;. Using oy as the old trace, the guide
G produces a new trace o} on the channel a; with a positive density wg; > 0. We next perform
the MH update, calculating a ratio r; (Eq. (3.7)) and setting oy := o] with probability min{ry, 1}.
Otherwise, we retain the old trace and set o7 := gy. The trace oy is then fed to the second guide G,
as the old trace on the channel b;, and the guide produces a new trace o;. This continues until we
obtain the final trace o,.
Formally, guide G; generates a trace o} with a positive density wg; > 0 and an output value vg,;:
{ai 2 0, b 0i-1}; Qempty F Gi U™ vgis{a: [1b: [1}; Qempty i=1,...,n. (3.4)
Here, Qempty is the empty queue. The trace o] is generated by the model M with a positive density
wpm,i > 0:
sao FM "™ opsac[] i=1,...,n (3.5)
Furthermore, we can swap the traces o} and 0;_; in Eq. (3.4) while keeping the density positive:

s{ai s oiq, by O';k};Qempty FG; Mo ZjG,i?{a (1.6 []}QQempty i=1...,n (3.6)
for an output value 9 ; and a positive density wg; > 0. The acceptance ratio r; in the MH update is

._ pm(o]) pGi(oiciloy) _ wmi e L
i = proin) pG;(0;10i-1) — wmi-1 WG i=1....n, 3.7)

where par(o) is the density of a trace ¢ in the model M, and pg, (o1 | 02) is the density of a trace
o in the guide G; with o, being the old trace. As long as the guide G; is well-typed, because all
of wari, Wami—1, WG,i» Wi,i are positive, Eq. (3.7) is positive (and finite). Hence, we always have a
positive probability of accepting the proposed trace o} in every MH update (Corollary A.8).

3.3 Type System
Type system. The typing judgment for a guide program m is
T;a:AL,b:Birm+T1;a:Ab: By, (3.8)
where I' is a functional typing context, A; and B; are the initial guide types of channels a and b,

respectively, 7 is the output type of command m, and A, and B, are the continuation guide types
of channels a and b, respectively. The judgment (3.8) means that, starting with well-typed traces

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:16 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

041 : Ay and op 1 : By and an environment V : T, the guide program m will run successfully, with
an output value of type 7 and continuation traces of guide types A, and B.
A key typing rule is T:Conb for a doubly nested conditional command:

T;a:ALb:Birmyg+1;a:Ab: B Tia:AlFmip+a: A
Ia:Azb:Byrmy;+1;0:Ab:B F;a:Aél—mg’zﬂir;a:A |A1|:|A'1| |A2|:|A’2|
T';a: A1 &Az,b: By @ By + cond(k; oldcond(my,1; my2); oldcond(mg 1;ma2)) ¥ 15a: A b : B

T:ConD

If the model M takes branch i € {1, 2} and so does the previous guide, the current guide proceeds
with command m;;, which is typed with initial guide types A; and B;. Conversely, if the model
and previous guide diverge, a command m;, (i € {1,2}) is typed with (i) an initial guide type
A} on channel a and (ii) no access to channel b for the previous trace. Thus, to be well-typed,
command m; , (i € {1,2}) must not use sample(keep) and oldsample. The rule T:Conb also requires
|A;| = |A}| (i = 1,2), where |A| is obtained by removing coverage annotations from guide type A.

Type inference. Guide types can be automatically inferred, relieving users of the need to manually
provide possibly complex guide types. To each procedure fix(f.x.m), we assign fresh type operators
Tf,q and Ty, for channels a and b, respectively. We then construct type definitions Ty o[X] = Ay
and T7 3 [X] := By such that

Tia: Ae[X],b: Be[X]Frm+1a: X, b: X, (3.9)
We traverse a command m backwards, starting with a type variable X for a continuation and
incrementally building A and By. Exploiting the fact that typing rules are syntax-directed, we can
determine which typing rule to apply by looking at the syntactic form of the command m.

3.4 Translation of the Lightweight Surface Syntax to the Core Calculus

This section describes how to translate a model coroutine M and a guide coroutine G from the
ergonomic lightweight surface syntax to the more verbose (but more expressive) core calculus.
Figure 4b and Figure 4c show the lightweight surface syntax of a model and guide coroutine,
respectively. Our goal is to translate them to Figure 3b and Figure 3c, respectively, which are
written in the core calculus (§3.1). To translate the model M from the surface syntax to the core
calculus, we simply drop the labels of latent variables. The rest of the section focuses on the
translation of the guide G.

The translation of guide G consists of two stages. In the first stage, given a model coroutine M in
the surface syntax, we translate it to a template Gemp) for guide coroutines where each expression
e inside any sampling command sample(e) is left blank. In the second stage, each e is filled with
either concrete distributions or keep (i.e., the old value is reused).

The first stage of the translation is guided by a judgment

C + M~ Grempl, (3.10)

where C is a set of channels, M is a model coroutine, and Giempl is a template for guide coroutines.
The set C of channels is either {a} or {a, b}, where channel a connects the guide G and model M
and channel b connects the current guide G and its previous guide (Figure 5). Thus, the set C tracks
whether the old trace is present or not. The judgment (3.10) means that, if channels C are accessible
to a guide coroutine, the model M is translated from the surface syntax to the template Giempl.
Given a collection Dy of procedure definitions for the model M, we translate each procedure
fix(f.x.m) € Dy to two versions: (i) fix(f;.x.m4) such that {a} F m ~ m, and (ii) fix(fop.x.map)
such that {a,b} + m ~ mg.

Figure 7 shows inference rules for the judgment (3.10). The rule TR:SAMPLE is for the sampling
command sample,, {a}(@v, e) when the channel b is present (i.e., the old trace is accessible). Here,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:17

TR:BND

TR:RET Crmy~m C+ my~ m) TR:CaLL
C+ret(e) ~ ret(e) C t bnd(my; x.my) ~ bnd(mf; x.m3) Ctcall(f;e) ~ call(fcse)
Uolq 1s a fresh label of a latent variable
TR:SAMPLE
{a,b} + sample,, {a} (@v, e) ~ bnd(oldsample; vy4.sample(0y))
TR:SAMPLE:OBS
TR:SAMPLE:A obs & C
{a} + sample,, {a} (@v, e) ~ sample(O,) C + samplegy{obs}(e) ~> ret(triv)
TR:ConD TR:ConD:A
{a,b} F m; ~ mj {a} rmi~miy (i=12) {a} F my ~ m] {a} F my ~ m;

{a,b} + cond(e; my;my) ~» {a} + cond(e; my; my) ~» cond (%; mf; my)
cond (*; oldcond(my,1; my2); oldcond (my1;ma2))

Fig. 7. Inference rules for the translation of the lightweight surface syntax to the core calculus.

@v is a label of a latent variable. The resulting command, bnd(oldsample; vo4.samplegy{a}(0,)), re-
ceives the old value, binds it to a fresh variable v,)4, and then draws a sample from 0O, which is to be
filled later. The rule TR:SAmMPLE:A applies to the sampling command sample,, {a}(@uv, e) when the
channel b is absent. The rule TR:SaMpPLE:OBs applies to the sampling command sample,y{obs}(e),
which samples an observed variable and sends it on channel obs. Because guides do not involve
observed variables, we translate this sampling command to the no-op command ret(triv). Fi-
nally, the rule TR:ConD translates the conditional command cond(e; m;; my) in the model M to a
doubly-nested conditional command cond(x; oldcond(m 1; m; 2); oldcond(my 1; my2)) for the guide
template.

In the second stage of the translation, for every sampling command sample(O,) appearing in
the template Giempl, we fill O, with either a distribution e or keep, according to the guide G in
the surface syntax. If the guide G contains resample{a}(@u, f), where function f takes in latent
variables’ old values and returns a distribution, then every occurrence of O, in the template Giempl
is replaced with a distribution f veld1 - -+ Uold.n, Where vold 1, - - -, Vold » are variables representing the
latent variables’ old values. Here, we assume that these variables are in the scope of sample(O,).
Conversely, if the guide G contains resample_if none{a}(@v, f), we replace each occurrence
of O, in the template with either (i) a distribution f o141 - - voldn if b € C (where C is the set of
channels in the judgment (3.10) of sample(O,)); or (ii) keep otherwise.

To improve programmability of our system, we use several constructs that aim to simplify the
workflow. Firstly, in addition to the full syntax of the core calculus (§3), we provide the lightweight
surface syntax (§3.4) that makes it easier to write guide programs when the full expressiveness of the
core calculus is not needed. Secondly, the operational semantics of our PPL is conceptually simple:
it extends the semantics of Wang et al. [52] with one extra channel b; connecting the previous and
current guide coroutines (Figure 5). Thirdly, the guide-type system automatically infers the guide
types of guide coroutines, and their structural type equality with a model coroutine’s guide type is
also checked automatically (§4.2). Thus, the type system requires no user interaction, though some
understanding of the type system’s details may be needed to debug guide programs.

4 Type-Equality Checking

We check type equality of guide types (while disregarding their coverage annotations) in two places.
First, in type inference, we check that the two branches of a conditional command cond (*; my; m3)
have equal guide types (§3.3). Second, after inferring the guide types of a model M and a guide G,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:18 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

we check that they have equal guide types. Otherwise, with unequal guide types, they may cause
communication errors (e.g., deadlocks) at runtime, resulting in unsound probabilistic inference.

4.1 Context-Free Guide Types

Guide types are said to be regular if they encode regular (tree) languages that can be recognized by
finite-state (tree) automata [14, 16, 40]. For example, a guide type T[X] := RA (X &T[X]) is regular
because, as we traverse the type and unroll recursion, we encounter finitely many syntactically
different types (i.e., subtrees [40, Section 21.7]).

Type-equality checking of guide types is straightforward if they are regular. Because regular guide
types can be encoded as finite-state (tree) automata, the type-equality problem can be reduced to
the bisimilarity-checking problem between two finite-state (tree) automata. Bisimilarity means two
given types, viewed as transition system, can always make the same transitions to their next states
in lockstep. To ensure termination of bisimulation, we must detect a cycle, which is straightforward
because we can only ever visit finitely many states during the bisimulation.

The guide-type framework [52] admits more types than regular types. For example, a guide type
T[X] =R A (X & T[T[X]]) is non-regular. As we traverse the type T[X] and expand recursion,
it yields infinitely many types (e.g., T[X], T[T[X]],...). Furthermore, a guide type T[X] is said
to be context-free because it can be encoded as a context-free process, which can have infinitely
many states. Context-free guide types are critical for expressing a number of Bayesian-inference
problems; e.g., probabilistic context-free grammars (PCFG) [26].

We now formally define type equality of guide types. Given a guide type A and a collection 7~ of
type definitions, let unfolds(A) denote the operation of unfolding type A [13]:

typedef (T.X.A) € T A#T[_]
unfold4(T[B]) = unfold4-(A[B/X]) unfoldq(A) = A

In contrast to Wang et al. [52], which treats guide types iso-recursively, this work treats guide
types equi-recursively. It is a widely adopted convention in the literature of session types [13, 15,
47, 49] to interpret session types—on which guide types are built—equi-recursively. Under the
equi-recursive interpretation, structural type equality is defined by type bisimilarity [13, 47].

Definition 4.1 (Type bisimulation). Let Type be the set of closed guide types. A binary relation
R C Type X Type is a type bisimulation if and only if (A, B) € R implies:

e If unfold7(A) = ¢ A A’, then unfolds(B) = 7 A B’ and (A’,B’) € R.

e If unfold7(A) = A; & Ay, then unfolds(B) = B; & B; and (A;, B;) € Rfori € {1,2}. The case
of unfolds(A) = A; @ A; is defined analogously.

e If unfolds(A) = 1, then unfold+(B) = 1.

Definition 4.2 (Guide type equality). Two closed guide types A and B are equal (denoted by A = B)
if and only if there exists a type bisimulation R such that (A, B) € R.

4.2 Bisimilarity Checking
Challenge of infinite-state bisimulation. It is a non-trivial challenge to algorithmically check
bisimilarity between two guide types because they generally correspond to infinite-state transition
systems. For example, consider the problem of deciding the bisimilarity between two guide types:
T[X] =RA X &T[T1[X]]) L[X] =R A (X & L[L[X]]). (4.1)
Suppose we bisimulate T;[X] and T,[X] and construct a type bisimulation R that witnesses the
type equivalence. Initially, we place the pair (T [X], T[X]) in the type bisimulation R. Next, we
unfold the pair (T;[X], Tz[X]) and bisimulate it, spawning a new pair (T;[T; [X]], Tz [Tz[X]]) to be

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:19

included in the type bisimulation R. This pattern continues, resulting in an infinite sequence of
guide-type pairs to be included in the type bisimulation R.

Context-free processes. To algorithmically decide type equality of guide types, we reduce the
problem to bisimilarity checking of so-called context-free processes that simulate context-free
grammars. We formally define context-free grammars and processes as follows.

Definition 4.3 (Context-free grammar in Greibach normal form). A context-free grammar is a four-
tuple G = (V, T, P,S), where (i) V is a finite set of variables; (ii) T is a finite set of terminal symbols;
(iif) P € V X (V U T)* is a finite set of production rules; and (iv) S € V is the starting variable. The
context-free grammar G is said to be in Greibach normal form (GNF) if every (X, a) € P satisfies
a € TV*. Every context-free grammar can transformed into GNF.

Definition 4.4 (Context-free process). A process is a transition system (S, A, —, ap), where (i) S is
a (possibly infinite) set of states; (ii) A is a finite set of actions; (iii) = € S X A X S is a transition
relation; and (iv) ag € S is the initial state. With a context-free grammar (V, T, P, S) in GNF, we
associate the process (V*,T, —, S), where there are no transitions from € (i.e., the empty string),

and Xo - ac if and only if (X — aa) € P. Such a process is called a context-free process.

Translation from guide types to processes. Consider a closed guide type Anain together with a
finite set 7 of type definitions of the form typedef(T.X.A). We translate 7~ to rules of a context-
free grammar/process and Anain to a string of variables (i.e., the initial state of the context-free
process). For each type definition typedef(T.X.A) € 7, we assume A does not contain 1. This is a
valid assumption in our setting because any typedef(T.X.A) inferred by the guide-type-inference
algorithm (§3.3) for a procedure definition fix(f.x.m) never introduces 1.

In each type definition typedef(T.X.A), we preprocess A such that the type definition becomes

TIX] =t AT Tu[X] -], or (4.2)

TIX] =T T[X] -]oT/[--T,,[X] -] where o € {&, B}, (4.3)
where Ty,..., T, T}, ..., T, are type operators. Any type definition T[X] := A can be transformed
to the forms (4.2) and (4.3) by introducing fresh type operators, as long as A does not contain 1.

Definition 4.5 (Translation of type definitions). Consider a type definition typedef(T.X.A) € 7 in
either of the forms Eqs. (4.2) and (4.3). This type definition is translated to a GNF production rule(s)
of a context-free grammar as

(TIX] =t AT [Tu[X] -+]) ~ {T D TT - - Ty} (4.4)

Otrue Ofalse

(TIX] =Tl Tu[X] - Jo ([Tu[X] - D~ AT — T T, T —> T - T}, (45)
where o € {&, ®} in Eq. (4.5). Type operators T, T;,T; (i = 1,...,nand j = 1,...,m) on the right-
hand sides of Eqgs. (4.4) and (4.5) are treated as variables of the context-free grammar. To obtain all
production rules of the context-free grammar, we perform the above transformation to each type
definition in 7 and aggregate the outputs.

The translation of a closed guide type Apain Wworks similarly. First, it is transformed to a guide type
Ti[---Tu[1] - - -]. Tt is then translated to a word T - - - T,,, where Ty, ..., T, are treated as variables
of a context-free grammar. The result is used as the initial state of a context-free process.

Bisimilarity checking of context-free processes. The seminal work by Hirshfeld et al. [21] shows
that we can check bisimilarity between context-free processes in polynomial time, provided that
we impose one additional restriction: the context-free processes have finite norms.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:20 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

Definition 4.6 (Norm). Consider a context-free process induced by a context-free grammar
G = (V,T,P,S). The norm of a word a € V* is the minimum number of transitions necessary to
reach the empty string €. A context-free process is said to be normed if if all states have finite
norms.

Because traces must be finitely long [52], we require guide types to have finite norms as well. For
example, an infinite-norm guide type T[X] := R A T[T[X]] should be rejected in the coroutine-
based programmable inference because programs with such a guide type produce infinitely long
traces of R-typed samples in all execution paths. Finite norms are critical for polynomial-time
complexity. Without this assumption, although bisimilarity checking remains decidable [10], its
complexity becomes EXPTIME-hard [27] and 2-EXPTIME (double exponential) [25].

THEOREM 4.7 (POLYNOMIAL-TIME CHECKING OF GUIDE-TYPE EQUALITY). Given two guide types A,
and A, if they have finite norms, their equality can be checked in polynomial time.

Theorem 4.7 for polynomial-time type-equality checking is novel considering the fact that guide
types build on context-free session types, whose type equality is EXPTIME-hard. Polynomial-time
equality checking for guide types is enabled by the crucial difference between guide types and
session types: the former is required to have finite norms, while the latter is not. Our contribution
in this work is to spot this critical difference, show how to translate guide types to context-
free processes with finite norms, and thereby conclude that guide-type equality is decidable in
polynomial time.’

5 Coverage Checking

To verify the model-guide compatibility, in addition to the type equality between the model and
guides, we check the coverage of random variables: they are each freshly sampled by some guide.

5.1 Problem Statement

We introduce the coverage-checking problem of a sequential composition of well-typed guide
coroutines Gy, . .., G,. Foreach i = 1,.. ., n, channel a; connects model M and guide G;, and channel
b; connects guides G;_; and G; (Figure 5). Fori = 1,...,n, let A; be the coverage-annotated guide
type of channel g; such that V1 < i, j < n. |A;| = |A;| and define B = |A;|[®/&] (for any i), where
|A;| is the result of removing coverage annotations from A;. Suppose we have for some functional
type 7;
wa; A b:BrGi4t3a;:1,b: 1 i=1,...,n. (5.1)
The coverage-checking problem asks the following: for any initial trace oy : B with a positive
density in the model M (Eq. (3.3)) and any desirable final trace o, : B also with a positive density in
the model M (Eq. (3.5)), can we have

{ai 2 0, bi 2 0i1}; Qempty F Gi UM vgis{a: [1,6: [1}; Qempty (i=1,...,n) (5.2)
for intermediate traces o; : B (i = 1,...,n — 1), positive densities wg; > 0 (i = 1,...,n), and output
values vg,; (i = 1,...,n)? If so, the Markov chain induced by the guides Gy, ..., G, is irreducible,
which is a key soundness ingredient of multiple-block MH [41, 48].

As described in §3.2, each guide coroutine is followed by the MH acceptance routine. Guide G;
proposes a new candidate trace o, and it is accepted with probability min{r;, 1}, where ratio r; is
defined in Eq. (3.7). In the formulation of the coverage-checking problem (Eq. (5.2)), without loss of
generality, we focus on the case where every acceptance routine accepts the newly proposed trace
o} . In our framework, as long as the old trace o;_; has a positive density in the model M (Eq. (3.5)),

3The original paper [21] shows a O (n!3)-time algorithm, where 7 is the size of the input context-free grammar. [29] later
improves the asymptotic complexity to O(n®polylog(n)).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:21

@y1 : Re

@y1: Ry @y2:Re @y1:Ry @y2:Ry

—_ @x : R¢ —_—
@x:Ry @x: Ry
—_—
@z1: R, @z : Ry @z1: Ry @z : R¢
—_— @z1 : R¢ ——
(a) Guide Gj. (b) Guide Ga. (c) Guide Gs.

Fig. 8. Mismatch in the control flows of guide programs. Guide Gz has a different control-flow graph from
guides G and Gs, but they all have equal guide types (ignoring their coverage annotations).

the acceptance routine is guaranteed to accept the proposed trace o} with a positive probability
(Corollary A.8). Also, if the MH acceptance routine retains the old trace o;_1, we can simulate this
effect by setting trace o] to 0;_1, which is possible for any well-typed guide program.

5.2 Technical Challenge

A naive solution to coverage checking is to verify that the superposition of coverage-annotated
guide types Ay, ..., A, covers all random variables. However, this solution fails because old samples
of a random variable can be reused for another random variable on a different execution path.

To demonstrate the issue, consider a sequential composition of guides Gy, G2, Gs whose control
flows are illustrated in Figure 8. Label @¢ : R, means random variable @¢ is covered (i.e., freshly
sampled) and @¢ : R, means random variable @¢ is uncovered (i.e., old sample is reused). In
guides G; and Gs, the two branches of a conditional command remain diverged, while in guide
Gy, the two branches join back after temporary divergence. This is because guide G, has code
bnd(cond(*; my1;m2); x.my), where commands m; ; and my ; join back before command my. The
three guides have coverage-annotated guide types Ay, Az, As, respectively, where

Ry AR AL
Re ARy A1

Re ARy AL
Re ARy A1

Ry ARy A1,

Al::R“A&{ R, ARe A1

} AzIZRc/\&{ } A35=|Ru/\&{ } (5.3)

The superposition of Eq. (5.3) covers all random variables: as we bisimulate Eq. (5.3) in lockstep,
every random variables is covered by at least one of the three guides. However, this is a pitfall:
the sequential composition of Gy, G, G; fails to generate some traces that model M can generate.
Consider an initial trace oy = [vg1, dir(false), vg3,v04] for some fixed values vg 1,003,004 € R.

Ideally, the sequential composition of guides should be able to generate any trace
03 € {[v1, dir(v2),v3,v4] | v1,03,04 € R0z = M(01)} (5.4)

with a positive density, where M (v;) € {true, false} denotes the branch chosen by model M given
sample v; € R for random variable @x. Suppose (roman®) guide G; takes the second branch,
(roman®) G, takes the first branch, and (roman*) G; also takes the first branch because it reuses the
previous sample v; freshly sampled by G,. Consequently, guide G; generates trace o; (i = 1, 2, 3):

o1 = [vo1, dir(false), vs, vg.4] 0y = 03 = [0y, dir(true), vs,vp4]. (5.5)
Trace o3 still contains sample vy 4 from the initial trace oy. Therefore, we cannot generate every
trace from the set in Eq. (5.4) with a positive density, independently of the initial trace oy.

The root problem is that although G; and G; have different control flows, their guide types do
not reflect this difference. Guide G, diverges from the old trace o; after @x. But guide G, regains
access to trace oy after the two branches in G, join back. Interestingly, guide G, now reuses the old
sample vg 4 in o7, which is originally for random variable @z;, for random variable @y,. Thus, old
samples can later be reused for different random variables in different branches. So in coverage
checking, it is not sufficient to examine the superposition of coverage-annotated guide types.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:22 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

C:CaLL C:SAMPLE:ANY
fix(f.x.m) € Dg Armle/x]: (Ax, B) Vie I.1i=1
Atk call(fse) : (T[X], B) {rtinA;j|lieIT}rsample(): (tc AX,{Ai|ie€ I})
e : dist(7) dielr=1
C:SampLE:D1sT C:SampLE:KEEP
{tinA;j|liel}+ {tinA;j|ieT}+
sample(e) : (zc AX,{A; |i€e I}) sample(keep) : (ru, AX,{A; | i€ T})

{Aitlie It rmy: (Ax, B1) {Aigli€ I} Fmyr: (Ayx, Br)
{Ai,l &Ai)z | ie I} F cond(*;oldcond(ml,l;mlyg);oldcond(mg,l;mz,g)) : (A])X &Az)x, B U Bz)

C:ConD

Fig. 9. Key rules for bisimulating guide types alongside commands in the coverage-checking algorithm.

5.3 Coverage-Checking Algorithm

Key idea. To overcome the limitation described in §5.2, we propose a coverage-checking algorithm
that reshapes a guide type according to the control flow of a guide program. In the example of
Figure 8, we start with a fully uncovered guide type A¢ := Ry A (R, AR, A1) & (R, AR, A1)). We
bisimulate guide type Ay alongside the code of guide G;, updating coverage annotations whenever
we encounter sample(e) in the code. This results in coverage-annotated guide type A; (Eq. (5.3)).
Next, we bisimulate guide type A; alongside the code of guide G,. During the bisimulation, when
the two branches of G; merge back, we also merge the coverage-annotated base types @y: : R,
and @z; : R, in guide type Ay, yielding R,, because it is their supertype. This results in a guide
type Az (Eq. (5.3)). Finally, we bisimulate guide type A, alongside the code of Gs, obtaining

A, =R A ((Re AR, AL) & (R AR ATL)). (5.6)
Guide type A in Eq. (5.6) correctly indicates that random variable @y; may be uncovered.

Bisimulation of types and commands. To formalize the idea of bisimulating a guide type (and

more generally a set A of guide types) alongside command m, we introduce a judgment

Arm: (Ax, B), (5.7)
where A is a set of input guide types, Ax is an output guide type containing type variable X, and
B is a set of continuation guide types after the bisimulation. The judgment (5.7) means, given a
set A of input guide types, as we bisimulate all guide types in A and command m in lockstep and
update coverage annotations, we obtain an output guide type Ay, where type variable X stands for
a continuation guide type, and a set B of continuation guide types.

Figure 9 lists key rules defining judgment (5.7). The rule C:SAMPLE:ANY applies to both sample(e)
for a distribution expression e and sample(keep). The rule states that, if all guide types in the input
set {t; A A; | i € I} cover the random variable, then it remains covered in the result 7, A A. In
the rule C:SampPLE:D1sT, if a guide draws a fresh sample, the random variable is deemed covered
in the result. Conversely, the rule C:SampLE:KEEP stipulates that, if the input set of guide types
contains an uncovered type and the sampling command reuses an old value, the random variable
is uncovered. The rule C:CALL replaces a procedure call with the procedure definition. The rule
C:Conb states that, for a conditional command, we consider commands m;; (i.e., model M and
the previous guide both take the first branch) and m;; (i.e., model M and the previous guide take
the second branch). The overall set of continuation guides is the union B; U $B,. It is unnecessary
to consider commands m; ; and m,; because they are disallowed from calling sample(keep) and
hence always draw fresh samples.

Repeated bisimulation. The coverage-checking algorithm works as follows. Given a sequential
composition of well-typed guides Gy, ..., Gp, let a; (i = 1,. .., n) be the channel connecting guide G;

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:23

and model M. Let B be the unannotated guide type of all channels ay, . . ., a,, and By be the coverage-
annotated guide type obtained from B by annotating all random variables with subscript u. We first
bisimulate the fully uncovered guide type By alongside guide Gy, resulting in {Bo} + Gy : (B1.x, {1}).
Next, we bisimulate By := By x[1/X] for guide G, repeating this step for all subsequent guides.
Once we obtain the final guide type B, we check if it is fully covered.

Theorem 5.1 states the soundness of the coverage-checking algorithm.

THEOREM 5.1 (SOUNDNESS OF THE COVERAGE-CHECKING ALGORITHM). Consider a sequential
compositions of well-typed guides Gy, ..., G,. Channel a; (i = 1,...,n) connects guide G; and model
M, and channel b; (i = 1,...,n) connects guides G; and G;_1. For eachi = 1,...,n, suppose

sa;Apbi By G 41i5a;:1,b; 0 1, (58)
where coverage-annotated guide types A; and unannotated guide types B satisfy V1 < i < n. B = |A].
Let By be a fully uncovered coverage-annotated guide type obtained from B. Suppose

{Bi-1} + Gi : (Bix,{1}) Bi=Bix[1/X] i=1L...,n (5.9)
If B, is fully covered (i.e., all random variables are marked with subscript c), then the Markov chain
induced by the sequential composition of guides Gy, . .., Gy is irreducible.

Implementation and heuristic. To algorithmically compute guide type Ax and set 8 in Eq. (5.7),
we incrementally construct a typing tree bottom-up according to the rules in Figure 9. Every time
we apply the rule C:CALL for a procedure call call(f;e), we record the pair (f, A), which are used
to detect a cycle. If guide types are regular (i.e., they have finitely many states), we are guaranteed
to detect a cycle because there can only be finitely many pairs (f, A). However, if the guide types
are context-free with infinitely many states (§4.1), then the algorithm may diverge.

To prevent the divergence caused by infinite-state context-free guide types, we can replace the
rule C:CaLL with a heuristic rule for procedure calls:

C:CALL:HEURISTIC

A={Ti[Ai] |ieTl} {T;[1] | i € I} + call(f5e) : (Ax, {1}) Tf, 4 is a fresh type operator

A call(fse) : (TralX].{Ai | i€ I}) '

The rule C:CALL:HEURISTIC states that, if the set A of input guide types has the form {T;[A;] | i € I},
we split it into Ay = {T;[1] | i € 7} and A, := {A; | i € I}. We then bisimulate A; alongside
command call(f;e), ensuring that the output set of continuation guide types is {1}. This heuristic
assumes that each guide type T;[1] (i € T) exactly matches the control flow of procedure f. Because
the rule C:CarLrL:HEURISTIC matches a procedure call with a set of the form {T;[1] | i € T}, of
which there are finitely many, the coverage-checking algorithm eventually terminates. The rule
C:Carr:HeurisTIC works for infinite-state context-free guide types when all guides G4, . . ., G,, have
the same code structure with respect to their procedure-call sites: all guides call procedures in
the same sites within code. However, if some procedures inline a procedure call while others do
not, the heuristic C:CALL:HEURISTIC no longer works, because some guide types in the set A of
input guide types will not have the form T;[A;]. Thus, the coverage-checking algorithm with the
heuristic is not complete, but it does not affect the soundness of coverage checking (Theorem 5.1).

6 Evaluation

Implementation. We implemented in OCaml (i) a type-inference algorithm (with equality check-
ing) for individual guides and (ii) a coverage-checking algorithm for sequentially composed guides.
For type inference, we have extended the algorithm from [52], which only supports nominal
type equality, with a saturation-based structural-type-equality checking algorithm for context-free
guide types with finite norms [22] (§4). Its time complexity is O(n*v), where n is the overall size of
type definitions and v is the maximum norm of type operators [22]. This is not a polynomial-time

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:24 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

Table 1. Experiment results of guide-type inference and coverage checking of 28 benchmark programs.

Type Inference Coverage Check
Program Description Guide Type LOC Time (ms) Prior Work ~ Match ~ Mismatch Time (ms)
branching Random control flow [Anglican] Finite 46 1.33 v True Pos. True Neg. 0.46
coordination Coordination game [Anglican] Finite 24 0.19 v True Pos. True Neg. 0.34
drill Oil wildcatter problem [Anglican] Finite 56 0.17 v True Pos. True Neg. 0.37
ex-1 Ex. 1 [52] Finite 42 1.31 v True Pos. True Neg. 0.46
gaussian Gaussian with unknown means [Anglican] Finite 20 0.16 v True Pos. True Neg. 0.46
gbm Geometric Brownian motion [Anglican] Finite 35 0.25 v True Pos. True Neg. 0.52
gda Gaussian discriminant analysis [Anglican] ~ Finite 40 1.86 v True Pos. True Neg. 3.17
gmm Gaussian mixture model [Anglican] Finite 75 4.73 v True Pos. True Neg. 7.71
grw Gaussian random walk [Anglican] Finite 24 0.17 v True Pos. True Neg. 0.74
hmm Hidden Markov model [Anglican] Finite 76 2.56 v True Pos. True Neg. 7.21
kalman Kalman filter [Anglican] Finite 72 4.44 v True Pos. True Neg. 7.54
kalman-chaos Kalman for chaotic attractors [Anglican] Finite 114 5.86 v True Pos. True Neg. 5.68
1r Bayesian linear regression [Anglican] Finite 36 0.19 v True Pos. True Neg. 1.15
run-factory Beta-binomial model [Anglican] Finite 20 0.13 4 True Pos. True Neg. 0.61
scientists Posterior estimation with Gaussians [54] Finite 40 0.27 v True Pos. True Neg. 0.52
seq Non-recursive sequence [52] Finite 22 0.23 v True Pos. True Neg. 0.46
sprinkler Bayesian network [Anglican] Finite 26 0.14 v True Pos. True Neg. 0.43
user-behavior Dishonest form filling [Anglican] Finite 64 1.22 v True Pos. True Neg. 3.17
vae Variational autoencoder [Pyro] Finite 48 4.20 v True Pos. True Neg. 22.39
weight Unreliable weight [Pyro] Finite 18 0.26 v True Pos. True Neg. 0.70
aircraft Aircraft detection [Anglican] Regular 117 6.19 X True Pos. True Neg. 5.96
iter Regular iteration [52] Regular 47 2.01 X True Pos. True Neg. 0.54
marsaglia Marsaglia algorithm [Anglican] Regular 76 3.51 X True Pos. True Neg. 5.13
ptrace Poisson trace [Anglican] Regular 47 1.49 X True Pos. True Neg. 0.40
; 78 4.717 X True Pos. True Neg. 4.70
ex-2 Ex.2[52] Context-Free 93 15.48 X False Neg. True Neg. 3.26
. . . 52 1.48 X True Pos. True Neg. 0.57
diter Double iteration [52] Context-Free 62 2.09 X False Neg. True Neg. 0.49
gp-dsl Gaussian process DSL [52] Context-Free ;g Zi;?:? ; 13:1‘;: II\)IZZ. i:z: II:IIZE i;
. 71 11.53 X True Pos. True Neg. 16.32
recur Context-free recursion [52] Context-Free 83 15.55 X False Neg. True Neg, 6.35

algorithm, since v can be exponential in n in the worst case. Nonetheless, as long as the maximum
norm is small, this algorithm has better asymptotic complexity than a worst-case polynomial-time
algorithm [21], which has complexity O(n'?). This type-equality checking algorithm can also be
used to verify that model and guide programs have equal guide types.

For coverage checking, starting with a fully uncovered guide type, we bisimulate the coverage-
annotated guide type with each successive guide program to update coverage annotations (§5.3).

Evaluation setup. We evaluate our prototype on 28 benchmark guide programs collected from
[52] and [Pyro, Anglican]. The benchmarks are modified as follows: (i) we add an extra channel
b through which the guides access old traces and (ii) we split each guide program into multiple
guides, each of which covers some but not all random variables.

Our benchmark set contains 20 programs with non-recursive guide types, 4 programs with
regular recursive guide types, and 4 programs with infinite-state context-free guide types. Table 2
displays the guide types of these benchmarks. Each context-free benchmark has two versions: (i) all
guides in the sequential composition have aligned code structures with respect to procedure calls
and (ii) some of the guides’ code structures are misaligned. For each benchmark (and each of the
two versions of a context-free benchmark), we consider two kinds of sequentially composed guides:
one where the composition is fully covered and another where the composition is not fully covered.

Results. Our goal is to evaluate the effectiveness of the type-inference and coverage-checking
algorithms. Table 1 shows the experiment results on the 28 benchmark guide programs. Context-
free benchmarks each have two rows in Table 1. The top row is the version where all guides in the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:25

Table 2. Guide types of the 28 benchmarks. The notation @ expands to 7 A - -+ A 7 with d many 7’s. The
functional type tensor(z; [d1,...,dn]) denotes a tensor of the element type 7 and dimensions [dy,...,d,].
The functional type simplex[d] denotes a d-dimensional simplex.

Program Guide Types

branching NA(1&NA1)

coordination 2A2A1

drill N3 A1

ex-1 RyA(1& R(O,l) A1)

gaussian RA1

gbm RA1

gda tensor (R; [3])? A tensor(R; [2]) A 1

gmm simplex[3] A tensor(R; [2;2])° AN A1

grw RAR: A1

hmm N7 A1

kalman tensor (R; [2])1° A1

kalman-chaos R%OJ) ARDP3 A1

1r R3AR: A1

run-factory R Al

scientist R A RZo,l) Al

seq RZA1

sprinkler 22 A1

user-behavior N2A20A1

vae tensor (R; [50])%°° A1

weight RA1

aircraft NAT[1] with Ti[X] = (RANATB[T[X]]) &1land [X] = (RAT[X]) &1
iter T[1] with T[X] =1 & (R AT[X])

marsaglia T[1] with T[X] = Ro1) ARo1) A 1 & T[X])

ptrace T[1] with T[X] := Ro) A (1 & T[X])

ex-2 Ti[1] with T3 [X] = R(g) A B[X] and B[X] = Reg) A (Ry A1) & B[T[X]])
diter T[1] with T[X] =1 &R AT[T[X]]

gp-dsl T[] with T[X] =2 A ((Ns A (R AT[T[X]]) &T[T[X]])) & (Ns A (Ry AR A1T& Ry AT)))
recur T[1] withT[X] =1 & (RAT[RAT[RAT[1]]])

composition have the aligned code structure with respect to procedure call sites. The bottom row
is where the guides have misaligned code structures.

In the Guide Type column, “Finite” refers to non-recursive guide types; e.g., A := NA (1& (NA1))
in the benchmark branching. “Regular” refers to regular recursive guide types; e.g., A = 1&(RAA)
in the benchmark iter. “Context-free” refers to infinite-state context-free guide types; e.g., T[X] =
Ro1) A ((Ry A X) & T[T[X]]) in the benchmark ex-2. The LOC column states the number
of lines of code. The Type Inference columns show (i) the running time of type inference and
(ii) whether type-equality constraints generated during type inference can be verified using syntactic
type-equality checking from Wang et al. [52]. The Cov. Check columns show (i) the output (True
Pos. or False Neg.) for fully covered sequential compositions of guides, (ii) the output (True Neg. or
False Pos.) for uncovered sequential compositions, and (iii) the total running time of checking the
coverage of both the fully covered and uncovered sequential compositions.

For type inference, our algorithm successfully infers guide types for all benchmarks. Generally,
more lines of code in a benchmark lead to longer time for type inference. This is because the
type-inference algorithm traverses the source code to construct typing trees. For the eight regular
recursive and context-free benchmarks, the prior work [52] fails in type inference because syntactic
equality checking cannot verify the type-equality constraints generated by these benchmarks.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:26 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

Table 3. Language features supported by various verification methods for checking model-guide compatibility.

Language Feature Trace Types [31] Guide Types [52] Fidelio [32] This Work

General branching

General recursion

Reorder variables
Sequentially compose guides
Reuse old samples

Structural type equality

N> NN X% %
x X X X NN
x % % N NS
ARSI NN

For coverage checking, our algorithm successfully verifies the full coverage of all non-recursive
and regular recursive benchmarks. For context-free benchmarks, we make use of the heuristic
C:CaLL:HEURISTIC (§5.3). If all guides in a sequential composition have the same code structure
with respect to procedure call sites, our algorithm with the heuristic C:CarrL:HEURISTIC (§5.3) can
handle it. However, if the guides have misaligned code structures, the heuristic fails, terminating
and returning an error message. Without this heuristic for context-free types, the algorithm would
run forever in the context-free benchmarks. Because our coverage-checking algorithm is sound
(Theorem 5.1), it returns True Neg. for all cases of uncovered sequential compositions.

7 Related Work

Model-guide compatibility in programmable inference. Lee et al. [30] are one of the first to develop
static analyses for the model-guide compatibility (i.e., the model and guide have the same set of
random variables in all execution paths) in programmable Bayesian inference. Trace types [31]
characterize the space of possible execution traces. If the model and guide have equal trace types,
they are guaranteed to satisfy (mutual) absolute continuity. Trace types can handle programs where
execution paths may yield different sets of random variables. However, trace types do not support
general (i.e., support-altering and deterministic) branching and recursion, but only stochastic ones.
To address this limitation, Wang et al. [52] design a coroutine-based framework where models
and guides communicate by passing messages as prescribed by guide types. Li et al. [32] study
automatic generation of guide programs for deep amortized inference. They extend trace types [31]
with powerful tree structures and checkpoints for recording branch conditions, thereby enabling
expressive constructs such general branching, recursion, and variable reordering.

Our work considers sequential compositions of guides where each guide can choose between
drawing fresh samples and reusing old samples. This is a more general setting than most of the
aforementioned prior works [30-32, 52]. While trace types [31] offer a combinator for sequential
composition and their guide programs can take previous traces as input, their approach does
not support recursion or general branching. Our work verifies model-guide support match of
sequentially composed guides with rich control-flow structures by combining novel type system
techniques (§3.3 and §4) with an efficient coverage-checking algorithm (§5.3). Table 3 summarizes
the comparison between the prior and present works on verifying the model-guide compatibility.

PPL verification. Tassarotti and Tristan [45] develop a formally verified compiler ProbCompCert
for a fragment of the Stan PPL [6]. Instead of verifying PPL implementations, we focus on the
verification of programmable inference where guide coroutines are sequentially composed.

Session types. Guide types are inspired by session types. Originally proposed by Honda [23],
session types describe communication protocols of message-passing concurrent programs [5, 43,
49, 51]. Context-free session types [47] extend regular session types with sequential composition.
Nested session types [13] extend session types with prenex polymorphism. Type-equality checking
of context-free types is impractical due to it being EXPTIME-hard [27]. To make context-free

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:27

types practical, Padovani [36, 37] proposes a type-inference algorithm that leverages user-provided
code annotations. Almeida et al. [1] implement a type-equality checking algorithm for context-
free session types. Parameterized algebraic protocols [35] adopt the nominal and iso-recursive
interpretation of context-free and nested session types, thereby achieving linear-time type checking.

Although guide types build on session types, they have a key difference. For guide programs to
be sensible, guide types must have finite norms, while session types may have infinite norms. This
difference allows guide types to admit practical type-equality checking algorithms (§4).

We could reuse the type-equality checking algorithm for context-free session types by Almeida
et al. [1] because context-free types (with possibly infinite norms) are a generalization of guide
types (with finite norms). However, because Almeida et al. [1] targets context-free session types, its
algorithm has a different design from the algorithm in Hirshfeld and Moller [22], which specifically
targets finite-norm context-free processes and is implemented in our prototype. Also, the worst-
case complexity of the algorithm by Almeida et al. [1] is theoretically unknown in the setting of
guide types. A key contribution of this article is to show that it is possible to decide structural
type equality of guide types in polynomial time, and we do not intend to argue that a particular
type-equality checking algorithm is superior to others.

Composable probabilistic inference. Many PPLs support rich compositional frameworks for pro-
grammable probabilistic inference [3, 4, 12, 24, 44, 50], including custom proposals for MCMC.
These works do not study the problem of verifying or guaranteeing the correctness of custom
user-written proposals (i.e., model-guide compatibility), which is the central focus of our work.

8 Conclusion

This article has presented a coroutine-based programmable inference framework for sequential
compositions of guide programs where each guide can access and reuse old samples. By translating
guide types to context-free processes with finite norms, we show that the structural type equality of
guide types is decidable in polynomial time. This enables efficient type inference and type-equality
checking between the model and guides, which is a key soundness ingredient for the multiple-block
MH (BMH) algorithm. We also present a coverage-checking algorithm that verifies that sequentially
composed guides freshly samples all random variables, another key soundness ingredient of BMH.
We have implemented and evaluated a type-inference algorithm with structural type equality and
a coverage-checking algorithm, demonstrating their expressiveness and practicality.

Data-Availability Statement
The artifact [39] for this paper is available at doi:10.5281/zenodo.12669572.

Acknowledgments

The authors wish to thank the anonymous referees for their valuable comments and helpful
suggestions. This material is based upon work supported by the National Science Foundation
under Grant Nos. 2311983, 2007784, and 1845514. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

[1] Bernardo Almeida, Andreia Mordido, and Vasco T. Vasconcelos. 2020. Deciding the Bisimilarity of Context-Free Session
Types. In Proceeding of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Armin Biere and David Parker (Eds.). Springer, Cham, 39-56. https://doi.org/10.1007/978-3-030-45237-7_3

[2] Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). 2020. Foundations of Probabilistic Programming. Cam-
bridge University Press, Cambridge, UK. https://doi.org/10.1017/9781108770750

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:28 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

[3] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit

[10
[11

[12

[13

[14
[15

[16
[17

[18

[19

[20

[21

[22

[23
[24
[25

[26

[

]

—_

]

—

]

]

]

—

]

]

[l

]

—

Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming.
Journal of Machine Learning Research 20, 1 (Jan. 2019), 973-978.

Keith A. Bonawitz. 2008. Composable Probabilistic Inference with Blaise. Ph. D. Dissertation. Massachusetts Institute of
Technology. https://dspace.mit.edu/handle/1721.1/41887

Luis Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Proceedings of the 21st
International Conference on Concurrency Theory. Springer, Berlin, Heidelberg, 222-236. https://doi.org/10.1007/978-3-
642-15375-4_16

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. ¥. Statistical Softw. 76 (Jan.
2017), 1-32. Issue 1. https://doi.org/10.18637/jss.v076.i01

Nick Chater, Joshua B. Tenenbaum, and Alan Yuille. 2006. Probabilistic Models of Cognition: Conceptual Foundations.
Trends in Cognitive Sciences 10, 7 (July 2006), 287-291. https://doi.org/10.1016/j.tics.2006.05.007

Siddhartha Chib. 2001. Markov Chain Monte Carlo Methods: Computation and Inference. In Handbook of Econometrics,
James J. Heckman and Edward Leamer (Eds.). Vol. 5. Elsevier, Amsterdam, Chapter 57, 3569-3649. https://doi.org/10.
1016/S1573-4412(01)05010-3

Siddhartha Chib and Edward Greenberg. 1995. Understanding the Metropolis-Hastings Algorithm. The American
Statistician 49, 4 (1995), 327-335. http://www.jstor.org/stable/2684568

S. Christensen, H. Huttel, and C. Stirling. 1995. Bisimulation Equivalence Is Decidable for All Context-Free Processes.
Information and Computation 121, 2 (Sept. 1995), 143-148. https://doi.org/10.1006/inc0.1995.1129

Marco F. Cusumano-Towner. 2020. Gen: A High-Level Programming Platform for Probabilistic Inference. Ph. D. Disserta-
tion. Massachusetts Institute of Technology.

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A General-
Purpose Probabilistic Programming System with Programmable Inference. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. Association for Computing Machinery, New York,
NY, USA, 221-236. https://doi.org/10.1145/3314221.3314642

Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. 2021. Nested Session Types. In Proceedings of the
30th European Symposium on Programming. Springer, Cham, 178-206. https://doi.org/10.1007/978-3-030-72019-3_7
Joost Engelfriet. 2015. Tree Automata and Tree Grammars. arXiv:1510.02036 [cs]

Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types in the Pi Calculus. Acta Informatica 42, 2 (Nov. 2005),
191-225. https://doi.org/10.1007/s00236-005-0177-z

Ferenc Gécseg and Magnus Steinby. 2015. Tree Automata. arXiv:1509.06233 [cs]

Alan E. Gelfand. 2000. Gibbs Sampling. J. Amer. Statist. Assoc. 95, 452 (Dec. 2000), 1300-1304. https://doi.org/10.1080/
01621459.2000.10474335

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith A. Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A
Language for Generative Models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. AUAL
Press, Arlington, VA, USA, 220-229. https://doi.org/10.5555/3023476.3023503

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic Programming.
In Future of Software Engineering Proceedings. Association for Computing Machinery, New York, NY, USA, 161-181.
https://doi.org/10.1145/2593882.2593900

W. K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (April
1970), 97-109. Issue 1. https://doi.org/10.1093/biomet/57.1.97

Y. Hirshfeld, M. Jerrum, and F. Moller. 1994. A Polynomial-Time Algorithm for Deciding Equivalence of Normed
Context-Free Processes. In Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Press,
Piscantaway, NJ, USA, 623-631. https://doi.org/10.1109/SFCS.1994.365729

Yoram Hirshfeld and Faron Moller. 1994. A Fast Algorithm for Deciding Bisimilarity of Normed Context-Free
Processes. In Proceedings of the 5th International Conference on Concurrency Theory. Springer, Berlin, Heidelberg, 48-63.
https://doi.org/10.1007/978-3-540-48654-1_5

Kohei Honda. 1993. Types for Dyadic Interaction. In Proceedings of the 4th International Conference on Concurrency
Theory. Springer, Berlin, Heidelberg, 509-523. https://doi.org/10.1007/3-540-57208-2_35

Daniel E Huang. 2017. On Programming Languages for Probabilistic Modeling. Ph.D. Dissertation. Harvard University.
https://dash.harvard.edu/handle/1/40046525

Petr Jancar. 2013. Bisimilarity on Basic Process Algebra Is in 2-ExpTime (an Explicit Proof). Logical Methods in
Computer Science 9, 1 (March 2013), 10. https://doi.org/10.2168/LMCS-9(1:10)2013

F. Jelinek, J. D. Lafferty, and R. L. Mercer. 1992. Basic Methods of Probabilistic Context Free Grammars. In Speech
Recognition and Understanding, Pietro Laface and Renato Mori (Eds.). Springer, Berlin, Heidelberg, 345-360. https:
//doi.org/10.1007/978-3-642-76626-8_35

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

Programmable MCMC with Soundly Composed Guide Programs 308:29

[27]

[28

—

[29]

[30]

[31]

[32

—

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Stefan Kiefer. 2013. BPA Bisimilarity Is EXPTIME-hard. Inform. Process. Lett. 113, 4 (Feb. 2013), 101-106. https:
//doi.org/10.1016/j.ipl.2012.12.004

Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mansinghka. 2015. Picture: A Probabilistic
Programming Language for Scene Perception. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Press, Piscantaway, NJ, USA, 4390-4399. https://doi.org/10.1109/CVPR.2015.7299068
Stawomir Lasota and Wojciech Rytter. 2006. Faster Algorithm for Bisimulation Equivalence of Normed Context-Free
Processes. In Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science. Springer,
Berlin, Heidelberg, 646-657. https://doi.org/10.1007/11821069_56

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019. Towards Verified Stochastic Variational Inference
for Probabilistic Programs. Proceedings of the ACM on Programming Languages 4, POPL, Article 16 (December 2019),
33 pages. https://doi.org/10.1145/3371084

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2019.
Trace Types and Denotational Semantics for Sound Programmable Inference in Probabilistic Languages. Proceedings of
the ACM on Programming Languages 4, POPL, Article 19 (December 2019), 32 pages. https://doi.org/10.1145/3371087
Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang. 2023. Type-Preserving, Dependence-Aware Guide Generation
for Sound, Effective Amortized Probabilistic Inference. Proceedings of the ACM on Programming Languages 7, POPL,
Article 50 (January 2023), 29 pages. https://doi.org/10.1145/3571243

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin C. Rinard. 2018.
Probabilistic Programming with Programmable Inference. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. Association for Computing Machinery, New York, NY, USA,
603-616. https://doi.org/10.1145/3192366.3192409

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953.
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 6 (June 1953),
1087-1092. https://doi.org/10.1063/1.1699114

Andreia Mordido, Janek Spaderna, Peter Thiemann, and Vasco T. Vasconcelos. 2023. Parameterized Algebraic Protocols.
Proceedings of the ACM on Programming Languages 7, PLDI, Article 163 (June 2023), 25 pages. https://doi.org/10.1145/
3591277

Luca Padovani. 2017. Context-Free Session Type Inference. In Proceedings of the 26th European Symposium on
Programming. Springer, Berlin, Heidelberg, 804-830. https://doi.org/10.1007/978-3-662-54434-1_30

Luca Padovani. 2019. Context-Free Session Type Inference. ACM Transactions on Programming Languages and Systems
41, 2, Article 9 (March 2019), 37 pages. https://doi.org/10.1145/3229062

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. 2005. A Probabilistic Language based upon Sampling Functions.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for
Computing Machinery, New York, NY, USA, 171-182. https://doi.org/10.1145/1040305.1040320

Long Pham, Di Wang, Feras Saad, and Jan Hoffmann. 2024. Artifact for Programmable MCMC with Soundly Composed
Guide Programs. Zenodo. https://doi.org/10.5281/zenodo.12669572

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

Gareth O. Roberts and Jeffrey S. Rosenthal. 2006. Harris Recurrence of Metropolis-within-Gibbs and Trans-
Dimensional Markov Chains. The Annals of Applied Probability 16, 4 (Nov. 2006), 2123-2139. https://doi.org/
10.1214/105051606000000510

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019.
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. Proceedings of the ACM on Programming
Languages 3, POPL (January 2019), 32 pages. https://doi.org/10.1145/3290350

Alceste Scalas and Nobuko Yoshida. 2019. Less Is More: Multiparty Session Types Revisited. Proceedings of the ACM on
Programming Languages 3, POPL, Article 30 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290343

Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, and Jan-Willem van de Meent. 2021. Learning Proposals for
Probabilistic Programs with Inference Combinators. In Proceedings of the 37th Conference on Uncertainty in Artificial
Intelligence. PMLR, Norfolk, MA, USA, 1056-1066.

Joseph Tassarotti and Jean-Baptiste Tristan. 2023. Verified Density Compilation for a Probabilistic Programming
Language. Proceedings of the ACM on Programming Languages 7, PLDI, Article 131 (June 2023), 22 pages. https:
//doi.org/10.1145/3591245

Pyro Development Team. 2023. Getting Started With Pyro: Tutorials, How-to Guides and Examples — Pyro Tutorials
1.8.6 Documentation. https://pyro.ai/examples/index.html

Peter Thiemann and Vasco T. Vasconcelos. 2016. Context-Free Session Types. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming. Association for Computing Machinery, New York, NY, USA,
462-475. https://doi.org/10.1145/2951913.2951926

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

308:30 Long Pham, Di Wang, Feras A. Saad, and Jan Hoffmann

[48] Luke Tierney. 1994. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics 22 (Dec. 1994),
1701-1728. Issue 4. https://doi.org/10.1214/a0s/1176325750

[49] Bernardo Toninho, Luis Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic
Integration. In Proceedings of the 22nd European Symposium on Programming. Springer, Berlin, Heidelberg, 350-369.
https://doi.org/10.1007/978-3-642-37036-6_20

[50] Dustin Tran. 2020. Probabilistic Programming for Deep Learning. Ph.D. Dissertation. Columbia University. https:
//doi.org/10.7916/d8-95¢9-5j96

[51] Philip Wadler. 2012. Propositions as Sessions. In Proceedings of the 17th ACM SIGPLAN international Conference on
Functional Programming. Association for Computing Machinery, New York, NY, USA, 273-286. https://doi.org/10.
1145/2364527.2364568

[52] Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound Probabilistic Inference via Guide Types. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. Association for
Computing Machinery, New York, NY, USA, 788-803. https://doi.org/10.1145/3453483.3454077

[53] Frank Wood, Jan Willem van de Meent, and Vikash K. Mansinghka. 2014. A New Approach to Probabilistic Programming
Inference. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics. PMLR, Norfolk, MA,
USA, 1024-1032.

[54] Frank Wood, Jan-Willem van de Meent, David Tolpin, Tuan Anh Le, Brooks Paige, Yuav Perov, Tom Rainforth, and
Hongseok Yang. 2023. The Anglican Probabilistic Programming System. https://probprog.github.io/anglican/examples/
index.html

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 308. Publication date: October 2024.

