
Programmable MCMC with Soundly Composed Guide

Programs

LONG PHAM, Carnegie Mellon University, USA

DI WANG∗, Peking University, China

FERAS A. SAAD, Carnegie Mellon University, USA

JAN HOFFMANN, Carnegie Mellon University, USA

Probabilistic programming languages (PPLs) provide language support for expressing �exible probabilistic

models and solving Bayesian inference problems. PPLs with programmable inference make it possible for

users to obtain improved results by customizing inference engines using guide programs that are tailored to a

corresponding model program. However, errors in guide programs can compromise the statistical soundness

of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of

user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms.

Our approach rests on a novel type system for describing communication protocols between a model program

and a sequence of guides that each update only a subset of random variables. We prove that, by translating

guide types to context-free processes with �nite norms, it is possible to check structural type equality between

models and guides in polynomial time. This connection gives rise to an e�cient type-inference algorithm for

probabilistic programs with �exible constructs such as general recursion and branching. We also contribute a

coverage-checking algorithm that veri�es the support of sequentially composed guide programs agrees with

that of the model program, which is a key soundness condition for MCMC inference with multiple guides.

Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms e�ciently

infer types and detect sound and unsound guides for programs that existing static analyses cannot handle.
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1 Introduction

Probabilistic programming languages (PPLs) enable users to write probabilistic models as programs
and solve Bayesian-inference problems. PPLs have been successfully used in numerous applications,
ranging from robotics [38] and computer vision [28] to cognition [7] and data science [42].

∗Corresponding author.

Authors’ Contact Information: Long Pham, Carnegie Mellon University, Pittsburgh, USA, longp@andrew.cmu.edu; Di Wang,

Peking University, Beijing, China, wangdi95@pku.edu.cn; Feras A. Saad, Carnegie Mellon University, Pittsburgh, USA,

fsaad@cmu.edu; Jan Ho�mann, Carnegie Mellon University, Pittsburgh, USA, jho�mann@cmu.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART308

https://doi.org/10.1145/3689748

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.



308:2 Long Pham, Di Wang, Feras A. Saad, and Jan Ho�mann

Programmable inference. Traditional PPLs provide generic inference algorithms that apply to
almost any model that can be expressed in the languages [6, 18, 53]. However, these inference
algorithms may fail to return accurate results within a reasonable time frame. To circumvent
this problem, modern PPLs support programmable inference, which lets users develop custom
guide programs that are customized to the model programs [3, 12, 33]. Custom guide programs are
supported by both variational and Monte-Carlo-based inference algorithms, enabling substantial
improvements in accuracy and runtime performance as compared to generic algorithms [11].
However, they also create room for users to introduce bugs that invalidate the statistical soundness
of the inference, causing the inference algorithms to crash or even silently return invalid results.

Verifying guide programs. A number of static-analysis methods have been recently developed to
verify the correctness of user-implemented guide programs. At a high level, guide programs have
to satisfy certain compatibility conditions with respect to model programs. Lee et al. [30] propose a
static analysis that checks if a model-guide pair is compatible for variational inference in Pyro [3].
Lew et al. [31] develop a type system for traces of probabilistic programs to ensure that well-typed
model-guide pairs are compatible for both Monte Carlo and variational inference. A limitation of
these approaches is their lack of support for general conditional statements and recursive procedure
calls. Li et al. [32] overcome the limitation for variational inference by extending trace types.
Another approach is using coroutine-based programmable-inference [52], where model and guide
programs are treated as coroutines that communicate by exchanging messages about branching
and recursion. Communication protocols are automatically inferred and imposed via guide types.
In this article, we consider the problem of statically verifying the soundness of Markov-Chain

Monte Carlo (MCMC) inference algorithms, and in particular the multiple-block Metropolis-Hastings

[BMH; 8, §4.4] algorithm. The well-known Gibbs sampling and Metropolis-within-Gibbs algorithms
are special cases of BMH [17]. MCMC, including BMH, simulates a Markov chain whose transition
kernel is speci�ed by one or more guide programs. MCMC repeatedly draws samples from these
guide programs, which form successively better approximations of the posterior distribution of a
model program. As the number of iterations becomes large, the samples from the Markov chain
resemble samples from the target distribution.

Model-guide compatibility. A BMH sampler is said to be sound if the limiting distribution of
the Markov chain is the target posterior distribution. Informally, a su�cient condition for the
soundness of BMH is that a sequential composition of guide programs should be able to propose any
sample in the support of a model program. If this condition does not hold, the Markov chain has a
risk of never proposing a sample in the support of a model program. For example, suppose a model
program draws a sample from a Normal distribution Normal(0, 1), which has full support over
R. If a guide program draws a sample from a Gamma distribution Gamma(1, 1), whose support is
R>0, then the Markov chain induced by this guide program cannot propose negative values. Hence,
the Markov chain cannot faithfully converge to the target distribution. Checking the compatibility
of model and guide programs in BMH is especially challenging because it requires reasoning
about the sequential composition of multiple guide programs, where each guide may propose a
di�erent subset of random variables and may use random control �ow, recursion, and other �exible
programming constructs.

This work. To verify the soundness of BMH algorithms, this article extends the coroutine-based
programmable inference of Wang et al. [52] from handling only a single-guide program to handling
the sequential composition of multiple guide programs. We build our framework on trace-based

probabilistic inference programming [33], where a probabilistic program de�nes a distribution over
execution traces that record samples for random variables. A guide program can also access (and
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reuse) the execution trace of the previous guide program, and the BMH algorithm sequentially
executes the guides to propose a new trace from the current one. We reduce the model-guide
compatibility check to the following veri�cation task: given any initial trace, can the sequential

composition of guides propose every possible new trace with a non-zero probability? Amajor challenge
is to augment the model-guide communication with a third party: a guide program now can
communicate with both the model and the previous guide. We formulate a novel operational
semantics for sequentially composed guides that is capable of monitoring and aligning the control
�ows of previous and current guides. Our semantics deals with the issue that the guides’ control
�ows may diverge.
We then adapt guide types and automatic type inference from Wang et al. [52] to our new

semantics. There are two challenges: (i) di�erent guides may have di�erent control-�ow structures
as long as their types are structurally equal (whereas the guide-type system in Wang et al. [52]
only supports nominal types); (ii) a guide may sample a subset of random variables (whereas Wang
et al. [52] only consider complete samples). For challenge (i), we develop a type-equality checking
algorithm for guide types with structural equality. In our setting, guide types correspond to context-
free types [47], which have in�nite state spaces. By translating guide types to context-free processes
with �nite norms, whose bisimilarity is decidable in polynomial time [21], we prove that guide-
type equality is decidable in polynomial time. For challenge (ii), we devise a coverage-checking
algorithm for verifying that sequentially composed guides satisfy the compatibility condition that
“the composition covers all possible sample traces in the model.” We reduce coverage checking to
verifying that every random variable in any control-�ow path is freshly sampled by at least one
guide. Our coverage-checking algorithm essentially bisimulates guide types alongside structures of
guide programs.

We have implemented type-inference, type-equality-checking, and coverage-checking algorithms.
An empirical evaluation of our system on a diverse benchmark set shows that the type-inference
algorithm is more expressive than the algorithm from Wang et al. [52] and that the coverage-
checking algorithm can e�ciently handle many benchmarks in practice.

Contributions. This article makes the following contributions:

• We present a �exible coroutine-based framework for programmable inference with sequentially
composed guides that can access and reuse previous traces (§3). Our system handles expressive
constructs such as conditional branching and general recursion in both models and guides.

• We prove that—by translating guide types to context-free processes with �nite norms—structural-
type-equality checking in our framework is decidable in polynomial time (§4 and Theorem 4.7).
This connection enables more expressive automatic type inference while remaining e�cient.

• We present a novel coverage-checking algorithm (§5) for verifying that sequentially composed
guide programs have full coverage over the support of the target model program; along with a
proof that our algorithm is sound (Theorem 5.1).

• We implement and evaluate type-equality and coverage-checking algorithms on a diverse
benchmark set (§6), showing that our system (i) can analyze programs beyond the reach of
previous static analyses; and (ii) e�ciently identi�es both correct and incorrect guide programs.

2 Overview

2.1 Bayesian Inference, Markov-Chain Monte Carlo, and Block Metropolis-Hastings

Bayesian inference is the problem of conditioning a probabilistic model on observed data and
computing (or approximating) a posterior distribution on latent variables, which encode information
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about the “ground truth” that cannot be observed directly. Probabilistic programming [2, 19]
provides a framework for implementing probabilistic models and performing Bayesian inference.

Markov-ChainMonte Carlo (MCMC) is a family of algorithms that generate a sequence {lat8 }8=1,...,)
of correlated samples of latent variables from a suitable Markov chain whose stationary distribution
is the target posterior. MCMC uses kernels to generate a new state lat8 from the previous state
lat8−1. TheMetropolis-Hastings (MH) algorithm [20, 34] is a generic method to construct kernels via
custom proposal distributions (called guide programs in probabilistic programming), which generate
new values for latent variables. In each iteration, MH computes an acceptance ratio for a proposed
state and then accepts it with a probability equal to the ratio.
The program Model in Figure 1a describes a probabilistic model on random variables speci�ed

by commands sample(@ℓ, 3), where ℓ is a label that uniquely identi�es a random variable and
3 is a primitive distribution, such as Cat (categorical) distributions whose support is the integer
ring ℕ: (where : is the number of categories), Normal distributions whose support is the real
line ℝ, and InvGamma (inverse-gamma) distributions whose support is the positive real line ℝ+.
The program speci�es a regression model with univariate polynomials with degree at most two.
Figure 1b plots 50 randomly generated polynomials. Figure 1d implements a proposal distribution
for this model as a guide program Guide1. The program takes the previous sample trace—which
records the values of latent variables from the previous iteration—as its input and generates a new
trace that is compatible with the regression model. By “compatible,” we mean (informally) that this
guide program generates latent variables from a distribution with the same support as the model.
This program implements a single-block MH proposal in the sense that it generates new values for
latent variables jointly as one block. The left of Figure 1c plots the last 50 posterior samples from
this run.
In a high-dimensional space of latent variables, using a single proposal can su�er from low

acceptance rates during MCMC sampling, which leads to slow convergence. A run of MH using
the single-block proposal in Figure 1d for 5,000 iterations resulted in a poor acceptance rate of only
2.3%. Figure 1f shows three trace plots for three latent variables (@20,@21, and@22) from the 5,000
samples, where the red lines plot the ground-truth values for them. We can see from the plots that
this particular run was ine�cient in exploring the posterior and did not seem to mix at all.

Multiple-block MH. A generalization of single-block MH is multiple-block Metropolis-Hastings

(BMH), also known as Metropolis-within-Gibbs [17]. Algorithm 1 shows a simpli�ed case of BMH
where the target distribution c (G) is de�ned over a �xed-dimensional space R3 . The latent variables
are partitioned into � g 1 blocks (G1, . . . , G�), where each G1 ∈ R

=Ę and =1 + · · · + =� = 3 . At each
iteration, BMH updates a subset (block) of variables G1 by sampling from a proposal distribution
@1 (1 = 1, . . . , �). BMH makes more local steps in each iteration as compared to single-block MH
and often obtains higher acceptance rates. The well-known (block) Gibbs sampling algorithm is a

Algorithm 1Multiple-Block Metropolis-Hastings (BMH)

Require: target distribution c (G1, . . . , G�); proposal distributions (@1, . . . , @�).
1: Initialize G0 ← (G0

1
, . . . , G0

�
).

2: for 9 = 1, 2, . . . do

3: G 9 ← (G
9−1
1

, . . . , G
9−1
�
)

4: for 1 = 1, . . . , � do

5: Propose a new value Ĝ1 ∼ @1 (−;G
9 ) for block 1.

6: Compute the acceptance ratio U ←
c (Ĝ1, G

9

−1
)

c (G 9 )

@1 (G
9−1

1
;G

9

−1
, Ĝ1)

@1 (Ĝ1 ;G 9 )
.

7: Update G
9

1
← Ĝ1 with probability min(1, U).
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1 proc Model(xs : vec[5] (ℝ)) =

2 degree← sample(@3,Cat(0.3; 0.5; 0.2) ) ;

3 20 ← sample(@20,Normal(0, 2) ) ;

4 f ← (

5 if degree = 0 then

6 return(_G. 20 )

7 else

8 21 ← sample(@21,Normal(0, 2) ) ;

9 if degree = 1 then

10 return(_G. 20 + 21 ∗ G )

11 else

12 22 ← sample(@22,Normal(0, 2) ) ;

13 return(_G. 20 + 21 ∗ G + 22 ∗ G ∗ G )

14 );

15 noise2← sample(@=, InvGamma(1, 1) ) ;

16 noise← return(sqrt(noise2) ) ;

17 ys← foreach (8, G ) in xs (

18 ~← sample(@~ğ ,Normal(5 (G ), noise) ) ;

19 return(~)

20 );

21 return(~B )

(a) Probabilistic program Model over curves.
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(b) 50 prior curves drawn randomly from Model.
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(c) 50 posterior curves given data.

1 proc Guide1(f : trace) =

2 degree← sample(@3,Cat(1/3; 1/3; 1/3) ) ;

3 20 ← sample(@20,Normal(f [@20 ], 0.5) ) ;

4 _← (

5 if degree = 0 then

6 return( )

7 else

8 21 ← sample(@21,Normal(f [@21 ] or 0, 0.5) ) ;

9 if degree = 1 then

10 return( )

11 else

12 22 ← sample(@22,Normal(f [@22 ] or 0, 0.5) ) ;

13 return( )

14 );

15 noise2← sample(@=, InvGamma(1, 1) ) ;

16 return( )

(d) Proposal program Guide1 for Single-Block MH.

1 proc Guide2,Ě (f : trace) =

2 degree← sample(@3,Cat(2/5; 119/200; 1/200) ) ;

3 if degree = 0 then return( ) else

4 21 ← (if degree f f [@3 ] then return(f [@21 ] )

5 else sample(@21,Normal(0, 0.5) ));

6 if degree = 1 then return( ) else

7 22 ← (if degree f f [@3 ] then return(f [@22 ] )

8 else sample(@22,Normal(0, 0.5) ));

9 return( )

10 proc Guide2,ęğ (f : trace) = (for 8 = 0, 1, 2)

11 2ğ ← (if f [@3 ] < 8 then return(0)

12 else sample(@2ğ ,Normal(f [@2ğ ], 0.5) ));

13 return( )

14 proc Guide2,Ĥ (f : trace) =

15 noise2← sample(@=, InvGamma(1, 1) ) ;

16 return( )

(e) Proposal programsGuide2,∗ for Multiple-BlockMH.
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(f) Trace plots for @20,@21,@22 (Single-Block MH).
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(g) Trace plots for@20,@21,@22 (Multiple-BlockMH).

Fig. 1. Bayesian inference for a regression model over polynomial curves of order up to 2.
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special case of BMH, where the proposal distribution for a block of latent variables is its conditional
distribution given the observed data and latent variables in all other blocks.

Figure 1e demonstrates a sequence of guide programs, each of which implements a block proposal
distribution @1 for the regression model. The proposal Guide2,ℓ with a subscript ℓ is intended to
mutate the value of the random variable @ℓ . We sequentially compose these proposals—each
of which is followed by an MH acceptance routine—to obtain an MCMC kernel. Similar to the
single-block proposal, these proposals must be compatible with the model; that is, after each guide
program mutates a block of random variables, the mutated trace is valid with respect to the model.
The proposal Guide2,3 is intended to mutate @3 , which is the degree of the regression polynomial,
but it needs to take care of missing coe�cients (see lines 5 and 8). Note that we deliberately
implement Guide2,3 to sample @3 from a “bad” distribution Cat(2/5, 119/200, 1/200), which leads
the inference to explore quadratic functions with a very small probability.

Figure 1g shows the trace plots for the random variables @20, @21, and @22 from a run of 5,000
iterations of the composition of the block proposals. Compared with Figure 1f, BMH is much more
e�cient in exploring the sample space: the acceptance rate is about 38.6%. The trace plots for all
three coe�cients indicate that the run mixes well. We plot the last 50 samples of this BMH in the
right of Figure 1c. These curves capture uncertainty better and present more diverse samples than
the single-block MH run. Note that though we use a “bad” proposal for @3 , BMH is robust enough
to converge after the �rst few hundreds of iterations that do not explore quadratic functions at all.
A number of case studies in the literature of PPLs demonstrate the bene�t of BMH, where

each constituent proposal mutates a di�erent block of random variables. For example, Chib and
Greenberg [9, §7.2] describe BMH involving two distinct block proposals to compute a posterior
distribution of a stationary second-order autoregressive time-series model. More recent examples
include discovering models (encoded as probabilistic context-free grammars) for time-series data
by Mansinghka et al. [33, §3.1] and Cusumano-Towner et al. [12, §7.2] and linear regression with
outlier detection by Mansinghka et al. [33, §3.2] and Cusumano-Towner et al. [12, §3.2].

Sound and unsound guides. In order for BMH to be sound (i.e., it de�nes a Markov chain that
converges to the conditional distribution of amodel given observed data), the sequential composition
of guide programs in BMH must be compatible with the model program. More concretely, every set
of positive-probability traces under the target distribution should have positive probability under
the distribution de�ned by a sequential composition of guide programs [48, Theorem 1]. If this
compatibility condition is not satis�ed, then BMH may fail to explore positive-probability regions
in the target distribution.

To illustrate unsound guide programs, consider Guide2,21 from Figure 1e. Suppose we modify the
expression Normal(f [@21], 0.5) in line 12 by replacing the random variable @21 with @22. This
change could easily result in a runtime error, because the random variable@22 is not guaranteed
to exist in the previous trace. A more subtle example of unsound BMH is obtained by removing
Guide2,22 from the sequential composition of guide programs. Then the random variable @22 is
never resampled, unless Guide2,3 increases the polynomial degree from 1 to 2. Likewise, if we
replace the expression Normal(f [@22], 0.5) in line 12 with a Gamma distribution, whose support
is R>0 rather than R, the modi�ed guide is unsound. This is because, if the preceding guide program
Guide2,3 keeps the random variable@3 unchanged, the resulting Markov chain cannot sample a
negative value for the random variable@22, yielding a mismatch with the set of traces admitted by
the model programModel. Figure 2 displays the Bayesian inference result of the unsound sequential
composition of guide programs, where the Normal distribution in Guide2,22 has been replaced with
a Gamma distribution. The posterior samples in Figure 2a �t poorly with the observed data (red
points) as compared to the samples from sound BMH in Figure 1c, re�ecting a failure of convergence
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(b) Trace plots of the three polynomial coe�icients.

Fig. 2. Results using an unsound BMH guide program for the inference problem in Figure 1.

to the targe distribution. In addition, the trace plot of the random variable@22 in Figure 2b indicates
that the unsound BMH does not converge to the ground-truth value (denoted by the red horizontal
line).
Programming BMH proposals is more di�cult than programming single-block MH ones. To

ensure the model-guide compatibility, each block-proposal guide needs to take care of the change
in the model’s control �ow that might lead to di�erent sets of random variables. The next sections
discuss how our new framework achieves sound BMH via coverage-annotated guide types.

2.2 Programmable Block MH via Guide-Typed Coroutines

Guide-typed coroutines. We adapt a coroutine-based paradigm for implementing models and
guides from Wang et al.’s work, which supports sound programmable single-block MH. The idea is
to treat the model and guide as two communicating coroutines: the model determines the control
�ow (which in�uences the set of latent variables), so it sends branching information to the guide;
meanwhile, the guide determines proposals for latent variables, so it sends sampling information
to the model. Such message-passing communication can be easily realized through coroutines
connected by bidirectional channels. Figure 3b reimplements the model shown in Figure 1a by
making the communication explicit: the sampling (sample(. . .)) and branching (if . . .) commands
are annotated with rv (resp., sd) to indicate receiving (resp., sending) information, as well as the
name of a channel on which the communication takes place. The model consumes a lat channel for
communication with the guide, and provides an obs channel for identifying observed data.

Wang et al. [52] proposed guide types to enforce that the model and guide follow a communication
protocol, which describes the support of the model distribution. The type 111 speci�es an ended
channel. The type g'�means the channel provider draws and sends a random sample of type g , and
proceeds with a type-� protocol. The obs channel is given a guide typeObs v ℝ'ℝ'ℝ'ℝ'ℝ'111.
The type �N� means the channel provider receives a branch selection and proceeds with a type-�
or � protocol accordingly. Figure 3a de�nes a guide-type operator Coeffs[·] that corresponds to the
communication carried out from lines 7 to 15 of Figure 3b. The type operator is parameterized by a
continuation type that speci�es the communication after the protocol described by the operator.
The lat channel is given a guide type Lat v ℕ3 'ℝ ' Coeffs[ℝ+ ' 111]. We instantiate Coeffs with
ℝ+ ' 111 because the model samples@=—whose type is ℝ+—after it samples the coe�cients.

Figure 3c provides a template to implement MH proposals as guide coroutines. Ignoring the code
with a yellow background, the template yields a reimplementation of the single-block MH proposal
shown in Figure 1d. The compatibility is justi�ed by the fact that theGuide coroutine provides the lat
channel whose guide type is Lat, which is the same asModel’s signature. Dual to themodel coroutine,
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Lat
def
= ℕ3 'ℝ ' Coeffs[ℝ+ ' 111]

Coeffs[- ]
def
= - N (ℝ ' (- N (ℝ '- ) ) )

Obs
def
= ℝ 'ℝ 'ℝ 'ℝ 'ℝ ' 111

OLat
def
= ℕ3 'ℝ 'OCoeffs[ℝ+ ' 111]

OCoeffs[- ]
def
= - � (ℝ ' (- � (ℝ '- ) ) )

(a) Definitions of type operators.

1 proc Model(xs : vec[5] (ℝ))

2 consume lat :: Lat

3 provide obs :: Obs =

4 degree← samplerv {lat} (Cat(0.3; 0.5; 0.2) ) ;

5 20 ← samplerv {lat} (Normal(0, 2) ) ;

6 f ← (

7 ifsd{lat} degree = 0 then

8 return(_G. 20 )

9 else

10 21 ← samplerv {lat} (Normal(0, 2) ) ;

11 ifsd{lat} degree = 1 then

12 return(_G. 20 + 21 ∗ G )

13 else

14 22 ← samplerv {lat} (Normal(0, 2) ) ;

15 return(_G. 20 + 21 ∗ G + 22 ∗ G ∗ G )

16 );

17 noise2← samplerv {lat} (InvGamma(1, 1) ) ;

18 noise← return(sqrt(noise2) ) ;

19 ys← foreach (8, G ) in xs (

20 ~← samplesd{obs} (Normal(5 (G ), noise) ) ;

21 return(~)

22 );

23 return(~B )

(b) The model coroutine.

1 proc Guide(f : trace)

2 consume old :: OLat

3 provide lat :: Lat =

4 old_d ← oldsample{old}(); degree← samplesd{lat} (□1 ) ;

5 old_c0 ← oldsample{old}(); 20 ← samplesd{lat} (□2 ) ;

6 5 ← (

7 ifrv {lat} ★ then

8 oldifrv{old} same then return( ) else return( )

9 else

10 oldifrv{old} same then

11 old_c1 ← oldsample{old}(); 21 ← samplesd{lat} (□3 ) ;

12 ifrv {lat} ★ then

13 oldifrv{old} same then return( ) else return( )

14 else

15 oldifrv{old} same then

16 old_c2 ← oldsample{old}(); 22 ← samplesd{lat} (□4 ) ;

17 return( )

18 else

19 22 ← samplesd{lat} (□6 ) ;

20 return( )

21 else

22 21 ← samplesd{lat} (□7 ) ;

23 ifrv {lat} ★ then

24 return( )

25 else

26 22 ← samplesd{lat} (□8 ) ;

27 return( )

28 );

29 old_n← oldsample{old}(); noise2← samplesd{lat} (□5 ) ;

30 return( )

(c) A template of guide coroutines.

Fig. 3. Guide-typed coroutines for the regression model and MH proposals.

the guide samples and sends random values on the lat channel, and receives branch selections from
the same channel (see lines 7 and 12). The★ symbol serves as a placeholder and it indicates that the
branch selection is sent by the consumer of the lat channel, i.e., the model coroutine. We instantiate
the boxes □8 for 8 ∈ {1, . . . , 5} as follows: □1 = Cat(1/3, 1/3, 1/3),□2 = Normal(f [@20], 0.5),□3 =

Normal(f [@21] or 0, 0.5),□4 = Normal(f [@22] or 0, 0.5),□5 = InvGamma(1, 1).

Towards multiple-block MH. To support BMH proposals, a natural approach would be to introduce
point distributions, e.g., Delta(E) whose support is {E}, and re�ne the guide-type system to deal
with such distributions. Using this construct, single-site proposals<G and<~ for random variables
@G and@~, respectively, could be expressed as follows (where f denotes the previous trace):

<G
def
= _← samplesd{lat}(Normal(f [@G], 0.5)); _← samplesd{lat}(Delta(f [@~])); return()

<~
def
= _← samplesd{lat}(Delta(f [@G])); _← samplesd{lat}(Normal(f [@~], 0.5))); return()

For a target distribution with full support over ℝ2, the sequential composition<G and<~ yields

a sound kernel because it also has full support over ℝ2. Unfortunately, there are fundamental
challenges with designing a type system that can reason about arbitrary user-speci�ed delta distri-
butions. Consider changing the second command of<G to instead be samplesd{lat}(Delta(42)).
Clearly, the single-site update<G is no longer sound, because every move for@G would be rejected
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(except when the previous trace f satis�es f [@~] = 42, which has probability zero under the target
distribution). To correctly reason about the model-guide compatibility of BMH in the presence
of general point distributions Delta(4), the type system would therefore need to analyze the
expressions 4 and distinguish between cases such as Delta(f [@~]) and Delta(42). This approach
is as hard as checking for the semantic equivalence of two expressions, and also requires �nding
the locations of all point masses (if any) in the target distribution.

BMH guides as coroutines. The previous example suggests that our system should properly align

the previous trace within a block proposal coroutine and add a command for “keeping the value of a
random variable unchanged,” which is a restricted type of point distribution. To deal with alignment,
we grant BMH guide coroutines the access to another read-only channel, e.g., old, that records the
messages exchanged between the model and a previous guide coroutine. To support this “keeping
unchanged” behavior, we add two kinds of commands: one for retrieving an old sample from the pre-
vious trace, written oldsample{old}(), the other for forwarding an unchanged sample to the model,
written samplesd{lat}(Keep). Meanwhile, the alignment of branching is nontrivial: the control �ow
of the model with respect to the previous guide could diverge from the model’s �ow with respect to
the current guide. In our system, we deal with branch alignment by imposing the following structure:

ifrv{lat} ★ then oldifrv{old} same then<true,true else<true,false
else oldifrv{old} same then<false,false else<false,true

We introduce the oldifrv{old} same . . . command to read a branch selection from the old channel.
Such a structure identi�es four branches<11,12 with 11, 12 ∈ {true, false}, where 11 is the branch
selection received from the model, and 12 is the one read from the previous trace. When 11 ≠ 12,
the command<11,12 cannot access the previous trace, because the control �ow diverges.

Ignoring the code with a red background, Figure 3c can be used to reimplement the block guides
shown in Figure 1e. The code with a yellow background deals with alignment. Below presents
instantiations of boxes that correspond to the block-proposal guide programs given in Figure 1e.

Guide2,3 : □1 = Cat(2/5; 119/200; 1/200),□2 = □3 = □4 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,20 : □2 = Normal(old_20, 0.5),□1 = □3 = □4 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,21 : □3 = Normal(old_21, 0.5),□1 = □2 = □4 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,22 : □4 = Normal(old_22, 0.5),□1 = □2 = □3 = □5 = Keep,□6 = □7 = □8 = Normal(0, 0.5)
Guide2,= : □5 = InvGamma(1, 1),□1 = □2 = □3 = □4 = Keep,□6 = □7 = □8 = Normal(0, 0.5)

They all �ll in □6, □7, and □8 in the same way: those sampling commands are in the branches where
the current control �ow diverges from the previous trace. For other boxes, the guide coroutines
resample the random variable of interest and use sample(Keep) for other unchanged variables.

2.3 Coverage-Annotated Guide Types for Soundly Composed Guides

Coverage annotations. We now consider the guide types of the block guides shown above. Fig-
ure 3a de�nes a guide type OLat that prescribes the communication through the old channel. Dual
to the N type constructor, the type � � � speci�es a channel whose receiver receives a branch
selection and proceeds with a type � or type � protocol. The type OLat has the same structure as
the type Lat; the di�erence is that OLat can be obtained by replacing all the N constructor in Lat

with �.
The lat channel has a variant of the Lat guide type where primitive types (e.g., R) are annotated

with coverage annotations in subscripts. An annotation 2 (“covered”) means a random variable
is freshly resampled in this guide, and an annotation D (“uncovered”) means an old value of the
random variable, if exists in the previous trace, is reused. Below summarizes the coverage-annotated
types for the �ve coroutines.
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Lat2,3
def
= (ℕ3)2 'ℝD ' Coeffs2,3 [(ℝ+)D ' 111], Coeffs2,3

def
= - N (ℝD ' (- N (ℝD ' - )))

Lat2,20
def
= (ℕ3)D 'ℝ2 ' Coeffs2,20 [(ℝ+)D ' 111], Coeffs2,20

def
= - N (ℝD ' (- N (ℝD ' - )))

Lat2,21
def
= (ℕ3)D 'ℝD ' Coeffs2,21 [(ℝ+)D ' 111], Coeffs2,21

def
= - N (ℝ2 ' (- N (ℝD ' - )))

Lat2,22
def
= (ℕ3)D 'ℝD ' Coeffs2,21 [(ℝ+)D ' 111], Coeffs2,22

def
= - N (ℝD ' (- N (ℝ2 ' - )))

Lat2,=
def
= (ℕ3)D 'ℝD ' Coeffs2,21 [(ℝ+)2 ' 111], Coeffs2,=

def
= - N (ℝD ' (- N (ℝD ' - )))

Type-equality checking. To satisfy the model-guide compatibility, the model and guide(s) must
have equal guide types for the lat channel. To this end, it is not enough to check their syntactic
equality. For example, if for the Guide2,= coroutine we want the proposal distribution for the noise
variable to depend on the degree of the polynomial, we would move the sample command in
line 29 of Figure 3c into the branching commands and derive its guide type for the lat channel as

Lat′2,=
def
= (ℕ3)D 'ℝD ' (((ℝ+)2 ' 111) N (ℝD ' (((ℝ+)2 ' 111) N (ℝD ' ((ℝ+)2 ' 111))))),

which is structurally equal to Lat2,= . Wang et al. [52] developed a nominal type system, which cannot
check the equality between Lat2,= and Lat2,=′ . Generally, guide types may have in�nite state spaces,
which enable guide types to express complex probabilistic models such as probabilistic context-free
grammars [26]. However, in�nite state spaces also pose a challenge to deciding structural type
equality. In §4, we show that structural type equality is decidable in polynomial time by translating
guide types to context-free processes with �nite norms.

Coverage checking. In addition to the model-guide type equality, we must verify that every
random variable is freshly sampled by at least some guide in the sequential composition. It is not
enough to compute the superposition of all coverage-annotated guide types and check that the
superposition is fully covered (i.e., all random variables come with subscript 2). This is because old
samples of one random variable can be reused for another random variable on a di�erent execution
path (§5.2). In §5, we present a coverage-checking algorithm that veri�es the full coverage of
sequentially composed guides by bisimulating guide types alongside the code of guides.

2.4 A Surface Syntax for Automatic Generation of BMH Guides

So far, block guide coroutines are verbose. As Figure 3c demonstrates, if guide coroutines share
an identical structure that can be captured by a template, it is possible to automate block-guide
generation. We propose a lightweight surface syntax to aid the users to implement such canonical
guide coroutines easily. Figure 4 demonstrates a reimplementation of the model and proposal
programs in Figure 1a and Figure 1e in our surface syntax. The model coroutine shown in Figure 4b
is almost identical to the one shown in Figure 3b, except that the code with a blue background
explicitly assigns a unique label to each sample site. We use those labels only to guide the elaboration
of guide coroutines shown in Figure 4c into the form shown in Figure 3c. In essence, the elaboration
process automatically

• transforms the model program with labels (Figure 4b) to two programs: a model coroutine
without labels (Figure 3b) and a template of guide coroutines (Figure 3c); and then
• translates each guide program in the surface syntax (Figure 4c) to an instantiation of boxes,
e.g., □8 for 8 ∈ {1, . . . , 8} in the template program shown in Figure 3c.

The �rst step can be realized by a straightforward syntax-directed transformation. The second
step needs to translate each resample and resample_if_none command to an instantiation of
one or more boxes. Both kinds of resampling commands are parameterized by a channel name
and take two arguments: (i) the label for the random variable to be resampled, and (ii) a function
that computes a proposal distribution from available random variables of the previous trace. A
resample command is intended to mutate a random variable whose value is present in the previous
trace, whereas a resample_if_none command is intended to generate a value for a random variable
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Lat
def
= ℕ3 'ℝ ' Coeffs[ℝ+ ' 111]

Coeffs[- ]
def
= - N (ℝ ' (- N (ℝ '- ) ) )

Obs
def
= ℝ 'ℝ 'ℝ 'ℝ 'ℝ ' 111

(a) Definitions of type operators.

1 proc Model(xs : vec[5] (ℝ))

2 consume lat :: Lat

3 provide obs :: Obs =

4 degree← samplerv {lat} (@3,Cat(0.3; 0.5; 0.2) ) ;

5 20 ← samplerv {lat} (@20,Normal(0, 2) ) ;

6 f ← (

7 ifsd{lat} degree = 0 then

8 return(_G. 20 )

9 else

10 21 ← samplerv {lat} (@21,Normal(0, 2) ) ;

11 ifsd{lat} degree = 1 then

12 return(_G. 20 + 21 ∗ G )

13 else

14 22 ← samplerv {lat} (@22,Normal(0, 2) ) ;

15 return(_G. 20 + 21 ∗ G + 22 ∗ G ∗ G )

16 );

17 noise2← samplerv {lat} (@=, InvGamma(1, 1) ) ;

18 noise← return(sqrt(noise2) ) ;

19 ys← foreach (8, G ) in xs (

20 ~← samplesd{obs} (Normal(5 (G ), noise) ) ;

21 return(~)

22 );

23 return(~B )

(b) The model coroutine.

1 proc Guide2,Ě () provide lat :: Lat =

2 degree← resample{lat}(@3 ,

3 _old_d.Cat(2/5; 119/200; 1/200));

4 21 ← resample_if_none{lat}(@21,

5 _>;3_3. _old_c0 .Normal(0, 0.5));

6 22 ← resample_if_none{lat}(@22,

7 _>;3_3. _old_c0 . _old_c1 .Normal(0, 0.5));

8 return( )

1 proc Guide2,ę0 () provide lat :: Lat =

2 20 ← resample{lat}(@20,

3 _>;3_3. _old_c0 .Normal(old_c0, 0.5));

4 return( )

1 proc Guide2,ę1 () provide lat :: Lat =

2 21 ← resample{lat}(@21,

3 _>;3_3. _old_c0 . _old_c1 .Normal(old_c1, 0.5));

4 return( )

1 proc Guide2,ę2 () provide lat :: Lat =

2 22 ← resample{lat}(@22,

3 _>;3_3. _old_c0 . _old_c1 . _old_c2 .Normal(old_c2, 0.5));

4 return( )

1 proc Guide2,Ĥ () provide lat :: Lat =

2 =>8B42← resample{lat}(@=,

3 _>;3_3. _old_c0 . _old_n. InvGamma(1, 1));

4 return( )

(c) The guide coroutines.

Fig. 4. Guide-typed coroutines (in the surface syntax) for the regression model and BMH proposals.

whose old value is not present. The set of available random variables is an under-approximation
based on the data �ow of the model program; for example, the values of @3,@20,@21,@22 are
available for resampling @22 and the values of @3,@20 are available for resampling @=. In
this way, we can associate each resampling command with one or more boxes. For example, for
the guides in Figure 4c and the template in Figure 3c: resample{lat}(@3, . . .) corresponds to
□1, resample_if_none{lat}(@21, . . .) corresponds to □7, resample_if_none{lat}(@22, . . .) cor-
responds to □6 and □8, resample{lat}(@20, . . .) corresponds to □2, resample{lat}(@21, . . .) corre-
sponds to□3, resample{lat}(@22, . . .) corresponds to□4, and resample{lat}(@=, . . .) corresponds
to □5.
In this article, we will focus on the more verbose core calculus demonstrated in Figure 3. Such

verbosity allows the user to implement block guides more �exibly; for example, inside a program
fragment that does not involve branching, the user can �rst read all the old samples and then use
them to propose a value for a particular random variable.

3 Core Calculus for Coroutine-Based Programmable Inference

In coroutine-based programmable inference, model coroutines dictate control �ows, while guide
coroutines specify user-customized distributions of latent variables. Given a model " and a se-
quential composition of guides �1, . . . ,�= , Figure 5 illustrates the communication among a guide
�8 , the model" , and a guide �8−1 (8 = 2, . . . , =). The guide �8 sends samples of latent variables to
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�8−1 �8 "

18 08 obs8

old branch selections
old samples

branch selections samples observed samples

Fig. 5. Sequential composition of guides �8 (8 = 1, . . . , =). Black circles indicate the channel providers.

the model " across a channel 08 , and the model sends back branch selections to the guide. The
model" sends samples of observed variables on a channel obs8 . A novelty of our new framework
is that the guide �8 now has access to the old sample trace from the previous guide �8−1 and can
choose to reuse old samples. The guide �8 receives old samples and branch selections from the
previous guide �8−1 on a channel 18 .

3.1 Syntax

The core calculus consists of two layers: functional and coroutine layers. The former is a standard
functional programming language augmented with probability distributions. The latter de�nes
model and guide programs that communicate with each other by message passing across channels.

Functional layer. Types g and expressions 4 in the functional layer are formed by this grammar:

g F Ā | ā | ℝ | ℝ(0,1) | ℝ+ | ℕ= | ℕ | g1 → g2 | dist(g) base, arrow, and distribution types

4 F G | triv | true | false | if (4; 41; 42) | Ā | =̄ | op⋄ (41; 42) expressions; Ā ∈ R, =̄ ∈ N

| _(G .4) | app(41; 42) | let(G ; 41 .42)

| Ber(4) | Unif | Beta(41, 42) | Pois(4) | · · · distribution expressions.

Probability distributions have types dist(g), where g is the type of the supports of distributions.

Guide types. In the coroutine layer, guide types describe communication protocols between two
endpoints of channels. Fix a set X of type variables and a set T of unary type operators. Guide
types � are de�ned by

C F g | g2 | gD normal and coverage-annotated functional types

� F - | 111 | ) [�] type variable, termination, and type application;- ∈ X,) ∈ T

| C '� | C £ � send and receive samples

| �1 ��2 | � N�2 send and receive branch selections

T F
−−−−−−−−−−−−−−→
typedef () .- .�) mutually recursive type de�nitions.

Type C is either an unannotated type g from the functional layer or a coverage-annotated type (g2
or gD ), which ranges over coverage-annotated analogues (Ā2 , ĀD , ℝ2 , ℝD , . . . ) of the normal types.
The subscript 2 (“covered”) means the random variable is freshly sampled, and the subscript D
(“uncovered”) means the random variable is reused, whenever available, from the previous trace.
Coverage-annotated guide types are only used for channels 08 that connect model and guide
coroutines (Figure 5). Channels 18 are typed with unannotated guide types.

The guide type 111 means termination, - ∈ X is a type variable, and) [�] is a unary type operator
) ∈ T applied to a guide type �. For each channel, we designate one of its two endpoints as a
provider1 and the other endpoint as a client. The guide type of a channel is described from the
channel provider’s viewpoint. Guide type C ' � means the provider sends a sample of type C to
the client, and guide type C £ � means the provider receives a sample of type C from the client.
Guide type �1 � �2 means the provider sends a branch selection E ∈ {true, false} and proceeds

1Although the two endpoints of a channel can send messages in both directions, they are assigned di�erent roles (i.e., a

provider and a client). These di�erent roles are needed because guide types are based on binary session types, which in turn

correspond to intuitionistic linear logic [5].
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with guide type �1 (if E = true) or �2 (otherwise). Guide type �1 N�2 means the provider receives
a branch selection and proceeds with guide type �1 or �2. Vector T stores mutually recursive type
de�nitions of the form ) [- ] v �.

Coroutines. Given a set F of procedure identi�ers, commands< for model coroutines are

< F ret(4) | bnd(<1;G .<2) | call(5 ; 4) return a value, let-binding, and procedure call; 5 ∈ F

| samplerv{a}(4) | samplesd{obs}(4) receive a sample and send a sample

| cond(4;<1;<2) conditional command for models

D" F
−−−−−−−−−→
fix(5 .G .<) mutually recursive procedure de�nitions.

The syntax formodel coroutines has two sampling commands: samplerv{a}(4) and samplesd{obs}(4).
The former receives a sample from a guide on channel 0. The latter draws a fresh sample for an
observed variable, sending it on channel obs. Conditional command cond(4;<1;<2) branches on
a Boolean expression 4 and proceeds to either command<1 or<2. Vector D" stores mutually
recursive procedure de�nitions of the form 5 (G) v<.
Given a set F of procedure identi�ers, commands< for guide coroutines are de�ned by

< F ret(4) | bnd(<1;G .<2) | call(5 ; 4) return a value, let-binding, and procedure call; 5 ∈ F

| sample(4) | sample(keep) draw a fresh sample and reuse an old sample

| oldsample return an old sample

| cond(★;<1;<2) | oldcond(<1;<2) conditionals for current and old branch selections

D� F
−−−−−−−−−→
fix(5 .G .<) mutually recursive procedure de�nitions.

Guide coroutines have two sampling commands2: sample(4) and sample(keep). The former draws
a fresh sample from a distribution 4 , whereas the latter reuses the old sample. Command oldsample

returns the old sample. Conditional commands cond(★;<1;<2) and oldcond(<1;<2) are used
inside guide programs. The �rst conditional command cond(★;<1;<2) branches on the current
branch selections sent from the model" , while the second conditional command oldcond(<1;<2)

branches on the old branch selections from the previous guide.
Finally, an inference program for BMH is P = (D" ∪D� ,<" , (<�,1, . . . ,<�,=)), consisting of a

collectionD" ∪D� of procedure de�nitions, a model coroutine<" , and a sequential composition
of guide coroutines<�,1, . . . ,<�,= (= g 1) interleaved with the MH acceptance routines.

3.2 Operational Semantics

We adapt the trace-based semantics of models and guides from prior work [52]. To support BMH,
we propose a novel semantics of guide programs that access and reuse old samples.

Guidance traces. A guidance trace records the sequence of messages exchanged between two
coroutines across a channel. Formally, a trace f is a �nite sequence of two kinds of messages:
(i) val(E) containing a sample E and (ii) dir (E) containing a branch selection E ∈ {true, false}.

Models. The big-step operational semantics of a model program< is given by a judgment

+ ; {0 : f0,1} ¢< ó
F E ; {0 : f0,2}, (3.1)

where + is an environment (i.e., a mapping from variables to values), 0 is a channel between the
model and guide (Figure 5), f0,8 (8 = 1, 2) is a trace on the channel 0,F ∈ [0, 1] is a density associated
with<’s run, and E is the �nal output. The judgment (3.1) means that, with an initial trace f0,1

2The sampling commands in guide coroutines are not annotated with the directions of messages or channel names, unlike the

sampling commands samplerv {a} (4 ) and samplesd{obs} (4 ) in model coroutines. This is because the sampling command

sample(4 ) and sample(keep) in guide coroutines are always sent from a guide to a model on channel 0.
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E:Sample
+ ¢ 4 ó 3 E ∈ 3.support F = 3.density(E)

+ ; {0 : (val (E) :: fė ), 1 : fĘ };& ¢

sample(4 ) óĭ E; {0 : fė, 1 : fĘ }; pop(& )

E:Sample:Keep
E = get(&,fĘ )

+ ; {0 : (val (E) :: fė ), 1 : fĘ };& ¢

sample(keep) ó1 E; {0 : fė, 1 : fĘ }; pop(& )

+ ; {0 : fė, 1 : (val (E) :: fĘ ) };& ¢ oldsample ó1 E; {0 : fė, 1 : fĘ }; push(&, E)
E:OldSample

Eė = EĘ 8 = ite(Eė, 1, 2) + ; {0 : fė,1, 1 : fĘ,1};&1 ¢<ğ,1 ó
ĭ E; {0 : fė,2, 1 : fĘ,2};&2

+ ; {0 : (dir (Eė ) :: fė,1 ), 1 : (dir (EĘ ) :: fĘ,1 ) };&1 ¢

cond(★; oldcond(<1,1;<1,2 ) ; oldcond(<2,1;<2,2 ) ) ó
ĭ E; {0 : fė,2, 1 : fĘ,2};&2

E:Cond:Eq

Eė ≠ EĘ 8 = ite(Eė, 1, 2)

9 = ite(EĘ , 1, 2) + ; {0 : fė,1}; · ¢<ğ,2 ó
ĭ E; {0 : fė,2}; · + ; {1 : fĘ,1};&1 ¢< Ġ,1 ó

_ _; {1 : fĘ,2};&2

+ ; {0 : (dir (Eė ) :: fė,1 ), 1 : (dir (EĘ ) :: fĘ,1 ) };&1 ¢

cond(★; oldcond(<1,1;<1,2 ) ; oldcond(<2,1;<2,2 ) ) ó
ĭ E; {0 : fė,2, 1 : fĘ,2};&2

E:Cond:Neq

Fig. 6. Key rules for the operational semantics of guide programs.

on the channel 0 and an environment + , the model< runs successfully (without any deadlocks)
with a densityF , an output value E , and a continuation trace f0,2. The judgment (3.1) in Wang et al.
[52] additionally mentions a channel obs for observed variables (Figure 5). But because observed
variables are not important in this article, for brevity, we omit the channel obs from the judgment
(3.1). Because we do not modify the semantics of model programs, the judgment (3.1) has the same
de�nition as in Wang et al. [52].

Guides. For a guide program<, its new big-step operational semantics is given by a judgment

+ ; {0 : f0,1, 1 : f1,1};&1 ¢< ó
F E ; {0 : f0,2, 1 : f1,2};&2, (3.2)

where + is an environment, 0 is a channel between the guide and model, 1 is a channel between
this guide and the previous one,F ∈ [0, 1] is a density associated with<’s run, and E is an output
value. The judgment (3.2) means that, with initial traces f0,1 and f1,1 (i.e., old trace containing old
samples and branch selections) and an environment + , the command< runs successfully with
a densityF , an output value E , and continuation traces f0,2 and f1,2. Additionally, the judgment
(3.2) contains an initial queue &1 and a continuation queue &2. The queues are used to track old
samples. When the guide runs a command sample(keep), the old sample is sent to the model. Here,
the queue comes in: the guide pops an element o� the queue and sends it to the model.
The queue & in the judgment (3.2) takes one of two forms: (i) 1 : [E1, . . . , E=] and (ii) 0 : = for

some = ∈ N. To illustrate them, consider the communication between a guide �8 and a model" .
Suppose the guide �8 has received = ∈ N more samples from the previous guide �8−1 than �8 has
sent to the model " . In such a scenario, the = old samples E1, . . . , E= that have been received by
the guide �8 but not yet sent to the model" are stored in a queue & ≡ 1 : [E1, . . . , E=]. Conversely,
if the guide�8 has sent = ∈ N more samples to the model" than has received from the previous
guide �8−1, the queue takes the form & ≡ 0 : =.

De�nition. Figure 6 displays key rules for the operational semantics of guide programs. The rule
E:Sample evaluates expression 4 to a distribution, draws a sample from it, and pops the queue & .
The rule E:Sample:Keep gets the old sample E = get(&, f1) from the previous guide �8−1. In this
rule, both the queue & and trace f1 are necessary because the old value E is stored inside either the
queue & or the trace f1 , depending on which of the channels 0 and 1 is ahead of the other. The
rule E:OldSample returns the old sample, which is the �rst element of the old trace f1 . We also
push it to the queue & so that it can later be sent to the model" if necessary.
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The rules E:Cond:Eq and E:Cond:Neq concern a doubly nested conditional command that has
four branches. The outer conditional cond(★; ·; ·) branches on the model" ’s branch selection, and
the inner conditional oldcond(·; ·) branches on the previous guide’s branch selection. In branch
<8, 9 (8, 9 ∈ {1, 2}), 8 indicates the branch taken by the model" , and 9 indicates whether the model
and previous guide have the same branch selection ( 9 = 1 means identical branch selections).
If the model and previous guide have the same branch selection, the rule E:Cond:Eq applies,

proceeding with a command<8,1. Conversely, if the model and previous guide have di�erent branch
selections, the rule E:Cond:Neq applies. Because the current and previous traces diverge, the guide
no longer has access to the old trace. Hence, we run<8,2 without access to the channel 1 for the
old trace. At the same time, we run< 9,1 with trace f1,1 on the channel 1 in order to determine the
continuation trace f1,2 and continuation queue &2. When we exit the doubly nested conditional
command, the current and previous traces join back, and the old trace f1,2 becomes accessible to
the guide again.

Sequential composition of guides. The operational semantics of a sequential composition of closed
guide coroutines �1, . . . ,�= is de�ned as follows. For 8 = 1, . . . , =, channel 08 connects model "
and guide �8 , and channel 18 connects guides �8−1 and �8 (Figure 5). Consider an initial trace f0
that the model" can generate with a positive densityF",0 > 0 and an output value E",0:

·; {0 : f0} ¢ " ó
Fĉ,0 E",0; {0 : [ ]}. (3.3)

The initial trace f0 is fed to the �rst guide�1 on the channel 11. Using f0 as the old trace, the guide
�1 produces a new trace f∗1 on the channel 01 with a positive densityF�,1 > 0. We next perform
the MH update, calculating a ratio A1 (Eq. (3.7)) and setting f1 v f∗1 with probability min{A1, 1}.
Otherwise, we retain the old trace and set f1 v f0. The trace f1 is then fed to the second guide �2

as the old trace on the channel 12, and the guide produces a new trace f∗2 . This continues until we
obtain the �nal trace f= .

Formally, guide�8 generates a trace f
∗
8 with a positive densityF�,8 > 0 and an output value E�,8 :

·; {08 : f
∗
8 , 18 : f8−1};&empty ¢ �8 ó

Fă,ğ E�,8 ; {0 : [ ], 1 : [ ]};&empty 8 = 1, . . . , =. (3.4)

Here, &empty is the empty queue. The trace f∗8 is generated by the model" with a positive density
F",8 > 0:

·;0 : f∗8 ¢ " ó
Fĉ,ğ E",8 ;0 : [ ] 8 = 1, . . . , =. (3.5)

Furthermore, we can swap the traces f∗8 and f8−1 in Eq. (3.4) while keeping the density positive:

·; {08 : f8−1, 18 : f
∗
8 };&empty ¢ �8 ó

F̂ă,ğ Ê�,8 ; {0 : [ ], 1 : [ ]};&empty 8 = 1, . . . , = (3.6)

for an output value Ê�,8 and a positive density F̂�,8 > 0. The acceptance ratio A8 in the MH update is

A8 v
?ĉ (f

∗
ğ )

?ĉ (fğ−1 )
·
?ăğ
(fğ−1 |f

∗
ğ )

?ăğ
(f∗ğ |fğ−1 )

=
Fĉ,ğ

Fĉ,ğ−1
·
F̂ă,ğ

Fă,ğ
8 = 1, . . . , =, (3.7)

where ?" (f) is the density of a trace f in the model" , and ?�ğ
(f1 | f2) is the density of a trace

f1 in the guide �8 with f2 being the old trace. As long as the guide �8 is well-typed, because all
of F",8 ,F",8−1, F̂�,8 ,F�,8 are positive, Eq. (3.7) is positive (and �nite). Hence, we always have a
positive probability of accepting the proposed trace f∗8 in every MH update (Corollary A.8).

3.3 Type System

Type system. The typing judgment for a guide program< is

�;0 : �1, 1 : �1 ¢<
.∼. g ;0 : �2, 1 : �2, (3.8)

where � is a functional typing context, �1 and �1 are the initial guide types of channels 0 and 1,
respectively, g is the output type of command<, and �2 and �2 are the continuation guide types
of channels 0 and 1, respectively. The judgment (3.8) means that, starting with well-typed traces
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f0,1 : �1 and f1,1 : �1 and an environment + : �, the guide program< will run successfully, with
an output value of type g and continuation traces of guide types �2 and �2.
A key typing rule is T:Cond for a doubly nested conditional command:

�;0 : �1, 1 : �1 ¢<1,1
.∼. g ;0 : �,1 : � �;0 : �′1 ¢<1,2

.∼. g ;0 : �

�;0 : �2, 1 : �2 ¢<2,1
.∼. g ;0 : �,1 : � �;0 : �′2 ¢<2,2

.∼. g ;0 : � |�1 | = |�
′
1 | |�2 | = |�

′
2 |

�;0 : �1 N�2, 1 : �1 � �2 ¢ cond(★; oldcond(<1,1;<1,2); oldcond(<2,1;<2,2))
.∼. g ;0 : �,1 : �

T:Cond

If the model" takes branch 8 ∈ {1, 2} and so does the previous guide, the current guide proceeds
with command<8,1, which is typed with initial guide types �8 and �8 . Conversely, if the model
and previous guide diverge, a command <8,2 (8 ∈ {1, 2}) is typed with (i) an initial guide type
�′8 on channel 0 and (ii) no access to channel 1 for the previous trace. Thus, to be well-typed,
command<8,2 (8 ∈ {1, 2}) must not use sample(keep) and oldsample. The rule T:Cond also requires
|�8 | = |�

′
8 | (8 = 1, 2), where |�| is obtained by removing coverage annotations from guide type �.

Type inference. Guide types can be automatically inferred, relieving users of the need to manually
provide possibly complex guide types. To each procedure fix(5 .G .<), we assign fresh type operators
)5 ,0 and )5 ,1 for channels 0 and 1, respectively. We then construct type de�nitions )5 ,0 [- ] v �5

and )5 ,1 [- ] v �5 such that

�;0 : �5 [- ], 1 : �5 [- ] ¢<
.∼. g ;0 : -,1 : - . (3.9)

We traverse a command < backwards, starting with a type variable - for a continuation and
incrementally building �5 and �5 . Exploiting the fact that typing rules are syntax-directed, we can
determine which typing rule to apply by looking at the syntactic form of the command<.

3.4 Translation of the Lightweight Surface Syntax to the Core Calculus

This section describes how to translate a model coroutine " and a guide coroutine � from the
ergonomic lightweight surface syntax to the more verbose (but more expressive) core calculus.
Figure 4b and Figure 4c show the lightweight surface syntax of a model and guide coroutine,
respectively. Our goal is to translate them to Figure 3b and Figure 3c, respectively, which are
written in the core calculus (§3.1). To translate the model " from the surface syntax to the core
calculus, we simply drop the labels of latent variables. The rest of the section focuses on the
translation of the guide � .

The translation of guide� consists of two stages. In the �rst stage, given a model coroutine" in
the surface syntax, we translate it to a template �templ for guide coroutines where each expression
4 inside any sampling command sample(4) is left blank. In the second stage, each 4 is �lled with
either concrete distributions or keep (i.e., the old value is reused).
The �rst stage of the translation is guided by a judgment

� ¢ " ; �templ, (3.10)

where � is a set of channels," is a model coroutine, and �templ is a template for guide coroutines.
The set � of channels is either {0} or {0, 1}, where channel 0 connects the guide � and model"
and channel 1 connects the current guide� and its previous guide (Figure 5). Thus, the set� tracks
whether the old trace is present or not. The judgment (3.10) means that, if channels� are accessible
to a guide coroutine, the model " is translated from the surface syntax to the template �templ.
Given a collection D" of procedure de�nitions for the model " , we translate each procedure
fix(5 .G .<) ∈ D" to two versions: (i) fix(50 .G .<0) such that {0} ¢< ;<0 and (ii) fix(50,1 .G .<0,1)

such that {0, 1} ¢< ;<0,1 .
Figure 7 shows inference rules for the judgment (3.10). The rule TR:Sample is for the sampling

command samplerv{a}(@E, 4) when the channel 1 is present (i.e., the old trace is accessible). Here,
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TR:Ret

� ¢ ret(4 ) ; ret(4 )

TR:Bnd
� ¢<1 ;<′1 � ¢<2 ;<′2

� ¢ bnd(<1;G.<2 ) ; bnd(<′1;G.<
′
2 )

TR:Call

� ¢ call(5 ;4 ) ; call(5ÿ ;4 )

Eold is a fresh label of a latent variable

{0,1} ¢ samplerv {a} (@E, 4 ) ; bnd(oldsample; Eold .sample(□Ĭ ) )
TR:Sample

TR:Sample:A

{0} ¢ samplerv {a} (@E, 4 ) ; sample(□Ĭ )

TR:Sample:Obs
obs ∉ �

� ¢ samplesd{obs} (4 ) ; ret(triv)

TR:Cond
{0,1} ¢<ğ ;<ğ,1 {0} ¢<ğ ;<ğ,2 (8 = 1, 2)

{0,1} ¢ cond(4 ;<1;<2 ) ;

cond(★; oldcond(<1,1;<1,2 ) ; oldcond(<2,1;<2,2 ) )

TR:Cond:A
{0} ¢<1 ;<′1 {0} ¢<2 ;<′2

{0} ¢ cond(4 ;<1;<2 ) ; cond(★;<′1;<
′
2 )

Fig. 7. Inference rules for the translation of the lightweight surface syntax to the core calculus.

@E is a label of a latent variable. The resulting command, bnd(oldsample; Eold .samplesd{a}(□E)), re-
ceives the old value, binds it to a fresh variable Eold, and then draws a sample from □E , which is to be
�lled later. The rule TR:Sample:A applies to the sampling command samplerv{a}(@E, 4) when the
channel 1 is absent. The rule TR:Sample:Obs applies to the sampling command samplesd{obs}(4),
which samples an observed variable and sends it on channel obs. Because guides do not involve
observed variables, we translate this sampling command to the no-op command ret(triv). Fi-
nally, the rule TR:Cond translates the conditional command cond(4;<1;<2) in the model" to a
doubly-nested conditional command cond(★; oldcond(<1,1;<1,2); oldcond(<2,1;<2,2)) for the guide
template.
In the second stage of the translation, for every sampling command sample(□E) appearing in

the template �templ, we �ll □E with either a distribution 4 or keep, according to the guide � in
the surface syntax. If the guide � contains resample{0}(@E, 5 ), where function 5 takes in latent
variables’ old values and returns a distribution, then every occurrence of □E in the template�templ

is replaced with a distribution 5 Eold,1 · · · Eold,= , where Eold,1, . . . , Eold,= are variables representing the
latent variables’ old values. Here, we assume that these variables are in the scope of sample(□E).
Conversely, if the guide � contains resample_if_none{0}(@E, 5 ), we replace each occurrence
of □E in the template with either (i) a distribution 5 Eold,1 · · · Eold,= if 1 ∉ � (where � is the set of
channels in the judgment (3.10) of sample(□E)); or (ii) keep otherwise.
To improve programmability of our system, we use several constructs that aim to simplify the

work�ow. Firstly, in addition to the full syntax of the core calculus (§3), we provide the lightweight
surface syntax (§3.4) that makes it easier to write guide programs when the full expressiveness of the
core calculus is not needed. Secondly, the operational semantics of our PPL is conceptually simple:
it extends the semantics of Wang et al. [52] with one extra channel 18 connecting the previous and
current guide coroutines (Figure 5). Thirdly, the guide-type system automatically infers the guide
types of guide coroutines, and their structural type equality with a model coroutine’s guide type is
also checked automatically (§4.2). Thus, the type system requires no user interaction, though some
understanding of the type system’s details may be needed to debug guide programs.

4 Type-Equality Checking

We check type equality of guide types (while disregarding their coverage annotations) in two places.
First, in type inference, we check that the two branches of a conditional command cond(★;<1;<2)

have equal guide types (§3.3). Second, after inferring the guide types of a model" and a guide � ,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 308. Publication date: October 2024.



308:18 Long Pham, Di Wang, Feras A. Saad, and Jan Ho�mann

we check that they have equal guide types. Otherwise, with unequal guide types, they may cause
communication errors (e.g., deadlocks) at runtime, resulting in unsound probabilistic inference.

4.1 Context-Free Guide Types

Guide types are said to be regular if they encode regular (tree) languages that can be recognized by
�nite-state (tree) automata [14, 16, 40]. For example, a guide type) [- ] v ℝ' (- N) [- ]) is regular
because, as we traverse the type and unroll recursion, we encounter �nitely many syntactically
di�erent types (i.e., subtrees [40, Section 21.7]).

Type-equality checking of guide types is straightforward if they are regular. Because regular guide
types can be encoded as �nite-state (tree) automata, the type-equality problem can be reduced to
the bisimilarity-checking problem between two �nite-state (tree) automata. Bisimilarity means two
given types, viewed as transition system, can always make the same transitions to their next states
in lockstep. To ensure termination of bisimulation, we must detect a cycle, which is straightforward
because we can only ever visit �nitely many states during the bisimulation.

The guide-type framework [52] admits more types than regular types. For example, a guide type
) [- ] v ℝ ' (- N) [) [- ]]) is non-regular. As we traverse the type ) [- ] and expand recursion,
it yields in�nitely many types (e.g., ) [- ],) [) [- ]], . . .). Furthermore, a guide type ) [- ] is said
to be context-free because it can be encoded as a context-free process, which can have in�nitely
many states. Context-free guide types are critical for expressing a number of Bayesian-inference
problems; e.g., probabilistic context-free grammars (PCFG) [26].

We now formally de�ne type equality of guide types. Given a guide type � and a collection T of
type de�nitions, let unfoldT (�) denote the operation of unfolding type � [13]:

typedef () .- .�) ∈ T

unfoldT () [�]) = unfoldT (�[�/- ])

� ≠ ) [_]

unfoldT (�) = �
.

In contrast to Wang et al. [52], which treats guide types iso-recursively, this work treats guide
types equi-recursively. It is a widely adopted convention in the literature of session types [13, 15,
47, 49] to interpret session types—on which guide types are built—equi-recursively. Under the
equi-recursive interpretation, structural type equality is de�ned by type bisimilarity [13, 47].

De�nition 4.1 (Type bisimulation). Let Type be the set of closed guide types. A binary relation
' ¦ Type × Type is a type bisimulation if and only if (�, �) ∈ ' implies:

• If unfoldT (�) = g '�′, then unfoldT (�) = g ' �′ and (�′, �′) ∈ '.
• If unfoldT (�) = �1 N�2, then unfoldT (�) = �1 N �2 and (�8 , �8 ) ∈ ' for 8 ∈ {1, 2}. The case
of unfoldT (�) = �1 ��2 is de�ned analogously.
• If unfoldT (�) = 1, then unfoldT (�) = 1.

De�nition 4.2 (Guide type equality). Two closed guide types� and � are equal (denoted by� = �)
if and only if there exists a type bisimulation ' such that (�, �) ∈ '.

4.2 Bisimilarity Checking

Challenge of in�nite-state bisimulation. It is a non-trivial challenge to algorithmically check
bisimilarity between two guide types because they generally correspond to in�nite-state transition
systems. For example, consider the problem of deciding the bisimilarity between two guide types:

)1 [- ] v ℝ ' (- N)1 [)1 [- ]]) )2 [- ] v ℝ ' (- N)2 [)2 [- ]]) . (4.1)

Suppose we bisimulate )1 [- ] and )2 [- ] and construct a type bisimulation ' that witnesses the
type equivalence. Initially, we place the pair ()1 [- ],)2 [- ]) in the type bisimulation '. Next, we
unfold the pair ()1 [- ],)2 [- ]) and bisimulate it, spawning a new pair ()1 [)1 [- ]],)2 [)2 [- ]]) to be
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included in the type bisimulation '. This pattern continues, resulting in an in�nite sequence of
guide-type pairs to be included in the type bisimulation '.

Context-free processes. To algorithmically decide type equality of guide types, we reduce the
problem to bisimilarity checking of so-called context-free processes that simulate context-free
grammars. We formally de�ne context-free grammars and processes as follows.

De�nition 4.3 (Context-free grammar in Greibach normal form). A context-free grammar is a four-
tuple� = (+ ,) , %, (), where (i)+ is a �nite set of variables; (ii)) is a �nite set of terminal symbols;
(iii) % ¦ + × (+ ∪) )∗ is a �nite set of production rules; and (iv) ( ∈ + is the starting variable. The
context-free grammar � is said to be in Greibach normal form (GNF) if every (-, U) ∈ % satis�es
U ∈ )+ ∗. Every context-free grammar can transformed into GNF.

De�nition 4.4 (Context-free process). A process is a transition system ((,�,→, U0), where (i) ( is
a (possibly in�nite) set of states; (ii) � is a �nite set of actions; (iii)→ ¦ ( ×� × ( is a transition
relation; and (iv) U0 ∈ ( is the initial state. With a context-free grammar (+ ,) , %, () in GNF, we
associate the process (+ ∗,) ,→, (), where there are no transitions from n (i.e., the empty string),

and -f
0
−→ Uf if and only if (- → 0U) ∈ % . Such a process is called a context-free process.

Translation from guide types to processes. Consider a closed guide type �main together with a
�nite set T of type de�nitions of the form typedef () .- .�). We translate T to rules of a context-
free grammar/process and �main to a string of variables (i.e., the initial state of the context-free
process). For each type de�nition typedef () .- .�) ∈ T , we assume � does not contain 111. This is a
valid assumption in our setting because any typedef () .- .�) inferred by the guide-type-inference
algorithm (§3.3) for a procedure de�nition fix(5 .G .<) never introduces 1.

In each type de�nition typedef () .- .�), we preprocess � such that the type de�nition becomes

) [- ] v g ')1 [· · ·)= [- ] · · · ], or (4.2)

) [- ] v )1 [· · ·)= [- ] · · · ] ⋄)
′
1 [· · ·)

′
< [- ] · · · ] where ⋄ ∈ {N,�}, (4.3)

where )1, . . . ,)=,)
′
1 , . . . ,)

′
< are type operators. Any type de�nition ) [- ] v � can be transformed

to the forms (4.2) and (4.3) by introducing fresh type operators, as long as � does not contain 111.

De�nition 4.5 (Translation of type de�nitions). Consider a type de�nition typedef () .- .�) ∈ T in
either of the forms Eqs. (4.2) and (4.3). This type de�nition is translated to a GNF production rule(s)
of a context-free grammar as

() [- ] v g ')1 [· · ·)= [- ] · · · ]) ; {)
g'
−−→ )1)2 · · ·)=} (4.4)

() [- ] v )1 [· · ·)= [- ] · · · ] ⋄)
′
1 [· · ·)

′
< [- ] · · · ]) ; {)

⋄true
−−−→ )1 · · ·)=,)

⋄false
−−−→ ) ′1 · · ·)

′
<}, (4.5)

where ⋄ ∈ {N,�} in Eq. (4.5). Type operators ),)8 ,)9 (8 = 1, . . . , = and 9 = 1, . . . ,<) on the right-
hand sides of Eqs. (4.4) and (4.5) are treated as variables of the context-free grammar. To obtain all
production rules of the context-free grammar, we perform the above transformation to each type
de�nition in T and aggregate the outputs.

The translation of a closed guide type�main works similarly. First, it is transformed to a guide type
)1 [· · ·)= [111] · · · ]. It is then translated to a word )1 · · ·)= , where )1, . . . ,)= are treated as variables
of a context-free grammar. The result is used as the initial state of a context-free process.

Bisimilarity checking of context-free processes. The seminal work by Hirshfeld et al. [21] shows
that we can check bisimilarity between context-free processes in polynomial time, provided that
we impose one additional restriction: the context-free processes have �nite norms.
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De�nition 4.6 (Norm). Consider a context-free process induced by a context-free grammar
� = (+ ,) , %, (). The norm of a word U ∈ + ∗ is the minimum number of transitions necessary to
reach the empty string n . A context-free process is said to be normed if if all states have �nite
norms.

Because traces must be �nitely long [52], we require guide types to have �nite norms as well. For
example, an in�nite-norm guide type ) [- ] v ℝ ') [) [- ]] should be rejected in the coroutine-
based programmable inference because programs with such a guide type produce in�nitely long
traces of ℝ-typed samples in all execution paths. Finite norms are critical for polynomial-time
complexity. Without this assumption, although bisimilarity checking remains decidable [10], its
complexity becomes EXPTIME-hard [27] and 2-EXPTIME (double exponential) [25].

Theorem 4.7 (Polynomial-time checking of guide-type eqality). Given two guide types �1

and �2, if they have �nite norms, their equality can be checked in polynomial time.

Theorem 4.7 for polynomial-time type-equality checking is novel considering the fact that guide
types build on context-free session types, whose type equality is EXPTIME-hard. Polynomial-time
equality checking for guide types is enabled by the crucial di�erence between guide types and
session types: the former is required to have �nite norms, while the latter is not. Our contribution
in this work is to spot this critical di�erence, show how to translate guide types to context-
free processes with �nite norms, and thereby conclude that guide-type equality is decidable in
polynomial time.3

5 Coverage Checking

To verify the model-guide compatibility, in addition to the type equality between the model and
guides, we check the coverage of random variables: they are each freshly sampled by some guide.

5.1 Problem Statement

We introduce the coverage-checking problem of a sequential composition of well-typed guide
coroutines�1, . . . ,�= . For each 8 = 1, . . . , =, channel 08 connects model" and guide�8 , and channel
18 connects guides �8−1 and �8 (Figure 5). For 8 = 1, . . . , =, let �8 be the coverage-annotated guide
type of channel 08 such that ∀1 f 8, 9 f =. |�8 | = |� 9 | and de�ne � = |�8 | [�/N] (for any 8), where
|�8 | is the result of removing coverage annotations from �8 . Suppose we have for some functional
type g8

·;08 : �8 , 1 : � ¢ �8
.∼. g8 ;08 : 111, 1 : 111 8 = 1, . . . , =. (5.1)

The coverage-checking problem asks the following: for any initial trace f0 : � with a positive
density in the model" (Eq. (3.3)) and any desirable �nal trace f= : � also with a positive density in
the model" (Eq. (3.5)), can we have

·; {08 : f8 , 18 : f8−1};&empty ¢ �8 ó
Fă,ğ E�,8 ; {0 : [ ], 1 : [ ]};&empty (8 = 1, . . . , =) (5.2)

for intermediate traces f8 : � (8 = 1, . . . , = − 1), positive densitiesF�,8 > 0 (8 = 1, . . . , =), and output
values E�,8 (8 = 1, . . . , =)? If so, the Markov chain induced by the guides �1, . . . ,�= is irreducible,
which is a key soundness ingredient of multiple-block MH [41, 48].

As described in §3.2, each guide coroutine is followed by the MH acceptance routine. Guide �8

proposes a new candidate trace f∗8 , and it is accepted with probability min{A8 , 1}, where ratio A8 is
de�ned in Eq. (3.7). In the formulation of the coverage-checking problem (Eq. (5.2)), without loss of
generality, we focus on the case where every acceptance routine accepts the newly proposed trace
f∗8 . In our framework, as long as the old trace f8−1 has a positive density in the model" (Eq. (3.5)),

3The original paper [21] shows a$ (=13 )-time algorithm, where = is the size of the input context-free grammar. [29] later

improves the asymptotic complexity to$ (=8polylog(=) ) .
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@G : Rī

@~1 : Rī @~2 : Rę

@I1 : Rę @I2 : Rī

(a) Guide �1.

@G : Rę

@~1 : Rę

@I1 : Rę

@~2,@I2 : Rī

(b) Guide �2.

@G : Rī

@~1 : Rī @~2 : Rī

@I1 : Rī @I2 : Rę

(c) Guide �3.

Fig. 8. Mismatch in the control flows of guide programs. Guide �2 has a di�erent control-flow graph from

guides �1 and �3, but they all have equal guide types (ignoring their coverage annotations).

the acceptance routine is guaranteed to accept the proposed trace f∗8 with a positive probability
(Corollary A.8). Also, if the MH acceptance routine retains the old trace f8−1, we can simulate this
e�ect by setting trace f∗8 to f8−1, which is possible for any well-typed guide program.

5.2 Technical Challenge

A naïve solution to coverage checking is to verify that the superposition of coverage-annotated
guide types�1, . . . , �= covers all random variables. However, this solution fails because old samples
of a random variable can be reused for another random variable on a di�erent execution path.

To demonstrate the issue, consider a sequential composition of guides�1,�2,�3 whose control
�ows are illustrated in Figure 8. Label @ℓ : ℝ2 means random variable @ℓ is covered (i.e., freshly
sampled) and @ℓ : ℝD means random variable @ℓ is uncovered (i.e., old sample is reused). In
guides �1 and �3, the two branches of a conditional command remain diverged, while in guide
�2, the two branches join back after temporary divergence. This is because guide �2 has code
bnd(cond(★;<1,1;<1,2);G .<2), where commands<1,1 and<1,2 join back before command<2. The
three guides have coverage-annotated guide types �1, �2, �3, respectively, where

�1 v ℝD 'N

{

ℝD 'ℝ2 ' 111,

ℝ2 'ℝD ' 111

}

�2 v ℝ2 'N

{

ℝ2 'ℝD ' 111,

ℝ2 'ℝD ' 111

}

�3 v ℝD 'N

{

ℝD 'ℝD ' 111,

ℝD 'ℝ2 ' 111

}

. (5.3)

The superposition of Eq. (5.3) covers all random variables: as we bisimulate Eq. (5.3) in lockstep,
every random variables is covered by at least one of the three guides. However, this is a pitfall:
the sequential composition of �1,�2,�3 fails to generate some traces that model" can generate.
Consider an initial trace f0 = [E0,1, dir (false), E0,3, E0,4] for some �xed values E0,1, E0,3, E0,4 ∈ R.
Ideally, the sequential composition of guides should be able to generate any trace

f3 ∈ {[E1, dir (E2), E3, E4] | E1, E3, E4 ∈ R, E2 = " (E1)} (5.4)

with a positive density, where" (E1) ∈ {true, false} denotes the branch chosen by model" given
sample E1 ∈ R for random variable @G . Suppose (roman*) guide �1 takes the second branch,
(roman*)�2 takes the �rst branch, and (roman*)�3 also takes the �rst branch because it reuses the
previous sample E1 freshly sampled by �2. Consequently, guide �8 generates trace f8 (8 = 1, 2, 3):

f1 = [E0,1, dir (false), E3, E0,4] f2 = f3 = [E1, dir (true), E3, E0,4] . (5.5)

Trace f3 still contains sample E0,4 from the initial trace f0. Therefore, we cannot generate every
trace from the set in Eq. (5.4) with a positive density, independently of the initial trace f0.
The root problem is that although �1 and �2 have di�erent control �ows, their guide types do

not re�ect this di�erence. Guide �2 diverges from the old trace f1 after@G . But guide �2 regains
access to trace f1 after the two branches in�2 join back. Interestingly, guide�2 now reuses the old
sample E0,4 in f1, which is originally for random variable @I2, for random variable @~2. Thus, old
samples can later be reused for di�erent random variables in di�erent branches. So in coverage
checking, it is not su�cient to examine the superposition of coverage-annotated guide types.
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C:Call
fix(5 .G .<) ∈ Dă A ¢<[4/G ] : (�Ĕ , B)

A ¢ call(5 ;4 ) : () [- ], B)

C:Sample:Any
∀8 ∈ I.gğ = gę

{gğ '�ğ | 8 ∈ I} ¢ sample(_) : (gę '-, {�ğ | 8 ∈ I})

4 : dist(g )

{gğ '�ğ | 8 ∈ I} ¢

sample(4 ) : (gę '-, {�ğ | 8 ∈ I})

C:Sample:Dist
∃8 ∈ I.gğ = gī

{gğ '�ğ | 8 ∈ I} ¢

sample(keep) : (gī '-, {�ğ | 8 ∈ I})

C:Sample:Keep

{�ğ,1 | 8 ∈ I} ¢<1,1 : (�1,Ĕ , B1 ) {�ğ,2 | 8 ∈ I} ¢<2,1 : (�2,Ĕ , B2 )

{�ğ,1 N�ğ,2 | 8 ∈ I} ¢ cond(★; oldcond(<1,1;<1,2 ) ; oldcond(<2,1;<2,2 ) ) : (�1,Ĕ N�2,Ĕ , B1 ∪ B2 )
C:Cond

Fig. 9. Key rules for bisimulating guide types alongside commands in the coverage-checking algorithm.

5.3 Coverage-Checking Algorithm

Key idea. To overcome the limitation described in §5.2, we propose a coverage-checking algorithm
that reshapes a guide type according to the control �ow of a guide program. In the example of
Figure 8, we start with a fully uncovered guide type�0 v ℝD ' ((ℝD 'ℝD '111)N (ℝD 'ℝD '111)). We
bisimulate guide type �0 alongside the code of guide �1, updating coverage annotations whenever
we encounter sample(4) in the code. This results in coverage-annotated guide type �1 (Eq. (5.3)).
Next, we bisimulate guide type �1 alongside the code of guide �2. During the bisimulation, when
the two branches of �2 merge back, we also merge the coverage-annotated base types@~2 : ℝ2

and @I2 : ℝD in guide type �1, yielding ℝD because it is their supertype. This results in a guide
type �2 (Eq. (5.3)). Finally, we bisimulate guide type �2 alongside the code of �3, obtaining

�′3 v ℝ2 ' ((ℝ2 'ℝD ' 111) N (ℝ2 'ℝ2 ' 111)) . (5.6)

Guide type �′3 in Eq. (5.6) correctly indicates that random variable @~2 may be uncovered.

Bisimulation of types and commands. To formalize the idea of bisimulating a guide type (and
more generally a set A of guide types) alongside command<, we introduce a judgment

A ¢< : (�- ,B), (5.7)

where A is a set of input guide types, �- is an output guide type containing type variable - , and
B is a set of continuation guide types after the bisimulation. The judgment (5.7) means, given a
set A of input guide types, as we bisimulate all guide types in A and command< in lockstep and
update coverage annotations, we obtain an output guide type �- , where type variable - stands for
a continuation guide type, and a set B of continuation guide types.

Figure 9 lists key rules de�ning judgment (5.7). The rule C:Sample:Any applies to both sample(4)

for a distribution expression 4 and sample(keep). The rule states that, if all guide types in the input
set {g8 ' �8 | 8 ∈ I} cover the random variable, then it remains covered in the result g2 ' �. In
the rule C:Sample:Dist, if a guide draws a fresh sample, the random variable is deemed covered
in the result. Conversely, the rule C:Sample:Keep stipulates that, if the input set of guide types
contains an uncovered type and the sampling command reuses an old value, the random variable
is uncovered. The rule C:Call replaces a procedure call with the procedure de�nition. The rule
C:Cond states that, for a conditional command, we consider commands<1,1 (i.e., model " and
the previous guide both take the �rst branch) and<2,1 (i.e., model" and the previous guide take
the second branch). The overall set of continuation guides is the union B1 ∪ B2. It is unnecessary
to consider commands<1,2 and<2,2 because they are disallowed from calling sample(keep) and
hence always draw fresh samples.

Repeated bisimulation. The coverage-checking algorithm works as follows. Given a sequential
composition of well-typed guides�1, . . . ,�= , let 08 (8 = 1, . . . , =) be the channel connecting guide�8
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and model" . Let � be the unannotated guide type of all channels 01, . . . , 0= , and �0 be the coverage-
annotated guide type obtained from � by annotating all random variables with subscript D. We �rst
bisimulate the fully uncovered guide type �0 alongside guide�1, resulting in {�0} ¢ �1 : (�1,- , {111}).
Next, we bisimulate �1 v �1,- [111/- ] for guide �2, repeating this step for all subsequent guides.
Once we obtain the �nal guide type �= , we check if it is fully covered.
Theorem 5.1 states the soundness of the coverage-checking algorithm.

Theorem 5.1 (Soundness of the coverage-checking algorithm). Consider a sequential

compositions of well-typed guides �1, . . . ,�= . Channel 08 (8 = 1, . . . , =) connects guide �8 and model

" , and channel 18 (8 = 1, . . . , =) connects guides �8 and �8−1. For each 8 = 1, . . . , =, suppose

·;08 : �8 , 18 : � ¢ �8
.∼. g8 ;08 : 111, 18 : 111, (5.8)

where coverage-annotated guide types �8 and unannotated guide types � satisfy ∀1 f 8 f =. � = |�8 |.

Let �0 be a fully uncovered coverage-annotated guide type obtained from �. Suppose

{�8−1} ¢ �8 : (�8,- , {111}) �8 v �8,- [111/- ] 8 = 1, . . . , =. (5.9)

If �= is fully covered (i.e., all random variables are marked with subscript 2), then the Markov chain

induced by the sequential composition of guides �1, . . . ,�= is irreducible.

Implementation and heuristic. To algorithmically compute guide type �- and set B in Eq. (5.7),
we incrementally construct a typing tree bottom-up according to the rules in Figure 9. Every time
we apply the rule C:Call for a procedure call call(5 ; 4), we record the pair (5 ,A), which are used
to detect a cycle. If guide types are regular (i.e., they have �nitely many states), we are guaranteed
to detect a cycle because there can only be �nitely many pairs (5 ,A). However, if the guide types
are context-free with in�nitely many states (§4.1), then the algorithm may diverge.

To prevent the divergence caused by in�nite-state context-free guide types, we can replace the
rule C:Call with a heuristic rule for procedure calls:

C:Call:Heuristic
A = {)8 [�8 ] | 8 ∈ I} {)8 [111] | 8 ∈ I} ¢ call(5 ; 4) : (�- , {111}) )5 ,A is a fresh type operator

A ¢ call(5 ; 4) : ()5 ,A [- ], {�8 | 8 ∈ I})
.

The ruleC:Call:Heuristic states that, if the setA of input guide types has the form {)8 [�8 ] | 8 ∈ I},
we split it into A1 v {)8 [111] | 8 ∈ I} and A2 v {�8 | 8 ∈ I}. We then bisimulate A1 alongside
command call(5 ; 4), ensuring that the output set of continuation guide types is {111}. This heuristic
assumes that each guide type)8 [111] (8 ∈ I) exactly matches the control �ow of procedure 5 . Because
the rule C:Call:Heuristic matches a procedure call with a set of the form {)8 [111] | 8 ∈ I}, of
which there are �nitely many, the coverage-checking algorithm eventually terminates. The rule
C:Call:Heuristicworks for in�nite-state context-free guide types when all guides�1, . . . ,�= have
the same code structure with respect to their procedure-call sites: all guides call procedures in
the same sites within code. However, if some procedures inline a procedure call while others do
not, the heuristic C:Call:Heuristic no longer works, because some guide types in the set A of
input guide types will not have the form )8 [�8 ]. Thus, the coverage-checking algorithm with the
heuristic is not complete, but it does not a�ect the soundness of coverage checking (Theorem 5.1).

6 Evaluation

Implementation. We implemented in OCaml (i) a type-inference algorithm (with equality check-
ing) for individual guides and (ii) a coverage-checking algorithm for sequentially composed guides.
For type inference, we have extended the algorithm from [52], which only supports nominal

type equality, with a saturation-based structural-type-equality checking algorithm for context-free
guide types with �nite norms [22] (§4). Its time complexity is $ (=4E), where = is the overall size of
type de�nitions and E is the maximum norm of type operators [22]. This is not a polynomial-time
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Table 1. Experiment results of guide-type inference and coverage checking of 28 benchmark programs.

Type Inference Coverage Check

Program Description Guide Type LOC Time (ms) Prior Work Match Mismatch Time (ms)

branching Random control �ow [Anglican] Finite 46 1.33 6 True Pos. True Neg. 0.46
coordination Coordination game [Anglican] Finite 24 0.19 6 True Pos. True Neg. 0.34
drill Oil wildcatter problem [Anglican] Finite 56 0.17 6 True Pos. True Neg. 0.37
ex-1 Ex. 1 [52] Finite 42 1.31 6 True Pos. True Neg. 0.46
gaussian Gaussian with unknown means [Anglican] Finite 20 0.16 6 True Pos. True Neg. 0.46
gbm Geometric Brownian motion [Anglican] Finite 35 0.25 6 True Pos. True Neg. 0.52
gda Gaussian discriminant analysis [Anglican] Finite 40 1.86 6 True Pos. True Neg. 3.17
gmm Gaussian mixture model [Anglican] Finite 75 4.73 6 True Pos. True Neg. 7.71
grw Gaussian random walk [Anglican] Finite 24 0.17 6 True Pos. True Neg. 0.74
hmm Hidden Markov model [Anglican] Finite 76 2.56 6 True Pos. True Neg. 7.21
kalman Kalman �lter [Anglican] Finite 72 4.44 6 True Pos. True Neg. 7.54
kalman-chaos Kalman for chaotic attractors [Anglican] Finite 114 5.86 6 True Pos. True Neg. 5.68
lr Bayesian linear regression [Anglican] Finite 36 0.19 6 True Pos. True Neg. 1.15
run-factory Beta-binomial model [Anglican] Finite 20 0.13 6 True Pos. True Neg. 0.61
scientists Posterior estimation with Gaussians [54] Finite 40 0.27 6 True Pos. True Neg. 0.52
seq Non-recursive sequence [52] Finite 22 0.23 6 True Pos. True Neg. 0.46
sprinkler Bayesian network [Anglican] Finite 26 0.14 6 True Pos. True Neg. 0.43
user-behavior Dishonest form �lling [Anglican] Finite 64 1.22 6 True Pos. True Neg. 3.17
vae Variational autoencoder [Pyro] Finite 48 4.20 6 True Pos. True Neg. 22.39
weight Unreliable weight [Pyro] Finite 18 0.26 6 True Pos. True Neg. 0.70
aircraft Aircraft detection [Anglican] Regular 117 6.19 : True Pos. True Neg. 5.96
iter Regular iteration [52] Regular 47 2.01 : True Pos. True Neg. 0.54
marsaglia Marsaglia algorithm [Anglican] Regular 76 3.51 : True Pos. True Neg. 5.13
ptrace Poisson trace [Anglican] Regular 47 1.49 : True Pos. True Neg. 0.40

ex-2 Ex. 2 [52] Context-Free
78 4.77 : True Pos. True Neg. 4.70
93 15.48 : False Neg. True Neg. 3.26

diter Double iteration [52] Context-Free
52 1.48 : True Pos. True Neg. 0.57
62 2.09 : False Neg. True Neg. 0.49

gp-dsl Gaussian process DSL [52] Context-Free
242 879.53 : True Pos. True Neg. 4.71
261 2487.91 : False Neg. True Neg. 4.59

recur Context-free recursion [52] Context-Free
71 11.53 : True Pos. True Neg. 16.32
83 15.55 : False Neg. True Neg. 6.35

algorithm, since E can be exponential in = in the worst case. Nonetheless, as long as the maximum
norm is small, this algorithm has better asymptotic complexity than a worst-case polynomial-time
algorithm [21], which has complexity $ (=13). This type-equality checking algorithm can also be
used to verify that model and guide programs have equal guide types.
For coverage checking, starting with a fully uncovered guide type, we bisimulate the coverage-

annotated guide type with each successive guide program to update coverage annotations (§5.3).

Evaluation setup. We evaluate our prototype on 28 benchmark guide programs collected from
[52] and [Pyro, Anglican]. The benchmarks are modi�ed as follows: (i) we add an extra channel
1 through which the guides access old traces and (ii) we split each guide program into multiple
guides, each of which covers some but not all random variables.
Our benchmark set contains 20 programs with non-recursive guide types, 4 programs with

regular recursive guide types, and 4 programs with in�nite-state context-free guide types. Table 2
displays the guide types of these benchmarks. Each context-free benchmark has two versions: (i) all
guides in the sequential composition have aligned code structures with respect to procedure calls
and (ii) some of the guides’ code structures are misaligned. For each benchmark (and each of the
two versions of a context-free benchmark), we consider two kinds of sequentially composed guides:
one where the composition is fully covered and another where the composition is not fully covered.

Results. Our goal is to evaluate the e�ectiveness of the type-inference and coverage-checking
algorithms. Table 1 shows the experiment results on the 28 benchmark guide programs. Context-
free benchmarks each have two rows in Table 1. The top row is the version where all guides in the
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Table 2. Guide types of the 28 benchmarks. The notation g3 expands to g ' · · · ' g with 3 many g ’s. The

functional type tensor(g ; [31, . . . , 3=]) denotes a tensor of the element type g and dimensions [31, . . . , 3=].

The functional type simplex[3] denotes a 3-dimensional simplex.

Program Guide Types

branching ℕ ' (111 N ℕ ' 111)

coordination ā ' ā ' 111

drill ℕ3 ' 111

ex-1 ℝ+ ' (111 N ℝ(0,1) ' 111)

gaussian ℝ ' 111

gbm ℝ ' 111

gda tensor(ℝ; [3] )2 ' tensor(ℝ; [2] ) ' 111

gmm simplex[3] ' tensor(ℝ; [2; 2] )6 ' ℕ100
3
' 111

grw ℝ 'ℝ+ ' 111

hmm ℕ
17
3
' 111

kalman tensor(ℝ; [2] )101 ' 111

kalman-chaos ℝ
2
(0,1)
'ℝ153 ' 111

lr ℝ
3 'ℝ+ ' 111

run-factory ℝ(0,1) ' 111

scientist ℝ 'ℝ7
(0,1)
' 111

seq ℝ
2 ' 111

sprinkler ā
2 ' 111

user-behavior ℕ
2 ' ā6 ' 111

vae tensor(ℝ; [50] )256 ' 111

weight ℝ ' 111

aircraft ℕ ')1 [111] with)1 [- ] v (ℝ ' ℕ ')2 [)1 [- ] ] ) N 111 and)2 [- ] v (ℝ ')2 [- ] ) N 111

iter ) [111] with) [- ] v 111 N (ℝ ') [- ] )

marsaglia ) [111] with) [- ] v ℝ(0,1) 'ℝ(0,1) ' (111 N) [- ] )

ptrace ) [111] with) [- ] v ℝ(0,1) ' (111 N) [- ] )

ex-2 )1 [111] with)1 [- ] v ℝ(0,1) ')2 [- ] and)2 [- ] v ℝ(0,1) ' ( (ℝ+ ' 111) N)2 [)2 [- ] ] )

diter ) [111] with) [- ] v 111 N ℝ ') [) [- ] ]

gp-dsl ) [111] with) [- ] v ā ' ( (ℕ3 ' ( (ℝ+ ') [) [- ] ] ) N) [) [- ] ] ) ) N (ℕ5 ' (ℝ+ 'ℝ+ ' 111 N ℝ+ ' 111) ) )

recur ) [111] with) [- ] v 111 N (ℝ ') [ℝ ') [ℝ ') [111] ] ] )

composition have the aligned code structure with respect to procedure call sites. The bottom row
is where the guides have misaligned code structures.

In the Guide Type column, “Finite” refers to non-recursive guide types; e.g.,� v ℕ'(111N (ℕ'111))

in the benchmark branching. “Regular” refers to regular recursive guide types; e.g.,� v 111N (ℝ'�)

in the benchmark iter. “Context-free” refers to in�nite-state context-free guide types; e.g.,) [- ] v
ℝ(0,1) ' ((ℝ+ ' - ) N ) [) [- ]]) in the benchmark ex-2. The LOC column states the number
of lines of code. The Type Inference columns show (i) the running time of type inference and
(ii) whether type-equality constraints generated during type inference can be veri�ed using syntactic
type-equality checking from Wang et al. [52]. The Cov. Check columns show (i) the output (True
Pos. or False Neg.) for fully covered sequential compositions of guides, (ii) the output (True Neg. or
False Pos.) for uncovered sequential compositions, and (iii) the total running time of checking the
coverage of both the fully covered and uncovered sequential compositions.

For type inference, our algorithm successfully infers guide types for all benchmarks. Generally,
more lines of code in a benchmark lead to longer time for type inference. This is because the
type-inference algorithm traverses the source code to construct typing trees. For the eight regular
recursive and context-free benchmarks, the prior work [52] fails in type inference because syntactic
equality checking cannot verify the type-equality constraints generated by these benchmarks.
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Table 3. Language features supported by various verification methods for checking model-guide compatibility.

Language Feature Trace Types [31] Guide Types [52] Fidelio [32] This Work

General branching : 6 6 6

General recursion : 6 6 6

Reorder variables 6 : 6 :

Sequentially compose guides 6 : : 6

Reuse old samples : : : 6

Structural type equality 6 : : 6

For coverage checking, our algorithm successfully veri�es the full coverage of all non-recursive
and regular recursive benchmarks. For context-free benchmarks, we make use of the heuristic
C:Call:Heuristic (§5.3). If all guides in a sequential composition have the same code structure
with respect to procedure call sites, our algorithm with the heuristic C:Call:Heuristic (§5.3) can
handle it. However, if the guides have misaligned code structures, the heuristic fails, terminating
and returning an error message. Without this heuristic for context-free types, the algorithm would
run forever in the context-free benchmarks. Because our coverage-checking algorithm is sound
(Theorem 5.1), it returns True Neg. for all cases of uncovered sequential compositions.

7 Related Work

Model-guide compatibility in programmable inference. Lee et al. [30] are one of the �rst to develop
static analyses for the model-guide compatibility (i.e., the model and guide have the same set of
random variables in all execution paths) in programmable Bayesian inference. Trace types [31]
characterize the space of possible execution traces. If the model and guide have equal trace types,
they are guaranteed to satisfy (mutual) absolute continuity. Trace types can handle programs where
execution paths may yield di�erent sets of random variables. However, trace types do not support
general (i.e., support-altering and deterministic) branching and recursion, but only stochastic ones.
To address this limitation, Wang et al. [52] design a coroutine-based framework where models
and guides communicate by passing messages as prescribed by guide types. Li et al. [32] study
automatic generation of guide programs for deep amortized inference. They extend trace types [31]
with powerful tree structures and checkpoints for recording branch conditions, thereby enabling
expressive constructs such general branching, recursion, and variable reordering.
Our work considers sequential compositions of guides where each guide can choose between

drawing fresh samples and reusing old samples. This is a more general setting than most of the
aforementioned prior works [30–32, 52]. While trace types [31] o�er a combinator for sequential
composition and their guide programs can take previous traces as input, their approach does
not support recursion or general branching. Our work veri�es model-guide support match of
sequentially composed guides with rich control-�ow structures by combining novel type system
techniques (§3.3 and §4) with an e�cient coverage-checking algorithm (§5.3). Table 3 summarizes
the comparison between the prior and present works on verifying the model-guide compatibility.

PPL veri�cation. Tassarotti and Tristan [45] develop a formally veri�ed compiler ProbCompCert
for a fragment of the Stan PPL [6]. Instead of verifying PPL implementations, we focus on the
veri�cation of programmable inference where guide coroutines are sequentially composed.

Session types. Guide types are inspired by session types. Originally proposed by Honda [23],
session types describe communication protocols of message-passing concurrent programs [5, 43,
49, 51]. Context-free session types [47] extend regular session types with sequential composition.
Nested session types [13] extend session types with prenex polymorphism. Type-equality checking
of context-free types is impractical due to it being EXPTIME-hard [27]. To make context-free
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types practical, Padovani [36, 37] proposes a type-inference algorithm that leverages user-provided
code annotations. Almeida et al. [1] implement a type-equality checking algorithm for context-
free session types. Parameterized algebraic protocols [35] adopt the nominal and iso-recursive
interpretation of context-free and nested session types, thereby achieving linear-time type checking.

Although guide types build on session types, they have a key di�erence. For guide programs to
be sensible, guide types must have �nite norms, while session types may have in�nite norms. This
di�erence allows guide types to admit practical type-equality checking algorithms (§4).

We could reuse the type-equality checking algorithm for context-free session types by Almeida
et al. [1] because context-free types (with possibly in�nite norms) are a generalization of guide
types (with �nite norms). However, because Almeida et al. [1] targets context-free session types, its
algorithm has a di�erent design from the algorithm in Hirshfeld and Moller [22], which speci�cally
targets �nite-norm context-free processes and is implemented in our prototype. Also, the worst-
case complexity of the algorithm by Almeida et al. [1] is theoretically unknown in the setting of
guide types. A key contribution of this article is to show that it is possible to decide structural
type equality of guide types in polynomial time, and we do not intend to argue that a particular
type-equality checking algorithm is superior to others.

Composable probabilistic inference. Many PPLs support rich compositional frameworks for pro-
grammable probabilistic inference [3, 4, 12, 24, 44, 50], including custom proposals for MCMC.
These works do not study the problem of verifying or guaranteeing the correctness of custom
user-written proposals (i.e., model-guide compatibility), which is the central focus of our work.

8 Conclusion

This article has presented a coroutine-based programmable inference framework for sequential
compositions of guide programs where each guide can access and reuse old samples. By translating
guide types to context-free processes with �nite norms, we show that the structural type equality of
guide types is decidable in polynomial time. This enables e�cient type inference and type-equality
checking between the model and guides, which is a key soundness ingredient for the multiple-block
MH (BMH) algorithm. We also present a coverage-checking algorithm that veri�es that sequentially
composed guides freshly samples all random variables, another key soundness ingredient of BMH.
We have implemented and evaluated a type-inference algorithm with structural type equality and
a coverage-checking algorithm, demonstrating their expressiveness and practicality.
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