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ABSTRACT
The East Anatolian fault in Turkey exhibits along-strike rupture segmentation, typically 

resulting in earthquakes with moment magnitude (Mw) up to 7.5 that are confined to indi-
vidual segments. However, on 6 February 2023, a catastrophic Mw 7.8 earthquake struck near 
Kahramanmaraş (southeastern Turkey), defying previous expectations by rupturing multiple 
segments spanning over 300 km and overcoming multiple geometric complexities. We explore 
the mechanics of successive single- and multi-segment ruptures using numerical models of the 
seismic cycle calibrated to historical earthquake records and geodetic observations of the 2023 
doublet. Our model successfully reproduces the observed historical rupture segmentation and 
the rare occurrence of multi-segment earthquakes. The segmentation pattern is influenced by 
variations in long-term slip rate along strike across the kinematically complex fault network 
between the Arabian and Anatolian plates. Our physics-based seismic cycle simulations shed 
light on the long-term variability of earthquake size that shapes seismic hazards.

INTRODUCTION
The East Anatolian fault (EAF) system (Tur-

key) forms a major plate boundary between the 
Arabian and Anatolian plates (Fig. 1), with long-
term slip rates varying from 1 mm/yr to 10 mm/
yr among seven segments on the main strand 
(Fig. 1) that are defined by structural complexi-
ties and inferred historical earthquake rupture 
extents (Duman and Emre, 2013). The EAF is a 
relatively immature fault exhibiting major struc-
tural complexity, including multiple step-overs, 
releasing and restraining bends, branch faults, 
and parallel structures like the Bitlis-Zagros 
fold-and-thrust belt (Duman and Emre, 2013). 
These structures accommodate transpression 
along the Erkenek, Pütürge, and Palu segments 
that parallel the Bitlis-Zagros suture and trans-
tension along the Amanos segment that bounds 
the Karasu trough. As a result of slip trade-off 
within a complex fault network, the long-term 
slip rates along the main strand of the EAF 
may vary along strike. Inferred fault slip rates 
are usually associated with large uncertainties 

(Duman and Emre, 2013; Table S1 in the Sup-
plemental Material1), especially along the south-
ern segments. For example, the slip rate on the 
Pazarcık segment is inferred to be 6.5–7.0 mm/
yr (Reilinger et al., 2006) to ∼10 mm/yr (Aktug 
et al., 2016) from geodetic studies depending on 
modeling assumptions (Text S6; Figs. S7 and 
S8), 9 mm/yr from paleoseismological data 
(Karabacak et al., 2011), and 4.0–4.6 mm/yr 
from geomorphology (Westaway, 2003).

Despite the fault structural immaturity, many 
large earthquakes (magnitude >7) have occurred 
on the EAF during the historical and instrumen-
tal periods. These M 6.7–7.5 earthquakes, with 
the exception of the 1114 CE M > 7.8 earth-
quake (Ambraseys and Jackson, 1998), occupy 
different parts of the EAF main strand, showing 
a clear pattern of rupture segmentation (Fig. 1). 
These ruptures are thought to terminate at struc-
tural complexities along the EAF (Duman and 
Emre, 2013), although the precise rupture 
extents of these historical earthquakes, or even 
the faults they ruptured, are still debated (Duman 
and Emre, 2013; Güvercin et al., 2022).

However, on 6 February 2023, a devas-
tating Mw 7.8 earthquake hit the region near 

Kahramanmaraş, unzipping multiple segments 
over 300 km. Nine hours later, another Mw 7.6 
earthquake ruptured most of the Çardak-Sürgü 
fault. The official death toll reached 60,000, 
making it one of the deadliest earthquakes 
in history. The total estimated economic loss 
exceeds 100 billion U.S. dollars (Dal Zilio and 
Ampuero, 2023). The cause of such a large 
earthquake crossing multiple structural barriers 
is still unknown. Rupture segmentation is likely 
linked to fault geometry (Wesnousky, 2006) and 
variations in frictional properties (Kaneko et al., 
2010), normal stress (Molina-Ormazabal et al., 
2023), or long-term slip rate (Perez-Silva et al., 
2022). Understanding rupture segmentation and 
seismic supercycles on continental transforms 
is vital to seismic hazard evaluation.

We investigated rupture segmentation by 
modeling seismic cycles on the EAF and the 
Çardak fault with three-dimensional (3-D) fault 
geometry. With increasing variation of long-term 
slip rate among segments of the EAF, earthquake 
cycles transition from systematic multi-segment 
ruptures to supercycles with single- and multi-
segment ruptures (Fig. 2A; Fig. S2; Table S3). 
Some of these cycles mimic the historical rupture 
patterns of the EAF, with mostly single-segment 
ruptures and occasional multi-segment earth-
quakes, and some individual events reproduce 
the crustal deformation of the February 2023 
Kahramanmaraş doublet. Our physics-based 
seismic cycle simulations highlight the impor-
tance of heterogeneous long-term slip rates and 
shed light on the long-term variability of earth-
quake size that shapes seismic hazards.

METHODS
We conducted quasi-dynamic seismic cycle 

simulations using the boundary integral method, 
employing the cross-validated code Unicycle 
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(Barbot, 2018, 2019; Jiang et al., 2022). Due to the 
technical difficulty of simulating long earthquake 
cycles on disconnected fault segments (Ozawa 
et al., 2023), we focused on exploring the role of 
heterogeneous long-term slip rate (Fig. 2A). We 
use a smooth fault geometry of the EAF and the 
Çardak fault without abrupt bends or stepovers 
constrained by surface fault traces and seismicity. 
Both faults are modeled down to 20 km depth. The 
EAF is modeled from Antakya to the south of Lake 
Hazar, covering the southernmost four segments: 
the Amanos, Pazarcık, Erkenek, and Pütürge seg-
ments. The Amanos and Pazarcık segments are 
divided into two subsegments with different fault 
strike. The faults are discretized into 1-km-square 
vertical subfaults with smoothly varying strike, 
leading to a total of 10,580 subfaults (Fig. 2B). 
Each subfault is assigned a set of parameters, 
including normal stress, friction parameters, and 
long-term slip rates via back slip (Table S2). The 
long-term loading accumulates only shear stress on 
the faults. We assume the normal stress loading is 
accommodated by off-fault structures. The models 
resolve the cohesive zone width and the nucleation 
size (Text S2) by a factor of at least 4–5. We first 
explore the influence of variability in long-term 
slip rate within the range of reported geodetic and 
geologic slip rates on the isolated EAF. The long-
term slip rates come from a compilation of various 
geological and geodetic studies in the literature 

(Duman and Emre, 2013; Styron and Pagani, 2020; 
Table S1). Several simulations readily align with 
the historical earthquake records (Fig. S3; Tables 
S3 and S4). Starting from models that produce 
both single- and multi-segment ruptures, we then 
add the Çardak fault to the model. Due to the low 
long-term slip rate and the rare occurrence of earth-
quakes on the Çardak fault, it does not disrupt the 
rupture segmentation pattern on the EAF (Fig. 
S10). We vary the slip rate and normal stress to 
reproduce both the historical earthquake record 
and the seismo-geodetic data of the 2023 doublets 
(Barbot et al., 2023; Jia et al., 2023; Mai et al., 
2023; Ren et al., 2024; Xu et al., 2023). For brevity 
herein, we mainly discuss one of the models that 
best reproduces the pattern of paleoearthquakes on 
the EAF and the geodetic observations of the 2023 
Kahramanmaraş and Elbistan earthquakes. Some 
alternative models fit the constraints equally well 
(Fig. S3; Tables S3 and S4).

RESULTS
Historical Constraints: Segmented 
Ruptures and Occasional Multi-Segment 
Ruptures

The preferred model produces supercycles 
of single- and multi-segment ruptures (Fig. 2) 
with magnitudes of partial ruptures approximat-
ing those inferred from the historical earthquake 
record on the EAF (Figs. 2B and 2D). The recur-

rence time of the simulated earthquakes at the cen-
ter of each fault segment varies from ∼200 yr to 
∼1300 yr (Fig. 2D; Fig. S5), consistent with con-
straints from historical records (Fig. 1B) (Duman 
and Emre, 2013), the paleoseismic record at Lake 
Hazar (Hubert-Ferrari et al., 2020), and those 
inferred from seismic catalogs and geodetic strain 
rate (Güvercin et al., 2022). A Mw 6.9 earthquake 
comparable to the 2020 Mw 6.8 Elazig earthquake 
that ruptured part of the Pütürge segment is also 
reproduced in the model (green areas in Figs. 2B 
and 2D). We do not attempt to reproduce every 
detail of historical earthquakes (e.g., exact tim-
ing of occurrence, hypocenter locations) due to 
the nonlinear nature of the modeled system (e.g., 
Gauriau et al., 2023) and aseismic creep near 
segment boundaries as a result of changing slip 
rate or fault orientation, but focus on the overall 
patterns. The simulated ruptures show consistent 
endpoints that coincide with transitions between 
different slip rates and changes in fault orienta-
tion. Alternative models with intermediate varia-
tions in along-strike slip rates also produce both 
single- and multi-segment ruptures with roughly 
consistent endpoints (Fig. 2A; Fig. S3).

Large earthquakes that rupture multiple seg-
ments are occasionally observed with recurrence 
times of thousands of years (Fig. 2D), consistent 
with estimations from the moment budget of 
earthquake cycles (Xu et al., 2023). Although 
some ruptures cross only one barrier, others 
overcome multiple barriers and result in several-
hundred-kilometer-long ruptures, as occurred 
during the Mw 7.8 2023 Kahramanmaraş and 
the 1114 CE large earthquakes.

Geodetic Constraints: Coseismic Deformation 
of the 2023 Kahramanmaraş Earthquake 
Doublet

We select events from the simulations 
that individually resemble the 2023 doublet 
(Fig. 2D; Fig. S3), but they are separated by 
several hundreds of years in time (Table S5) 
instead of 9 hours as observed in nature. The 
slip distribution of the simulated earthquakes 
is in overall agreement with that inferred from 
kinematic inversions of the 2023 doublet using 
geodetic data (Barbot et al., 2023), although 
some differences persist (Fig. 3A). For both 
the observed 2023 and simulated EAF multi-
segment rupture, large slip is observed on the 
Amanos, Pazarcık, and Erkenek segments, with 
peak slip reaching ∼8 m, concentrating on the 
Pazarcık segment. In both observation and simu-
lation, a larger peak slip of ∼10 m is produced 
on the Çardak fault. The larger slip and smaller 
rupture area of the Mw 7.6 Elbistan earthquake 
is consistent with a higher stress drop on the 
Çardak fault. Some notable differences between 
the simulated and observed 2023 earthquakes 
include a slight mismatch in the extent of the 
mainshock rupture near the southern and north-
ern tips, a larger slip amplitude on the northeast 
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Figure 1.  (A) Tectonic setting and historic large earthquakes of the East Anatolian fault (EAF) 
system (Turkey). Surface ruptures are shown as thick solid lines: blue for the Mw∼7.8 event 
and red for the Mw∼7.6 event. Faults are from the GEM database (Styron and Pagani, 2020) 
with the major plate boundaries EAF and North Antatolian fault (NAF) shown in thick pink 
lines. The previously defined segments (Amanos, Pazarcık, Erkenek, etc.) are shown in italics. 
Colored rectangles show the rupture extents of historic earthquakes. DSF—Dead Sea fault. 
(B) Spatiotemporal distribution of historic large earthquakes (Ambraseys and Jackson, 1998; 
Duman and Emre, 2013). The exact rupture extents, and even the fault segments involved for 
some historical earthquakes, are still debated.
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portion of the Çardak-Sürgü fault, and a more 
homogeneous simulated slip distribution for 
both earthquakes. Our slip distribution is also 
consistent with 3-D dynamic rupture models 
(e.g., Wang et al., 2023), although the quasi-
dynamic model prevents discussions on super-
shear ruptures observed on Narlı fault, Pazarcık 

segment, and Çardak fault (Abdelmeguid et al, 
2023; Ren et al., 2024).

We compare the modeled surface displace-
ment field against the geodetic observation 
from high-rate GNSS stations and optical and 
synthetic aperture radar data. The model suc-
cessfully reproduces the first-order patterns of 

the surface displacement field due to the 2023 
doublet (Figs. 3B–3E). The variance reduction 
(Text S3) for GNSS observations for the Mw 7.8 
Kahramanmaraş earthquake and Mw 7.6 Elbi-
stan earthquake reaches 74% and 97%, respec-
tively. The model also explains the synthetic 
aperture radar data with a variance reduction 
ranging from 70% to 80% in the range direction 
and 32%–55% in the azimuthal direction for the 
Sentinel-1 pixel-tracking data, 80%–83% for the 
Advanced Land Observing Satellite-2 (ALOS-2) 
interferograms, and 26% for Sentinel-2, which is 
likely affected by snow coverage (Barbot et al., 
2023) (Table S5). Notably, simulated event pairs 
with rupture extents like the 2023 doublet within 
alternative models also fit the geodetic observa-
tions well, with variance reduction comparable to 
the model shown here in the main text (Table S4).

DISCUSSION
The Role of Varying Long-Term Slip Rate 
Along Strike

Heterogeneous long-term slip rate distribution 
along a fault is common in nature (e.g., Weldon 
et al., 2004). On strike-slip faults, a non-uniform 
slip rate distribution can originate from structural 
complexities such as a change in fault orientation 
(e.g., Li et al., 2023) or the presence of parallel or 
branching faults (e.g., Gauriau and Dolan, 2021). 
This potentially results in neighboring structural 
segments with distinctively different slip rates. In 
contrast, subduction zones often exhibit smoothly 
varying slip rates along strike (DeMets et al., 
1990), due to varying proximity to the Euler pole 
that characterizes relative plate motion.

Our simulation highlights the significant role 
of long-term slip rates on rupture dynamics. 
Variations in long-term slip rates along a fault 
desynchronize the loading of neighboring seg-
ments, placing them in varying states of readi-
ness to rupture at any given time. Spatially vary-
ing levels of initial stress favor complex rupture 
dynamics, with earthquakes of varying sizes and 
irregular recurrence patterns. Better constraints 
on spatially and temporally varying long-term 
slip rate on natural faults may therefore improve 
physics-based estimates of seismic hazard.

The Role of Fault Geometry
Fault geometry is well known to correlate 

with rupture segmentation for strike-slip faults. 
Earthquake rupture endpoints often coincide 
with fault stepovers or bends (King and Nábělek, 
1985). When a fault stepover surpasses 5 km 
in width, it acts as a strong barrier that inhib-
its rupture propagation (Biasi and Wesnousky, 
2016). Numerical studies also find fault bends 
are favorable sites for rupture nucleation and 
termination (Duan and Oglesby, 2005; Ozawa 
et al., 2023; Sathiakumar and Barbot, 2021).

In our simulations, a smooth non-planar 
fault geometry alone is insufficient to account 
for the observed rupture segmentation (Fig. 2C). 

B
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Figure 2.  (A, left) Percentage of multi-segment ruptures over multiple earthquake cycles as 
a function of coefficient of variance (CoV) of slip rate on the Amanos, Pazarcık, and Erkenek 
segments of the East Anatolian Fault (EAF, Turkey). The Pütürge segment is excluded from the 
slip rate CoV calculation because we focus on reproducing a multi-segment rupture like the 
February 2023 Mw 7.8 earthquake that spans the Amanos, Pazarcık, and Erkenek segments. 
The preferred model is highlighted as the yellow diamond. (A, right) Probability density dis-
tribution of CoV of slip rate for groups of models (violin plot) with individual models shown 
by the black dots. Percentage of multi-segment ruptures >60% is characterized as mostly 
multi-segment ruptures (red); 10%-60%: coexistence of multi- and single-segment ruptures 
(purple); <10%: mostly single-segment ruptures (cyan). See Table S3 for details. (B–D) Model 
setup and simulated earthquake cycles on the EAF fault system for the preferred model. (B) 
Fault geometry (mesh), 2023 surface rupture (thick red trace), and long-term slip rates on each 
segment. The rupture areas (1 m coseismic slip contour) of some simulated events are shown 
as colored patches. The colors correspond to Figure 1 to allow easy comparison with obser-
vations. Seg.—segment. (C) Spatiotemporal evolution of slip velocity in multiple earthquake 
cycles on the isolated EAF at 5 km depth (profile PP′ in B) with uniform long-term slip rate of 
7 mm/yr. The rupture extents and hypocenters are marked with bars and stars, respectively. 
(D) Same as in C, but modeling both faults (profiles PP′ and QQ′ in B) with heterogeneous 
long-term slip rates in B. Colored events correspond to those in B and in Figure 1.
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Instead, we observe that the along-strike variation 
in long-term slip rates is required to reproduce 
the observed rupture segmentation (Fig. 2D; Fig. 
S10). However, the influence of geometrical com-
plexities is somewhat subdued in our model due 
to the use of smooth fault bends and the absence 
of stepovers (Delogkos et al., 2023; Howarth 
et al., 2021). Fault step-overs may occasionally 
prevent rupture propagation, setting the condi-

tions for sequences of single- and multi-segment 
ruptures. However, the role of geometrical com-
plexities as potential barriers to ruptures may be 
limited if the step-overs only persist within shal-
low layers. The effects of structural complexity 
and along-strike variations in long-term slip rate 
may be strongly linked, as variations in long-term 
slip rates are associated with fault geometry and 
the complexity of the fault network.

CONCLUSIONS
The along-strike variation of long-term slip 

rates, which arises from kinematic and structural 
complexity within a fault network, plays a crucial 
role in shaping the dynamics of earthquakes, giv-
ing rise to cycles of single- and multiple-segment 
ruptures. The interplay of fault geometry with 
heterogeneous loading within an inter-connected 
fault network shapes a complex recurrence pat-
tern with earthquakes of diverse sizes (Fig. 4). 
Physics-based simulations of the seismic cycles 
may reproduce some first-order characteristics 
including the rupture extent, magnitude, recur-
rence times, and surface displacements of earth-
quakes. Future models with additional physics 
such as wave-mediated stress, migration of 
fluids, and enhanced dynamic weakening may 
reconcile the yet unexplained delayed trigger-
ing of the Çardak event. Integration of realis-
tic constitutive behavior and structural setting 
is key to reproducing the range of earthquake 
sizes and to better estimating the resulting seis-
mic hazards. More near-fault geodetic and geo-
logic constraints on the heterogeneous loading 
and high-quality paleoseismic trench sites that 
provide robust recurrence records may further 
advance understanding of earthquake cycles.
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