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Abstract The constitutive behavior of faults intervenes in virtually every aspect of the seismic phenomenon
but is poorly understood, particularly regarding how effective normal stress affects the boundaries of the
seismogenic zone. Here, we explore the mechanical properties of Pelona schist, Westerly granite, phyllosilicate‐
rich gouge, gabbro, hornblende, lawsonite blueschist, montmorillonite, and smectite in hydrothermal conditions
at various confining pressures and explain the laboratory observations with a physical model of fault friction.
The thermobaric activation of healing and deformation mechanisms explains the boundaries of unstable slip as a
function of slip‐rate, temperature, and effective normal stress for a given lithology. The constitutive law affords
extrapolation of laboratory data in the conditions relevant to seismic cycles throughout the crust, explaining the
focus of large earthquakes in collision, subduction, and continental and oceanic transform settings.

Plain Language Summary An important goal of earthquake physics involves predicting the failure
of rocks under the various physical conditions encountered during the seismic cycle. Here, we analyze
mechanical data for Pelona schist, Westerly granite, phyllosilicate‐rich gouge, gabbro, hornblende, lawsonite
blueschist, montmorillonite, and smectite that reveal how normal stress, temperature, and slip‐rate affect the
frictional properties of rocks. We capture these effects consistently at constant coefficients with a physics‐based
constitutive friction law. The boundaries of the seismogenic zone follow a thermobaric activation, whereby the
transition temperature is a function of pressure. Increasing confining pressure may induce or inhibit velocity‐
weakening behavior, depending on the constitutive properties controlling the healing and deformation
mechanisms. The constitutive model provides an increasingly realistic representation of fault behavior during
seismic cycles applicable to a wide range of tectonic contexts.

1. Introduction
The mechanical behavior of faults is inherently complex, producing distinct transient and steady‐state responses
to small perturbations in normal stress (Linker & Dieterich, 1992; Chen, Niemeijer, & Spiers, 2024; Hong &
Marone, 2005), slip‐rate (Dieterich, 1979; Lockner & Byerlee, 1986), and temperature (Chester, 1994) with
relative magnitudes depending on the ambient physical and kinematic conditions (for example, Blanpied
et al., 1995; den Hartog et al., 2021; Mei et al., 2024; Niemeijer et al., 2016; Okuda et al., 2023; Zhang &
He, 2016). Characterizing the underlying processes that control fault stability under the conditions found in the
brittle crust is key to building increasingly accurate representations of the seismic cycle (for example, Barbot
et al., 2012; Barbot, 2020; Gauriau et al., 2023; Julve et al., 2023; Julve et al., 2025; L. Wang and Barbot, 2020;
Nie & Barbot, 2021; Sathiakumar et al., 2020, 2024; Shi et al., 2020; B. Wang and Barbot, 2023; B. Wang and
Barbot, 2024). The evolution of effective frictional properties with slip‐rate, normal stress, pore‐fluid pressure,
and temperature control the depth extent of the seismogenic zone, the brittle‐to‐flow transition, and overall fault
behavior (for example, Shimamoto, 1986; Noda & Shimamoto, 2010). Extensive laboratory efforts document the
evolution of frictional properties with slip‐rate and normal stress at room or low temperature (for example, Barth
et al., 2013; Collettini et al., 2011; Carpenter et al., 2015; Carpenter et al., 2016; Chen, Affinito, et al., 2024; den
Hartog, Peach, et al., 2012; Kaproth & Marone, 2013; Numelin et al., 2007; Noda & Shimamoto, 2009; Zhang &
He, 2013; A. R. Niemeijer and Collettini, 2014; Rabinowitz et al., 2018; Scuderi & Collettini, 2016, 2018;
Scuderi & Carpenter, 2022). Fewer studies explore the frictional behavior of natural and synthetic gouge in the
range of temperatures found deeper in the brittle crust (for example, Blanpied et al., 1995, 1998; Barbot &
Zhang, 2023; den Hartog et al., 2023; den Hartog, Niemeijer, & Spiers, 2012; King & Marone, 2012; Lei
et al., 2024; Niemeijer et al., 2016; Okuda et al., 2023; Zhang & He, 2016).

Laboratory observations are critical to constraining physical models of fault friction (for example, Aharonov &
Scholz, 2018, 2019; Barbot, 2023, 2024a; J. Chen and Spiers, 2016; Mei & Rudnicki, 2023; Mei & Wang, 2024;
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Shimamoto & Noda, 2014), with a current focus on the slip‐rate and temperature dependence of fault friction
(Barbot, 2022, 2023; Nie & Barbot, 2024) and the thermal activation of the brittle‐ductile transition (Barbot &
Zhang, 2023; Chen et al., 2020; Noda & Shimamoto, 2012). The controlling effect of confining pressure is
increasingly well documented but still poorly understood physically (for example, Brace & Byerlee, 1970; Ikari
et al., 2009; Kurzawski et al., 2016, 2018; Okuda et al., 2021; Saffer & Marone, 2003, and references therein). An
important takeaway is the separate roles of the confining and pore‐fluid pressures (Bedford et al., 2021; Okamoto
et al., 2020; Xing et al., 2019) that cannot simply be combined into effective normal stress.

In this study, we analyze mechanical data for Pelona schist, Westerly granite (Kilgore et al., 1993), phyllosilicate‐
rich mylonitic gouge (Zhang & He, 2016), gabbro (He et al., 2007), hornblende (Y. Liu and He, 2020), lawsonite
blueschist (Sawai et al., 2016), montmorillonite (Mizutani et al., 2017), and smectite (Saffer & Marone, 2003) that
document the thermobaric controls of fault friction for a wide range of temperatures, slip‐rates, and normal stress
with lithologies relevant to fault zones in various tectonic settings. We present the laboratory data for Pelona
schist, hornblende, phyllosilicate, and gabbro gouge in Section 2 and explain the observations with an updated
constitutive model in Section 3. Although the laboratory constraints are less comprehensive for lawsonite
blueschist (Sawai et al., 2016), montmorillonite (Mizutani et al., 2017), Westerly granite (Kilgore et al., 1993),
and smectite (Saffer & Marone, 2003), the model is thoroughly compatible with these observations, as shown in
Section 4. The constitutive framework affords extrapolation of laboratory measurements in the range of condi-
tions found in the crust during seismic cycles, capturing the temperature, slip‐rate, and pressure controls on the
depth of the seismogenic zone in a compact expression with constant parameters. Extrapolation of laboratory data
to the in situ conditions of earthquake nucleation explains the focus of the 1971 Mw 6.6 San Fernando, CA, the
2008 Mw 7.9 Wenchuan, China, and the Blanco transform fault Mw 6 earthquakes, demonstrating the relevance
of the physical model to the collision, continental transform, and oceanic transform tectonic settings.

2. Laboratory Observations
We consider mechanical datasets for Pelona schist, hornblende, phyllosilicate, and gabbro gouge that exhibit
different pressure controls. We first consider a new set of experimental results for Pelona schist gouge. Sample
PLS2, a mafic schist composed dominantly of chlorite and amphiboles, originates from Sierra Pelona, California
(34.57785°N, 118.37073°W), which exposes Late‐Cretaceous, Early Cenozoic underplated sediments from the
Farallon plate flat subduction. Due to their origin and current emplacement, the Pelona schists are relevant to
understanding the dynamics of subduction megathrusts and the deformation of the lower continental crust in
Southern California.

We conduct velocity‐step experiments under triaxial, hydrothermal conditions varying the axial loading rate in
two repeating sequences involving 1.0, 0.2, and 0.04 μm/s conducted at temperatures from 100°C to 500°C by
steps of 100°C and effective normal stress of approximately 100 MPa, 200 MPa, and 300 MPa, including a
constant pore‐fluid pressure of 30 MPa. More details of the triaxial experimental setup can be found in He
et al. (2006). The resulting frictional data (Figure S1 in Supporting Information S1) reveal a complex behavior
dictated by the background slip‐rate, temperature, and normal stress.

We analyze the frictional response using the RSFit3000 methodology (Skarbek & Savage, 2019) using the slip‐
rate and state‐dependent friction law in isothermal, isobaric conditions (Ruina, 1983), providing the evolution of
the direct effect and steady‐state velocity dependence parameters

a =
∂μ

∂ ln V

a − b =
∂μss

∂ ln V
,

(1)

where μ and μss are the friction coefficient and its steady‐state value, respectively, as a function of background
slip‐rate, temperature, and normal stress. The steady‐state parameter is better constrained than the individual
values of a and b due to trade‐offs caused by finite machine stiffness. A frictional response characterized by
a − b < 0 is referred to as steady‐state velocity weakening, a necessary condition for spontaneous nucleation
under isothermal conditions.
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The mechanical data reveal three distinct stability regimes characterized by positive and negative steady‐state
velocity dependence parameters a − b (Figure 1). Steady‐state velocity‐strengthening occurs at low‐
temperature, high slip‐rate, and low normal stress. The steady‐state velocity‐weakening domain is confined to
intermediate conditions. Another velocity‐strengthening domain occurs in high temperature, low slip‐rate, and
high confining pressure conditions, associated with an increase in the direct effect parameter. As the normal stress
increases, the velocity dependence of friction and the temperature range of the velocity‐weakening domain
decrease (Figure 2). The temperatures and slip‐rates bounding the velocity‐weakening domain are functions of the
confining pressure.

Previously published datasets for hornblende (Y. Liu and He, 2020), gabbro (He et al., 2007), and phyllosilicate‐
rich gouge (Zhang & He, 2016) deformed in velocity steps from 100°C to 600°C by steps of 100°C at different
effective normal stresses provide similar constraints (Figure 3, Figures S7, S8, S10, and S11 in Supporting In-
formation S1). For phyllosilicate and gabbro gouge, we process the raw laboratory data to unravel the slip‐rate,
temperature, and pressure controls (Figures S6 and S9 in Supporting Information S1). In all cases, the mechanical
response can be divided into three stability regimes, whereby steady‐state velocity‐weakening friction occurs at
an intermediate range of temperatures. Increasing slip‐rate at low temperatures stabilizes deformation. In contrast,
at high temperatures, high slip‐rates cause unstable embrittlement. The effect of effective normal stress differs for
the various samples. For hornblende, increasing the effective normal stress at high temperatures induces a
transition to the velocity‐weakening regime (Figure 3). For phyllosilicate and gabbro gouge, increasing the
effective normal stress stabilizes deformation (Figures S8 and S11 in Supporting Information S1).

These laboratory observations illustrate different possible controls of the effective normal stress on the dominant
deformation and healing mechanisms and the corresponding stability transitions. We seek a physical model that
consistently explains these observations at constant coefficients throughout the various slip‐rates, temperatures,
and pressure experimental conditions.

3. Constitutive Framework With Thermobaric Activation
We describe a constitutive framework that captures the distinct behaviors of rocks under various thermobaric
conditions. We assume that the frictional resistance is proportional to the real area of contact that forms at contact
junctions (Dieterich & Kilgore, 1994, 1996; Maegawa et al., 2015; Yashima et al., 2015). The area of contact
junctions depends on the size of micro‐asperities and the effective normal stress, following (Barbot, 2019, 2024a)

A =
σ̄
χn

(
d
d0

)

α

(
σ̄
σ0

)

−β

, (2)

where A = Ar/ A0 is the real area of contact density, expressed as the ratio of the real area and the nominal area of
contact, σ̄ and σ0 = 100MPa are the effective normal stress, including the effect of pore‐fluid pressure, and a
reference value, respectively, χn is a proportionality factor commensurate with the indentation hardness (Diet-
erich & Kilgore, 1994), d and d0 = 1μm are the size of micro‐asperities and a representative value, respectively,
and α and β are power‐law exponents smaller than unity. The proportionality between real area of contact and
frictional resistance is given explicitly by

τy = Aχ, (3)

where χ is a material property comparable to the plowing hardness. The frictional resistance can be obtained in
non‐isothermal, non‐isobaric conditions as (Barbot, 2023)

V
V0

= ∑
M

k=1
(

τ
τy

)

nk

exp[−
Qk

R
(

1
T

−
1
T̄k

)], (4)

which incorporates the stress power‐law exponent nk, the activation energy Qk, and the activation temperature T̄k
for M brittle or semi‐brittle deformation mechanisms. The deformation mechanism associated with the lowest
power exponent nk is considered semi‐brittle. The parameters V0, d0, and σ0 in Equations 2 and 4 indicate the
choice of physical unit or the order of magnitude for the respective dynamic parameters. For simplicity,
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Figure 1. Frictional properties of Pelona schist (PLS2) as a function of temperature and slip‐rate in a triaxial, hydrothermal setting for various effective normal stress. (a),
(b) Direct effect and steady‐state parameters a and a − b, respectively at 100 MPa confining pressure, (c), (d) Same at 200 MPa confining pressure, and (e), (f) Same at
300 MPa. The laboratory data is shown in upright and downward triangles for up and down velocity steps, respectively, and the prediction of the constitutive model in
Section 3 with the parameters in Table S1 in Supporting Information S1 is shown with the background color.
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Figure 2. Frictional properties of Pelona schist (PLS2) as a function of temperature and effective normal stress in a triaxial, hydrothermal setting at various slip‐rates. (a),
(b) Direct effect and steady‐state parameters a and a − b, respectively at 1.2 μm/s, (c), (d) Same at 0.24 μm/s, and (e), (f) Same at 0.048 μm/s. The laboratory data is
shown in upright triangles and the prediction of the constitutive model in Section 3 with the parameters in Table S1 in Supporting Information S1 is shown with the
background color.
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Equation 4 does not encompass ductile deformation, which is described elsewhere (Barbot, 2023; Barbot &
Zhang, 2023; Barbot, 2024b). The thermobaric activation is obtained by prescribing the pressure dependence of
the activation temperature as follows

1
T̄k

=
1

T0
k

−
ζkR
Qk

ln
σ̄
σ0

, (5)

Figure 3. Thermobaric control on the frictional properties of hornblende. (a), (b) Kinematic and thermal control on steady‐state velocity dependence parameter a − b at
100 and 200 MPa effective normal stress, respectively, and (c), (d) Thermobaric control of a − b at 0.048 μm/s and 1.2 μm/s, respectively. Inference from laboratory
data is shown with colored circles and the model prediction with the background color. The constitutive properties are shown in Table S1 in Supporting Information S1.
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where ζk is the compressibility factor of a non‐ideal gas, as described in Appendix A. Combining Equations 2–5,
we obtain the slip‐rate‐, temperature‐, and normal‐stress‐dependent constitutive law

V
V0

= ∑
M

k=1
(

τ
μ0σ̄

)

nk

(
d
d0

)

−αnk

(
σ̄
σ0

)

βnk−ζk

exp[−
Qk

R
(

1
T

−
1

T0
k
)], (6)

where each term of the product describes the control of the respective dynamic variable for a given deformation
mechanism k, and we introduced the reference friction coefficient μ0 = χ/χn.

The size of micro‐asperities evolves due to plastic deformation around contact junctions and the random reju-
venation of contacts during fault slip (Barbot, 2019). Normal stress drives the thermally activated creep at contact
junctions leading to gouge compaction (Barbot, 2024a). The evolution law that governs the size of micro‐
asperities can be cast as the aging‐law end‐member, given by (Barbot, 2024b)

ḋ
d

= ∑
N

k=1

Gk

pkdpk
(

σ̄
σ0

)

qk

exp[−
Hk

R
(

1
T

−
1
Tk

)] −
λV
2h

, (7)

involving N healing mechanisms associated with the reference growth coefficient Gk = 1μmpk /s, the activation
energy Hk, the activation temperature Tk, and the asperity‐size power exponent pk and the normal stress power
exponent qk, where h is the gouge layer thickness and 1/λ is a characteristic strain for contact rejuvenation, or the
slip‐law end‐member (Barbot, 2024b)

ḋ
d

=
λV
2h

ln {
2h
λV

∑
N

k=1

Gk

pkdpk
(

σ̄
σ0

)

qk

exp[−
Hk

R
(

1
T

−
1
Tk

)]}. (8)

The potential effect of a thermobaric activation of healing involving a compressibility factor is readily incor-
porated in the power exponent qk. Equations 7 and 8 produce the same micro‐asperity size at steady state.
Together, Equations 6 and 7 or Equations 6 and 8 explain the frictional behavior of rocks for a wide range of
physical conditions, including the direct and transient response to temperature steps (Barbot, 2019, 2024b),
normal stress steps (Barbot, 2024a), and velocity steps across the brittle‐to‐flow transition at various background
slip‐rates and temperatures (Barbot & Zhang, 2023; Barbot, 2022, 2023, 2024b).

We compare the model predictions of the frictional parameters with the laboratory observations. Although not
included explicitly in the formulation, the direct and steady‐state velocity‐dependence parameters can be obtained
using Equation 1, allowing direct comparison with typical laboratory data (Figures 1–3, Figures S7, S8, S10, and
S11 in Supporting Information S1). We obtain the best‐fitting parameters using a grid search (Figure S2 in
Supporting Information S1). The constitutive parameters can be constrained well considering the mechanical data
at all slip‐rates, temperatures, and pressures simultaneously (Figure S3 in Supporting Information S1). Some
residuals remain due to the unaccounted dependence of the frictional properties with total strain and tradeoffs
arising during parameter estimation. The laboratory measurements can be explained consistently using constant
parameters by invoking M = 2 brittle deformation mechanisms and N = 2 healing mechanisms with the
constitutive parameters shown in Table S1 in Supporting Information S1.

The competition of healing mechanisms explains the low‐temperature transition from steady‐state velocity‐
strengthening friction to velocity‐weakening friction as a function of temperature, slip‐rate, and effective
normal stress for Pelona schist, hornblende, gabbro, and phyllosilicate‐rich gouge. For Pelona schist, the tran-
sition temperature decreases with increasing normal stress. The slope of the low‐temperature stability transition in
the pressure‐temperature space is controlled by the difference in the ratios qk/ pk of the two healing mechanisms
(Figure S4 in Supporting Information S1). For hornblende, the slope is slightly positive.

The constitutive model captures the stability transition at high temperatures for Pelona schist, hornblende, and
phyllosilicate gouge, even though they feature different slopes in pressure‐temperature space, with a negative
slope for Pelona schist and phyllosilicate‐rich gouge and a positive slope for hornblende. Semi‐brittle deformation
occurs at lower effective normal stress than brittle deformation at high temperatures, illustrating that semi‐brittle
deformation may not always be the intermediate behavior between the brittle and ductile regimes. The slope of the
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high‐temperature stability transition in pressure‐temperature space is controlled by the ratios ζk/ nk (Figure S5 in
Supporting Information S1). A negative slope is obtained when the low‐temperature deformation mechanism is
more dilatant than the high‐temperature deformation mechanism. As a deformation mechanism may be more
dilatant than the other, positive or negative transition slopes in pressure‐temperature space are possible (Figures
S4 and S5 in Supporting Information S1).

4. Discussion
Our analysis of new and published laboratory experiments demonstrates the non‐stationarity of frictional prop-
erties, which evolve gradually within a narrow range of physical conditions, but change abruptly with significant
deviations in normal stress, slip‐rate, or temperature.

For Pelona schist, gabbro, and phyllosilicate‐rich gouge, increasing the effective normal stress tends to lower the
temperature boundaries of the velocity‐weakening domain and decrease the velocity dependence of friction. In
contrast, increasing normal stress widens the temperature range of the velocity‐weakening domain of hornblende.
The frictional properties of other rocks showcase intermediate behaviors. This is illustrated by the mechanical
data from rotary shear experiments on lawsonite blueschist gouge (Sawai et al., 2016) at effective normal stress
ranging from 25 to 200 MPa with equal pore‐fluid pressure at temperatures from 22°C to 400°C (Figure 4a). For
lawsonite blueschist, increasing effective normal stress shrinks the temperature range of the velocity‐weakening
domain. The constitutive model captures this behavior well, although the effect of varying pore fluid pressure is
not included. The constitutive framework also explains the triaxial experiments on montmorillonite gouge
(Mizutani et al., 2017) from 10 to 70 MPa effective normal stress including a constant pore‐fluid pressure of
10 MPa (Figure 4b). For montmorillonite, increasing pressure widens the temperature range of the velocity‐
weakening domain. The constitutive model also explains the barometric and kinematic dependence of fric-
tional properties of Westerly granite (Kilgore et al., 1993) and smectite (Saffer & Marone, 2003) in double‐direct
shear at room temperature (Figures 4c and 4d). The constitutive parameters are shown in Tables S1 and S2 in
Supporting Information S1.

The proposed thermobaric activation of fault friction may be compatible with several other laboratory experi-
ments conducted at low temperatures. The steady‐state parameter a − b increases with normal stress for foliated
gouge (sample “2f”) from the Zuccale Fault, Italy, associated with a progressive loss of sensitivity to normal stress
at high slip velocity (Collettini et al., 2011). Talc‐calcite mixtures experience an increase of a − b with normal
stress (Giorgetti et al., 2015). Brucite gouge transitions from velocity weakening to velocity strengthening with
increasing normal stress at room temperature (Okuda et al., 2021). The above observations may all manifest a
transition of healing mechanism. An opposing view attributes the change of velocity dependence and stability to
the enhanced localization induced by confining pressure (Kurzawski et al., 2016). However, their laboratory
observations on hemipelagic clay and calcareous ooze can also be explained by the thermobaric activation of
competing healing mechanisms with q1/ p1 > q2/ p2.

The constitutive law provides a novel framework to elucidate key aspects of seismogenesis across various tec-
tonic settings by linking laboratory‐measured frictional properties with seismic observations (Figure 5). The
frictional properties of Pelona schist, which underplates much of Southern California (Chapman, 2017), may
explain the depth of local seismicity (Magistrale & Zhou, 1996). Assuming a geothermal gradient of 20°C/km
(Shinevar et al., 2018), over‐pressurized fluids within the fault zone corresponding to an effective normal stress of
30 MPa, and slip‐rates of 0.2 nm/s representative of nucleation, Pelona schist PLS2 is steady‐state velocity‐
weakening up to 14 km depth, coinciding with the maximum depth of coseismic slip for the 1971 Mw 6.6 San
Fernando, CA earthquake. Likewise, the phyllosilicate‐rich mylonitic gouge collected from the Wenchuan‐
Maoxian fault (Zhang & He, 2016) is compatible with the depth distribution of coseismic slip of the 2008 Mw
7.9 Wenchuan, China earthquake, assuming a geothermal gradient of 20°C/km (Zhu et al., 2016). Finally, the
frictional properties of gabbro explain the depth distribution of the Mw 6 earthquakes at the Blanco transform
fault, where they focus between 3 and 6 km depth within the oceanic crust (Kuna et al., 2019), due to the high
geothermal gradient of 50‐60°C/km characteristic of a young oceanic plate (Liu et al., 2022). Hence, extrapolating
the frictional behavior of rocks outside laboratory conditions is key to improving physical models of seismicity.
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5. Conclusions
The complex constitutive behavior of rocks upon failure is tractable, at least regarding the effects of temperature,
slip‐rate, and effective normal stress for a given lithology. The friction coefficient inherits a dependence on
normal stress from the real area of contact and the thermobaric activation of deformation, with opposite effects.
The thermobaric activation of fault friction implies varying amplitudes of dilatancy for different deformation
mechanisms, making the temperature boundaries of the seismogenic zone dependent on confining pressure.

Integrating the effects of slip‐rate, temperature, and effective normal stress in the constitutive framework is
paramount in estimating the frictional behavior in natural conditions. The frictional properties of Pelona schist,
phyllosilicate‐rich natural gouge, and gabbro are compatible with the focal depths of the 1971 Mw 6.6 San

Figure 4. Thermobaric and kinematic control on the frictional properties of (a) lawsonite blueschist (Sawai et al., 2016), (b) montmorillonite (Mizutani et al., 2017),
(c) Westerly granite (Kilgore et al., 1993), and (d) smectite (Saffer & Marone, 2003). The colored circles indicate inference from laboratory observations and the
background color indicates the model prediction. The constitutive properties are shown in Tables S1 and S2 in Supporting Information S1.
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Fernando, 2008 Mw 7.8 Wenchuan, and Mw 6 earthquakes on the Blanco
transform fault, respectively, considering slip‐rate relevant to earthquake
nucleation. Hence, the constitutive framework affords the means to reconcile
seismic activity with local lithology in realistic in situ conditions. With broad
applicability for rocks of various metamorphic grades found in subduction
zones, continental and oceanic crusts, and natural fault zones, the constitutive
model provides an important link connecting rock mechanics and fault
dynamics.

Appendix A: Thermodynamics of Brittle and Semi‐Brittle
Deformation
Plastic deformation of fault gouge in the brittle and semi‐brittle regimes can
be considered as a transformation of the form

A ̅̅̅ →
ΔG B,

where A is the reference state of matter of a representative volume element for
a mole of the gouge constituents and B is the thermodynamically irreversible
deformed state (for example, Gibbs, 1969). We assume that each state can be
described individually by the corresponding molar Gibbs free energies GA and
GB. The change of Gibbs free energy ΔG = GB − GA across the transition
from state A to state B describes the spontaneity of the transition, with ΔG < 0
corresponding to a spontaneous transition, ΔG = 0 corresponding to equi-
librium, and ΔG > 0 indicating that the transformation is not spontaneous.

The kinetics of transformation can be described by absolute rate theory
(Eyring, 1936), with a thermal activation of the rate of transformation. The
frequency of successful deformation increments follows

f = Ψ0
kBT

ħ
exp[−

ΔG
RT

], (A1)

where Ψ0 is a unitless scaling factor, kB is Boltzmann's constant, ħ is Planck's
constant, R is the universal gas constant, and T is the absolute temperature. As
the transformation represents plastic deformation, slip‐rate is proportional to
the frequency of successful deformation increments. We assume that the slip
distance produced by deformation increments is a power‐law of shear stress.
Accordingly, we write

V = λ0 (
τ
τy

)

n

f , (A2)

where λ0 is a characteristic slip distance, τ is the norm of the traction vector
across a frictional interface, and τy is the yield strength given by Equation 3.
Combining Equations A1 and A2, we obtain the constitutive relationship

V = V0 (
τ
τy

)

n

exp(−
ΔG
RT

), (A3)

where we have defined V0 = λ0Ψ0kBT /ħ. Given the exponential function of
temperature, the linear temperature dependence of V0 can be neglected at first

order. Equation A3 is of the form of Equation 4 in the main text, explaining the functional form of the constitutive
framework. The remaining step is to characterize the change of Gibbs free energy for plastic deformation.

Figure 5. Thermobaric control on the depth of the seismogenic zone and
coseismic slip. (a) Comparison between the slip distribution of the 1971 Mw
6.6 San Fernando, CA earthquake (Heaton, 1982) and the frictional
properties of Pelona schist (PLS2), (b) Comparison between the slip
distribution of the 2008 Mw 7.9 Wenchuan, China earthquake (Fielding
et al., 2013) and the frictional properties of phyllosilicate‐rich gouge
collected in the Sichuan Basin (Zhang & He, 2016), and (c) Comparison
between the depth distribution of Mw 6 earthquakes along the Blanco
transform fault (Kuna et al., 2019) and the frictional properties of gabbro (He
et al., 2007), representative of the oceanic crust. The physical model allows
extrapolation of the laboratory data at slip‐rates of 0.2 nm/s, representative
of earthquake nucleation.
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Within each state, the Gibbs free energy is defined as

G = H − TS, (A4)

where H is the enthalpy of the state under consideration and S is the entropy of a representative volume VΩ of the
mechanical system Ω. As the Gibbs free energy is continuous within each state, the total derivative follows the
standard thermodynamic relationship

dG = VΩ dP − SdT. (A5)

However, the state transition involves a change of heat capacity and atomic configuration. As a result, the
enthalpy and entropy of the system change, leading to a discontinuity in Gibbs free energy across the transition,
described by

ΔG = ΔH − TΔS, (A6)

where ΔH = HB − HA and ΔS = SB − SA.

We are interested in the slope of the transition in pressure‐temperature space, that is, the Clapeyron slope of the
transformation. On each side of the equilibrium, Equation A5 holds. Furthermore, as ΔG = 0 is constant along
the transition line, we have dG = 0. Hence, along the equilibrium line, we can write

dP
dT

=
ΔS
ΔV

, (A7)

where ΔV = VB − VA is the molar change of volume of the constituents, starting from a representative volume
element. By definition, we have ΔG = ΔH − TΔS = 0 at equilibrium, so we also get

ΔS =
ΔH
T

. (A8)

Combining Equations A7 and A8, we obtain the Clapeyron slope for plastic deformation in pressure‐temperature
space

dP
dT

=
1
T

ΔH
ΔV

, (A9)

where P and T refer to the pressure and temperature anywhere along the equilibrium line.

An equation of state is needed to relate the change of volume ΔV to the ambient temperature and pressure
conditions. We approximate the change of volume by the volume of the deformed state

ΔV = VB − VA ≈ VB, (A10)

compatible with experimental evidence for volume change during shear (Marone et al., 1990; Proctor et al., 2020;
Samuelson et al., 2009). Finally, we describe the deformed state by a non‐ideal gas law for a molar volume of a
solid‐state solution, as follows

VB =
ζRT

P
, (A11)

where ζ is the compressibility factor. Combining Equations A9, A10, and (A11), we obtain the Clapeyron slope of
plastic deformation

dP
dT

=
P
T2

ΔH
ζR

. (A12)
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Integrating Equation A12 on both sides, we find

P = P0 exp[−
ΔH
ζR

(
1
T

−
1

T0
)], (A13)

where P0 and T0 are constants of integration, or, equivalently,

1
T

=
1

T0
−

ζR
ΔH

ln
P
P0

, (A14)

which corresponds to Equation 5 in the main text with a slight change of nomenclature. The change of Gibbs free
energy becomes

ΔG = T ΔH(
1
T

−
1

T0
+

ζR
ΔH

ln
P
P0

). (A15)

Combining Equations A3 and A15, we obtain

V = V0 (
τ
τy

)

n

(
P
P0

)

−ζ

exp[−
ΔH
R

(
1
T

−
1

T0
)]. (A16)

For simplification, we approximate the pressure by the effective normal stress, and we equate the activation
energy to the change of enthalpy, explaining the thermobaric activation of fault friction described in Equation 6 in
the main text.
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