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ABSTRACT
In this paper, we examine a multi-sensor system where each sen-

sor may monitor more than one time-varying information process

and send status updates to a remote monitor over a common chan-

nel. We consider that each sensor’s status update may contain

information about more than one information process in the sys-

tem subject to the system’s constraints. To investigate the impact

of this correlation on the overall system’s performance, we con-

duct an analysis of both the average Age of Information (AoI) and

source state estimation error at the monitor. Building upon this

analysis, we subsequently explore the impact of the packet arrivals,

correlation probabilities, and rate of processes’ state change on

the system’s performance. Next, we consider the case where sen-

sors have limited sensing abilities and distribute a portion of their

sensing abilities across the different processes. We optimize this

distribution to minimize the total AoI of the system. Interestingly,

we show that monitoring multiple processes from a single source

may not always be beneficial. Our results also reveal that the op-

timal sensing distribution for diverse arrival rates may exhibit a

rapid regime switch, rather than smooth transitions, after crossing

critical system values. This highlights the importance of identifying

these critical thresholds to ensure effective system performance.
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1 INTRODUCTION
In the rapidly developing landscape of networked systems, timeli-

ness plays an essential role in multiple aspects of communication,

decision-making, and information processing, contributing signifi-

cantly to the efficiency and effectiveness of systems. In this realm,

the Age of Information (AoI) metric proposed in [17] stands as a

pivotal measure, capturing the timeliness of information delivery

in communication networks. Due to its importance, the AoI has

been well studied in the literature, ranging from single-server sys-

tems with single or multiple sources [8, 14, 23, 24, 29, 31, 35, 36], to

scheduling problems [13, 15, 20–22, 25] and resource-constrained

systems analysis [1–3, 10, 26].

In sensor networks, collaborative sensing among the different

components of the network has been shown to aid in improving

the overall performance of the network [12]. Particularly, in such

scenarios, numerous small sensor devices are strategically scattered

around an area, monitoring different processes and sending updates

to one or multiple central controllers [27]. Home security systems

with multiple motion sensors are a good example of how devices

can work together to improve efficiency. Each sensor can focus on a

specific area and send status updates for that area. However, if there

is an overlap between the fields of view of different sensors, they

can share information about those areas. This collaboration among

devices is referred to as correlation. In scenarios where network

resources are constrained, such collaboration can strengthen the

system’s efficacy and efficiency. It resembles orchestrating a net-

work of compact, intelligent devices working in unison to gather

and exchange data, thereby enabling thorough and punctual moni-

toring.

Given the importance of the AoI in sensor networks, such corre-

lation in status updates has been investigated in the literature. In

[11], a sensor network that has overlapping fields is considered, and

the authors presented a joint optimization approach for fog node
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assignment and transmission scheduling for sensors to minimize

the age of multi-view image data. Similarly, in [33], the authors

considered cameras that monitor overlapping areas and propose

scheduling algorithms for multi-channel systems for AoI-based

minimization. In [16, 34], the authors proposed probability-based

correlation models and presented sensor scheduling policies aimed

atminimizing AoI. In another line of work [28], the authorsmodeled

the status updates correlation as a discrete-timeWiener process and

proposed a scheduling policy that considers AoI and monitoring

error. Despite these contributions, existing studies predominantly

assume given correlation parameters and overlook the impact of

varying correlation on system performance when addressing sched-

uling problems. However, optimizing correlation parameters, such

as optimizing the placement of the sensors in an area, is also crucial.

This underscores the need for further research to investigate how

changes in correlation affect system dynamics and to identify opti-

mal correlation parameters under constraints. Our research fills this

gap by systematically exploring the effects of correlation variations

on system performance. To that end, the main contributions of this

paper are summarized as follows:

• As a first step, we introduce the system model, taking into

account the correlation at hand. Then, by analyzing this sys-

tem, we present an equivalent process-centric formulation

that simplifies the subsequent analysis.

• Following that, we analyze the AoI for each process sep-

arately in relation to correlation parameters, formulating

closed-form expressions for their averages in the considered

M/M/1/1 system. We also consider the estimation error per-

formance for each process separately, given that the AoI is

not always a sufficient metric in remote-tracking applica-

tions [30]. Our results draw from a stochastic analysis of

these metrics that consider all the possible events.

• Subsequently, we derive the correlation distribution that min-

imizes the AoI for three distinct scenarios. Specifically, we

investigate three different sensor constraints and determine

the optimal solution for each case.

• Furthermore, we present numerical implementations to vali-

date the closed-form expressions we derived. We compare

different parameter configurations, focusing on their aver-

age AoI and error ratio. Our results highlight the impact of

status updates correlation on both the AoI and estimation

error.

• Lastly, we investigate the optimal correlation distribution

and implement the derived optimal policies. Interestingly,

our implementations showcase that the optimal distribution

policy undergoes a significant regime shift beyond a specific

parameters threshold. This observation highlights the need

for adaptive, contextually-sensitive strategies in navigating

optimal solution spaces.

The rest of the paper is organized as follows. We present the system

model in Section 2. Afterward, we formulate the equivalent and

simplified system in Section 3. The analysis of AoI and error ratio is

then conducted in Section 4 and Section 5, respectively. In Section 6,

we put our optimization problem into perspective and propose so-

lutions to find the optimal sensing distribution. Finally, we present

Figure 1: Illustration of our system model.

the numerical results in Section 7 while Section 8 concludes the

paper.
1

2 SYSTEM MODEL
Let us consider a sensor network where 𝑁 sensors track𝑀 informa-

tion processes. To keep the monitor updated, each sensor generates

status updates and sends them through a common server/channel,

as shown in Figure 1. We consider that the service time of each

packet is exponentially distributed with a service rate 𝜇. We also as-

sume that sensor 𝑖 generates packets according to a Poisson process

of rate 𝜆𝑖 . We adopt a zero-buffer assumption for the server in our

model. This choice is motivated by previous research demonstrat-

ing its optimality for AoI minimization in certain scenarios, such

as single information source systems with preemption [4]. While

this optimality does not extend to our model, our initial numerical

investigations have revealed that incorporating a buffer does not

consistently enhance performance, as detailed in Appendix A in [9].

Consequently, we maintain the zero-buffer assumption throughout

our analysis. Accordingly, any arriving packet that finds the server

busy is dropped [5]. With all the above in mind, we define 𝝀 as a vec-

tor representing the arrival rates from the different sensors, where

𝜆𝑖 is the arrival rate from sensor 𝑖 for 𝑖 = 1, . . . , 𝑁 . Specifically, we

have:

𝝀𝑇 =
[
𝜆1 𝜆2 . . . 𝜆𝑁

]
. (1)

As for the information process, we consider that each physical

process evolves as a time-varying discrete stochastic process. Par-

ticularly, the physical process 𝑗 is modeled as a Markov chain with

𝐾 different states. To represent these state changes, we use Ω
𝑗

𝑎𝑏
to

denote the transition probability from state 𝑎 to state 𝑏 of process 𝑗 .

In matrix form, the transition matrix 𝛀𝒋 ∈ [0, 1]𝐾×𝐾
can be defined

as follows:

𝛀𝒋 =


Ω 𝑗
11

Ω 𝑗
12

. . . Ω 𝑗
1𝐾

Ω 𝑗
21

Ω 𝑗
22

. . . Ω 𝑗
2𝐾

.

.

.
.
.
.

. . .
.
.
.

Ω 𝑗
𝐾1

Ω 𝑗
𝐾2

. . . Ω 𝑗
𝐾𝐾


, for 𝑗 = 1, . . . , 𝑀. (2)

In this paper, we consider that the Markov chain is irreducible

and aperiodic. To that end, we can conclude the existence and

uniqueness of the chain’s stationary distribution. We denote the

stationary distribution of the Markov chain formed with 𝛀𝒋 by:

𝝍𝒋 =
[
𝜓
𝑗

1
𝜓
𝑗

2
. . . 𝜓

𝑗

𝐾

]
. (3)

This stationary distribution can obtained by solving the equation:

𝝍𝒋 · 𝛀𝒋 = 𝝍𝒋 , (4)

1
Due to size limitations, we present the proof details in our paper’s arXiv version [9].
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and normalizing the resulting vector to ensure that the sum of its

components is equal to 1 [7].

We assume that state transitions for process 𝑗 occur after ex-

ponentially distributed epochs with a rate of 𝜁 𝑗 . Accordingly, the

generation of status updates by sensors and information process

changes are decoupled, reflecting scenarios where sensors observe

multiple processes simultaneously, such as a camera tracking vari-

ous activities. This decoupling allows each process’s state to evolve

independently, regardless of active tracking, ensuring a more re-

silient and adaptable system. It accommodates situations where

sensors may not detect every change or update for each detected

change, and where processes evolve at different rates. Ultimately,

this decoupling creates a robust, realistic model that better adapts

to the complexities and limitations of multi-process monitoring

systems, accurately representing practical constraints in real-world

sensing applications.

Finally, tomodel the correlation among the different sensor obser-

vations, we assume that each packet generated by sensor 𝑖 contains

information about the process 𝑗 with a correlation probability 𝑝𝑐
𝑖 𝑗
.

The information the packet has is the state of the processes at the

generation time of the packet. To that end, we define the correlation

matrix PC ∈ [0, 1]𝑁×𝑀
as follows:

PC =


𝑝𝑐
11

𝑝𝑐
12

. . . 𝑝𝑐
1𝑀

𝑝𝑐
21

𝑝𝑐
22

. . . 𝑝𝑐
2𝑀

.

.

.
.
.
.

. . .
.
.
.

𝑝𝑐
𝑁 1

𝑝𝑐
𝑁 2

. . . 𝑝𝑐
𝑁𝑀

 . (5)

Key symbols defined in this paper are summarized in Table 1. After

having outlined the system model, we now proceed to formulate

the equivalent and simplified system in Section 3.

Table 1: Key Symbols

Symbol Definition
𝜆𝑖 Arrival rate of sensor 𝑖

𝛀𝒋 State transition probabilities of process 𝑗

𝜁 𝑗 State change rate of process 𝑗

𝝍𝒋 Stationary distribution of 𝛀𝒋

PC Correlation probabilities among sensors and processes

𝑝𝑐
𝑖 𝑗

Correlation probability between sensor 𝑖 and process 𝑗

𝜆𝐶 Sum of sensor arrival rates

𝜆∗
𝑗

Rate of informative arrivals for process 𝑗

𝑝 𝑗 Probability of serving informative packet for process 𝑗

3 SYSTEM SIMPLIFICATION THROUGH
EQUIVALENCE

In the considered system, the originator of the packet containing

information about any arbitrary process 𝑗 is irrelevant from the

monitor’s perspective. In fact, concerning process 𝑗 , what matters

to the monitor is whether the served packet contains information

about process 𝑗 or not rather thanwhich sensor provided the update.

To that end, we label a status update as informative for process 𝑗 if

it contains information on the process 𝑗 . Otherwise, we label it as

uninformative. Building on this concept, we define the informative

arrival rate vector 𝝀∗ as follows:

𝝀∗𝑇 =
[
𝜆∗
1

𝜆∗
2

. . . 𝜆∗
𝑀

]
= 𝝀𝑇 PC, (6)

Figure 2: Equivalent system model from process 𝑗 ’s perspec-
tive.

where 𝜆∗
𝑗
represents the informative arrival rate for process 𝑗 . As

a last step, we let 𝜆𝐶 be the arrival rate of the server, which is the

sum of all arrival rates, as follows:

𝜆𝐶 =

𝑁∑︁
𝑖=1

𝜆𝑖 . (7)

With the above entities in mind, we provide the following system

equivalence lemma.

Lemma 1. Consider a process 𝑗 among 𝑀 processes. From the
monitor’s perspective, the system is equivalent to Figure 2, where
there are two packet sources:

• packets with information, with a rate of 𝜆∗
𝑗
, and

• packets without information with a rate of 𝜆𝐶 − 𝜆∗
𝑗
.

Proof. The details can be found in Appendix B in [9]. □

Using the above equivalence, we can analyze the environment

by reducing the original system to 𝑀 independent systems, each

with two sources as depicted in Fig. 2. The independence of these M

systems stems from the Poisson nature of packet arrivals. From the

perspective of any single process 𝑗 , the arrivals of both informative

and uninformative packets from all other processes can be shown

to collectively form Poisson streams, as detailed in Appendix B in

[9]. With this in mind, in the next section, we derive a closed-form

expression of the AoI for each process, taking into account both

informative and uninformative status updates to comprehensively

evaluate their impact on the system’s dynamics.

4 AGE OF INFORMATION ANALYSIS
In this section, we consider the age function introduced in [17] as

a performance metric. Mathematically, the AoI of process 𝑗 at time

𝑡 , denoted by Δ 𝑗 (𝑡), can be defined as:

Δ 𝑗 (𝑡) = 𝑡 −𝑇𝑗 , (8)

where 𝑇𝑗 represents the time at which the most recent informative

packet for process 𝑗 was generated. Particularly, the age at the

monitor for each process 𝑗 increases linearly over time until an

informative status update is received, upon which a drop in the age

takes place. As mentioned in Section 2 and Section 3, the packet in

the server may or may not have information about each process.

If the served packet has information about process 𝑗 , the AoI for

process 𝑗 decreases just after the end of the service time. However,

if the served packet has no information on process 𝑗 , the AoI for

process 𝑗 continues to increase linearly. Let 𝑡𝑘 denote the time

instant when the 𝑘-th packet is generated, and 𝑡 ′
𝑘
represent the

time instant when this packet completes service. When the server
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is busy with an informative or uninformative packet upon the

arrival of a new packet, the new packet is dropped. To that end,

we denote by 𝑡𝑑𝑛 the time instant when the 𝑛-th dropped packet

was generated. We define 𝑇𝑘 as the service time of the 𝑘-th packet,

given by

𝑇𝑘 := 𝑡 ′
𝑘
− 𝑡𝑘 , (9)

and𝑌𝑘 as the inter-departure time between two consecutive packets,

given by

𝑌𝑘 := 𝑡 ′
𝑘
− 𝑡 ′

𝑘−1 . (10)

We also define 𝑌̃ 𝑙
𝑗
as the inter-departure time between the 𝑙-th infor-

mative packet and the (𝑙 − 1)−th informative packet from process

𝑗 ’s perspective. Since 𝑌𝑘 shares the same distribution for all 𝑘 , we

define the random variable 𝑌 to represent them collectively. Simi-

larly, considering that 𝑌̃ 𝑙
𝑗
shares the same distribution for all 𝑙 , we

define the random variable 𝑌̃𝑗 to represent them as a group. To

understand the AoI process better, we illustrate the evolution of

the AoI in Figure 3. The age of information for process 1 at the

destination node follows a linear increase over time. When a new

informative status update is received, the age is reset to the time

difference between the current time instant and the timestamp of

the received update (𝐴1). However, if the status update is unin-

formative for process 1 like the update completed at 𝑡 ′
2
, the age

continues to increase linearly (𝐴2). The packets arriving at times 𝑡𝑑
1

and 𝑡𝑑
2
are dropped. The server is occupied with an uninformative

packet at time 𝑡𝑑
1
and an informative packet at time 𝑡𝑑

2
for process

1. In addition, 𝑌̃ 2

1
is the second informative interarrival time which

is equal to the time difference between 𝑡 ′
3
and 𝑡 ′

1
that are the second

and the first informative departures.

Next, we define the effective arrival rate as the rate of packets

that arrive when the server is idle. Let 𝜆𝑒
𝑗
be the effective arrival

rate for packets that are informative for process 𝑗 . Consequently,

we have

𝜆𝑒𝑗 =
𝜇𝜆∗
𝑗

𝜇 + 𝜆𝐶
, for 𝑗 = 1, . . . , 𝑀. (11)

Given the above quantity, we derive below the average AoI for

each process 𝑗 .

Lemma 2. The average AoI Δ 𝑗 for process 𝑗 is:

Δ 𝑗 = 𝜆
𝑒
𝑗

(
1

2

E[𝑌̃ 2

𝑗 ] +
E[𝑌̃𝑗 ]
𝜇

)
, for 𝑗 = 1, . . . , 𝑀. (12)

Proof. We adapt the methodology outlined in [8] to our sce-

nario by leveraging their approach of utilizing inter-arrival times

for calculating the age of information. Despite the absence of in-

formative categorization in [8], their method of deriving the age of

information based on inter-arrival times remains applicable. The

main modification involves substituting variables to align with our

informative arrivals. □

Next, we define 𝑝 𝑗 as the probability of serving an informative

packet for process 𝑗 , as shown below:

𝑝 𝑗 =
𝜆∗
𝑗

𝜆𝐶
. (13)

After defining 𝑝 𝑗 , we utilize it to establish the relationship between

𝑌̃𝑗 and 𝑌 . The details of this relationship can be found in Appendix

Figure 3: Evolution of AoI for process 1.

C in [9]. Using this relationship, we present the AoI for process 𝑗

in Theorem 1, formulated in terms of 𝜇, 𝑌𝑗 , and 𝜆
𝑒
𝑗
.

Theorem 1. In the considered M/M/1/1 system, the average AoI
for process 𝑗 denoted as Δ 𝑗 is:

Δ 𝑗 =
𝜆𝐶

𝜆𝐶 + 𝜇

(
𝜇E[𝑌 2]

2

+
𝜇E[𝑌 ]2 (1 − 𝑝 𝑗 )

𝑝 𝑗
+ E[𝑌 ]

)
, for 𝑗 = 1, . . . , 𝑀.

(14)

Proof. The details can be found in Appendix C in [9]. □

To provide an interpretation of the above formula, we can see

that if the value of 𝑝 𝑗 is 1, it means that every packet is informa-

tive for process 𝑗 . In such a scenario, the system acts like a single

sensor system, continuously sending status updates of process 𝑗

from its perspective. On the other hand, as 𝑝 𝑗 approaches 0, the

packets become uninformative. As a result, the AoI approaches

infinity, since informative status updates are received more and

more infrequently.

5 ERROR RATIO ANALYSIS
We define a binary function 𝜖 𝑗 (𝑡) such that if the state information

the monitor has for process 𝑗 is the same as the state of process 𝑗

at time 𝑡 , then 𝜖 𝑗 (𝑡) is equal to 1. Otherwise, it is equal to 0. Then,

we define the error of process 𝑗 as the ratio of the total duration

when 𝜖 𝑗 (𝑡) is equal 0 over the entire time horizon, denoted by 𝜖 𝑗 .

Particularly, we have

𝜖 𝑗 = 1 − lim

𝑇→∞
1

𝑇

∫ 𝑇

0

𝜖 𝑗 (𝑡) 𝑑𝑡, for 𝑗 = 1, . . . , 𝑀. (15)

Due to the nature of our system, 𝜖𝑖 and 𝜖 𝑗 are independent for any

𝑖, 𝑗 ∈ {1, . . . , 𝑀} with 𝑖 ≠ 𝑗 . The reason behind that is that state

changes of two processes are independent of each other, and the

system functions as 𝑀 different independent systems as demon-

strated in Section 3. Therefore, we derive the generic error 𝜖 for any

process to simplify our analysis. Particularly, we drop the index 𝑗

of the considered entities, and we use 𝜖 , 𝜖 (𝑡), 𝜁 , 𝜆∗ and 𝛀 to denote

the system parameters in the remainder of this section.

To find 𝜖 analytically, we investigate a Markov Chain that con-

siders the current process state, the state at the monitor, and the

state of the served packet (defined below). Our proposed Markov

chain is 3-dimensional with dimensions (𝑥,𝑦, 𝑧). The states 𝑥 and 𝑦

represent the current state and the monitor state, respectively, and
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each can take values between 1 and 𝐾 . The state 𝑧 can have three

possible values as depicted below:

• 𝑧 = 0: This state indicates that the server is currently idle.

• 𝑧 = 1: This state signifies that the server is actively serving a

packet containing information from the process of interest.

• 𝑧 = 2: In this state, the server is occupied by a packet, but this

packet does not contain information about the process in

question. In other words, it carries information about other

processes.

Note that when 𝑥 and 𝑦 are equal, the current state and the state

the monitor has are identical. To this end, we redefine 𝜖 (𝑡) as

𝜖 (𝑡) =
{
1 if 𝑥 = 𝑦,

0 otherwise.
(16)

With all the above in mind, we note that the system has three types

of events: packet arrivals, packet departures, and state changes.

Each event causes a transition in this three-dimensional Markov

Chain. Let PM and 𝜋 be the transition probabilitymatrix correspond-

ing to those transitions and the stationary distribution of the three-

dimensional Markov chain. Given that the one-dimensional Markov

chain shown in Section 2 characterized by both irreducibility and

aperiodicity is used to form the considered three-dimensionalMarkov

Chain, the three-dimensional Markov chain can be shown to be

irreducible and aperiodic. Next, we let 𝜋 (𝑥,𝑦, 𝑧) denote the station-
ary probability of being at state (𝑥,𝑦, 𝑧). Then, by definition, the

following equation is verified:

𝐾∑︁
𝑥=1

𝐾∑︁
𝑦=1

2∑︁
𝑧=0

𝜋 (𝑥,𝑦, 𝑧) = 1. (17)

To derive this stationary distribution, we first need to calculate the

probability of state change until the packet is served, given that

the server is occupied with an informative packet. To do this, we

need to find the probability of the process transitioning from state

𝑖 to state 𝑗 , denoted as 𝑝𝑛
𝑖 𝑗
, while an informative packet is being

served. We derive 𝑝𝑛
𝑖 𝑗
for all 𝑖 = 1, . . . , 𝑁 and 𝑗 = 1, . . . , 𝑀 in the

following lemma, Lemma 3. Afterward, and by leveraging these

results, we formulate PM.

Lemma 3. Let PN ∈ [0, 1]𝐾×𝐾 represent the matrix of elements
𝑝𝑛
𝑖 𝑗
’s. The matrix can be obtained as follows:

PN =


𝑝𝑛
11

𝑝𝑛
12

. . . 𝑝𝑛
1𝐾

𝑝𝑛
21

𝑝𝑛
22

. . . 𝑝𝑛
2𝐾

.

.

.
.
.
.

. . .
.
.
.

𝑝𝑛
𝐾1

𝑝𝑛
𝐾2

. . . 𝑝𝑛
𝐾𝐾

 =
𝜇

𝜇 + 𝜁

(
I − 𝜁𝛀

𝜇 + 𝜁

)−1
. (18)

Proof. The details can be found in Appendix D in [9]. □

Lemma 4. Let PM (𝑥1,𝑦1,𝑧1 )→(𝑥2,𝑦2,𝑧2 ) ∈ [0, 1] be the transition
probability from (𝑥1, 𝑦1, 𝑧1) to (𝑥2, 𝑦2, 𝑧2). PM can be obtained as
follows:
For every 𝑥1, 𝑥2, 𝑦1 = 1, . . . , 𝐾 :

PM (𝑥1,𝑦1,0)→(𝑥2,𝑦1,0) = Ω𝑥1𝑥2
𝜁

𝜁 + 𝜆𝐶
, (19)

PM (𝑥1,𝑦1,1)→(𝑥2,𝑦1,1) = Ω𝑥1𝑥2
𝜁

𝜁 + 𝜇 , (20)

PM (𝑥1,𝑦1,2)→(𝑥2,𝑦1,2) = Ω𝑥1𝑥2
𝜁

𝜁 + 𝜇 . (21)

For every 𝑥1, 𝑦1 = 1, . . . , 𝐾 :

PM (𝑥1,𝑦1,0)→(𝑥1,𝑦1,1) =
𝜆∗

𝜁 + 𝜆𝐶
, (22)

PM (𝑥1,𝑦1,0)→(𝑥1,𝑦1,2) =
𝜆𝐶 − 𝜆∗
𝜁 + 𝜆𝐶

, (23)

PM (𝑥1,𝑦1,2)→(𝑥1,𝑦1,0) =
𝜇

𝜁 + 𝜇 . (24)

For every 𝑥1, 𝑦1, 𝑦2 = 1, . . . , 𝐾 :

PM (𝑥1,𝑦1,1)→(𝑥1,𝑦2,0) =
𝜇

𝜁 + 𝜇 𝑝
𝑛
𝑦2𝑥1

𝜓𝑦2

𝜓𝑥1
. (25)

Otherwise:
PM (𝑥1,𝑦1,𝑧1 )→(𝑥2,𝑦2,𝑧2 ) = 0. (26)

Proof. The details can be found in Appendix E in [9]. □

The distinction between matrices PM and PN is crucial here.

PM represents the transition probabilities in the three-dimensional

Markov chain, considering the server state (idle, serving the process

of interest, or serving other processes). On the other hand, PN is a

matrix that captures the state transition probabilities of the process

itself during the time an informative packet is being served.

With PM formulated, we can now obtain the stationary distribu-

tion 𝜋 (𝑥,𝑦, 𝑧). Note that we cannot directly use 𝜋 (𝑥,𝑦, 𝑧) to calcu-

late the error over the entire time span because of the embedded

nature of the Markov chain [32]. That is, the state transitions in

PM do not occur at every small time step; instead, they occur only

with events of packet arrival, packet departure, and process state

change, which makes the time spent in each (𝑥,𝑦, 𝑧) state at a single
visit different from each other. Therefore, we need to incorporate

the length of time spent in each (𝑥,𝑦, 𝑧) state. To that end, we let
𝑤 (𝑥,𝑦, 𝑧) denote the weighted holding time at state (𝑥,𝑦, 𝑧) over
the entire time span. In other words,𝑊 ×𝑤 (𝑥,𝑦, 𝑧) represents the
expected time waited at state (𝑥,𝑦, 𝑧) during𝑊 state transitions.

Note that all these events, i.e., packet arrival, packet departure,

and state change of the process, are memoryless, independent, and

identically distributed, which preserves Markov property in the

embedded chain. Due to the memoryless property, only the occur-

rence time of the next event has an impact on the time spent in each

state. With all the above in mind, we define a weighted holding

time function 𝑤 (𝑥,𝑦, 𝑧) = 𝜋 (𝑥,𝑦, 𝑧)E[𝑇(𝑥,𝑦,𝑧 ) ] where E[𝑇(𝑥,𝑦,𝑧 ) ]
is the expected holding time that represents the expected time

waited until the next jump in state (𝑥,𝑦, 𝑧) at every transition. It

is important to note that the holding time in state (𝑥,𝑦, 𝑧) is inde-
pendent of 𝜋 (𝑥,𝑦, 𝑧). We present expected holding times in Lemma

5. E[𝑇(𝑥,𝑦,𝑧 ) ] values vary with different 𝑧 values, but changes in

𝑥 or 𝑦 do not affect E[𝑇(𝑥,𝑦,𝑧 ) ] because the possible events that

can happen are the same for the same 𝑧. For example, the possible

events are packet arrivals and state changes of the process if 𝑧 = 0

for all 𝑥,𝑦 = 1, . . . 𝐾 .

Lemma 5. Let E[𝑇(𝑥,𝑦,𝑧 ) ] be the expected holding time in state
(𝑥,𝑦, 𝑧). Then, E[𝑇(𝑥,𝑦,𝑧 ) ] can be calculated for every 𝑥,𝑦 = 1, . . . , 𝐾

as follows:

E[𝑇(𝑥,𝑦,0) ] =
1

𝜁 + 𝜆𝐶
, (27)
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E[𝑇(𝑥,𝑦,1) ] = E[𝑇(𝑥,𝑦,2) ] =
1

𝜁 + 𝜇 . (28)

Proof. The details can be found in Appendix F in [9]. □

Then, the error ratio 𝜖 becomes the ratio of the sum of weighted

holding times when 𝑥 and𝑦 are not equal to the sum of all weighted

holding times as follows:

𝜖 =

∑
𝑦≠𝑥

∑
2

𝑧=0𝑤 (𝑥,𝑦, 𝑧)∑𝐾
𝑥=1

∑𝐾
𝑦=1

∑
2

𝑧=0𝑤 (𝑥,𝑦, 𝑧)
. (29)

6 AVERAGE AGE OPTIMIZATION
Correlation is an important factor in minimizing AoI, as demon-

strated in equation (14) and decisions such as the placement of

sensors can affect the correlation among them. It is obvious that

a higher correlation leads to a smaller AoI. However, increasing

the correlation between two processes in a sensor’s status updates

could decrease the correlation between other processes due to con-

straints on the sensor’s sensing capabilities. Therefore, it is crucial

to distribute the correlation probabilities adequately to minimize

AoI. In this section, we explore how to assign PC under certain

constraints representing different scenarios to minimize the sum

average AoI. Let Δ𝑠𝑢𝑚 denote the sum AoI, depicted below:

Δ𝑠𝑢𝑚 =

𝑀∑︁
𝑗=1

𝜆𝐶

𝜆𝐶 + 𝜇
( 𝜇E[𝑌 2]

2

− 𝜇E[𝑌 ] + E[𝑌 ] + 𝜇E[𝑌 ]
𝑝 𝑗

)
. (30)

To that end, the objective is to solve the following problem:

min

PC∈[0,1]𝑁 ×𝑀
Δ𝑠𝑢𝑚,

s.t. ℎ𝑖 (PC) ≤ 0 ,∀𝑖∈[𝑁 ] ,

where ℎ𝑖 (PC) represents the 𝑖-th sensor’s sensing ability constraint.

Given that each sensor has its own constraint, the optimal solution

has to meet all 𝑁 sensor constraints. We keep ℎ𝑖 (PC) general for
now. However, later in this section, we define three different ℎ𝑖 (PC)
functions for representing different scenarios.

Given that the only parameters affected by variable PC in Δ𝑠𝑢𝑚
are 𝑝 𝑗 ’s, we can remove the other parts to simplify the problem.

Specifically, the optimal PC values are the same resulting from

solving the problem below:

min

PC∈R𝑁 ×𝑀
𝑓 (PC) =

𝑀∑︁
𝑗=1

1

𝑝 𝑗
, (31)

s.t. ℎ𝑖 (PC) ≤ 0 ,∀𝑖∈[𝑁 ] ,

0 ≤ 𝑝𝑐𝑖 𝑗 ≤ 1, 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀,

where

[
𝑝1 𝑝2 . . . 𝑝𝑀

]
=

𝝀𝑇 PC
𝜆𝐶

and the constraintℎ𝑖 (PC) ≤ 0

represents the constraint for the sensor 𝑖 . To pursue our analysis,

we start by proving the convexity of the ojective function 𝑓 in the

following lemma.

Lemma 6. The objective function 𝑓 is a convex function.

Proof. The details can be found in Appendix G in [9]. □

Even if our objective function is convex, the convexity of the

problem relies on whether or not the sensor constraints preserve

convexity.When dealingwith convex problems, the Karush–Kuhn–Tucker

(KKT) conditions are sufficient for optimality [6]. To that end, we

derive the KKT conditions and we formulate the Lagrange function

of the optimization problem as follows:

L(PC,𝝉 , v, 𝝃 ) =
𝑀∑︁
𝑗=1

𝜆𝐶∑𝑁
𝑖=1 𝑝

𝑐
𝑖 𝑗
𝜆𝑖

+
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

(𝑝𝑐𝑖 𝑗 − 1)𝜏𝑖 𝑗

−
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑝𝑐𝑖 𝑗𝑣𝑖 𝑗 +
𝑁∑︁
𝑖=1

ℎ𝑖 (PC)𝜉𝑖 . (32)

The KKT conditions for the optimization problem described in eq.

(31) are as follows.
∗
is used to show optimum variables.

𝜏∗𝑖 𝑗 − 𝑣
∗
𝑖 𝑗 −

𝜆𝐶𝜆𝑖

(∑𝑁
𝑘=1

𝑝𝑐∗
𝑘 𝑗
𝜆𝑘 )2

+
𝑁∑︁
𝑘=1

𝜉∗
𝑘

𝑑

𝑑𝑝𝑐
𝑖 𝑗

ℎ𝑘 (P∗C) = 0,

𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀, (33)

(𝑝𝑐∗𝑖 𝑗 − 1)𝜏∗𝑖 𝑗 = 0, 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀, (34)

𝑝𝑐∗𝑖 𝑗 𝑣
∗
𝑖 𝑗 = 0, 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀, (35)

ℎ𝑖 (P∗C)𝜉
∗
𝑖 = 0, 𝑖 = 1, . . . , 𝑁 , (36)

𝝉∗, v∗, 𝝃 ∗ ≥ 0, (37)

1 ≥ P∗C ≥ 0, (38)

ℎ𝑖 (P∗C) ≤ 0 𝑖 = 1, . . . , 𝑁 . (39)

In the sequel, we proceed under the assumption that the sensing

ability constraint of each sensor operates independently of each

other. This assumption is made to establish scenarios where each

sensor’s sensing ability is solely dependent on itself, without influ-

ence from other devices. Notably, 𝑟𝑜𝑤𝑖 (PC) denotes the probability
assignments of sensor 𝑖 across all processes. Consequently, ℎ𝑖 (PC)
exclusively comprises variables from 𝑟𝑜𝑤𝑖 (PC) when considering

independent sensors. Hence, we can reformulate equation (33) for

independent sensors as follows:

𝜏∗𝑖 𝑗 − 𝑣
∗
𝑖 𝑗 −

𝜆𝐶𝜆 𝑗

(∑𝑁
𝑘=1

𝑝𝑐∗
𝑘 𝑗
𝜆𝑘 )2

+ 𝜉∗𝑖
𝑑

𝑑𝑝𝑐
𝑖 𝑗

ℎ𝑖 (P∗C) = 0,

𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀. (40)

Let us now analyze these conditions. To start, consider the scenario

where 𝑝𝑐∗
𝑖 𝑗

≠ 1, leading to the outcome 𝜏∗
𝑖 𝑗

= 0. Conversely, if 𝑝𝑐∗
𝑖 𝑗

≠

0, it results in 𝑣∗
𝑖 𝑗

= 0 in eq. (34) and (35). This dichotomy highlights

that at least one of 𝜏∗
𝑖 𝑗
and 𝑣∗

𝑖 𝑗
must be zero, given that 𝑝𝑐∗

𝑖 𝑗
cannot

simultaneously be 0 and 1. In equation (40), the non-zero nature of

𝜆𝐶𝜆 𝑗

(∑𝑁
𝑘=1

𝑝𝑐∗
𝑘 𝑗
𝜆𝑘 )2

dictates that all 𝜏∗
𝑖 𝑗
, 𝑣∗
𝑖 𝑗
, and 𝜉∗

𝑖
cannot simultaneously

be zero. Furthermore, ℎ𝑖 (P∗C) ≠ 0 implies that 𝜉∗
𝑖
= 0, in equation

(36). Considering the sensing ability constraint for sensor 𝑖 in a

feasible set, if it is not tight, 𝜉∗
𝑖
must be 0. This implies that 𝑝𝑐∗

𝑖 𝑗
is

either 0 or 1, or else all 𝜏∗
𝑖 𝑗
, 𝑣∗
𝑖 𝑗
, and 𝜉∗

𝑖
are 0. In essence, if sensor 𝑖

cannot operate at maximum sensing ability, 𝑝𝑐∗
𝑖 𝑗

takes the values

of either 0 or 1 for all 𝑗 ∈ [𝑀]. We can also say that the objective
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function gets smaller with the increase in any 𝑝𝑐∗
𝑖 𝑗

so that 𝑝𝑐∗
𝑖 𝑗

is set

to 1 instead of 0 when the sensing ability constraint is not tight. We

can conclude that every sensor 𝑖 uses its maximum sensing ability

or 𝑟𝑜𝑤𝑖 (P∗C) = 1 while the constraints are feasible. As a result, the

convexity of the problem and the optimal solution greatly depends

on the constraints. To that end, we define three different scenarios

to analyze the minimum sum AoI. Particularly, a sensor’s total

sensing probability is contingent on the number of processes it

tracks. We therefore consider three possible effects: (1) no impact,

(2) improved total sensing probability with more processes tracked,

and (3) weakened total sensing probability with more processes

tracked. We note that the ways to achieve optimum sensing ability

distribution are summarized in Remark 1.

Remark 1. When the constraints in problem (31) are convex, we
can use KKT conditions to find the optimal correlation distribution.
However, when the problem is non-convex, brute-force grid search al-
gorithms may be used, although they suffer from high complexity. On
the other hand, one can also leverage iterative algorithm such ADAM
[18], to find the solution to problem (31). Although the algorithm does
not necessarily converge to the global optimum, it still provides good
performance in a low-complex fashion. For illustration purposes and
analysis of the global optimum, we focus on a grid-search algorithm
in the remainder of the paper.

Three example cases are presented to illustrate the possible

regimes that can take place in the optimization. These include

a linear constraint example, a quadratic convex constraint example,

and a quadratic concave constraint example that correspond to no

impact, improving impact, and weakening impact, respectively. For

all three cases, we define a b = [𝑏1, ..., 𝑏𝑁 ] to reflect the intensity
of correlation and sensors’ sensing power.

(1) Linear Constraint Example:

PC1 − b ≤ 0.

This constraint indicates that there is neither a loss nor a gain

to track more than one process and the total probability remains

constant when probabilities are altered among different processes.

If𝑏𝑖 < 1, then the sensor 𝑖 is unable to consistently generate packets

with updates. In addition, if 𝑏𝑖 > 1, there are some intersections

between processes. This sensor can be thought of as a camera that

can track different areas and change its own position without any

loss. Let us consider the case where a camera may suffer from mal-

functioning, thus hindering it from gathering information about

the processes it monitors. This reflects a scenario where 𝑏 is di-

minishing. On the other hand, if the areas have some intersections,

which represent a correlation between processes, or the camera has

the ability to sense more than one process at the same time, this

translates to the cases where 𝑏𝑖 is increasing. Example feasible sets

are shown with blue area for a sensor with 2 processes in Figure 4.

To minimize the sum AoI, it is crucial to allocate probabilities

optimally. The objective presented in eq. (31) is equivalent to max-

imizing the harmonic mean. It is also known that the harmonic

mean is always smaller than or equal to the arithmetic mean, and

they are only equal when all values are identical. In this example,

we show that the arithmetic mean of the 𝑝∗ is constant so that

the optimal solution is distributing sensing probabilities to have

equal 𝑝∗
𝑗
for all 𝑗 = 1, ..., 𝑀 . This optimization process begins with

0.0 0.5 1.0
pc
11

0.0

0.5

1.0

pc 12

b=1

0.0 0.5 1.0
pc
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b=1.3
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Figure 4: Example feasible sets of linear constraints with
different b for sensor 1 with 2 processes.

obtaining sum of 𝑝∗
𝑗
for all 𝑗 = 1, ..., 𝑀 , as follows,

𝑀∑︁
𝑗=1

𝑝 𝑗 = 𝝀𝑻PC1/𝜆𝐶 ≤ 𝝀𝑻 b.

The KKT conditions imply that every sensor 𝑖 uses all sensing

capabilities unless 𝑀 < 𝑏𝑖 . Otherwise, the value of the 𝑖-th row

of PC1 is 𝑀 when the row 𝑖 of the matrix PC is equal to 1. Thus,

we can say that 𝑟𝑜𝑤𝑖 (PC1) = min(𝑀,𝑏𝑖 ) and we can rewrite the

summation as follows.

𝑀∑︁
𝑗=1

𝑝∗𝑗 = 𝝀𝑻P∗C1/𝜆𝐶 = 𝝀𝑻 (min(M, b)) .

Obtaining constant summation implies the arithmetic mean is also

constant, and its value equals the maximum possible harmonic

mean when all 𝑝∗
𝑗
are equal. This result implies that any PC that

satisfies conditions in sensing ability constraints is optimal when

all 𝑝 𝑗 are equal. When 𝑁 > 1, 𝑀 > 1, there might be more than one

optimal solution. One possible solution that provides equal 𝑝 𝑗 is

distributing sensing abilities equally, as follows:

𝑝𝑐∗𝑖 𝑗 = min(𝑀,𝑏𝑖 )/𝑀 ,∀𝑖∈[𝑁 ], 𝑗∈[𝑀 ] .

This optimal solution can also be obtained from KKT conditions by

letting
𝑑
𝑑𝑝𝑐
𝑖 𝑗

ℎ𝑘 (P∗C) = 1 and KKT conditions hold for this solution.

(2) Quadratic Convex Constraint Example:

𝑟𝑜𝑤𝑖 (PC)𝑟𝑜𝑤𝑖 (PC)𝑇 − 𝑏𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑁 .

We set 𝑏𝑖 values for intersections and sensor sensing abilities

such that they can be less than or greater than 1 to represent the in-

tersections and sensor sensing abilities, similar to the previous case.

Then, the convex constraint states that the total probability may

increase when probabilities are altered among different processes.

To have a constraint that ensures the total probabilities increase

when the sensor tracks more processes, let us consider a camera as a

sensor that can track processes for different time periods. The cam-

era can track a single process for a time period, and it can increase

the probability of having information, but increasing the length of

the time period may have a diminishing return. On the other hand,

it is possible to split time and track two or more processes. While

the probabilities of tracked processes decrease with an increase in

the number of processes tracked, the sum of sensing probabilities

increases compared to tracking a single process. Example feasible

sets for a sensor with 2 processes are illustrated with blue area in

Figure 5.

Similarly to the previous case, the sensor may have the ability to

track more processes than𝑀 and could track all processes, but if

unable, it uses all of its sensing ability to reach the optimum, which
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Figure 5: Example feasible sets of quadratic convex con-
straints with different b for sensor 1 with 2 processes.

can be written as 𝑟𝑜𝑤𝑖 (PC)𝑟𝑜𝑤𝑖 (PC)𝑇 = min(𝑀,𝑏𝑖 ). If the sensor
has the ability to track all processes (𝑏𝑖 ≥ 𝑀) then all probability

values for the sensor are 1, (𝑝𝑐∗
𝑖 𝑗

= 1 ,∀𝑗∈[𝑀 ] ). For the sensors

that can’t track all processes at the same time (𝑏𝑖 < 𝑀), we use
KKT conditions. Let us consider sensor 𝑖 and assume 𝑝𝑐∗

𝑖 𝑗
≠ 1 or

𝑝𝑐∗
𝑖 𝑗

≠ 0 for all 𝑗 ∈ [𝑀], we find that 𝑣∗
𝑖 𝑗

= 𝜏∗
𝑖 𝑗

= 0 for all 𝑗 ∈ [𝑀].
Additionally, the derivative of ℎ𝑘 (P∗C) with respect to 𝑝𝑐

𝑖 𝑗
is 2𝑝𝑐∗

𝑖 𝑗
.

Substituting these values into equation (40), we obtain the condition

below.

𝜆𝑖

𝜆𝐶𝜉
∗
𝑖

= 2𝑝𝑐∗𝑖 𝑗 𝑝
∗2
𝑗 , 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀.

When we keep 𝑖 constant, we have the same left-hand side, so

the optimal solution must satisfy these conditions. In this case, a

potential solution could be to distribute the sensing ability of the

sensor equally such that,

𝑝𝑐∗𝑖 𝑗 =
√︁
min(𝑀,𝑏𝑖 )/𝑀 , 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑀,

and KKT conditions hold for this solution.

(3) Quadratic Concave Constraint Example:

𝑏𝑖 − 𝑟𝑜𝑤𝑖 (1 − PC)𝑟𝑜𝑤𝑖 (1 − PC)𝑇 ≤ 0, 𝑖 = 1, . . . , 𝑁 .

We assign 𝑏𝑖 values to intersections and sensor sensing ability,

which can be less than or greater than 1 to represent them, similar

to previous cases. This constraint indicates that the overall proba-

bility may decrease when probabilities are changed across different

processes, rather than tracking a single process. Let us consider

an example where a camera can track more than one process, but

changing the camera’s pose takes some time, during which it can-

not generate updates with information. In this scenario, tracking

more processes increases the total probability of losses, and the

total probability is higher when the camera focuses only on a single

process. However, if there is no update from the other processes, its

AoI goes to infinity, which is also an undesired distribution. This

trade-off decides the optimal distribution. Figure 6 illustrates the

feasible sets for a sensor that has 2 processes with blue area.
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Figure 6: Example feasible sets of quadratic concave con-
straints with different b for sensor 1 with 2 processes.

In this case, we end up with a non-convex set, unlike the previous

two cases. As a result, our optimization problem is no longer con-

vex. Although equal distribution satisfies KKT conditions, it may

not be the global optimum. Therefore, non-convex optimization

approaches, such as ADAM optimizer [18], can be applied in such

cases. In the next section, first, we verify our theoretical analysis

by presenting numerical results, and then we present optimal PC
distributions for different scenarios.

7 NUMERICAL RESULTS
We categorize our numerical analysis into two groups. First, we

assume each sensor is assigned to a process, which means every sen-

sor has a target process and every packet from this sensor contains

information about the target process. In this case, the packet may

also contain information about other sources. We vary different

system parameters to verify our theoretical results in Section 4 and

Section 5. After verifying the theoretical analysis, we investigate

the trade-off model described in Section 6 such that each sensor has

some sensing abilities and constraints. In this case, the sensors can

distribute their sensing abilities over processes, and we investigate

the best PC distribution to get the minimum sum AoI.

7.1 Sensor-Process Assignment Analysis
In this section, we provide numerical results for the average AoI

and error ratio in a system with two processes having two states

along with two sensors to see the effects of correlation probability.

Our simulations are unit-time-based and were run for 1 million

units of time. The lowest arrival rate is 0.5 arrivals per unit time.

This means we have at least 5 × 10
5
arrivals for each process to

guarantee convergence. Simulation results are shown as circles,

and theoretical expressions from our analysis are shown as solid

lines in the figures. The strong match between them verifies the

validity of our analysis. We have three figures that depict different

relationships. The first two show the effect of correlation on AoI

and error with varying arrival rates. The third one shows how the

error changes with the state change rate for different correlations.

We set 𝛀1, 𝛀2 and PC as follows for the three cases.

𝛀1 = 𝛀2 =

[
0.4 0.6

0.3 0.7

]
, PC =

[
1 1 − 𝑝

1 − 𝑝 1

]
,

where 𝑝 is a tuning variable to vary 𝑝𝑐
21

and 𝑝𝑐
12
. As a result of

our analysis, only 𝑐𝑜𝑙 𝑗 (PC) has an effect on metrics for process 𝑗 .

Therefore, we only focus on 𝑐𝑜𝑙1 (PC) in this part.

We start with investigating the effects of correlation on AoI in

Figure 7. We vary the correlation probability 𝑝𝑐
21

and 𝜆1 with a

service rate 𝜇 fixed to 4, state change rate for process 1 and process

2, 𝜁1 and 𝜁2 fixed to 4, the arrival rate for sensor 2, 𝜆2 is fixed to 8.

As 𝑝𝑐
21

increases, AoI decreases as expected. However, the impact of

correlation gets smaller with the increase in sensor 1’s arrival rate

𝜆1. The reason is that an increase in 𝜆∗
1
causes a diminishing AoI

drop, and correlation has a small impact when the 𝜆1 is high enough.

As 𝜆1 increases, the status updates become more frequent, but there

is another limitation on AoI, which is service time. Therefore, the

AoI converges while 𝜆𝑖 is increasing. However, if 𝜆1 is small, and

there is another sensor with a high arrival rate 𝜆2, correlation plays

a huge role in AoI.

Next, we observe the error ratio for the same system in Figure 8.

We vary the correlation probability 𝑝𝑐
21

and 𝜆1 with a service rate

𝜇 fixed to 4, state change rate for process 1 and process 2, 𝜁1 and 𝜁2
fixed to 4, arrival rate for sensor 2, 𝜆2 fixed to 8.We see a very similar
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Figure 7: AoI versus 𝑝𝑐
21

for differ-
ent 𝜆𝑖 values with 𝜇 = 4, 𝜁1 = 4,

𝜁2 = 4, 𝜆2 = 8.
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Figure 8: Error 𝜖1 versus 𝑝𝑐
21

for dif-
ferent 𝜆𝑖 values with 𝜇 = 4, 𝜆2 = 8.
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Figure 9: Error 𝜖1 versus 𝜁1 for differ-
ent 𝑝𝑐

21
values with 𝜇 = 4, 𝜁2 = 4, 𝜆1 =

2, 𝜆2 = 8.

pattern to Figure 7 in Figure 8. As 𝑝𝑐
21

increases, the error drops as

expected because of an increase in the ratio of informative packets

in the server. Correlation has a powerful effect on error ratio, unlike

AoI for 𝜆𝑖 = 8. As 𝑝𝑐
21
, the difference between errors of different 𝜆𝑖

values decreases because all packets become informative. However,

an increase in the arrival rate causes convergence; in other words,

an error-less system cannot be achieved because both 𝜇 and 𝜁1 are

equal to 4. State changes during service time cause errors, and the

errors causing them cannot be reduced by either increasing the

arrival rate or increasing correlation.

Lastly, we investigate the system with a service rate 𝜇 fixed to 4,

arrival rate for sensor 1, 𝜆1 fixed to 2, arrival rate for sensor 2, 𝜆2
fixed to 8. We vary the correlation probability 𝑝𝑐

21
and 𝜁1. We only

show the error ratio for this system in Figure 9 because changes in

𝜁1 do not have any effect on AoI. As 𝜁1 increases, the error increases

as expected because the state changes more frequently. For small

𝜁1, the error is almost zero for all correlation values. The error ratio

converges to 1 - ⟨𝝍, 𝝍⟩, where ⟨𝝍, 𝝍⟩ represents the inner product
of stationary distribution 𝝍 defined in (3), as 𝜁1 goes to ∞ because

𝜆1 and 𝜆2 lose their effect when 𝜁1 is too large. Although the start

and end points of all plots for error are quite similar, when the

correlation is high, the increase becomes slower, which makes the

system more robust.

7.2 Sensing Ability-Constrained Sensor
Optimization Model

To evaluate the optimal correlation distribution, we consider a

system with two sensors and two processes. We vary 𝜆2 from 1 to

100 and set 𝜆1 = 1, 𝜇 = 4, 𝜁1 = 0.4, 𝜁2 = 0.4. We also set 𝛀1,𝛀2 and
b as follows:

𝛀1 = 𝛀2 =

[
0.4 0.6

0.3 0.7

]
, b =

[
1 1

]
.

Then, we use the SLSQP algorithm [19] for convex problems to con-

verge to the global optimum. For the non-convex part, we use grid

search to find the distribution that provides the global minimum

AoI to avoid converging to a local minimum. We use a step size

of 10
−3

for each probability variable. We use the three constraints

defined in Section 6, and we obtain that the constraints are always

tight when b ≤ 𝑀 and sensors use their maximum sensing abil-

ities, which verifies our argument derived from KKT conditions.

The other result we see is that an equal distribution of the sensors’

sensing probabilities among processes is optimal for the first two

constraints.

After verifying the first two constraints, we evaluate the third

constraint that makes the problem non-convex. The results are

shown in Figure 10 and we only present 𝑝𝑐∗
21

and 𝑝𝑐∗
22

for simplicity,

since we obtain 𝑝𝑐∗
11

= 1 and 𝑝𝑐∗
12

= 0 for all 𝜆2. Note that switching

𝑝𝑐∗
11

and 𝑝𝑐∗
21

to 𝑝𝑐∗
12

and 𝑝𝑐∗
22
, respectively, results in the same AoI

value due to the symmetry of the case. Consequently, we observe

equal sensing probabilities are not always the best distribution, in

contrast to the previous cases. When sensor 𝜆’s are close to each

other, assigning a sensor to a process provides the minimum AoI.

However, if one sensor dominates the other in terms of arrival rate,

the equal distribution provides the optimal AoI for the dominating

sensor. Interestingly, we observe that the value of 𝑝𝑐∗
21

does not

change smoothly from 1. We obtain 𝑝𝑐∗
21

= 0 if 𝜆2 ≲ 3.18 but we

see a dramatic regime switch to 0.08 after around 3.18. The reason

behind this is tracking more than one process causes a loss of total

sensing ability. Therefore, if 𝜆’s are close to each other, there is a

tendency to track a single process from each sensor. Nevertheless, if

one 𝜆 is significantly larger than the other, the system will converge

to the configuration with a single sensor. In order to avoid infinite

AoI values, both processes must be tracked by the dominating

sensor.

Lastly, in addition to AoI minimization, we also consider the

error minimization problem. Interestingly, the same trend can be

observed in the error minimization problem. The optimal assign-

ment involves assigning a process to the sensor until it reaches a

𝜆2 threshold, albeit different from the AoI 𝜆2 threshold. After the

threshold, it converges to equal distribution while 𝜆2 is increasing.

Note that, although only b and 𝜆1 affect the 𝜆2 threshold for AoI,

other parameters like Ω1, Ω2, 𝜁1, 𝜁2, and 𝜇 also have an effect on

the 𝜆2 threshold for error.

0 25 50 75 100
λ2

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
Va

lu
e

pc *
21 (AoI)

pc *
22 (AoI)

pc *
21 (Error)

pc *
22 (Error)

(a) 𝜆2 versus optimal 𝑝𝑐∗
21

and
𝑝𝑐∗
22

value with 𝜆1 = 1, 𝜇 =

4, b = 1, 𝜁1 = 0.4, 𝜁2 = 0.4.

1 2 3 4 5
λ2

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
Va

lu
e

pc *
21 (AoI)

pc *
22 (AoI)

pc *
21 (Error)

pc *
22 (Error)

(b) A closer look at the
regime switch in Figure a.

Figure 10: Optimal distribution for quadratic non-convex
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8 CONCLUSION
Our paper investigates multi-process multi-sensor systems with

a single server and correlated information. The study focuses on

understanding the effects of correlation on the system, particularly

in terms of the age of information and the error ratio of the moni-

tor’s estimation. We present analytical expressions and conducted

comparisons to evaluate the influence of correlation across differ-

ent system parameters. Our work also delves into how sensors

with restricted sensing abilities should allocate resources across

processes. We have highlighted the links between correlation, pro-

cesses’ state change rate, and optimization tactics for managing

the age of information. Interestingly, we identified cases where

monitoring multiple processes from one source may not always be

beneficial, and optimal resource distribution for different arrival

rates may exhibit critical regime shift behavior.
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