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ABSTRACT

In this paper, we examine a multi-sensor system where each sen-
sor may monitor more than one time-varying information process
and send status updates to a remote monitor over a common chan-
nel. We consider that each sensor’s status update may contain
information about more than one information process in the sys-
tem subject to the system’s constraints. To investigate the impact
of this correlation on the overall system’s performance, we con-
duct an analysis of both the average Age of Information (Aol) and
source state estimation error at the monitor. Building upon this
analysis, we subsequently explore the impact of the packet arrivals,
correlation probabilities, and rate of processes’ state change on
the system’s performance. Next, we consider the case where sen-
sors have limited sensing abilities and distribute a portion of their
sensing abilities across the different processes. We optimize this
distribution to minimize the total Aol of the system. Interestingly,
we show that monitoring multiple processes from a single source
may not always be beneficial. Our results also reveal that the op-
timal sensing distribution for diverse arrival rates may exhibit a
rapid regime switch, rather than smooth transitions, after crossing
critical system values. This highlights the importance of identifying
these critical thresholds to ensure effective system performance.
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1 INTRODUCTION

In the rapidly developing landscape of networked systems, timeli-
ness plays an essential role in multiple aspects of communication,
decision-making, and information processing, contributing signifi-
cantly to the efficiency and effectiveness of systems. In this realm,
the Age of Information (AoI) metric proposed in [17] stands as a
pivotal measure, capturing the timeliness of information delivery
in communication networks. Due to its importance, the Aol has
been well studied in the literature, ranging from single-server sys-
tems with single or multiple sources [8, 14, 23, 24, 29, 31, 35, 36], to
scheduling problems [13, 15, 20-22, 25] and resource-constrained
systems analysis [1-3, 10, 26].

In sensor networks, collaborative sensing among the different
components of the network has been shown to aid in improving
the overall performance of the network [12]. Particularly, in such
scenarios, numerous small sensor devices are strategically scattered
around an area, monitoring different processes and sending updates
to one or multiple central controllers [27]. Home security systems
with multiple motion sensors are a good example of how devices
can work together to improve efficiency. Each sensor can focus on a
specific area and send status updates for that area. However, if there
is an overlap between the fields of view of different sensors, they
can share information about those areas. This collaboration among
devices is referred to as correlation. In scenarios where network
resources are constrained, such collaboration can strengthen the
system’s efficacy and efficiency. It resembles orchestrating a net-
work of compact, intelligent devices working in unison to gather
and exchange data, thereby enabling thorough and punctual moni-
toring.

Given the importance of the Aol in sensor networks, such corre-
lation in status updates has been investigated in the literature. In
[11], a sensor network that has overlapping fields is considered, and
the authors presented a joint optimization approach for fog node
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assignment and transmission scheduling for sensors to minimize
the age of multi-view image data. Similarly, in [33], the authors
considered cameras that monitor overlapping areas and propose
scheduling algorithms for multi-channel systems for Aol-based
minimization. In [16, 34], the authors proposed probability-based
correlation models and presented sensor scheduling policies aimed
at minimizing Aol. In another line of work [28], the authors modeled
the status updates correlation as a discrete-time Wiener process and
proposed a scheduling policy that considers Aol and monitoring
error. Despite these contributions, existing studies predominantly
assume given correlation parameters and overlook the impact of
varying correlation on system performance when addressing sched-
uling problems. However, optimizing correlation parameters, such
as optimizing the placement of the sensors in an area, is also crucial.
This underscores the need for further research to investigate how
changes in correlation affect system dynamics and to identify opti-
mal correlation parameters under constraints. Our research fills this
gap by systematically exploring the effects of correlation variations
on system performance. To that end, the main contributions of this
paper are summarized as follows:

o As a first step, we introduce the system model, taking into
account the correlation at hand. Then, by analyzing this sys-
tem, we present an equivalent process-centric formulation
that simplifies the subsequent analysis.

e Following that, we analyze the Aol for each process sep-
arately in relation to correlation parameters, formulating
closed-form expressions for their averages in the considered
M/M/1/1 system. We also consider the estimation error per-
formance for each process separately, given that the Aol is
not always a sufficient metric in remote-tracking applica-
tions [30]. Our results draw from a stochastic analysis of
these metrics that consider all the possible events.

o Subsequently, we derive the correlation distribution that min-
imizes the Aol for three distinct scenarios. Specifically, we
investigate three different sensor constraints and determine
the optimal solution for each case.

e Furthermore, we present numerical implementations to vali-
date the closed-form expressions we derived. We compare
different parameter configurations, focusing on their aver-
age Aol and error ratio. Our results highlight the impact of
status updates correlation on both the Aol and estimation
error.

o Lastly, we investigate the optimal correlation distribution
and implement the derived optimal policies. Interestingly,
our implementations showcase that the optimal distribution
policy undergoes a significant regime shift beyond a specific
parameters threshold. This observation highlights the need
for adaptive, contextually-sensitive strategies in navigating
optimal solution spaces.

The rest of the paper is organized as follows. We present the system
model in Section 2. Afterward, we formulate the equivalent and
simplified system in Section 3. The analysis of Aol and error ratio is
then conducted in Section 4 and Section 5, respectively. In Section 6,
we put our optimization problem into perspective and propose so-
lutions to find the optimal sensing distribution. Finally, we present
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Figure 1: Illustration of our system model.

the numerical results in Section 7 while Section 8 concludes the
paper.!

2 SYSTEM MODEL

Let us consider a sensor network where N sensors track M informa-
tion processes. To keep the monitor updated, each sensor generates
status updates and sends them through a common server/channel,
as shown in Figure 1. We consider that the service time of each
packet is exponentially distributed with a service rate p. We also as-
sume that sensor i generates packets according to a Poisson process
of rate A;. We adopt a zero-buffer assumption for the server in our
model. This choice is motivated by previous research demonstrat-
ing its optimality for Aol minimization in certain scenarios, such
as single information source systems with preemption [4]. While
this optimality does not extend to our model, our initial numerical
investigations have revealed that incorporating a buffer does not
consistently enhance performance, as detailed in Appendix A in [9].
Consequently, we maintain the zero-buffer assumption throughout
our analysis. Accordingly, any arriving packet that finds the server
busy is dropped [5]. With all the above in mind, we define A as a vec-
tor representing the arrival rates from the different sensors, where
Ai is the arrival rate from sensor i for i = 1,..., N. Specifically, we
have:
AT=[M 2 In] - (1)
As for the information process, we consider that each physical
process evolves as a time-varying discrete stochastic process. Par-
ticularly, the physical process j is modeled as a Markov chain with

K different states. To represent these state changes, we use Qi to

b
denote the transition probability from state a to state b of process j.
In matrix form, the transition matrix Q; € [0, 1]X%K can be defined

as follows:

J J J
of o %y
Q Q - Q
21 22 2K
Q=] . ; ) S|, forj=1,...,M. 2)
j j S
Q1 Qxk

In this paper, we consider that the Markov chain is irreducible
and aperiodic. To that end, we can conclude the existence and
uniqueness of the chain’s stationary distribution. We denote the
stationary distribution of the Markov chain formed with Q; by:

=y v v )
This stationary distribution can obtained by solving the equation:
yj - Qj = yj, 4)

Due to size limitations, we present the proof details in our paper’s arXiv version [9].
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and normalizing the resulting vector to ensure that the sum of its
components is equal to 1 [7].

We assume that state transitions for process j occur after ex-
ponentially distributed epochs with a rate of {j. Accordingly, the
generation of status updates by sensors and information process
changes are decoupled, reflecting scenarios where sensors observe
multiple processes simultaneously, such as a camera tracking vari-
ous activities. This decoupling allows each process’s state to evolve
independently, regardless of active tracking, ensuring a more re-
silient and adaptable system. It accommodates situations where
sensors may not detect every change or update for each detected
change, and where processes evolve at different rates. Ultimately,
this decoupling creates a robust, realistic model that better adapts
to the complexities and limitations of multi-process monitoring
systems, accurately representing practical constraints in real-world
sensing applications.

Finally, to model the correlation among the different sensor obser-
vations, we assume that each packet generated by sensor i contains
information about the process j with a correlation probability p{ s
The information the packet has is the state of the processes at the
generation time of the packet. To that end, we define the correlation

matrix Pc € [0, 1]V*M a5 follows:
P Ph Pim
Ph 5 Pim
Pc=| . : . ©)
PN1 Pie PRm

Key symbols defined in this paper are summarized in Table 1. After
having outlined the system model, we now proceed to formulate
the equivalent and simplified system in Section 3.

Table 1: Key Symbols

Symbol | Definition
Ai Arrival rate of sensor i
Qj State transition probabilities of process j
gj State change rate of process j
Pj Stationary distribution of Q;
Pc Correlation probabilities among sensors and processes
Pi; Correlation probability between sensor i and process j
Ac Sum of sensor arrival rates
/1; Rate of informative arrivals for process j
pj Probability of serving informative packet for process j

3 SYSTEM SIMPLIFICATION THROUGH
EQUIVALENCE

In the considered system, the originator of the packet containing
information about any arbitrary process j is irrelevant from the
monitor’s perspective. In fact, concerning process j, what matters
to the monitor is whether the served packet contains information
about process j or not rather than which sensor provided the update.
To that end, we label a status update as informative for process j if
it contains information on the process j. Otherwise, we label it as
uninformative. Building on this concept, we define the informative
arrival rate vector A* as follows:

AT = o x]=aTp, )
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With
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Figure 2: Equivalent system model from process j’s perspec-
tive.

where /1;‘. represents the informative arrival rate for process j. As

a last step, we let A¢ be the arrival rate of the server, which is the
sum of all arrival rates, as follows:

@)

With the above entities in mind, we provide the following system
equivalence lemma.

LEMMA 1. Consider a process j among M processes. From the
monitor’s perspective, the system is equivalent to Figure 2, where
there are two packet sources:

o packets with information, with a rate of 1%, and
o packets without information with a rate of A\c — A}f.

Proor. The details can be found in Appendix B in [9]. o

Using the above equivalence, we can analyze the environment
by reducing the original system to M independent systems, each
with two sources as depicted in Fig. 2. The independence of these M
systems stems from the Poisson nature of packet arrivals. From the
perspective of any single process j, the arrivals of both informative
and uninformative packets from all other processes can be shown
to collectively form Poisson streams, as detailed in Appendix B in
[9]. With this in mind, in the next section, we derive a closed-form
expression of the Aol for each process, taking into account both
informative and uninformative status updates to comprehensively
evaluate their impact on the system’s dynamics.

4 AGE OF INFORMATION ANALYSIS

In this section, we consider the age function introduced in [17] as
a performance metric. Mathematically, the Aol of process j at time
t, denoted by A(t), can be defined as:

Aj(t) =t —Tj, (8)

where T; represents the time at which the most recent informative
packet for process j was generated. Particularly, the age at the
monitor for each process j increases linearly over time until an
informative status update is received, upon which a drop in the age
takes place. As mentioned in Section 2 and Section 3, the packet in
the server may or may not have information about each process.
If the served packet has information about process j, the Aol for
process j decreases just after the end of the service time. However,
if the served packet has no information on process j, the Aol for
process j continues to increase linearly. Let #; denote the time
instant when the k-th packet is generated, and t]/C represent the
time instant when this packet completes service. When the server
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is busy with an informative or uninformative packet upon the
arrival of a new packet, the new packet is dropped. To that end,
we denote by t,‘f the time instant when the n-th dropped packet
was generated. We define T as the service time of the k-th packet,
given by

©)
and Yy, as the inter-departure time between two consecutive packets,
given by

Tk = t;c — Ik,

(10)

We also define Y/ as the inter-departure time between the I-th infor-

NV
Y = b=ty

mative packet and the (I — 1)—th informative packet from process
J’s perspective. Since Yj shares the same distribution for all k, we
define the random variable Y to represent them collectively. Simi-
larly, considering that 17]’ shares the same distribution for all [, we

define the random variable 1?1 to represent them as a group. To
understand the Aol process better, we illustrate the evolution of
the Aol in Figure 3. The age of information for process 1 at the
destination node follows a linear increase over time. When a new
informative status update is received, the age is reset to the time
difference between the current time instant and the timestamp of
the received update (A1). However, if the status update is unin-
formative for process 1 like the update completed at ¢}, the age
continues to increase linearly (Az). The packets arriving at times tf
and tg are dropped. The server is occupied with an uninformative
packet at time tf and an informative packet at time tg for process
1. In addition, 1712 is the second informative interarrival time which
is equal to the time difference between ] and #{ that are the second
and the first informative departures.

Next, we define the effective arrival rate as the rate of packets
that arrive when the server is idle. Let A¢ be the effective arrival
rate for packets that are informative for process j. Consequently,
we have

A8 = M; forj=1 M 11)
J = i orj=1,....M. (

Given the above quantity, we derive below the average Aol for
each process j.

LEMMA 2. The average Aol A; for process j is:

Aj =25 (%E[f’f]+¥), forj=1,...,M. (12)

Proor. We adapt the methodology outlined in [8] to our sce-
nario by leveraging their approach of utilizing inter-arrival times
for calculating the age of information. Despite the absence of in-
formative categorization in [8], their method of deriving the age of
information based on inter-arrival times remains applicable. The
main modification involves substituting variables to align with our
informative arrivals. ]

Next, we define p; as the probability of serving an informative
packet for process j, as shown below:
A%

J
-—. 13
= (13)

After defining p;, we utilize it to establish the relationship between

pj=

f/j and Y. The details of this relationship can be found in Appendix
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Figure 3: Evolution of Aol for process 1.

C in [9]. Using this relationship, we present the Aol for process j
in Theorem 1, formulated in terms of y, Y;, and /1;.

THEOREM 1. In the considered M/M/1/1 system, the average Aol
Sfor process j denoted as A; is:

2] WE[Y]*(1-p;
e ﬂE[Y]+ﬂ[]~( P g
Ac+p 2 pj

Aj (Y]],

(14)

Proor. The details can be found in Appendix C in [9]. O

To provide an interpretation of the above formula, we can see
that if the value of p; is 1, it means that every packet is informa-
tive for process j. In such a scenario, the system acts like a single
sensor system, continuously sending status updates of process j
from its perspective. On the other hand, as p; approaches 0, the
packets become uninformative. As a result, the Aol approaches
infinity, since informative status updates are received more and
more infrequently.

5 ERROR RATIO ANALYSIS

We define a binary function €;(t) such that if the state information
the monitor has for process j is the same as the state of process j
at time ¢, then €;(t) is equal to 1. Otherwise, it is equal to 0. Then,
we define the error of process j as the ratio of the total duration
when € (t) is equal 0 over the entire time horizon, denoted by €;.
Particularly, we have

1 T
€j=1- lim —/ ej(t)dt, forj=1,....M. (15)
T—o T Jo

Due to the nature of our system, ¢; and €; are independent for any
i,j € {1,...,M} with i # j. The reason behind that is that state
changes of two processes are independent of each other, and the
system functions as M different independent systems as demon-
strated in Section 3. Therefore, we derive the generic error € for any
process to simplify our analysis. Particularly, we drop the index j
of the considered entities, and we use €, €(t), {, A* and Q to denote
the system parameters in the remainder of this section.

To find € analytically, we investigate a Markov Chain that con-
siders the current process state, the state at the monitor, and the
state of the served packet (defined below). Our proposed Markov
chain is 3-dimensional with dimensions (x, y, z). The states x and y
represent the current state and the monitor state, respectively, and

forj=1,....,M.
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each can take values between 1 and K. The state z can have three
possible values as depicted below:

e z = 0: This state indicates that the server is currently idle.

o z = 1: This state signifies that the server is actively serving a
packet containing information from the process of interest.

e z = 2:In this state, the server is occupied by a packet, but this
packet does not contain information about the process in
question. In other words, it carries information about other
processes.

Note that when x and y are equal, the current state and the state
the monitor has are identical. To this end, we redefine €(t) as

1 ifx=uy,
e(t) = ifx=y
0 otherwise.

With all the above in mind, we note that the system has three types
of events: packet arrivals, packet departures, and state changes.
Each event causes a transition in this three-dimensional Markov
Chain. Let Pyj and 7 be the transition probability matrix correspond-
ing to those transitions and the stationary distribution of the three-
dimensional Markov chain. Given that the one-dimensional Markov
chain shown in Section 2 characterized by both irreducibility and
aperiodicity is used to form the considered three-dimensional Markov
Chain, the three-dimensional Markov chain can be shown to be
irreducible and aperiodic. Next, we let 7 (x, y, z) denote the station-
ary probability of being at state (x, y, z). Then, by definition, the
following equation is verified:

K K 2
ZZZn(x,y,z) =1.

x=1y=12z=0

(16)

17)

To derive this stationary distribution, we first need to calculate the
probability of state change until the packet is served, given that
the server is occupied with an informative packet. To do this, we
need to find the probability of the process transitioning from state
i to state j, denoted as p;’j, while an informative packet is being
i=1,...,Nand j=1,...,M in the
following lemma, Lemma 3. Afterward, and by leveraging these
results, we formulate Py.

served. We derive p?j for all

LEMMA 3. Let Py € [0, 115%K represent the matrix of elements

p?j ’s. The matrix can be obtained as follows:

P P Pix
Py P Pk U Q\™!
Py=| o £ - 222) . as)
: : p+E\ p+l
p[rzl p[réz pIZK

ProOF. The details can be found in Appendix D in [9]. O

LEMMA 4. Let PM(x;,y1.2) > (xsy02) € [0, 1] be the transition
probability from (x1,y1,z1) to (x2,y2, z2). Pm can be obtained as
follows:

For every x1,x2,y1 =1,...,K:

{
PM(xlsyl,O)ﬁ(xz,yuO) = Quix, §+/1C, (19)

{
PM(xl’ylsl)_’(xz,yl,l) = Qux év_'_u’ (20)
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PM(xl,yl,Z)—’(xz»yl,Z) = Quix, m (21)
For everyx1,y1 =1,...,K:
A’*
PM(xl,yl,O)—>(x1,y1,1) = m, (22)
Ac = A*
PM(XlsylsO)"(xl’yl’z) = m’ (23)
[
PM(xl,yl,Z)—>(x1,y1,0) = m (24)
For every x1,y1,y2 = 1,...,K:
H ‘ﬁyz
PM (x1,51,1) = (x1,42,0) = mp';zm 1//_x1 (25)
Otherwise:
PM (x1,y1,21) = (x2.92,22) = 0 (26)
Proor. The details can be found in Appendix E in [9]. O

The distinction between matrices Py and Py is crucial here.
PM represents the transition probabilities in the three-dimensional
Markov chain, considering the server state (idle, serving the process
of interest, or serving other processes). On the other hand, Py is a
matrix that captures the state transition probabilities of the process
itself during the time an informative packet is being served.

With Py formulated, we can now obtain the stationary distribu-
tion 7(x, y, z). Note that we cannot directly use 7 (x, y, z) to calcu-
late the error over the entire time span because of the embedded
nature of the Markov chain [32]. That is, the state transitions in
Py do not occur at every small time step; instead, they occur only
with events of packet arrival, packet departure, and process state
change, which makes the time spent in each (x, y, z) state at a single
visit different from each other. Therefore, we need to incorporate
the length of time spent in each (x, y, z) state. To that end, we let
w(x,y,z) denote the weighted holding time at state (x, y, z) over
the entire time span. In other words, W X w(x, y, z) represents the
expected time waited at state (x, y, z) during W state transitions.
Note that all these events, i.e., packet arrival, packet departure,
and state change of the process, are memoryless, independent, and
identically distributed, which preserves Markov property in the
embedded chain. Due to the memoryless property, only the occur-
rence time of the next event has an impact on the time spent in each
state. With all the above in mind, we define a weighted holding
time function w(x,y,z) = 7(x,y, 2)E[T(x,y,2)] where E[T(x, )]
is the expected holding time that represents the expected time
waited until the next jump in state (x,y, z) at every transition. It
is important to note that the holding time in state (x, y, z) is inde-
pendent of 7 (x, y, z). We present expected holding times in Lemma
5. E[T{(x,y,2)] values vary with different z values, but changes in
x or y do not affect E[T{, )] because the possible events that
can happen are the same for the same z. For example, the possible
events are packet arrivals and state changes of the process if z = 0
forallx,y =1,...K.

LemMA 5. Let E[T(y )] be the expected holding time in state
(x,y, 2). Then, B[T(y,y,2)] can be calculated for everyx,y =1,...,K
as follows:

1

i @

E[T(x,y0)] =
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1

o (28)

E[T(x,y,l)] = E[T(x,y,z)] =

PRroOF. The details can be found in Appendix F in [9]. O

Then, the error ratio € becomes the ratio of the sum of weighted
holding times when x and y are not equal to the sum of all weighted
holding times as follows:

_ Zy#x 2;25:0 w(x, y,2)
SK L TK T w(xya)

(29)

6 AVERAGE AGE OPTIMIZATION

Correlation is an important factor in minimizing Aol, as demon-
strated in equation (14) and decisions such as the placement of
sensors can affect the correlation among them. It is obvious that
a higher correlation leads to a smaller Aol. However, increasing
the correlation between two processes in a sensor’s status updates
could decrease the correlation between other processes due to con-
straints on the sensor’s sensing capabilities. Therefore, it is crucial
to distribute the correlation probabilities adequately to minimize
Aol In this section, we explore how to assign Pc under certain
constraints representing different scenarios to minimize the sum
average Aol. Let Agy;, denote the sum Aol, depicted below:

Ac HE 1 E
Asum = Z /1C +ll 2 ,LIE[Y] +E[Y] + =

(30)

To that end, the objective is to solve the following problem:

min Asum,
Pce[0,1]NxM

s.t. hi(Pc) <0, V¥ie[N]s

where h; (Pc) represents the i-th sensor’s sensing ability constraint.
Given that each sensor has its own constraint, the optimal solution
has to meet all N sensor constraints. We keep h; (Pc) general for
now. However, later in this section, we define three different h; (Pc)
functions for representing different scenarios.

Given that the only parameters affected by variable P¢c in Agym
are p;’s, we can remove the other parts to simplify the problem.
Specifically, the optimal Pc values are the same resulting from
solving the problem below:

M
1
min Pc) = -, 31
p 0, f(Pc) ; 5 (31)

s.t. hi(Pc) < 0,Vic[ns

0<pj; <1 i=1...
where [p1 p2 pm| = 5C and the constraint h;(Pc) < 0
represents the constraint for the sensor i. To pursue our analysis,
we start by proving the convexity of the ojective function f in the
following lemma.

LEMMA 6. The objective function f is a convex function.

ProoF. The details can be found in Appendix G in [9]. ]
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Even if our objective function is convex, the convexity of the
problem relies on whether or not the sensor constraints preserve

convexity. When dealing with convex problems, the Karush-Kuhn-Tucker

(KKT) conditions are sufficient for optimality [6]. To that end, we
derive the KKT conditions and we formulate the Lagrange function
of the optimization problem as follows:

M N M
LPervE) =) oy — +ZZ(p§j - Drij
Jj= 1Z /1 i=1 j=1

N

ZPUUU + Z hi(Pc)é;.
Jj=1

The KKT conditions for the optimization problem described in eq.
(31) are as follows. * is used to show optimum variables.

- Z (32)

i=1

— Achi Nood .o,

Tij —Vij — m ];fkafjhk(l’c)=0,
i=1,..,N, j=1....M, (33)
(P5; —Dr;=0, i=1..,N, j=1...,M, (34)
pf]* j‘]—o, i=1,...,N, j=1...,M, (35)
hi(POE =0, i=1,...,N, (36)
v EF 20, 37)
1>P¢ >0, (38)
hi(PE) <0 i=1,...,N. (39)

In the sequel, we proceed under the assumption that the sensing
ability constraint of each sensor operates independently of each
other. This assumption is made to establish scenarios where each
sensor’s sensing ability is solely dependent on itself, without influ-
ence from other devices. Notably, row;(Pc) denotes the probability
assignments of sensor i across all processes. Consequently, h;(Pc)
exclusively comprises variables from row;(Pc) when considering
independent sensors. Hence, we can reformulate equation (33) for
independent sensors as follows:

Achj d
vl - (P =0,
13) 13) (Zk lpk*}’ )2 ld C
i=1,...,N, ]:1,...,M. (40)

Let us now analyze these conditions. To start, consider the scenario
where p T # 1, leading to the outcome 77, ;=0 Conversely, if pc* #
= 0 in eq. (34) and (35). This dichotomy hlghhghts

¥ cannot

0, it results in 0
that at least one of T} y and o} ;j must be zero, given that p

simultaneously be 0 and 1. In equatlon (40), the non-zero nature of

AcA; .
— hatall 7., 0
= SINE dictates that a T 0 U

be zero. Furthermore, h;(P{) # 0 implies that & = 0, in equation
(36). Considering the sensing ability constraint for sensor i in a
feasible set, if it is not tight, ’g’f must be 0. This implies that pf]* is
either 0 or 1, or else all Tl*J U;.kj,
cannot operate at maximum sensing ability, p¢; i ¥ takes the values
of either 0 or 1 for all j € [M]. We can also say that the objective

and &' cannot simultaneously

and & are 0. In essence, if sensor i
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function gets smaller with the increase in any pl?j* so that pf}‘ is set
to 1 instead of 0 when the sensing ability constraint is not tight. We
can conclude that every sensor i uses its maximum sensing ability
or row; (P¢) = 1 while the constraints are feasible. As a result, the
convexity of the problem and the optimal solution greatly depends
on the constraints. To that end, we define three different scenarios
to analyze the minimum sum Aol Particularly, a sensor’s total
sensing probability is contingent on the number of processes it
tracks. We therefore consider three possible effects: (1) no impact,
(2) improved total sensing probability with more processes tracked,
and (3) weakened total sensing probability with more processes
tracked. We note that the ways to achieve optimum sensing ability
distribution are summarized in Remark 1.

REMARK 1. When the constraints in problem (31) are convex, we
can use KKT conditions to find the optimal correlation distribution.
However, when the problem is non-convex, brute-force grid search al-
gorithms may be used, although they suffer from high complexity. On
the other hand, one can also leverage iterative algorithm such ADAM
[18], to find the solution to problem (31). Although the algorithm does
not necessarily converge to the global optimum, it still provides good
performance in a low-complex fashion. For illustration purposes and
analysis of the global optimum, we focus on a grid-search algorithm
in the remainder of the paper.

Three example cases are presented to illustrate the possible
regimes that can take place in the optimization. These include
a linear constraint example, a quadratic convex constraint example,
and a quadratic concave constraint example that correspond to no
impact, improving impact, and weakening impact, respectively. For
all three cases, we define a b = [by, ..., by] to reflect the intensity
of correlation and sensors’ sensing power.

(1) Linear Constraint Example:
Pc1-b<o0.

This constraint indicates that there is neither a loss nor a gain
to track more than one process and the total probability remains
constant when probabilities are altered among different processes.
If b; < 1, then the sensor i is unable to consistently generate packets
with updates. In addition, if b; > 1, there are some intersections
between processes. This sensor can be thought of as a camera that
can track different areas and change its own position without any
loss. Let us consider the case where a camera may suffer from mal-
functioning, thus hindering it from gathering information about
the processes it monitors. This reflects a scenario where b is di-
minishing. On the other hand, if the areas have some intersections,
which represent a correlation between processes, or the camera has
the ability to sense more than one process at the same time, this
translates to the cases where b; is increasing. Example feasible sets
are shown with blue area for a sensor with 2 processes in Figure 4.

To minimize the sum Aol it is crucial to allocate probabilities
optimally. The objective presented in eq. (31) is equivalent to max-
imizing the harmonic mean. It is also known that the harmonic
mean is always smaller than or equal to the arithmetic mean, and
they are only equal when all values are identical. In this example,
we show that the arithmetic mean of the p* is constant so that
the optimal solution is distributing sensing probabilities to have
equal 13;‘ for all j = 1, ..., M. This optimization process begins with
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05
piy

Figure 4: Example feasible sets of linear constraints with
different b for sensor 1 with 2 processes.

obtaining sum ofﬁ; forall j =1,..., M, as follows,

M

> 6 =ATPc1/Ac < ATh.

j=1
The KKT conditions imply that every sensor i uses all sensing
capabilities unless M < b;. Otherwise, the value of the i-th row
of Pc1 is M when the row i of the matrix Pc is equal to 1. Thus,
we can say that row;(Pc1) = min(M, b;) and we can rewrite the
summation as follows.

M

Z ;= ATPE1/2c = AT (min(M, b)).

j=1
Obtaining constant summation implies the arithmetic mean is also
constant, and its value equals the maximum possible harmonic
mean when all 15;‘ are equal. This result implies that any P¢ that
satisfies conditions in sensing ability constraints is optimal when
all pj are equal. When N > 1, M > 1, there might be more than one
optimal solution. One possible solution that provides equal p; is
distributing sensing abilities equally, as follows:

pij =min(M, b;))/M ,¥ic[N] je[m]-

This optimal solution can also be obtained from KKT conditions by

letting dgc hk(Pé) = 1 and KKT conditions hold for this solution.
ij

(2) Quadratic Convex Constraint Example:

row;(Pc)row;(Pc)T —b; <0, i=1,...,N.

We set b; values for intersections and sensor sensing abilities
such that they can be less than or greater than 1 to represent the in-
tersections and sensor sensing abilities, similar to the previous case.
Then, the convex constraint states that the total probability may
increase when probabilities are altered among different processes.
To have a constraint that ensures the total probabilities increase
when the sensor tracks more processes, let us consider a camera as a
sensor that can track processes for different time periods. The cam-
era can track a single process for a time period, and it can increase
the probability of having information, but increasing the length of
the time period may have a diminishing return. On the other hand,
it is possible to split time and track two or more processes. While
the probabilities of tracked processes decrease with an increase in
the number of processes tracked, the sum of sensing probabilities
increases compared to tracking a single process. Example feasible
sets for a sensor with 2 processes are illustrated with blue area in
Figure 5.

Similarly to the previous case, the sensor may have the ability to
track more processes than M and could track all processes, but if
unable, it uses all of its sensing ability to reach the optimum, which
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Figure 5: Example feasible sets of quadratic convex con-
straints with different b for sensor 1 with 2 processes.

can be written as row; (Pc)row; (Pc)T = min(M, b;). If the sensor
has the ability to track all processes (b; > M) then all probability
values for the sensor are 1, (pf]* = 1,Yem])- For the sensors
that can’t track all processes at the same time (b; < M), we use
KKT conditions. Let us consider sensor i and assume pfj* # lor
pfj* # 0 for all j € [M], we find that v;.“j = T;‘j =0forall j € [M].
Additionally, the derivative of hy (Pg) with respect to pfj is pr}‘.
Substituting these values into equation (40), we obtain the condition
below.

Ai * kD . .
Aol 2pip;% i=1,.. N, j=1... M.
oi
When we keep i constant, we have the same left-hand side, so
the optimal solution must satisfy these conditions. In this case, a
potential solution could be to distribute the sensing ability of the

sensor equally such that,

pff =+/min(M,b;)/M, i=1,...,N, j=1...,M,
and KKT conditions hold for this solution.
(3) Quadratic Concave Constraint Example:

bi —row;(1 —Pc)row;(1 — Pc)T <0, i=1,...,N.

We assign b; values to intersections and sensor sensing ability,
which can be less than or greater than 1 to represent them, similar
to previous cases. This constraint indicates that the overall proba-
bility may decrease when probabilities are changed across different
processes, rather than tracking a single process. Let us consider
an example where a camera can track more than one process, but
changing the camera’s pose takes some time, during which it can-
not generate updates with information. In this scenario, tracking
more processes increases the total probability of losses, and the
total probability is higher when the camera focuses only on a single
process. However, if there is no update from the other processes, its
Aol goes to infinity, which is also an undesired distribution. This
trade-off decides the optimal distribution. Figure 6 illustrates the
feasible sets for a sensor that has 2 processes with blue area.

b=1.3

\ \ Q
\_ \ N
N N\ \‘
0.0 — 0.0 >~ 0.0

0.5 1.0
phy

Figure 6: Example feasible sets of quadratic concave con-
straints with different b for sensor 1 with 2 processes.

In this case, we end up with a non-convex set, unlike the previous
two cases. As a result, our optimization problem is no longer con-
vex. Although equal distribution satisfies KKT conditions, it may
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not be the global optimum. Therefore, non-convex optimization
approaches, such as ADAM optimizer [18], can be applied in such
cases. In the next section, first, we verify our theoretical analysis
by presenting numerical results, and then we present optimal P¢c
distributions for different scenarios.

7 NUMERICAL RESULTS

We categorize our numerical analysis into two groups. First, we
assume each sensor is assigned to a process, which means every sen-
sor has a target process and every packet from this sensor contains
information about the target process. In this case, the packet may
also contain information about other sources. We vary different
system parameters to verify our theoretical results in Section 4 and
Section 5. After verifying the theoretical analysis, we investigate
the trade-off model described in Section 6 such that each sensor has
some sensing abilities and constraints. In this case, the sensors can
distribute their sensing abilities over processes, and we investigate
the best P¢ distribution to get the minimum sum Aol.

7.1 Sensor-Process Assignment Analysis

In this section, we provide numerical results for the average Aol
and error ratio in a system with two processes having two states
along with two sensors to see the effects of correlation probability.
Our simulations are unit-time-based and were run for 1 million
units of time. The lowest arrival rate is 0.5 arrivals per unit time.
This means we have at least 5 X 10 arrivals for each process to
guarantee convergence. Simulation results are shown as circles,
and theoretical expressions from our analysis are shown as solid
lines in the figures. The strong match between them verifies the
validity of our analysis. We have three figures that depict different
relationships. The first two show the effect of correlation on Aol
and error with varying arrival rates. The third one shows how the
error changes with the state change rate for different correlations.
We set Q1, Q2 and P¢ as follows for the three cases.

0.4 0.6 |1 1-p
03 0.7 T l1-p 1|’

where p is a tuning variable to vary pg, and pf,. As a result of
our analysis, only col;(Pc) has an effect on metrics for process j.
Therefore, we only focus on col; (Pc) in this part.

We start with investigating the effects of correlation on Aol in
Figure 7. We vary the correlation probability p5, and A; with a
service rate y fixed to 4, state change rate for process 1 and process
2, {1 and {» fixed to 4, the arrival rate for sensor 2, A3 is fixed to 8.
As p§, increases, Aol decreases as expected. However, the impact of
correlation gets smaller with the increase in sensor 1’s arrival rate
A1. The reason is that an increase in A] causes a diminishing Aol
drop, and correlation has a small impact when the A; is high enough.
As A1 increases, the status updates become more frequent, but there
is another limitation on Aol, which is service time. Therefore, the
Aol converges while 4; is increasing. However, if A; is small, and
there is another sensor with a high arrival rate Ay, correlation plays
a huge role in Aol.

Next, we observe the error ratio for the same system in Figure 8.
We vary the correlation probability pg, and Ay with a service rate
1 fixed to 4, state change rate for process 1 and process 2, {1 and {»
fixed to 4, arrival rate for sensor 2, A fixed to 8. We see a very similar

Q1 =Q;=

|
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Figure 7: Aol versus p7, for differ-
ent A; values with ¢ = 4,{; = 4
$r=4,1,=38.

pattern to Figure 7 in Figure 8. As p5, increases, the error drops as
expected because of an increase in the ratio of informative packets
in the server. Correlation has a powerful effect on error ratio, unlike
Aol for A; = 8. As p5,, the difference between errors of different A;
values decreases because all packets become informative. However,
an increase in the arrival rate causes convergence; in other words,
an error-less system cannot be achieved because both y and {; are
equal to 4. State changes during service time cause errors, and the
errors causing them cannot be reduced by either increasing the
arrival rate or increasing correlation.

Lastly, we investigate the system with a service rate y fixed to 4,
arrival rate for sensor 1, A1 fixed to 2, arrival rate for sensor 2, A,
fixed to 8. We vary the correlation probability p5, and 1. We only
show the error ratio for this system in Figure 9 because changes in
{1 do not have any effect on Aol. As {7 increases, the error increases
as expected because the state changes more frequently. For small
{1, the error is almost zero for all correlation values. The error ratio
converges to 1 - (¢, g), where (@, @) represents the inner product
of stationary distribution g defined in (3), as {; goes to co because
A1 and A3 lose their effect when {; is too large. Although the start
and end points of all plots for error are quite similar, when the
correlation is high, the increase becomes slower, which makes the
system more robust.

7.2 Sensing Ability-Constrained Sensor
Optimization Model

To evaluate the optimal correlation distribution, we consider a
system with two sensors and two processes. We vary A, from 1 to
100 and set A1 = 1, p = 4,1 = 0.4,{» = 0.4. We also set Q1, Q22 and
b as follows:

0.4

0.3

Ql:Qz:[ 0.7

0'6], b=[1 1].

Then, we use the SLSQP algorithm [19] for convex problems to con-
verge to the global optimum. For the non-convex part, we use grid
search to find the distribution that provides the global minimum
Aol to avoid converging to a local minimum. We use a step size
of 1073 for each probability variable. We use the three constraints
defined in Section 6, and we obtain that the constraints are always
tight when b < M and sensors use their maximum sensing abil-
ities, which verifies our argument derived from KKT conditions.
The other result we see is that an equal distribution of the sensors’
sensing probabilities among processes is optimal for the first two
constraints.

00 025
Correlation Probability pS,;

0.50

Figure 8: Error ¢; versus pj, for dif-
ferent A; values with  =4,1 = 8.
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Figure 9: Error €; versus {; for differ-
ent pS. values with p=4,0, =44 =
2,y = 8.

After verifying the first two constraints, we evaluate the third
constraint that makes the problem non-convex. The results are
shown in Figure 10 and we only present p5} and pg7 for simplicity,
since we obtain p77 = 1 and p{5 = 0 for all . Note that switching
pi; and pg to p{; and pg7, respectively, results in the same Aol
value due to the symmetry of the case. Consequently, we observe
equal sensing probabilities are not always the best distribution, in
contrast to the previous cases. When sensor A’s are close to each
other, assigning a sensor to a process provides the minimum Aol.
However, if one sensor dominates the other in terms of arrival rate,
the equal distribution provides the optimal Aol for the dominating
sensor. Interestingly, we observe that the value of p} does not
change smoothly from 1. We obtain p§} = 0 if A2 < 3.18 but we
see a dramatic regime switch to 0.08 after around 3.18. The reason
behind this is tracking more than one process causes a loss of total
sensing ability. Therefore, if A’s are close to each other, there is a
tendency to track a single process from each sensor. Nevertheless, if
one A is significantly larger than the other, the system will converge
to the configuration with a single sensor. In order to avoid infinite
Aol values, both processes must be tracked by the dominating
sensor.

Lastly, in addition to Aol minimization, we also consider the
error minimization problem. Interestingly, the same trend can be
observed in the error minimization problem. The optimal assign-
ment involves assigning a process to the sensor until it reaches a
Ay threshold, albeit different from the Aol A threshold. After the
threshold, it converges to equal distribution while A3 is increasing.
Note that, although only b and A; affect the A, threshold for Aol,
other parameters like Q1, Qy, {1, {2, and u also have an effect on
the Ay threshold for error.

1.0 - 10— - - - - |
. pS; (Aol) o '
3 038 — pSi (Aol 3 08 pS; (Aol) .
206 - - psi(Error) 2061 — p5;(Aol)
§0.4 - - p$;(Error) EO-“ - - pS;(Error)
R 2 o
3 -— 2 - - p%; (Error)
02{ , £02
0.0l 00 - - - - - - - - !
[ 25 50 75 100 1 2 3 4 5

(b) A closer look at the
regime switch in Figure a.

(a) A2 versus optimal p5} and

p5, value with 4y = 1,pu =

4b=10=040=04.
Figure 10: Optimal distribution for quadratic non-convex
distribution example.
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CONCLUSION

Our paper investigates multi-process multi-sensor systems with
a single server and correlated information. The study focuses on
understanding the effects of correlation on the system, particularly
in terms of the age of information and the error ratio of the moni-
tor’s estimation. We present analytical expressions and conducted
comparisons to evaluate the influence of correlation across differ-
ent system parameters. Our work also delves into how sensors
with restricted sensing abilities should allocate resources across
processes. We have highlighted the links between correlation, pro-
cesses’ state change rate, and optimization tactics for managing
the age of information. Interestingly, we identified cases where
monitoring multiple processes from one source may not always be
beneficial, and optimal resource distribution for different arrival
rates may exhibit critical regime shift behavior.
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