PARTITIO NUMERORUM: SUMS OF A PRIME
AND A NUMBER OF k-TH POWERS

JORG BRUDERN AND TREVOR D. WOOLEY

ABSTRACT. Let k be a natural number and let ¢ = 2.134693... be the
unique real solution of the equation 2¢ = 2 4 log(5c — 1) in [1,00). Then,
when s > ck + 4, we establish an asymptotic lower bound of the expected
order of magnitude for the number of representations of a large positive
integer as the sum of one prime and s positive integral k-th powers.

1. INTRODUCTION

Although strongly influenced by an earlier contribution of Hardy and Ra-
manujan [10], the famous series Partitio Numerorum written jointly by Hardy
and Littlewood marks the arrival of the circle method. In the speculative sec-
tion of part III (see [9]), they considered representations of natural numbers n
as the sum of a prime and a number of k-th powers. Thus, the equation

n=p+at+.. . +af (1.1)

in which £ > 2 and s > 1 are given natural numbers, is to be solved in
primes p and natural numbers z; (1 < j < s). Although their conjectures
H, J and L are concerned with squares and cubes only, it is plain from the
discussion that their method supports a conjectural asymptotic formula for
the number 7(n) = ry s(n) of solutions of (1.1) in general. If this formula were
true for ry,;(n), then all sufficiently large n for which the polynomial n — z* is
irreducible over the rationals would be the sum of a prime and a k-th power.
The analogous formula for rj2(n) suggests that all large n are the sum of a
prime and two k-th powers. There is an extensive literature related to the case
of squares, in which k£ = 2 (e.g. [8, 21]), culminating in the works of Hooley
[12, 13] and Linnik [15, 16] that confirms the Hardy-Littlewood formula for
r22(n). Miech [19] showed that the formula for r5;(n) holds for almost all n,
in the sense that the exceptional n have density zero.

For k > 3, less is known. There are quantitative results allied to that of
Miech counting exceptional n where the conjectured formula for 74 (n) fails
(most recently in work of Briidern [3]). Other results concern the sparsity of
numbers n where ry 1(n) = 0, for example [6]. We are not aware of noteworthy
unconditional contributions that relate to the cases s > 1 of (1.1). There
are, of course, results that follow routinely from mean value estimates for k-th
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power Weyl sums. As a first example, we mention the minor arc estimate
for the eighth moment of a cubic Weyl sum of Vaughan [22] in the improved
form due to Boklan [1]. This is of strength sufficient to decouple the prime
from the k-th powers via Schwarz’s inequality in a direct application of the
Hardy-Littlewood method, and as a result one obtains an asymptotic formula
for r54(n) (see [14, Theorem 2|). For larger exponents k, one may restrict
the variables z; to be smooth numbers in order to make smaller values of s
accessible. If one invokes the best currently known mean value estimates for
smooth Weyl sums (see [29, 31] or Lemma 2.2 below) and decouples the prime
as before, then for an explicit quantity so(k) satisfying

so(k) = 2k(logk + loglog k + 2 4 o(1)),
one finds that
rrs(n) > n**/logn (1.2)
whenever s > so(k). The lower bound (1.2) is of the order of magnitude that
is suggested by the hypothetical asymptotic formula.

No improvement on the severe condition s > sg(k) is known. Our first
theorem shows that it suffices for s to grow linearly with k. In order to state
this result precisely, let ¢ be the unique solution of the transcendental equation

2c = 2+ log(be — 1)
in the interval [1,00). The decimal representation is ¢ = 2.134693. . ..
Theorem 1.1. Let k € N and s > ck + 4. Then 1y,.4(n) > n*/*/logn.

For small values of k this conclusion is susceptible to some improvement
because our proof is tuned to perform optimally for very large k. Based on the
methods of [23, 26, 27, 32], the naive decoupling approach yields (1.2) for the
pairs (k,s) = (4,6), (5,9), (6,12) and (7, 16), for example. Our method yields
improved results for k£ > 6.

Theorem 1.2. Suppose that 6 < k < 20 and s > So(k), where So(k) is
determined according to the entries of Table 1. Then ry, 4(n) > n**/logn.

k5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
So(k) 11 13 16 18 20 22 24 27 29 31 33 35 37 40 42
Si(k) 8 10 12 14 17 19 21 23 25 27 29 31 32 34 36 38

TABLE 1. Critical numbers of k-th powers for Theorems 1.2 and 1.4

Our approach to equation (1.1) involves the circle method, and we are there-
fore limited by the familiar square root cancellation barrier. For the case at
hand this says that the range s < k is outside the scope of the method unless
one is able to explore cancellations that get lost after application of the trian-
gle inequality. Thus, we require scarcely more than twice as many k-th powers
relative to the limit of the method, and for small £ even fewer.
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Further progress with problems involving primes is often possible if one
assumes that no Dirichlet L-function has a zero in the half-plane Re(z) > %
This is the generalised Riemann hypothesis, abbreviated to GRH hereafter
(and referred to by Hardy and Littlewood [9] as Hypothesis R*). Hooley’s
original work [12] on 759(n) initially depended on GRH, and in a joint effort
with Kawada [5] the authors deduced from GRH the existence of infinitely
many primes representable as the sum of 2[4k /3] positive integral k-th powers.
The method of [5] is readily adapted to establish the lower bound (1.2) for
s > 2[4k /3], subject to GRH, but this is now superseded unconditionally by
Theorem 1.1. However, assuming the truth of GRH we are able to relax the
conditions on s in Theorems 1.1 and 1.2. In particular, we improve on the
naive decoupling approach for fifth powers. Our results feature the unique
solution of the transcendental equation

2¢ =2+ 1log(4cd — 1)
in the interval [1,00). Its decimal representation is ¢ = 1.961969. . ..

Theorem 1.3. Should GRH be true, then when k € N and s > 'k + 4, one
has i, (n) > n**/logn.

Theorem 1.4. Suppose that 5 < k < 20 and s = Si(k), where Si(k) is
determined according to the entries of Table 1. Then, should GRH be true,
one has ry,¢(n) > n*’*/logn.

It should be noted that Theorems 1.3 and 1.4 depend on GRH only in the
most indirect way, through the exponential sum estimate (4.2). In fact, the
bound (4.2) is also available for a type Il exponential sum with both variables
of summation near \/n. The unconditional bound (4.1) requires estimates
for type II sums with the shorter of the two variables of summation ranging
over [n?° n'/?]. If one waives Vaughan’s identity and works with type II
sums directly on the level of Diophantine equations, then prime detecting
sieves typically narrow the range for type II sums. This should lead to an
improvement of Theorem 1.1, and perhaps one can handle the case k = 5,
s = 8 unconditionally in this way. The extra complications, however, would
disguise the simplicity of new elements that we introduce to the circle method
here, and we therefore refrain from elaborating on this idea in this paper.

Our methods apply equally well to questions concerning primes representable
as sums of positive integral k-th powers. If R(N) = Ry s(IV) denotes the num-
ber of solutions of the equation

p=ab+.. . +aF (1.3)

in primes p < N and natural numbers z;, then subject to the conditions in
Theorems 1.1, 1.2, 1.3 or 1.4, it can be shewn that R(N) > N**(log N)~'.
Hardy and Littlewood [9] referred to this class of problems as conjugate to
those defined by equation (1.1), and made them the subject of their conjectures
M and N. It should be said, though, that the equation (1.3) seems to be
somewhat easier than its counterpart (1.1). It has been known for centuries
that primes of the form 4/ 4+ 1 are the sum of two squares, yet the conjugate
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problem concerning the numbers that are the sum of two squares and a prime
was solved by the generation preceding us. More recent developments with
prime detecting sieves led to remarkable progress in this area. Friedlander
and Iwaniec [7] showed that the polynomial z? 4+ y* captures its primes. This
should be viewed as a result concerning sums of two squares in which one of the
variables is itself a square. Soon afterwards Heath-Brown [11] found infinitely
many primes of the form 23 4 2y3, thereby confirming conjecture N of Hardy
and Littlewood [9]. Most recently of all, Maynard [18] has considered primes
represented by more general incomplete norm forms. These spectacular results
depend, in some way or other, on the homogeneity of the polynomial on the
right hand side of (1.3). It seems that there are significant obstacles preventing
us from extracting lower bounds for 73 3(n), for example, along these lines.

The success of our approach depends on two innovations. The first is a new
mean value estimate for moments of smooth Weyl sums over major arcs. Very
recently, Liu and Zhao [17] obtained such estimates. Their method rests on
the large sieve, and in consequence the width of an individual arc centered
at a Farey fraction should be as small as 1/n (normalised for applications to
equation (1.1)). Any inflation of this width implies an eternal loss, and this
is typically not tolerable. In their work, the use of weights and the Poisson
summation formula makes it possible to control losses, but in applications
with primes, for example, this does not seem possible. In Lemma 2.3 below
we describe a result in which the major arcs have their natural shape, and
are therefore much wider than 1/n if the denominator of the Farey fraction
at the center is small. Nonetheless, our estimate performs just as well as
one can expect from [17, Lemma 5.6], but it is easier to use, and in some
cases, and in particular in the situation considered in this paper, the wider
arcs are essential for the success of the method. In contrast to [17, Lemma
5.6], our result neither depends on the large sieve, nor makes reference to
Diophantine equations. Thus, again in contrast to the work of Liu and Zhao,
we are able to handle fractional moments with ease, and we work with ordinary
smooth Weyl sums, avoiding preseeded primes lying in certain intervals. This
is important if one wishes to import results depending on breaking convexity
devices. Therefore, our approach offers several advantages and extra flexibility.
The new lemma has applications well beyond those presented in this paper.
In fact, the argument leading to Lemma 2.3 is very direct and simple in spirit.
As we shall demonstrate elsewhere, the ideas underpinning the proof can be
further developed, and we defer to this future occasion a detailed account of
the potential of the method.

Our new major arc mean value estimates provide a versatile pruning device.
As we shall see in Section 5, the bounds provided by Lemma 2.3 are of strength
sufficient to establish a version of Theorem 1.1 with an inflated value of c. We
enhance the power of the new method with our second innovation, a novel
large values technique. Drawing inspiration from an argument that occurs en
passant in the first author’s work on a certain quaternary additive problem [4],
we explore the consequences of the stipulation that a Weyl sum is large, but
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not very large, through a comparison of various moments. This new method
may be viewed as a pruning device for the minor arcs, and it transpires that
in certain cases, it is possible to improve Weyl type bounds in mean over sets
that we expect to be small. In applications of the circle method, this works
just as if the Weyl bound would be better than currently known. Since the
method ultimately rests on mean values, it also cooperates with the new major
arc means, and then also helps with the more classical aspects of pruning on
major arcs. The technical aspects of our new devices will be explained in the
course of the argument, once the notational apparatus has been introduced.
We refer the reader to the final part of Section 5, and the proof of Lemma 5.1
below, for details.

This paper is organised as follows. We begin with a discussion of the major
arc mean values in Section 2. In Sections 3 and 4 we evaluate the major
arcs in a circle method approach to the counting function 7y ;. This is largely
standard. Then, in Section 5, we highlight the potential of major arc mean
values for pruning. This section ends with the statement of Lemma 5.1 that in
turn is dependent on the new large values technique. In Section 6 we present
this as a pruning device on minor arcs, and in Section 7 in a catalytic role to
enhance classical pruning. Having made the necessary preparations, the proof
of our main theorems is presented in Section 8.

The authors are grateful to the referees for their careful reading and com-
ments useful in improving the exposition of this paper.

2. SMOOTH WEYL SUMS AND THEIR MEANS

In this section we discuss certain mean value estimates for smooth Weyl
sums. Our discussion prominently features a certain transcendental function,
which we now define. The function w: (0,00) — (0,¢), defined by ¢ — e~ is
a strictly decreasing bijection, while the function Q: (0,1) — (0,e), defined by
u > ueY, is a strictly increasing bijection. It follows that the equation He!! =
¢!~ defines a smooth, strictly decreasing bijective function H : (0, 00) — (0, 1).
We then have

H(t) +logH(t) =1 — ¢, (2.1)
and we may differentiate to infer that the relation
H'(t) = —H(¢t)/(1 + H(t)) (2.2)

holds for all ¢ > 0. Later we require the following simple inequality.

Lemma 2.1. If 1 <t <3, then H(t) > 1/(4t — 1).

Proof. Define u(t) by means of the equation H(u(t)) = 1/(4t — 1). We show
that u(t) >t for 1 <t < 3. Since H decreases, the desired inequality follows.
By (2.1), we have

1
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and hence
d 4 4

TR Al vy e vy
This function decreases on [1, 3] and is positive at ¢ = 1 but negative at ¢ = 3.
Thus, the minimum of u(t) — ¢ on the interval [1, 3] occurs at ¢ = 1 or ¢ = 3.

However, it is readily checked that w(1) > 1 and «(3) > 3, whence u(t) — ¢ is
positive throughout [1, 3]. O

1.

When 1 < R < P, let &(P, R) denote the set of integers n € [1, P], all of
whose prime divisors are at most R. Given an integer k > 2, let

fla; P,R) = Z e(az®), (2.3)

z€d/ (P,R)

where, as usual, we write e(z) to denote e*™#. In this paper, we refer to the

number A, as an admissible exponent for the positive real number ¢ if, for any
fixed positive real number ¢ there exists a positive real number 7 such that,
whenever 1 < R < P, one has

1
/ |f(o; P, R)|" da < P'7RFAFe,
0

Admissible exponents A; are always non-negative, and there is no loss of gen-
erality in supposing throughout that A; < k. For large values of k£ the smallest
known admissible exponents are due to Wooley [29, Theorem 3.2]. We repro-
duce a simplified, slightly weaker version of this conclusion, which appears in
[30, Theorem 2.1], in the following lemma.

Lemma 2.2. Let k > 3 be given. Then, whenevert is an even natural number,
the exponent kH(t/k) is admissible.

Our next lemma is our development of a related estimate of Liu and Zhao
[17]. As pointed out in the introduction, it is indispensible in our approach to
Theorem 1.1. From now on we consider £ > 3 as fixed. Let () be a real number
with 1 < Q < 1P"2 and let 9 = M(Q) denote the union of the intervals

M(q, a;Q) = {a €[0,1] : [go — a] < QP™"}

with 0 < a < ¢ < @ and (a,q) = 1. Note that the intervals constituting this
union are disjoint. Our goal is to estimate the mean value V' = Vi(P, R, Q)
defined by

Vi(P.R,Q) = /m PR do (2.4)

Lemma 2.3. Let k > 3 be given. Suppose thatt > k+1 is a real number and let
A; be an admissible exponent fort. Then for each € > 0, there exists a positive
number n with the property that whenever 1 < R < P" and 1 < @ < %Pk/z,
one has the uniform bound

‘/;(P, R, Q) < Pt—k‘i‘EQzAt/k‘
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Proof. We are at liberty to suppose throughout that € and § are small positive
numbers satisfying ¢ < 1071% and 30k < . We first dispose of the case where
Q is very small. The measure of 9M(Q) is O(Q*P~*), and therefore, the trivial
bound |f(a; P, R)] < P implies that V < Q*P'*. In particular, whenever
1 < Q < P72 one has

‘/;(P, R, Q) < Pt—k+k5 < Pt_k+€Q2At/k. (25)

Next, we consider the situation in which Q? > P*1=9 In this case, we note
that 9(Q) C [0,1]. Thus, the definition of an admissible exponent shows that
for some number 7y with 0 < 7y < §/2, whenever 1 < R < P™, one has

Vi(P, R, Q) < P*rHame,

and hence

‘/t(Py R, Q) < Pt—k+At(l—(5)+2k5 < Pt—k-‘rEQQAt/k. (26)
The upper bounds (2.5) and (2.6) confirm the conclusion of the lemma in all
situations where either Q> < P* or Q? > PF1-9).

We now launch the main argument that addresses the remaining case, work-
ing under the assumption that

With the parameter M at our disposal, we suppose that 2 < R < M < P.
Throughout, we reserve the letters p and 7 to denote prime numbers. Then,
for each p < R, we define the modified set of smooth numbers

B(M,p,R) ={m € o/(Mp, R) : m > M, p|m, and 7|m implies that 7 > p}.

By [23, Lemma 10.1], there is a bijection between the numbers z € &7 (P, R)
with > M, and triples (p, m,y) with

p< R, mePABMpR), yecd(P/m,p),

in which one has x = my. Applied to the exponential sum f defined in (2.3)
this provides us with the decomposition

fla; P,R) =Y f(am®; P/m,p) + f(a; M, R),

p7m

where, both here and in the sequel, the summation over p, m is intended as
shorthand for one over p < R and m € AB(M,p,R). We write f(«) for
f(o; P,R) and hy, () for f(v; P/m,p). In addition, we denote by 9, the
union of the arcs M(q, a; Q) with 0 < a < ¢ and (a,q) = 1. Then, for o € M,
we sort the sum over m € B(M,p, R) according to the value of (¢, m*). Thus

<> ) |hpm(am®)| + M. (2.8)

qg b
. (gm*)=d
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Taking the t-th power of (2.8), Holder’s inequality combines with the familiar
divisor function estimate to give

a)|' < qdz( Z (amk)|> + M. (2.9)
da (qm’“) d

The integer d has a unique factorisation d = dyd3 - --d’,j with dids - - di_1
square-free. In this notation, we write dy = dyds - - - d,. Thus d|mk if and only
if dy|m. By Hélder’s inequality again,

( > Ihp,m(omk)l)té(Zl)t_1 > hpm(amM). (2.10)

p7m p?m p?m
(gm*)=d do|m (g;m*)=d

We integrate (2.9) over 9,. For this we require the mean value

J(q,p,m):/ |hp7m(amk)|tda.
mq

The first sum on the right hand side of (2.10) is no larger than M R?/d,.
Moreover, the measure of 90, does not exceed 2Q P~*. Then (2.9) yields

/m|()|tdoz<<q5Z(MR2)t1 Z J(q,p,m) + M'QP~*.  (2.11)

(qM)d

Temporarily, we consider ¢,p,m as fixed and abbreviate hy,, to h. Also,
when 1 < Z < P, we introduce notation to better handle the intervals ,(Z) =
1,(Z; Q) of interest, writing

I,(Z;Q) = [-Q/(aZ"),Q/(¢Z")].

Equipped with this notation, if we unfold the definition of 91, and apply a
change of variables, we see that the mean value J(q,p,m) is equal to

/LZ(P)<% )h(<g+ ) ) dﬁ_mk/q<P/m — ’h(_JW)
i

(a,q)=1
Within (2.11) we need the above relation only when (g, m*) = d. In the latter
circumstances one has (m*/d, ¢/d) = 1, and hence

J(q,p,m) < %/I(P/md Z ‘h(amk/d 7)

aq/d

t

dy.

t

dry

q/d

Z /I P/m Q/d >

bq/d) 1

t

dr.
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We apply this formula within (2.11) and sum over ¢ < @ to obtain the bound

/ |f(@)|'da < M'Q*P~F + Q°(MR?)'" 'z, (2.12)
Mm(Q)
where
q/d .
- Z Zm dt lmk Z /P/) Q/d ) -
(qm) (bq/d) 1

The quantity = may be bounded by first writing ¢ = dr, and then replacing
the condition (g, m"*) = d by the weaker constraint dy|m. Thus, we find that

P z/

dr<Q pym (P/m)
do|m

‘h +7>) dr. (2.13)

We choose M via the relation (MR) = P*/(3Q?), whence by (2.7) one has
P’ < MR < P79, (2.14)

In particular, this choice for M is admissible and for all pairs p, m occurring
in the second sum of (2.13), we have Q*(P/m)™* < 3. It is immediate from
this inequality that the intervals I.(P/m) + b/r, with 1 < b < r < Q/d and
(b,7) = 1, are pairwise disjoint, and that all of these sets are contained in the

unit interval
ka | - kaz '
dr Pk dr Pk

We therefore conclude that

t 1
/ L) @< [ (@ da
Idr P/m 0

But from (2.14) we have P/m > P/(MR) > P°. Since p < R here, it follows
from the definition of an admissible exponent that there is a number n >0
such that, uniformly in 2 < R < P" and all p, m in their ranges of summation,

7"<Q/d b 1

1
/ |hp,m(04)|tda < (P/m)t—k-&-At-y-a‘
0

The exponent on the right hand side is positive, so we infer from (2.13) that

_ P\ t—k+A+5 d

om0
<@
One has

1 1 R
— < < )
SRS S DR —

p<R meAB(M,p,R) PSR M/do<u<Mp/do

dolm
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Moreover, when t > k 4 1, one has the simple bound

d 1

d<Q Y diddy<Q
Recall that our choice for @ satisfies (P/M)* = 3Q*R* and Q < P*?. Then
on noting that MR > P?, it follows from (2.15) that

=< (P/M)t—k+5Q2At/le+AtMl—k(10g(2Q))k:

< Pt7k+5Q2At/kM17tR2+At )
We may always assume that A; < k < ¢, and thus we infer from (2.4) and
(2.12), together with the definition of M, the upper bound
Vi(P, R, Q) < P! FokQ2Ac/k g3t (2.16)

Since we are free to diminish the number 7 implicit in the proof of (2.16),
we may arrange that 3tn < 0k and 1 < 1y, and hence that 0k + 3tn < e.
Consequently, in this final case in which the constraint (2.7) is satisfied, it
follows from (2.16) that

Vt(P, R, Q) < Pt—k+5k+3th2Az/k < Pt—k—i—eQQAt/k,

yielding the desired conclusion once more. 0

3. THE CIRCLE METHOD

Our next task is to set up the environment for the proofs of the theorems.
The exponent k > 3 is still fixed, and we initially impose the condition s > 1.
We gradually import more conditions on s and the smoothness parameter as
the argument progresses. Our leading parameter is the number n in (1.1), and
we take

P =nl/*, (3.1)
We adumbrate f(o; P, R) to f(a) and introduce the sum

g() =) e(ap)logp.

PN

Whenever 2 C [0, 1] is measurable, we write

I(n,2A) :/mg(oz)f(a)se(—om) da (3.2)

and abbreviate I(n, [0, 1]) to I(n). By orthogonality, the integral counts certain
solutions of (1.1) with weight log p. Consequently,

rk,s(n)logn > I(n). (3.3)

The arguments in this section are independent of the theory of admissible
exponents. We therefore choose R = P5, where 0 < 4 < 1 remains at our
disposal. It is convenient also to write 2 = (logn)'/*?. We begin by extracting
a lower bound from the core major arcs 91 that we define as the union of the
intervals

N(g,a) = {a € [0,1] : |a—a/q| < 2n7'},
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with 0 < a < ¢ < £ and (a,q) = 1. The intervals in this union are again
disjoint. Let « be in one of these intervals, say 9(q,a) with (a,q) = 1. On
recalling (3.1), arguments that are by now standard in the theory of smooth
Weyl sums (see [23, Lemma 5.4]) show in this scenario that there is a positive
number p = p(J) such that

F(@) = pg~ " S(q, a)ve(e — a/q) + O(n'/*(logn)~*/*),

wherein

S(gq,a) = Ze(a:ck/q) and v(B) = % Z m I e(Bm).

m<n

We take the s-th power and combine the result with Lemma 3.1 of Vaughan
[24]. After integrating over 9t we then routinely obtain the asymptotic relation

10, 9) = p*3(n, 2)6(n, 2) + O(n*/*(log n) /%), (3.4
where, for 1 < X < n/2, we write

X/n
3(n, X) = / 01(B)ui(B)e(—Bn) dB

—X/n
and

S(n,X) = ?2{ Z (—an/q). (3.5)
ox TO0 1

By orthogonality, it is immediate that J(n,n/2) > n** (see, for example,
the proof of [24, Theorem 2.3]). Moreover, we find via [24, Lemma 2.8] that
I(n, X) = J(n,n/2) < n*/FX 3k,
Thus we see that
I(n, 2) > n*/ (3.6)
Meanwhile, the sum
q

Sulg) =q Y S(g,a)e(—an/q)

a=1
(a,9)=1

is multiplicative (see [24, Lemma 2.11]), and the presence of the factor u(q)
n (3.5) reduces our task to bounding S,(¢) when ¢ is a prime. In these
circumstances, whenever s > 3, we see from [24, Lemma 4.3] that the bound
S,(q) < ¢~/? holds uniformly in n. This in turn implies that the series

S(n) = lim S(n,X)
X—00
converges absolutely, and that
S(n) —6(n, X) < X712, (3.7)

This bound again holds uniformly in n.
Next, we transform &(n) into an Euler product [], x,(n), where

Xp(n) =1—=(p—1)""S,(p) =14+ 0(p~*?),
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the last relation holding uniformly in n. Since —1 is equal to the value of the
Ramanujan sum cp(a) for 1 <a < p-—1, we find that

cp(a)S(p,a)’e(—an/p)

1 p
= — cp(a)S(p,a)’e(—an/p).
ps(p—l)z p(a)S(p,a)’e(—an/p)
Thus, by orthogonality, we have x,(n) = p'~%(p — 1)~ M, (n), where M,(n) is
the number of incongruent solutions of the congruence

a=1

b+ + ... +2% =n (mod p),

with (b,p) = 1. It is immediate that the lower bound M,(n) > 1 holds for all
n. Hence all factors y,(n) are real with x,(n) > p~®. From this discussion
we also see that there is a number py such that the superior lower bound
Xp(n) =1 — p~%/* holds for all n whenever p > po. We therefore conclude
routinely that &(n) > 1. If we combine this lower bound with (3.4), (3.6) and
(3.7), we may conclude as follows.

Lemma 3.1. Let k > 3 and s > 3. Suppose that 0 < d < 1, and put R = nd/k.
Then one has I(n,9) > n®/*.

A slightly weaker version of this lemma remains valid even when s = 2. In
fact, in this case, the bound S, (p) < p~*/? remains valid for all primes p { n.
This can been seen by working along the lines of [24, Lemma 4.7]. Further,
with more care one can show that x,(n) > 1—k/p for primes p|n with p > k2.
As this is not used later, we leave the details required to justify these claims
to the reader. These bounds show that when s = 2, one has

S(n) > H (1—kp~") > (loglogn)~*,
pn
p>k?
whence I(n,9) > n*/*(loglogn)~*. This supports our claim in the introduc-
tion that all large integers should be the sum of a prime and two k-th powers.

4. PRUNING NEAR THE ROOT

Our goal in this section is to enlarge the major arcs to the set £ = 9 (P/?).
The choice of height P'/® here is arbitrary, for any small power of P would
suffice. As is often the case with competitive applications of smooth Weyl sums,
certain estimates are diluted by unwanted factors P¢. In such circumstances,
pruning to the root needs a separate argument that we now present.

We begin by introducing some notation. Let a € Z and ¢ € N satisfy
0 <a<qc< % n and (a,q) = 1. Then, the intervals (g, a;% n) are
disjoint, and for o € M(g, a; 34/n) we put

T(a) = (¢ +nlga —al) ™.
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Meanwhile, for a € [0,1] \ M(5+/n) we put Y(a) = 0. This defines a function
T :[0,1] — [0,1]. In what follows, in the interest of brevity we put
L = logn.

Lemma 4.1. Suppose that 2 < R < PY7 and ¢ > 0. Then, uniformly for
a € £ one has

fla) < PL3Y (a)/®P) =<,
Moreover, when B > 0 and o € M(LP), one has

fa) < PY(a)Yk=.

Proof. The first bound follows by applying [25, Lemma 7.2] with M = P?/3,
The second bound, on the other hand, is a consequence of [25, Lemma 8.5]. [

Lemma 4.2. Let o € [0,1]. Then

g(a) < (nY()"/? +n*?) L. (4.1)
Furthermore, should GRH be true, then
gla) < (nY ()2 +n**) L2 (4.2)

Proof. Both bounds (4.1) and (4.2) are certainly familiar, but perhaps not in
this form, and in particular the latter is not easily found in the literature. We
therefore provide details for the upper bound (4.2). Let

gla,v) = e(ap)logp.
psV

If we suppose that GRH holds, and a € Z and ¢ € N are coprime, then one
finds from [6, Lemma 2|, for example, that

gla/q.v) < (vo(q)~" + /rg)(logv)*. (4-3)
Note that g(«) = g(a,n). By partial summation, for all 8 € R, one has

1908 + a/q)| < lg(a/q)| + 2x15) / " \g(a/g, )] dv

< (n(q)™" + y/ng)(1 + n|B|) L% (4.4)

In order to obtain the bound (4.2), first suppose that a € [0,1] \ M(5/n).
Apply Dirichlet’s theorem on Diophantine approximation to find integers b and
rwith 1 <r < 2y/n, (byr) =1 and |ra —b| < 1/(2y/n). Then the hypothesis
o & M(3+/n) implies that r > £/n, and thus we infer from (4.4) that

gla) < (L - \/ﬁ> (1 + @)LQ < n¥iL?,
(r) r
as required in (4.2).

Next suppose that a € EUI(%\/E) For % <Y < }l n, we write

PY) = MEY) \ MY, (4.5)

Then since 9(11/n) is the union of the sets PB(Y), there exists a choice for
Y in this range with a € P(Y"). Note that for « in the latter set, the bound
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(4.2) asserts that g(a) < nY Y212 To prove this bound, we again apply
Dirichlet’s theorem to find integers b and r with 1 < r < n/Y, (b,r) =1 and
|ra — b| < Y/n. We may suppose in this instance that o ¢ 9(Y), and hence
that » > Y, and thus (4.4) yields the desired bound

Y
oy nY‘l/Q) (1 + —>L2 < nY V212
o(r) r

The proof of the bound (4.2) is now complete. The proof of (4.1) follows
in the same way, save that the initial estimate (4.3) has to be replaced by
Vinogradov’s unconditional bound [24, Theorem 3.1]. O

glo) < (

We are now well prepared for the pruning.

Lemma 4.3. Suppose that s >k +3 and 2 < R < PY7. Then

I(n, £\ M) <« ns/k(log n)—l/(50k)'

Proof. We proceed in two steps. We first note that an enhanced version (see
[20, Lemma 11.1]) of the first author’s pruning technique [2, Lemma 2] yields

/T@HWWW@WM<P%ﬂ
£

By (4.1) and Lemma 4.1, we have
g(a) f(a)FHt < PEHInY (o) H1/ B LT3k,

Take B = 6k(8+3k). Then, for a € £\ 9M(L?), one has T(a) < L5, whence

I(n, £\ M(LP)) < L1P52n/ T ()| f(@)Pda < PSL7Y (4.6)
£

Since ¢(q) > q/loglogq, for a € M(LP), one finds from [24, Lemma 3.1] that
g(a) < nY(a)log L +nL ¥ < nY(a)logL.

Observe that when a € [0,1] \ 0N, one has T(a) < L™/, Consequently, by
making use of the second estimate of Lemma 4.1, we discern that whenever
a € M(LP)\ N, then

g(a)f(a)s < PsnT(a)2+1/kL—1/(50k).
We may therefore integrate routinely to conclude that
I(n, W(LB) \ sﬁ) < P51/ (50k) (4.7)

The proof of the lemma is completed by collecting together (4.6) and (4.7). O
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5. INTERLUDE

Thus far our evaluation of ry 4(n) has followed a well trodden path. Before
embarking on the original aspects of our treatment, we pause to outline a sim-
ple argument leading to weaker versions of Theorems 1.1 and 1.3, with inflated
numerical values for the constants ¢ and ¢/. This approach rests on Lemma
2.3 alone, and is therefore very flexible. It applies also in other contexts.

From now on, in the remainder of this paper, we apply the following conven-
tions concerning the symbols €, n and R. If a statement involves the letter ¢,
then it it is asserted that the statement holds for any positive real number as-
signed to €. Implicit constants stemming from Vinogradov or Landau symbols
may depend on e. If a statement also involves the letter R, either implicitly or
explicitly, then it is asserted that for any ¢ > 0 there is a number n > 0 such
that the statement holds uniformly for 2 < R < P". This will be imported
to our arguments through applications of Lemmata 2.2 and 2.3 only. We shall
call upon these lemmata only finitely often, and we may therefore pass to the
smallest of the numbers n that arise in this way, and then have all estimates
with the same positive 7 in hand.

The Farey dissection that we shall use takes £ = 90(n?°) as the set of major
arcs, and £ = [0,1] \ R as the complementary set of minor arcs. Let ¢; be the
positive real number with H(c;) = £. Note from (2.1) that

4
= 5+10g5 = 2.409437. ...

Let s; = s1(k) be the smallest even integer with s; > ¢1k. Then, for s > s; we
have H(s/k) < 1. By Lemma 2.2 and the definition of an admissible exponent,
one sees that for some positive number 4, one has

1
/O |f(a)|* da < Psn=4/579, (5.1)

Also, as a consequence of Lemma 2.3, whenever 1 < @ < % n, we have

/zm(Q) |f(a)]* da < P*nf= Q%52 (5.2)

Note here that our conventions concerning the use of ¢ and R apply. In partic-
ular, we may choose R = P" and then the upper bounds (5.1) and (5.2) both
hold provided that n > 0 is sufficiently small. We fix this choice of R now.

We begin by establishing a version of Theorem 1.1. Observe first that when
a € &, then as a consequence of Dirichlet’s approximation theorem, whenever
a € Z and q € N, one has ¢ +n|ga — a| > n?/®. Hence, by Lemma 4.2, we have
g(a) < n?°*¢ We thus deduce from (3.2) and (5.1) that

I(n,t) < P*n~92 (5.3)

Next recall (4.5) and apply a dyadic dissection to cover the set £\ £ by O(logn)
sets P(Q), with P> < Q < In?. For a € P(Q), we infer from Lemma 4.2
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that g(a) < n'**Q~'/2. Hence, by (3.2) and (5.2), we discern that
I(n,B(Q)) < PQ.
Collecting together the contributions from these dyadic intervals, we see that
I(n, R\ &) < Pin~1/(600), (5.4)
Thus, on recalling Lemmata 3.1 and 4.3, we deduce from (5.3) and (5.4) that
I(n) =I(n,8) + I(n, R\ £) + I(n, £\ N) + I(n,N) > n*/*.

In view of (3.3), we therefore have 7y, ,(n) > n*/*(logn)~! whenever s > ck+1,
thereby delivering a version of Theorem 1.1 with ¢; in place of c.

If GRH is true we adjust the Farey dissection to one comprising the sets
R =M(3y/n) and ¥ = [0,1] \ K. Also, we cover the set &\ £ by O(logn)
sets P(Q), with P/® < Q < 1y/n. In this scenario we take

3
cp = 1 +log4 =2.136294 . . .,

so that in view of (2.1), one has H(c}) = 1. Let s} = s{(k) be the smallest
even integer with s > k. The preceding argument may now be based on
(4.2) rather than (4.1), and then shows that 7y, 4(n) > n*/*(logn)~' whenever
s > ik + 1, yielding a version of Theorem 1.3 with ¢] in place of ¢. It is
perhaps of interest to note that even this conditional conclusion is improved
on by Theorem 1.1.

Applications of the Hardy-Littlewood method to the problem at hand start
with a minor arc analysis associated with the set [0, 1] \ 9(Q), with a choice
for @) large enough that estimates of Weyl-type are applicable. Traditional
pruning arguments attempt to reduce the size parameter ) so that the asso-
ciated complementary set of major arcs (@) becomes workable. Ideally, this
parameter () should not be very large, and indeed Q = P'/® in the set £ oc-
curring in our argument above. We refer to () as the height of the major arcs,
and a pruning argument that reduces @) is referred to as pruning by height.
There are several models for this kind of argument where one would typically
combine pointwise bounds for some generating functions with mean values of
others. One standard tool is [2, Lemma 2]. It transpires that Lemma 2.3 is
a particularly powerful technique for pruning by height because it is initially
based on mean values alone.

In the next section we introduce another new pruning device. In its pure
form it is a minor arc technique. We propose a dissection into level sets
for several generating functions. If a generating function is very large, then
inequalities of Weyl’s type will tell us that we are on major arcs. We shall
then explore via mean values the proposition that a generating function is
large but not very large. In favourable circumstances one ends up with results
that have, for the problem at hand, the same effect as an improvement on the
Weyl bounds. We refer to this process as pruning by size. In our application,
the new method performs so well that pure pruning by height on the major
arcs would become the bottleneck for the argument. Hence, in the section
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following the next one, we describe an argument where pruning by height
is enhanced by some of the features of pruning by size. It is interesting to
note already at this stage that the success of pruning by size and by height
ultimately depends on the same inequalities for certain admissible exponents.
It is possible to announce the principal conclusion in a form that absorbs
potential improvements on admissible exponents easily. This concerns the
contribution from the set
[=10,1]\ £.

Lemma 5.1. Let k > 3. Suppose that s and t are real numbers with 0 <t < s,
and let Ay and Agy ¢ be admissible exponents. Should GRH be true, set 0 = 4,
and otherwise put @ = 5. Then, provided that

t OA,
oA, <k and -+ k“ <1, (5.5)
s
there exists a positive number n such that, uniformly for 2 < R < P", one has
/|g a)®| da < P*(logn) ™.

6. PRUNING BY SIZE

We prove Lemma 5.1 in two steps. In this section we deal with the minor
arcs ¢ and, subject to GRH, the alternative minor arcs £. Throughout we
suppose that the hypotheses in Lemma 5.1 are met, with 6 depending on and
also determining the case under consideration.

We begin by removing from the minor arcs the set

7 = {a et |glo) < v},
where g(«) is tiny. By (5.5) and the definition of an admissible exponent, there
is a number § > 0 with

1
/ f(@)] da < P12,
0

whence
/ lg(a) f(a)’|da < P'n~ (6.1)
Next, let U be a parameter with 1 < U < /n, and define the level set
ZU)={a€0,1] :n/U < |g(a)] < 2n/U}. (6.2)

In the interest of brevity we revive the use of L = logn. Also, let Uy = n'/?

and note that whenever U < UyL™°, one must have a € & (if # = 5), or a € &
(if @ = 4), at least for large n. This follows from Lemma 4.2, which shows that
in these respective cases one has

sup |g(a)| < n*°L* and sup |g(a)| < n*/4L2

act

aet/

Consequently, we may cover the set £\ .7 by O(L) sets £ (U) with
nS L0 < U < v/n. (6.3)
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Likewise, the set ¢ is the union of .7 and O(L) sets £ (U) with
n LT3 LU < V. (6.4)

Hence, we find via (6.1) that there is a number U satisfying (6.3) for which

/|g o) da < P~ +L/ () f ()] da. (6.5)

Z(U)

This bound also holds with € in place of €, but then U lies in the narrower
interval (6.4).
By orthogonality and Chebychev’s bound,

U 1
/ ()| da < = / lg9(@)[*da < UL. (6.6)
2L(U) n Jo

This suggests the strategy of splitting the set £ (U) into the subsets

G ={aecZU):|fla)) <PUTL},
A ={ae LU): |fl) >PUL>?),

since by (6.6), we have
/ 9(0)f(a)* da < PPL2. (6.7)

This leaves the set JZ for further discussion.
For a € 7 one has |f(a)|t > PY(UL?)~"/*. Hence

1
|f ()| da < P_tUt/SL?’/ |f(a)]*" da.
%ﬂ 0
Recalling our convention concerning the use of €, we deduce via (6.2) that

| lg(@)f(a)]da < gt pstherite, (6.8)

However, we have U > UyL >, and furthermore ¢/s — 1 is negative. Then by
the second inequality in (5.5) we find that there is a positive number § with

9(0) f (@) da < U/ prebsei < pod
H

We now combine this bound with (6.5) and (6.7) and arrive at the final estimate
/\g a)®|da < PPL7Y, (6.9)

valid when # = 5, with the analogue for # = 4 holding with  in place of ¢
subject to GRH.
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7. PRUNING BY HEIGHT

We treat the intermediate arcs R \ £ and K \ £ by a variant of the ideas
developed in the previous section. We first slice these intermediate arcs into

O(L) pieces B(Q), as defined in (4.5), with @ satisfying

PP < Q< IUs. (7.1)
Thus, when § = 5, there is a value of () constrained by (7.1) with
[ Ja@sft@yda <z [ gty de. (72)
A\L B(Q)

When 6 = 4 the same conclusion holds, subject to GRH, with & replacing f.

We are ready to mimic the argument from the previous section, though
we invoke Lemma 2.3 rather than Lemma 2.2. We again suppose that the
hypotheses in Lemma 5.1 are satisfied. In this setting the first inequality of
(5.5) implies that for some positive number J, one has

/qG o |f(a)]* da < PS7FFEQ0, (7.3)

The role of the set .7 where g(«) is tiny is now played by the set

S ={a eP(Q) :|g(a)l <nQ '}
Thus, by virtue of (7.1) and (7.3), we immediately have

/ lg(a) f(a)®|da < PQ ™% <« P95, (7.4)

Next we observe that Lemma 4.2 supplies the bound g(a) < nL*Q~1/? for
all v € P(Q), provided that @ satisfies (7.1). Hence, the set of arcs PB(Q) is
the union of . and O(L) level sets

H (V) ={a e P(Q) :n/V < |g(a)| < 2n/V}, (7.5)

with
QLT <V LQ, (7.6)
at least for large n. In view of the bound (7.4), there is consequently a value

of V satisfying (7.6) for which
| le@f@rlda<Ptsr [ jga)sa)da (@0
PB(Q) A (V)

In the discussion of the previous section, pruning by size first removes from
Z(U) a portion ¢4 where f(a) was gentle enough to cooperate with the mean
of |g(a)| over Z(U), and the remaining set % required a slightly harder
argument. In the present setting, again, the portion

E={acHV):|flQ) <PV L™
analogous to ¢ will be equally easy, but its complement

F ={aeX(V):|f(e)) > PV L}
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in (V) is also straightforward to accommodate by arguing as in our earlier
treatment of 7. Indeed, as in (6.7), we now have

/ lg(a) f(a)®|da < PSL75. (7.8)
Again following the initial steps of the treatment of ¢, we find that
/ F(o)] da < P-tVHeLA / 1F(0)|+ da.
F M(2Q)
Next, applying Lemma 2.3 together with (7.5), we arrive at the bound
/ |g ]dOz < Vs 1P5+€Q2Ag+t/k

This last bound is the counterpart of (6.8). As before, we may suppose that
t/s — 1 is negative, whence (7.6) yields

/ ‘g ’dOA<<Ps+EQw

where

1/t 2011 1yt 0Agy

O
“ 2(3 i k 2\s i k

The second condition in (5.5) ensures that w < 0. Hence, by (7.1), it follows

that there is a positive number 6 > 0 for which

/ lg(a) f(a)*|da < P70, (7.9)

It remains to sum up the various contributions required to treat the integrals

over £\ £ and & \ £. By (7.7), (7.8) and (7.9), we see that
/ lg(a) f(a)| da < PSL72.
(@)
On substituting this estimate into (7.2), we acquire the upper bound
[l ft@y]da < Lo,
R\&

valid when 6 = 5, with the analogue for § = 4 once again holding with & \ £ in
place of 8\ £ subject to GRH. Since [ = 8U(R\ £), and likewise [ = ¥ U(R'\ £),
this bound together with (6.9) proves Lemma 5.1.

8. THE THEOREMS

Our work performed thus far allows us to confirm the lower bound (1.2)
subject to conditions that involve certain admissible exponents.

Theorem 8.1. Let k > 3, and suppose that sg, tg are real numbers satisfying
both 0 < to < so and the conditions (5.5) with 6 = 5 and (s,t) = (so,to)-
Then, whenever s is a natural number with s > max{sy,k + 3}, one has
T.s(n) > n®*/logn. If (5.5) holds only with 6 = 4, then this lower bound for
rk.s(n) holds subject to GRH.
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Proof. We choose R = P" with a value of n satisfying 0 < n < 1/7 chosen
so small that Lemma 5.1 applies with s = sg. Then, for s > sy, we estimate
| f(a)]*®0 trivially, and conclude via (3.2) that

I(n,1) < n*'*(logn)~".

Next, since £ =N U (£\N), we find by combining Lemmata 3.1 and 4.3 via
(3.2) that I(n, £) > n**. Recalling that I(n) = I(n, £) + I(n,[), the theorem
is now immediate from (3.3). O

We are now equipped to complete the proofs of the theorems presented in
the introduction.

The proof of Theorems 1.2 and 1.4. We verify the conditions in Theorem 8.1
in the relevant cases by using explicit admissible exponents extracted from the
tables in the appendices to [27, 28], suitably rounded up, as we now explain.

Given an exponent k with 5 < k < 20 and a value of 6 € {4,5}, we fix values
of sy and ty according to Table 2. We make use of the tables of permissible
exponents A, associated to each value of k from the appendices of [27] and [28],
using the former for £ = 5,6, and the latter for 7 < & < 20. The admissible
exponents A, of the present paper are related to these tabulated values when
u is even via the relation

When u is odd, we may apply Holder’s inequality to interpolate between even
values, so that

Ay =3 (Awrn/z + Au-12) —u+k.
When u is either sy or sg + tg, admissible exponents calculated in this way are

presented in Table 2 to 4 decimal places, rounded up in the final place. The
final entries recorded in Table 2 are computed values of the quantities

QO — t_9 + HASQ-‘rte7
S k
again presented to 4 decimal places rounded up in the final place. We thus see
that both of the conditions (5.5) are met provided that 2A,, < k and Qg < 1,
and such is the case for all entries of Table 2. By taking so = sy and tg = ty
in Theorem 8.1, we confirm the conclusion of Theorem 1.2 in the case 6 = 5,
and likewise Theorem 1.4 in the case § = 4. This completes the proof of these
theorems. 0

The proof of Theorems 1.1 and 1.3 is more involved, and this will require
us to establish a technical result along the way. Again, we aim to verify the
conditions of Theorem 8.1. The condition 2A; < k in (5.5) is only a moderate
constraint on s. Indeed, writing oy = 1 + log2, one finds from (2.1) that
H(oo) = 5. Hence, there is an even integer s in the interval (ook, ook + 2],
and we have H(so/k) < 3. By Lemma 2.2 with ¢ = s, it follows that whenever
s > Sg, there is an admissible exponent Ay < k/2, as required. In particular,

we now have the first inequality in (5.5) whenever s > ook + 2.
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koosy ts Ay Agp Qo oss bty Ay Agy (s

5 & 4 1.4387 0.5418 0.9335

6 10 4 1.7247 0.8506 0.9671 11 3 1.4782 0.8516 0.9816
7 12 6 2.0144 0.8470 0.9840 13 5 1.7778 0.8470 0.9897
8 14 6 23106 1.1284 0.9928 16 8 1.8429 0.6562 0.9102
9 17 7 23733 1.1293 0.9137 18 & 2.1426 0.8960 0.9422
10 19 7 2.6661 1.3944 0.9262 20 10 2.4376 0.9304 0.9652
11 21 9 29571 1.3941 0.9356 22 10 2.7293 1.1641 0.9837
12 23 9 3.2438 1.6487 0.9409 24 12 3.0175 1.1896 0.9957
13 25 9 3.5299 1.9063 0.9466 27 13 3.0997 1.2191 0.9504
14 27 11 3.8147 1.8961 0.9492 29 13 3.3840 1.4408 0.9629
15 29 11 4.0984 2.1484 0.9523 31 15 3.6673 1.4665 0.9728
16 31 13 4.3819 2.1408 0.9546 33 15 3.9503 1.6884 0.9822
17 32 14 4.8887 2.3897 0.9998 35 17 4.2327 1.7118 0.9892
18 34 14 5.1707 2.6416 0.9988 37 19 4.5147 1.7385 0.9965
19 36 16 5.4518 2.6301 0.9982 40 18 4.5867 1.9556 0.9647
20 38 16 5.7323 2.8788 0.9969 42 20 4.8667 1.9802 0.9713

TABLE 2. Choice of exponents for 5 < k < 20.

The second inequality in (5.5) is the more restrictive condition. Throughout,
let # = 4 or 5. Note that whenever s+t is an even integer, then by Lemma 2.2
we may assume that the exponent Ay, = kH((s +¢)/k) is admissible. With
this choice of Ay, we write

and then have
t + QAS—H

-
- _ . Nl
. - > + 0H(o + 7) (8.1)

For a given value of s one wishes to minimize this expression, and hence one
has to choose 7 optimally, or at least nearly so. The constraint 0 < ¢t < s
translates to 0 < 7 < 0. We temporarily ignore that (8.1) is available only for
even values of s 4 ¢, a complication soon to be resolved in a technical lemma.
Instead, we compute the function Ejp : [2,3] — R defined by

Ey(o) = 01<nin h(T), (8.2)

\g

where for each fixed o € [2,3], the function & : [0, 00) — R is defined by
h(T) = =+ 0H(o + 7). (8.3)
o

Notice that in naming the function h, we have suppressed its dependence on
both # and ¢ in order to simplify our exposition.

The function h is continuously differentiable, and we find from (2.2) that

o1 OH(o + 1)
= T T He )
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Note that A'(7) < 0 if and only if H(o +7) > 1/(fo — 1). In particular, we see
from Lemma 2.1 that h'(0) is negative, so that the function h is decreasing for
small values of 7. Also, the equation 2'(7) = 0 is equivalent to

H(o + 1) =

P (8.4)
Since H(o + 7) is continuous in 7 and strictly decreases from H(o) to 0 as 7
runs through positive real values, we conclude from Lemma 2.1 that (8.4) has
exactly one solution that we denote by 7(c). We apply (2.1) to H(c + 7(0))
and insert the identity (8.4), thus finding that

T(o)=1—0— +log(fo —1). (8.5)

fo —1
In view of (8.3), the function hA(7) is increasing for large 7, whence h(7(0)) is
the minimum value of h. Further, since A'(0) < 0, we must have 7(o) > 0.

With (8.2) in mind, we now show that one has 7(c) < o. By (8.5), this
inequality holds if and only if

1+log(fo —1) <20+ (8.6)

0o —1°

This is readily checked numerically for o = g, and amounts to checking that

21 5) 1
2.658... = 1+log( =) < 2+ o= = 2.69...
658 + log 1 <2—|—21/4 690

Meanwhile, for o > 2, the derivative of the left hand side of (8.6) is smaller
than the derivative of the right hand side. Again, this is easily checked. Thus
we discern that the upper bound 7(0) < ¢ holds for o € [2,3]. Consequently,
by (8.2) and (8.4),

7(0)

Eq(0) = == + 0H(0 +7(0)) = TS’) + 909_ s

(8.7)

Next we note that 7(o) is decreasing on the interval [2, 3]. Indeed, it follows
from (8.5) that throughout the latter interval, the derivative
6 6

(o) =—1 8.8

(o) +90—1+(¢90—1)2 (88)

is negative. Since 1/0 also decreases, we see from (8.7) that Ey(o) is strictly
decreasing on [2,3]. One may check numerically from (8.5) and (8.7) that

Ey(3) <1< Ep(3/2).

Hence there is a unique number ¢y with Ey(cy) = 1. If we now eliminate 7(cp)
between (8.5) and (8.7), then we obtain

HCQ
909 —1 (9(39 — 1.
This equation shows that ¢ is the real number ¢ occuring in the statement of

Theorem 1.1, and that ¢4 is the real number ¢ occuring in the statement of
Theorem 1.3.

1 —cy— +log(fcyg — 1) = ¢y —
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We now attend to the key technical lemma previously advertised.

Lemma 8.2. Let 0 € {4,5} and k > 17. Then there exists a number oy = oy,
with oy € (cy,co + 4/k), satisfying the condition that k(oe + T(09)) is an even
integer.

Proof. We begin by noting from (8.8) that the function k(0 +7(0)) is increasing
on (cp,cog +4/k). It follows that this function maps the latter interval onto

(kco + kT(co), kcog +4 + kT(co +4/k)) .
Provided that the inequality
k(T(co) — m(co+4/k)) <2 (8.9)

holds, we see that the set of values of ko + k7(c), for o € (cg, cy+4/k), covers
an interval of length exceeding 2, and therefore contains an even integer 2I,
say. One then has 2l = k(o + 7(0p)) for some oy € (cy, cp + 4/k), as desired.
It remains to check (8.9). By the mean value theorem and (8.8), there exists
a real number o € (¢g, ¢y + 4/k) with
40 46

bo—1 (60 —1)%

k(t(co) — 7(coy +4/k)) = —47'(0) =4 —

However, we have

7 N 6
0o —1 (0o —1)2

1
)
provided only that

(B0 —1—0)* < 6%+ 20,

and this is assured whenever

1+1/0 —\/1+2/6 <o <1+1/0++/1+2/86.

When 6 = 5, this last constraint is satisfied for o € (0.017,2.383), and hence for
¢c<o<c+4/k when k > 17. When 6 = 4, meanwhile, this last constraint is
satisfied for o € (0.026,2.474), and hence with ease for ¢ < o < ¢ +4/k under
the same condition on k. This establishes (8.9) for £ > 17, and completes the
proof of the lemma. O

Finally, we establish Theorems 1.1 and 1.3, dividing the natural numbers
k into three ranges. In the first range £ > 17, we check the conditions of
Theorem 8.1 when 6 € {4,5}. Let sy = o9k and ty = 7(0g)k. Then sy + tg
is the even integer provided by Lemma 8.2. Further, since Fy(o) is a strictly

decreasing function on [2, 3] and

3>09+4/1€>09 > Cy >3/2,
we have Fy(og) < Ep(cy) = 1. By (8.1), (8.2) and (8.3) we conclude that the
second inequality in (5.5) holds with s = sy and t = ty. By taking (so, o) =
(sg,tg) in Theorem 8.1, therefore, we obtain Theorem 1.1 when 6 = 5, and
Theorem 1.3 when 0 = 4.

In the second range 8+ 1 < k < 16, the conclusions of Theorems 1.1 and 1.3
follow, respectively, from Theorems 1.2 and 1.4. The third range 1 < k < 0,
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meanwhile, is more or less trivial. Indeed, our remarks concerning the naive
decoupling approach in the preamble to the statement of Theorem 1.2 already
establish Theorems 1.1 and 1.3 in the cases k = 4 and k = 5, and the work
of Kawada [14, Theorem 2] confirms both Theorem 1.1 and 1.3 when k£ = 3.
This leaves the case k = 2 handled by Hooley [12, 13] and Linnik [15, 16], and
the trivial case k = 1. With these observations, all of the loose ends associated
with the confirmation of Theorems 1.1 and 1.3 have been tied up.
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