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Abstract

Graphene-based nanostructures have extraordinary potential as strong and lightweight materials.
A longstanding bottleneck lies in atomic-scale engineering to harness the theoretical limits of
modulus and strength, of which only a fraction is routinely achieved today. This contribution
introduces a database of over 1,000 pristine and defective nanoscale CNT bundles and graphitic
assemblies inspired by microscopy with associated stress-strain curves from reactive molecular
dynamics (MD) simulations to analyze structure-stiftness-failure relationships. The 3D structures
contain up to 80,000 atoms. Using the database and physics-based machine learning (ML),
accurate predictions of elastic moduli and tensile strength with 1,000 to 10,000 faster speeds than
efficient MD simulations are demonstrated. Hierarchical Graph Neural Networks with Spatial
Information (HS-GNNs) are introduced using chemistry knowledge, and HS-GNNs as well as
extreme gradient boosted trees (XGBoost) achieve forecasts of mechanical properties of arbitrary
carbon nanostructures with only 3% to 6% mean relative error. Reliability reaches experimental
accuracy and is up to 20 times higher than other ML methods. Predictions retain 8% to 18%
accuracy for large CNT bundles, CNT junctions, and carbon fiber cross-sections outside the
training distribution. The physics-informed HS-GNN works remarkably well for data outside the
training range while XGBoost works well with limited training data inside the training range. The
databases for carbon nanostructures are suited to integrate multimodal information from diverse
experimental and simulation techniques, are extensible beyond 100 nm size, to chemically similar
compounds and a wider range of properties. The ML methods can be applied to structural

materials, nanoelectronics, and carbon-based catalysts.
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Significance Statement

We introduce a database of over 1000 dynamic stress-strain curves and failure properties of 3D
carbon nanostructures for real-time predictions of elastic and failure properties using machine
learning (ML). The models cover defective carbon nanotube bundles, carbon fiber cross-sections,
and carbon nanotube junctions up to one hundred thousand atoms and predict mechanical
properties up to 10,000 times faster than current molecular dynamics simulations with mean
relative errors under 5%. Graph-based machine learning algorithms were developed and compared
to existing ML methods, showing promise of physics-based hierarchical graph-based models to
perform well for sparse data and structures out of the training range. Potential applications include
ML-accelerated defect engineering and design of carbon nanostructures, structural materials,

catalysts, and nanoscale electronics.

1. Introduction

Since the discovery of graphene-based nanostructures and carbon nanotubes (CNTs), tremendous
efforts have been deployed to understand and utilize their remarkable mechanical and functional
properties (Figure 1a).(1-4) Examples include applications in aerospace, aviation, and automotive
materials, which break down to CNT/polymer composites, CNT paper, CNT yarns, and carbon
fiber at the molecular and microscale. In particular, the high modulus and strength of carbon
nanostructures in comparison to the low mass density has great potential for applications. The
theoretical Young’s modulus of CNTs exceeds 1 TPa and the theoretical strength exceeds 100
GPa,(5, 6) however, the actual modulus of CNT-based engineering structures such as CNT bundles
and carbon fiber is less than 400 GPa and the strength less than 10 GPa even after decades of
development (Figure 1b).(7-9) The losses are attributed to defects, impurities, finite lengths and
resulting gaps between non-continuous CNTs,(10-12) random micro-structure orientations,
various precursor chemistries for synthetic fiber, gel spinning, and high-temperature graphitization
process protocols.(9, 13, 14) A major challenge lies in closing the gap between the current

mechanical properties, which are already superior to most natural and engineering materials per



unit weight,(14) and the theoretically possible performance (upper right inset in Figure 1b).
Exploration of the large space of improvements could facilitate revolutionary changes in multiple

industries.

Quantifying the impact of the performance-limiting features and guiding related synthesis and
processing towards customized manufacturing from the atomic scale to the microscopic scale
remains difficult in experiments.(15) Characterization of CNT structures relies on X-ray and
electron diffraction,(16) microscopy and 3D tomographic reconstruction, Raman spectroscopy,
acoustic methods and testing of mechanical properties such as modulus, strength, and
toughness.(11, 12) Hereby, the preparation and characterization of samples is time-consuming and
expensive, and a comprehensive analysis of the CNT structural, mechanical, and functional
characteristics requires a combination of multiple experimental analysis techniques.(17, 18) To
complement and accelerate such efforts, simulation methods such as molecular dynamics

simulations and density functional theory have been employed.(19-23)

Simulation techniques can provide detailed insight at the scale from atoms to tens of
nanometers, recently including entire stress-strain curves from equilibrium to failure in high
accuracy.(24-26) It is possible to create and evaluate numerous well-defined model structures
inspired by the defects and nanoscale features observed in laboratory characterization to aid
experimental design.(10-13, 16, 27, 28) The model structures can then be used to examine the
structure-specific failure mechanisms that are difficult to elucidate from experiments alone. While
more time-efficient than experiments (hours versus weeks per structure), the computational cost
remains considerable, and the typical system size of 1 to 50 nm remains much below the scale of

carbon fiber and related devices.

Recently, artificial intelligence (AI) and machine learning (ML) methods have been rapidly
developed to interrogate properties of materials (Figure 1c-d).(29, 30) ML has already achieved
remarkable success on a wide range of applications, such as image classification and segmentation,
language translation, and DNA sequence analysis.(31-37) Here we explore physics-inspired graph
neural networks to predict mechanical properties from 3D structures with high acceleration (Figure
Ic). Different from conventional approaches, ML algorithms build models and infer knowledge
about materials from large, sampled data (Figure 1d). Following feature definitions, hierarchical

spatial information, and known target properties in the dataset, the trained models can then predict



materials properties or changes in the dynamics of simulated materials structures. One of the more

powerful and commonly used frameworks in chemistry and materials science is deep learning
(DL).(38, 39)
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Figure 1. Hierarchical structure of carbon-based materials, challenges, and machine learning
workflow to predict mechanical properties at the nanoscale. (a) Space, air, and automotive vehicles
(top) require strong and lightweight materials, for which CNT yarn, sheet, and carbon fiber
composites are a promising choice. At the microscale, CNT yarn and sheet consist of aligned yet
highly defective carbon nanotube bundles and irregular graphitic structures (bottom left). 3D
imaging by tomography remains limited to the coarse nanometer scale. In this work, we examine
stress-strain relationships up to failure for a library of over 1000 structures at the small nanometer
scale and feed the data into a ML model to enable faster, real-time predictions (bottom right). (b)
The current performance of carbon fiber (CF) remains far lower than the theoretical limits for
CNTs and CNT bundles (top-right), which are ca. 1000 GPa in tensile modulus and ca. 100 GPa
in tensile strength. Efforts in the last 50 years have brought steady improvements (illustrated by
various data points and arrows), and CNTs remain a superior candidate for structural

applications.(13) (c) We introduce a Hierarchical Spatial Graph Neural Network (HS-GNN) with



excellent performance in mechanical property predictions for graphitic morphologies up to the
large nanometer scale. (d) The workflow includes collection of stress-strain curves by reactive
molecular dynamics simulations (validated relative to experiment), representation of the structures
for the HS-GNN or extreme gradient boosted trees (XGBoost), and training of the ML model with
the data for modulus and strength. The goal is the prediction of mechanical properties of unknown
structures 10° times faster than MD simulation, i.e., within seconds, to quantify the role of defects

and explore desirable new nanoscale designs.

Deep learning uses multiple neural network layers to map input raw data onto output target
properties, performing representation learning and task optimization simultaneously. Neural
networks can learn molecule representations and apply them to prediction tasks in an end-to-end
and data-driven manner. Depending on the representation of atomic structures used as inputs, we

can classify deep learning approaches for molecular or material science applications as follows.

First, we could model a molecular structure as a 3D point cloud where each atom is represented
by a point in R?, and then apply the PointNet(40) or Relation-shape Convolutional Neural Network
(RS-CNN)(41) architecture to perform property prediction over such point cloud
representation.(42) This approach can encode the 3D structural information of molecules,
however, simply representing molecules as point clouds can lose significant structural information
such as chemical bonds. Xu et al.(43) and Gebauer et al.(44) improved this approach by designing
more expressive point cloud convolution networks which align local neighbor information and
symmetry factorization of point distributions. Furthermore, fingerprints(45-47) can encode
chemical bond relations, which can be viewed as first applications of Graph Neural Networks

(GNNs) to the prediction of properties of molecular structures.

Second, a natural way to organize molecules is a representation as graphs (Figure 1c). Atoms
are represented as nodes in graphs and two atoms are connected by edges when a chemical bond
exists between them. GNNs like Graph Convolution Networks (GCN)(48) and Graph Attention
Networks (GAT)(49) can perform convolution over graph-structured data. Message-passing neural
networks (MPNNs) are extended frameworks that further introduce message passing into GNNs
and support architectures for predicting molecular properties (Section S1 in the SI Appendix).

DimeNet(50) and D-MPNN(51) further extended this approach by incorporating bonded



interactions like angles between bonds into models. Although GNNs outperform other approaches
mentioned above, for tasks like classification of small molecules, existing approaches have several
limitations: (1) In addition to atom connectivity and bonded interactions, a good model should also
take non-bonded interactions and features that characterize spatial (geometric) bonded patterns of
atomic structures into consideration. (2) Due to over-smoothing or over-squashing phenomena,
long-range interactions or signals are hard to capture, making it challenging to process large scale
molecular structures and assemblies. (3) The neighbor aggregation scheme in existing GNNss fails
to be defect-aware as it smooths out signals of local defects and performance to predict properties
of defective structures degrades, e.g., in CNTs with missing atoms after gamma-radiation (Figure

2a-c).(52)

To-date, no study has been reported that determines the influence of the wide array of atomic
scale defects on CNT bundle mechanical properties to the best of our knowledge. Also, we are
unaware of studies that incorporate machine-learning to quantify how the defects prevent CNT
bundles from reaching the theoretically possible performance (Section S2 in the SI Appendix).(53)
In this contribution, we generated over 1,000 different 3D atomic structures of CNT bundles and
graphitic morphologies, along with stress-strain curves up to failure. We utilized reactive MD
simulations with the reactive version of the INTERFACE force field, IFF-R,(25, 26, 54) to generate
the stress-strain curves for all 3D structures. IFF-R allows bond breaking, has been extensively
validated, and exceeds DFT accuracy up to multiples.(20, 55) Typical deviations of computed
moduli and strength from experimental data are ~5%.(26) IFF-R uses interpretable energy terms
designed to represent defects and structural variations in comparable accuracy, and includes a wide
range of chemistry.(54, 56-59) The 3D carbon nanostructures and associated mechanical properties
were used as a ground truth to build a database and explore ML schemes to predict mechanical
properties directly from the 3D atomic structure. We introduce a new machine learning framework,
the Hierarchical Spatial Graph Neural Network (HS-GNN). HS-GNN is an enhanced GNN
designed to process atomic structures of graphitic carbon nanostructures and CNT bundles, and
the first reported ML scheme to predict mechanical properties of such structures beyond a size of
10,000 atoms. The input structures are modeled as a heterogeneous graph to include covalent bonds
and short-range (non-bonded) interactions among atoms. Persistent summaries were extended by
capturing local geometric and topological features, which are necessary to better encode the spatial

geometric shape and topological defects, e.g., missing atoms and chemical bonds, that affect the



mechanical properties. A 3-level hierarchy in the neural network captures short range and long-
range interactions among different parts of the CNT bundles, providing a means to include multiple
length scales. Initial training of the HS-GNN involved 1139 independent configurations of CNT
bundles and, separately, a dataset of 958 CNT junctions.(18, 60, 61)

The HS-GNN as well as simpler extreme gradient boosted trees (XGBoost)(62) demonstrate
remarkable predictive accuracy and speed. For new atomic arrangements in CNT bundles not
present in the training set, HS-GNN predicts the tensile modulus and strength with only 3% to 6%
mean relative error (MRE), far exceeding earlier structure-based ML approaches such as
DimeNet.(50) HS-GNN also yields the most accurate prediction for mechanical properties of
complex CNT junctions, enlarged CNT bundle structures (containing ~10° atoms), and graphitic
carbon fiber cross-sections outside the training distribution at 10% to 20% mean relative error.
Computational efficiency is extremely high, requiring less than 0.1% of the time of traditional
molecular simulations for individual predictions. XGBoost,(62) using only global features, even
surpasses HS-GNN in computation speed, although with much larger errors in property ranges

with fewer training data and for geometries outside the training distribution.

2. Results
2.1. 3D Structure Databases and Training Data for Mechanical Properties

The primary data set contained 1139 periodic models of pristine and defective carbon nanotube
(CNT) bundles (Figure 2). Model building utilized available data from X-ray diffraction,
microscopy, imaging, spectroscopy, and mechanical analysis.(1-3, 5-13, 15-18, 53) Morphologies
in the CNT bundle data set included individual and bundled single wall (Figure 2a), double-wall
(Figure 2b), as well as triple-wall CNTs, both defect-free and with many different types of defects
(Figure 2¢ and Figure S1 in the SI Appendix). Target properties for ML predictions were the tensile
strength and modulus, which we obtained from reactive molecular dynamics simulations of stress-
strain curves up to failure using the reactive Interface Force Field (IFF-R) (Figure 2d and Figure
S2 in the SI Appendix).(25, 54) IFF-R quantitatively reproduces the crystal structures of graphite
and CNTs within 0.5% deviation from experiments,(20) the structure of flattened CNTs,(63) n-nt
stacking, surface and interfacial energies within 5% of experimental measurements, as well as

tensile moduli and tensile strength of CNTs, graphene, and graphite in 5 to 10% agreement with



experimental data.(20, 24, 25) IFF and IFF-R were also validated for simulations of defects,
interfaces of graphitic structures with solvents and polymers, reproducing contact angles and
adsorption energies within ~10% of experimental data.(19, 20, 24, 54) IFF and IFF-R also reach
high accuracy for chemistries across the periodic table such as metals,(55, 64) oxides,(57) 2D

materials,(58, 65, 66) polymers, gases,(67) and associated multi-phase materials.(54, 68)

From the computed stress-strain curves for all structures, the Young’s modulus was calculated
as the slope of the linear stress-strain response at low strain, typically between 0.00 to 0.01 (Figure
2d). The tensile strength was determined to be the maximum stress before failure. As an example,
a double-wall carbon nanotube (DWCNT) with initially broken inner walls had a tensile modulus
and tensile strength of 210 GPa and 19.2 GPa, respectively (Figure 2d). We also recorded the strain
at break, half strain at break and half the tensile strength to explore causal relationships (Figure
2j).

Coverage of a diverse range of morphologies is advantageous for new physical insight and
effective ML-based property predictions. We included over ten different types of defects in
approximately two thousand structural variations in our databases (Section S3 and Figure S1 in
the SI Appendix). The associated stress-strain curves and mechanical properties display a wide
range of trends and takeaways for nanostructure design (Figure S2 in the SI Appendix). In
summary, the models of CNTs and CNT bundles reflect experimentally known variations such as
pristine structures (Figure 2a, e), missing atoms (Figure 2b-c, 2e, and 2f), bond dissociation
defects, Stone-Wales defects, discontinuities (Figure 2d, f), as well as larger-scale defects like
plastically deformed, crumpled, and rearranged nanotube forests (Figure 2f). The stress-strain
curves from the database for various morphologies, such as defective and crumpled CNTs and
CNT bundles, exemplify the structure-property relationships used in machine learning (Figure 2h,
1). For a bundle of two SWCNTs of 1.22 nm diameter (the smallest possible diameter would be
~0.7 nm(19, 69)), increasing the size of a vacancy with missing atoms shows a diminishing effect
on modulus and strength (Figure 2e, h). The pristine CNT exhibited a tensile strength of 85 GPa,
which was lowered to 61 GPa after introducing a monovacancy into each nanotube, a 28%
decrease. Di- and tri-vacancies in the CNTs led to a tensile strength of 54 GPa and 52 GPa,
respectively, equal to a loss of 36% and 39%. The tensile modulus showed a similar loss, albeit
limited to 15% in the same sequence, indicating convergence past a critical flaw size. The role of

complex defects is also captured in the database (Figure 2f, i). A compressed, crumpled nanotube



assembly without broken bonds retains a tensile strength larger than 100 GPa (Figure 2i). Other
CNT bundles with broken bonds, Stone-Wales defects, or missing atoms exhibit notable losses in
tensile strength. Some defects may increase the strain at break and offer a toughening mechanism,
however, comparisons require caution due to the coexistence of broken and pristine nanotubes in
defective bundles. Defects with broken bonds, i.e., ruptured ends of CNTs or line defects of
multiple broken bonds had typically the most detrimental impact on mechanical properties. Stone-
Wales and vacancy defects led to properties somewhere between broken and pristine CNTs. Trends
in mechanical properties can be explored for further analysis in the full CNT bundle data set of

over 1000 different structures with stress-strain curves.

A further, independent data set of 958 non-periodic CNT junctions and associated mechanical
properties was developed by Varshney et. al.(70, 71) The dataset on CNT junctions was employed
to the test the applicability of HS-GNN and other ML methods to different nanoscale topologies.

As a limitation, we consider nanostructures containing only carbon atoms in our dataset and
exclude oxidized states such as graphene oxide. Focusing on data with uniform high quality allows
the in-depth assessment of ML methods. The remarkable performance encourages future studies
that include heteroatoms, polymers, and heterogeneous reference data, extending the present

database.

2.2. Feature Definition and Causal Relationships

Machine learning and predictions of mechanical properties from the 3D structural models relies
on global features when using XGBoost as well as on global features plus graph analysis for HS-
GNN (Figure 2g). We included 7 global features, namely, the number of CNTs, the CNT diameter,
the CNT height (length), the number of walls for each CNT (CNT type), i.e., to distinguish
SWCNT (1), DWCNT (2), and TWCNT (3), the number of atoms, the number of bonds, and the
cross-sectional area of a CNT bundle (calculated as the sum of cross-sectional areas of individual
CNTs). These features have some interdependence, and we defined the bond ratio as an additional
feature, given by the total number of C-C bonds divided by the total number of atoms. The bond
ratio is equal to 1.5 for pristine CNTs and less than 1.5 for a defective CNT bundle, helping to

characterize defective bundles. Broken CNTs have the lowest bond ratio.
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To analyze relationships between global features and predicted properties (labels), we
deployed a causal additive model (CAM) (Figure 2j).(72) Among various interesting correlations
such as between the type of CNT and ! strain at break, and the absence of correlations between
the cross-sectional area and some properties (as expected), the CAM revealed a strong correlation
between the simulated strength and the simulated modulus (Figure 2j). L.e., if the strength was
known, it could be used to improve predictions of the tensile modulus. However, incorporation of
the strength-modulus relationship improved the quality of predictions in HS-GNN only if we used
the ground truth value for strength and, therefore, our final model of HS-GNN, predicts tensile

strength and tensile modulus concurrently without the CAM.
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Figure 2. Illustration of the primary structure database on CNT bundles and of the methods to
collect data for the ML models. (a) Top view (left) and side view (right) of single-walled carbon
nanotube (SWCNT) without defects, (b) a bundle of double-walled carbon nanotubes (DWCNT)
with monovacancy defects (inner walls highlighted in blue and vacancies highlighted dark red),
(c) a bundle of triple-walled carbon nanotubes (TWCNT) with monovacancy, di-vacancy (green),
and tri-vacancy defects (innermost walls highlighted in yellow and tri-vacancies highlighted light
blue). (d) Sample stress-strain curve from reactive molecular dynamics simulation with IFF-R for
two DWCNTs with initially broken inner walls. Snapshots of the CNTs at different strain points
are shown. Red highlights indicate mechanical properties used for training the HS-GNN: strength,
modulus, and strain at break. The calculated values are listed next to their labels in parentheses.
(e) Two SWCNTs show vacancy sizes used in the data set: none (pristine), mono-, di-, and tri-
vacancies. (f) [llustration of complex defects in CNT bundles used in the data set. Compressed,
deformed CNT bundles, discontinuous inner and outer walls (close-up shown in top-right corner),
Stone-Wales defects (pentagonal and heptagonal lattice defects), and vacancies in inner and outer
walls are shown. (g) Perspective view of a CNT bundle and illustration of the 7 global features
considered in the data set to carry out machine learning. The ratio of bonds to atoms was
additionally used to quantify the extent of defects. (h) Sample stress-strain curves for the CNT
bundles shown in (e), demonstrating a loss of tensile strength and modulus of elasticity by
increasing vacancy size. (i) Sample stress-strain curves for the CNT bundles shown in (f),
indicating major differences in stress-strain characteristics. Importantly, mechanical properties of
pristine and defective CNTs also depend on the diameter and number of walls. (j) Relationships
between structural features from (g) and the mechanical properties as determined by a causal
additive model (CAM). For example, the CAM reveals that knowing strength can improve the
prediction of the modulus (red highlights). Incorporating this relationship into HS-GNN improved
the performance for modulus prediction when using the ground truth for strength but not when

using ML-generated values.

2.3. Machine Learning Pipeline for Property Prediction

The high-level framework of the Hierarchical Spatial Graph Neural Networks (HS-GNN) is
illustrated in Figure 3. HS-GNN uses the initial 3D atomic structure, denoted as S, of a CNT-like

12



or other graphitic structure as an input. HS-GNN takes the importance of covalent bonds as well
as of short-range interactions between non-bonded atoms into account, as opposed to employing a
plain PointNet-type architecture(40) which would treat the set of atoms as a collection of points as
an input, each equipped with a radius. The HS-GNN is a specially designed graph neural network-
based architecture to process S and consists of three components: a heterogeneous graph
representation of the input structure (Figure 3a), a hierarchical neural network model engineered
to capture long-range interaction among different parts of the CNT bundle (Figure 3b), and the
integration of local geometric and topological features to enhance the encoding of the shape of
CNT bundles and of defect information (Figure 3a). Each of these components is briefly described

in the following.

Heterogeneous Graph. It is common to use the bond-graph Gponas to represent S, where each
node corresponds to an atom, and there is an edge between two nodes if the corresponding atoms
form a covalent bond (1, 2 bonded). We go beyond the bond-graph and generate a heterogeneous
graph, denoted as Ggs, with one further type of edges among nodes from the initial atomic structure
S (Figure 3a). We also connect any two nodes whose corresponding atoms form a dihedral angle,
the angle of two planes formed by four sequentially bonded atoms rotated about a central bond (1,

4 bonded). This heterogeneous graph is then fed into a hierarchical GNN.
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Figure 3. Illustration of the machine learning pipeline for HS-GNN. HS-GNN is a carefully
designed hierarchical and spatial GNN to predict mechanical properties of CNT-based and other
graphitic structures. (a) As an overview, the pipeline begins with the generation of a heterogeneous
graph for a given CNT or CNT bundle structure, which is then processed with a hierarchical GNN.
A specialized GNN is created within each level of the hierarchy to learn graph representations. The
vertical arrays in each level indicate the micro-layers. In addition, topological and geometric
features, specifically, persistence summaries of clusters, are computed from the CNT structure.
These features encode the local shape and defects and are incorporated into HS-GNN after
hierarchical pooling. (b) Construction of the hierarchical graph series. To obtain a higher-level
graph, nodes in the lower-level graph that are spatially proximate are grouped into clusters. In the
higher-level graph, each node corresponds to a cluster of nodes in the lower level, and nodes in a
higher-level are connected by an edge if their corresponding lower-level clusters exhibit any

overlap.

Hierarchical GNN Model. GNNs are widely used to process graph data and learn graph
representations. At a high level, a standard GNN takes a graph with initial node features as an input
and processes the graph through ¢ layers. In each layer, the GNN updates the feature vector stored
at each node of the graph by aggregating features from neighboring nodes and applying a learnable
transformation of node features (Section S1 in the SI Appendix). Hereby, GNNs often suffer from
over-smoothing(73) which impedes their ability to reach deeper layers. This limitation constrains
the effectiveness of capturing information from long-range interactions and the capability of
accurately weighing the impact of local defects. We designed a hierarchical GNN that processes
the input graph Gs at multiple resolutions to mitigate this issue (three in our algorithm as shown

in Figure 3a, b).

Our design finds hierarchies based on spatial geometry information rather than graph topology
or node features and distinguishes the HS-GNN from earlier hierarchical GNN approaches.(74,
75) In our approach: (1) The lowest level L operates on the input graph Gs; (2) At a higher level
Li (k> 1), each node corresponds to a cluster of nodes from previous level L;-1 and is referred to
as a hyper-node; (3) The initial feature vector associated to each hyper-node is obtained by

applying a pooling layer to the graph at level Li—1. Within each resolution level L, we use several

14



GNN aggregation layers, specifically, GIN and/or GAT, which we designate as micro-layers.
Finally, additional pooling layers are applied to the final micro layer of each hierarchy level to

obtain a graph-level representation for downstream property prediction.

Encoding Local Geometry and Topology into HS-GNN Using Persistent Summary. The shape
of carbon nanotubes, graphene-like sheets, and the spatial relation among neighboring structures
impact the mechanical properties. To encode such geometric information, namely local interactions
among spatially close atoms, from potentially different nanotubes or walls, we use the so-called
persistent homology (PH) that characterizes the spatial distribution of points within each cluster in
each hierarchical level. PH has been one of the most significant developments in topological data
analysis over the last two decades and proven effective in characterizing a variety of intricate
shapes.(76, 77) In our context, a set of points (representing atom centers) form a local cluster and
PH can provide a concise yet informative summary of the shape formed by these points. Herein,
we track the creation and death of topological features with respect to a growing sequence of space
around these points, which is effective in capturing local defects using (Figure S3, Section S4 and

Section S5 in the SI Appendix).

Extreme Gradient Boosted Trees (XGBoost). An alternative to HS-GNN are Extreme Gradient
Boosted Trees (Figure S4 and Section S6 of the SI Appendix).(62) XGBoost uses only global
features and is faster than HS-GNN. The performance is outstanding in parts of the training range
with sufficient local data, however, it decreases sharply in areas of sparse data and for structures

outside the training range information.
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Table 1. Mean relative error (MRE) in the prediction of strength and modulus of CNT bundles and CNT junctions by ML methods.

Computing time for predictions and training is also shown. We used 90% of the respective data sets for training and 10% for prediction.

Methods are grouped into structure-based approaches and feature-based approaches in the order of decreasing prediction performance

from left to right using the primary CNT bundles data set. The highest performing methods XGBoost and HS-GNN reach approximately

5% or less average error on the primary training set. (HS-GNN = hierarchical spatial graph neural network, PH = persistent homology,

BWGNN = beta wavelet graph neural network, GCN = graph convolutional network, XGBoost = extreme gradient boosted tree, MLP

= multilayer perceptron, LR = linear regression). Prediction times are over 1000 times faster than reactive MD simulations (below 1

second versus 30 min per structure).

Data set Property Structure-based methods Feature-based methods
HS-GNN PH DimeNet BWGNN GCN XGBoost MLP LR
Mean relative error of prediction (%)
Strength 34+0.8 5.6+04 13+£0.7 14 +0.03 35+1.8 3001 6.6+02 29+0.7
Modulus 5.6 £0.1 8.7+0.6 16+£0.5 16 £0.2 39+£0.2 55+£00 7.0+1.3 31=+0.01
CNT Training time (seconds per 1 A100 GPU)
bundles 5160150 30+60° 6900+690 3480+282 1080+25 | 30+6  30+0.0 11+0.0
Strength or
Prediction time® (seconds per 1 A100 GPU)
modulus?
0.83+0.10 0.03+0.01 206=+38 049+0.10 0.34+0.20/0.20+0.01 0.07£0.01  0.001
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Prediction time by MD simulation: 1800 seconds per structure (using 64 CPU cores)

Mean relative error of prediction (%)

CNT Strength 11.8+03 140+1.1 123+09 15.0=+0.5 40+1.8 | 11.3+04 129+04 20+0.0

junctions Modulus 83+0.6 11.8+1.5 100+1.8 155+0.6 66 +£0.1 6.2+0.2 103+03 56+0.0

# Computing times refer to training for the prediction of one property, i.e., either strength or modulus. Training of a separate model is
necessary to predict both properties simultaneously. ® The PH based method requires expensive pre-processing time (more than one

day). ¢ Total computation time to predict strength or modulus for the complete test set of 115 CNT bundles.
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2.4. Prediction of Tensile Modulus and Strength for CNT Bundles using ML

The tensile strength and the tensile modulus of various CNT configurations were tested for
multiple structure-based ML models such as HS-GNN as well as feature-based models such as
XGBoost (Table 1 and Figure 4). We first evaluated the HS-GNN using our benchmark dataset of
1139 CNT-bundles, using a random selection of 90% of structures for training and 10% of

structures for property prediction (Table 1 and Figure 4).

Prediction Accuracy. HS-GNN has a mean relative error (MRE) of 3.4% for the prediction of
the tensile strength and 5.6% for the prediction of the modulus of CNT bundles (Table 1, Figure
4a, b, as well as Table S1 and Section S7 in the SI Appendix). Laboratory measurements often
have more than +5% uncertainty so that the reliability of the ML approach is outstanding in
comparison. More broadly, 10% uncertainty is valuable for practical purposes. XGBoost reached
similar overall accuracy as the HS-GNN (Table 1), although values in certain ranges are much less

reliable with errors exceeding 10% (Figure S5 in the SI Appendix versus Figure 4a, b).

Accordingly, the quality of the predictions depends on the range of values and number of
available training data (Figure 4a, b and Figure S5 in the SI Appendix). Prediction errors for HS-
GNN were low for an intermediate range of tensile strengths of 40 to 100 GPa and for tensile
moduli of 200 to 800 GPa (Figure 4a-d), which correlate with over 80% of training data available
(Figure 4e, f). The prediction of tensile strengths in the range 0-40 GPa (Figure 4a, ¢) and moduli
in the range 0-200 GPa (Figure 4b, d) remained exceptionally accurate for HS-GNN while several
other methods had errors greater than 20%. The associated data in this category represents only
3.7% of the cases in the training set (Figure 4e, f) and includes highly defective CNT bundles that
can have dramatically different structures after failure (Figure 2d). Low errors for HS-GNN result
from accounting for relevant physical and chemical features as well as for the hierarchical
structure, while other ML methods without such attributes contribute higher errors (Figure 4a-d).
MLP and XGBoost are among the next best performers. Predictions of mechanical properties for
CNT bundles close to the upper limit of performance, 100-120 GPa for strength and close to 800
GPa (or over 800 GPa) for modulus (Figure 4a-d), were dependable in comparison. In these
instances, the reduced complexity of near-pristine CNT bundles contributes to predictions of high

quality (Figure 2a-c, e), even though the structures contribute only a small portion in the training
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set (Figure 4e, f). Specifically, XGBoost has a strong dependence on the number of training data
(Figure S5 in the SI Appendix). The performance is extremely good when a large amount of
training data is available, or defects are sparse, and it is quite poor when training data are sparse,
e.g., for low strength and low modulus. HS-GNN is more balanced and up to ten times more

accurate for sparse data (Figure S5 in the SI Appendix versus Figure 4).

In comparison to experimental data, high elastic moduli between 700 and 1000 GPa are
predicted by HS-GNN and XGBoost for non-defective CNTs and CNT bundles, as well as tensile
strengths between 80 and 120 GPa. These data align with laboratory measurements and high-level
ab-initio calculations,(10, 27, 53) in the same range depending on the CNT diameter and number
of walls. IFF-R and ML predictions reproduce these trends(26) and are suited to predict the

properties of defective structures well which remains a challenge for direct measurements.

Computational Speed. ML methods are promising for broad applicability due to less computing
time compared to system-specific simulations. The deployment of HS-GNN, XGBoost, and other
methods involves three stages: feature analysis and graph creation (or feature analysis only for
feature-based methods), training, and prediction. We report the associated times using 1 GPU
(A100) on a server with 128 CPU cores. (1) The first step involved the creation of graphs from the
1000+ CNT bundle structures such as the persistent homology (PH) inside HS-GNN. These
computations are time-intensive and take 3 to 4 days. In contrast, only minutes were necessary
when using XGBoost to prepare a spreadsheet of global features using a suitable script. (2) The
second step was initial training of the models on the database (Table 1). For example, 86 minutes
were required to train the HS-GNN model, mostly for computing the persistence summaries of
CNT bundles in the training set. XGBoost, with simpler input and model, needed only 0.5 minutes
for training. (3) The third step involved the prediction of properties, which the algorithms perform
simultaneously for all structures (Table 1). The prediction (inference) process to obtain both the
tensile strength and the modulus for over one hundred bundled CNT nanostructures simultaneously
(10% of the data set) took only 0.83 seconds for HS-GNN. XGBoost completed the same task in

0.2 seconds.

In comparison, an IFF-R MD simulation of the full stress-strain curve for one bundled CNT
nanostructure took about 30 minutes using 64 CPU cores, plus analysis time (Table 1). Prediction

tasks by HS-GNN and all other ML methods are therefore extremely fast, at least a factor of 1,000
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times faster (Table 1). XGBoost leads in terms of speed at useful accuracy due to quick
featurization time, training time, and is scalable for millions of structures if more data becomes
available. HS-GNN is more dependable than XGBoost and works well with sparse data. The
downside is a long lead time for initial graph creation and ~100 times longer training time of the

network than XGBoost. Predictions, once trained, occur in under one second, too.

In summary, the speed using HS-GNN for the same nanostructure is more than 1,000 times
faster than traditional MD simulations and could be increased up to 10° times faster if MD
simulations for training would use lower strain rates. Predictions using XGBoost are 10,000 times

to 107 times faster, suitable for real-time feedback.
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Figure 4. Prediction of mechanical properties for CNT bundles using the HS-GNN and other ML
methods. (a, b) Box plot of prediction error of tensile strength (a) and the tensile modulus (b) for
the data set of CNT bundles using the HS-GNN (see equivalent data for XGBoost in Figure S3 in
the SI Appendix). The CNT-based models were divided into six groups of increasing strength and
modulus, respectively, to illustrate the sensitivity of errors in property prediction on the range of
values. The horizontal lines represent the median prediction error, the open squares the mean

relative error (MRE), the box boundaries the 25% and 75% quartiles, and the outside bars the
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global minimum and maximum of errors. (c, d) Comparison of MRE baselines for the HS-GNN,
extreme gradient boost (XGBoost), and six other methods for tensile strength (c) and tensile
modulus (d) using the CNT bundle data set. The baselines include multi-layer perceptron (MLP),
linear regression (LR) based on global features of the CNT materials, persistent homology
(PH)(77), beta-wavelet graph neural network (BWGNN)(78), DimeNet(50), and graph
convolutional network (GCN). HS-GNN or XGBoost outperform many other ML algorithms by
an order of magnitude. HS-GNN maintains all MREs under 10% and even 5% for tensile strength.
(e, f) Data distribution for tensile strength and tensile modulus in the CNT-bundle data set.

Comparison with Other ML Approaches. The HS-GNN is a structure-based method for
efficiently predicting mechanical properties of carbon nanostructures, including chemical
information and structural hierarchy (Table 1 and Figure 4). (XGBoost)(62) is a feature-based
method with a simpler model architecture that requires significantly less training time. A
comparison of these two promising ML architectures to six other ML baselines, including
structure-based and feature-based models, shows significant differences (Figure 4c, d). Structure-
based models take the 3D graph representation of CNTs as an input, whereby the atoms correspond
to nodes, and chemical bonds to edges. Vanilla GCN,(48) Persistent Homology (PH),(77) beta
wavelet graph neural network (BWGNN)(78), and DimeNet(50) were tested. DimeNet has been
prior state-of-the-art in property predictions of molecular structures and underperforms relative to
HS-GNN and XGBoost with 2 to 8 times larger errors (Figure 4c, d). PH works notably better,
although it still has about double the error compared to HS-GNN and XGBoost, and multiple times
the error at low modulus and strength. PH also requires much higher pre-processing time to obtain
the structural features (more than one day with our server). The BWGNN specifically captures
outlier signals over graphs, which in our case, are local defects and shape distortion. However, the
performance is low, like DimeNet, and GCN is clearly unsuited due to large errors (Figure 4c, d).
Further feature-based models include linear regressor (LR),(79) multi-layer perceptron (MLP),(80,
81) and extreme gradient boosting (XGBoost),(62) which use global features as inputs (Figure 2g)
to predict associated properties. MLP achieves good accuracy, although behind XGBoost and HS-
GNN. Linear regression is the fastest method, although with large errors (Table 1 and Figure 4c,
d).
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HS-GNN outperforms other baselines in predicting tensile strength and Young’s moduli of
CNT bundles (Table 1 and Figure 4c, d). The mean relative errors (MRE) are approximately half
of those of the best prior structure-based method DimeNet. All models indicate a trend of lower
prediction error for property ranges with more training cases. HS-GNN prevents large upswings

in prediction error towards lower and upper limits of strength and modulus (Figure 4c, d).

Sensitivity Analysis by Ablation and Reduction of Dataset Size. An ablation study on HS-GNN,
in which we methodically removed different components of the model, helped us to isolate and
understand the respective contributions to the overall performance. We examined two ablation
setups containing partial components from the new HS-GNN models for our benchmark dataset
of CNT-bundles to evaluate the sensitivity. In the first setup, we removed the topological and
geometric information from our HS-GNN model to study the influence of hierarchies in the
architecture (Figure 3). The prediction error for test datasets for strength and modulus then
approximately doubled from 3.4% and 5.6% to 7.4% and 14.6% (Table 1). In the second setup, we
used a non-hierarchical GNN, but including topological and geometric information as node
features to account for the effect of spatial information in the neural network model. The prediction
error for test datasets for strength and modulus increased to 10.7% and 19.5%, respectively, which
is more than triple (Table 1). Accordingly, the prediction error significantly decreases by adding
both hierarchical designs for long-range interactions as well as local topological and geometric
information. Among the two, the impact of hierarchies was more pronounced. In relation to a
vanilla GCN without either added feature, the two strategies are complementary and drastically

reduce the prediction error from up to 100% to less than 5% (Figure 4c, d).

To evaluate the influence of the size of the dataset, we randomly choose smaller fractions of
the dataset of CNT bundles for training and prediction using a stratified sampling split (Figure S6
and Section S8 in SI Appendix). The mean relative errors (MREs) of prediction in mechanical
properties remained low for XGBoost, increasing to only ~7% at %4 of the dataset size. HS-GNN
showed no significant changes down to % of the dataset size, followed by major increases in MREs
to 15% at 2 dataset size and over 50% at "4 dataset size. Low MREs over all structures in the
prediction set for XGBoost, however, are paired with high MREs in areas with low data density
even at 90% dataset size (Figure 4c, d and Figure S5 in the SI Appendix). XGBoost is powerful in
areas with relatively few and well distributed training data, whereas HS-GNN has steady

performance in all areas of uneven data distributions and requires more training data. The entire
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dataset of CNT bundles is large enough to enable accurate predictions of mechanical properties

and can be further expanded for future use.

2.5. Prediction of Mechanical Properties of Carbon Nanostructures Outside the Training

Distribution

We challenged the ML models with structurally more complex configurations to explore the
capability to adapt to new, unseen, and out of distribution data, including large CNT bundles, cross-
sections of carbon fiber, and CNT junctions (Table 1 and Figures 5 and 6). Specifically, we
predicted strength and modulus for 20 larger CNT bundles, 50 carbon-fiber cross-sections, and a
dataset of 958 unique carbon-nanotube junctions. Predictions were made from the pretrained HS-
GNN framework using training data from 1139 small CNT bundles, i.e., we excluded training data
for large CNT bundles or carbon fiber-like structures. Predictions for CNT junctions involved

separate training and splitting of a new dataset.

20 out-of-distribution models of large CNT bundles were inspired by TEM images and
tomography of cross-sections of CNT yarn and carbon fiber(12, 13, 16, 63, 82) and consisted of
more than 20,000 atoms, which is several times larger than in the training set (Figure 5a and Figure
6a-e). Predicted mechanical properties have typical deviations under 20% and the HS-GNN
remains 2-3 times more accurate than other structure-based methods, as well as better than feature-
based methods such as XGBoost (Figure 5a and Figure 6j). The first example structure was
modelled after high resolution TEM images of cross-sections of highly aligned CNT networks
(Figure 64, j).(12) Typical dog-bone formations of close-packed, flattened CNTs were included, as
observed for CNTs of diameters larger than 4 nm in microscopy.(82) The models follow the
experimental size of diameters of 10 to 12 nm(82) and are 10x larger in comparison to typical
training structures. The ground truth mechanical data are from reactive simulations with IFF-R,
supported by prior validation of structure, shape, and interaction energies of flattened CNTs against
experiments and DFT-D2.(63) ML predictions (HS-GNN) display 4.0% deviation in strength and
7.5% deviation in modulus (Figure 6j). A second example was based on the TEM images of a
cross-section of a bundle of double-wall CNTs with hexagonal packing and diameters of 1.45 nm
(Figure 6b, j).(16) The structure contained 64 CNTs in the bundle with 78,080 atoms, which is

about 16 times larger than average structures in the training set. The HS-GNN predicts ~3%
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deviation in strength and ~20% deviation in modulus relative to the IFF-R reference value. The
data suggest that the size of the pristine model CNT structures could have more influence on the
modulus than on the strength. As a third example, compressed and deformed bundles of over 64
CNTs with numerous fracture defects were tested, which align with recent imaging of
dislocations(83) and failure processes in CNTs (Figure 6c¢, d, j).(84) Deviations of 20% to 25% are
found in the ML-predicted mechanical properties, showing that large morphologies with multiple
fracture sites may reduce the accuracy of HS-GNN predictions more than other features and benefit
from further training data. As a fifth example, a similar morphology without fracture defects
(Figure 6e)(10) shows low deviations in the predicted tensile strength and modulus by HS-GNN
of 5% and 6%, respectively, relative to IFF-R MD simulations (Figure 6e, j). The computed values
for tensile strength of ~75 GPa correlate well with available experimental data of ~80 GPa for
comparable CNT forests.(10) Overall, HS-GNN generalizes well for large CNT bundles including
flattened CNTs. Little dependence on the larger size of the structures was noticed when nanotube
had diameters within the typical training range (0.8 nm to 3 nm) and few fracture-type defects
were present. Deviations could be reduced by expanding the training set for large structures with

complex fracture defects, large CNT diameters, and lower density.

We tested an out-of-distribution dataset of carbon fiber cross-sections comprising 50 structures
of about 20 nm in size. The carbon fiber cross-sections feature intricately curved, cut, and
crosslinked graphitic layers, as well as discontinuity defects that are common in fiber morphology
and influence mechanical performance (Figure 6f, g).(85) A certain fraction of covalent links
between graphitic layers was included, which are known to result from high-temperature
graphitization.(13, 86) The creation of 3D atomistic models followed the protocol by Shi et al. (see
Methods)(86) and stress-strain curves were computed using IFF-R MD (Figure S7 in the SI
Appendix). The prediction of mechanical properties using HS-GNN shows 10% to 20% mean
relative error compared to IFF-R MD simulations, which is slightly lower compared to large CNT
bundles (Figure 5b, Figure 6f, g, j). XGBoost clearly underperforms and other ML methods have
2 to 3 times larger error than the HS-GNN (Figure 5b). For example, a model structure inspired by
high resolution TEM data from Chae et. al.(85) illustrates the unique morphology of irregularly
arranged graphitic layers and the translation into 3D atomic models (Figure 6f). The reliability in
predicted strength and modulus by the HS-GNN in relation to IFF-R MD was 11% for both

quantities (Figure 6j). A second example shows a carbon-fiber cross-section of different
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morphology, defects, and distribution of cross-links (Figure 6f). In this instance, deviations were
higher in strength (29%) and low in modulus (10%) (Figure 6j). Overall, good predictions for
carbon fiber cross-sections demonstrate the robustness and scalability of HS-GNN for carbon
nanostructures upon changes in morphology and size (Section S9 in the SI Appendix). Including
fiber-like morphologies in the training set and expanding the training set beyond hundreds could

drastically reduce current prediction errors (Figure 5b).

Furthermore, we utilized the existing dataset of CNT junctions created by Varshney et al.(70)
that includes 958 unique morphologies and mechanical properties (Figure 6h-j). The structures are
qualitatively different from CNT bundles and carbon fiber and have potential applications in
electronics and thermal management. The structures differ in nanotube size and fusion
morphology, including defects near the junctions, as illustrated by two examples (Figure 6h, i and
Figure S1j-11in the SI Appendix). A separate HS-GNN model was trained on this dataset and shows
mean relative errors of predicted strength and modulus of 11.8% and 8.3% relative to MD
simulations, respectively (Table 1 as well as Table S1, Figure S8, and Section S10 in the SI

Appendix). Some prediction errors are below 5% (Figure 6j).

In summary, the advanced ML techniques can characterize the structure and associated
mechanical properties of out-of-distribution carbon nanostructures on the scale of 1 to 50 nm,
including CNT bundles, graphitic layers, defective, random, cross-linked morphologies, as well as
CNT junctions, with limited training data. The nanostructures function as building blocks for
macroscopic CNT yarn, CNT paper, carbon fiber, and nano-electronic devices.(14) The properties
of the associated hierarchical structures critically depend on the multi-scale assembly of nanoscale
building blocks via grain boundaries, voids, and macro-defects. The disruptive speed and
scalability of ML-driven predictions in comparison to traditional MD simulations (Table 1) open
opportunities for integration of information on the building blocks into macroscale modeling and

experimental workflows.
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Figure 5. Accuracy of predicted mechanical properties for graphitic structures outside the training
range with up to ~20 nm size. Examples include large CNT bundles and carbon fiber cross-
sections. The mean relative error (MRE) in predicted tensile strength and tensile modulus is shown
using various ML methods and the training data set of 1139 (small) CNT bundles. (a) Average
prediction error for the dataset of 20 large CNT bundles and (b) for the dataset of 50 carbon-fiber

cross-sections. HS-GNN outperforms other methods with average errors between 10% and 20%.
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Figure 6. Application of ML predictions to larger CNT-based carbon nanostructures and carbon
fiber cross-sections, as well as CNT junctions of different geometry and bonding patterns. (a)
Transmission electron microscopy (TEM) image of a cross-section of a CNT composite(12) (left)
and the corresponding model of flattened DWCNTs for MD simulation and ML prediction (right).
(b) Hexagonal packing of a DWCNT bundle observed by TEM(16) (left) and corresponding

models for MD/ML prediction of mechanical properties (right). (c-e) Defective structures derived

28



from compression of SWCNT bundles upon reactive MD simulation. The models include SWCNT
bundles of 72 CNTs (¢) and 64 CNTs (d), each containing some nanotubes with fracture defects,
as well as 64 SWCNTs without defects (e), similar as in ref. (10). (f) High-resolution transmission
electron microscopy (HRTEM) image of a carbon fiber cross-section(85) (left) and the model for
MD/ML input (right). Red circles represent defective areas and inhomogeneities that result in
weaker fibers. (g) A further model of carbon fiber with a large cross-sectional area of 308 nm? for
MD/ML predictions of mechanical properties. (h) Example of a CNT junction. The vertical CNT
has a diameter of 1.0 nm and a CNT with a diameter of 1.5 nm was grafted perpendicular to its
axis with minimal overlap. (i) A CNT junction of 2 CNTs with 1.5 nm diameter joined with full
overlap. (j) Tensile strength and modulus according to IFF-R simulations and predictions using
HS-GNN for each of the structures shown in panels (a) to (i). Black symbols refer to strength and
red symbols to modulus. Solid spheres indicate the results of MD calculations of stress-strain
curves using IFF-R. Open shapes with a cross are ML predictions using HS-GNN (square) or
XGBoost (triangle).

2.6. Choice of ML Methods, Training Data, and Broader Application

An interesting aspect of the results is that HS-GNN provides a suitable level of accuracy for in-
distribution and out-of-distribution data, while XGBoost excels with evenly spread training data
inside a distribution that can be relatively sparse. More details on the choice of ML methods and
selection of the “right” training data is given in Section S11 in the SI Appendix. Our results also
indicate that the heterogeneous graph model, HS-GNN, is a general and powerful methodology
(Figure 3). We envision extensions to composites and catalysts (Figure 1a),(1-4) which contain
polymers and heteroatoms in addition to carbon nanostructures, by adding new elemental identities
and electrostatic interactions to accommodate the added molecular components. Specifics for such
broader applications, scalability to larger structures, and limitations are described in Section S12

in the SI Appendix.
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3. Discussion

We introduce a model database and a machine learning pipeline for accurate and fast predictions
of mechanical properties of carbon nanostructures including CNT bundles, cross-sections of CNT
yarns, graphitic morphologies in carbon-fiber, and CNT junctions. We utilized experimental data
from microscopy, tomography, and other measurements to create a database of 1139 unique
morphologies of CNT bundles of up to 10,000 atoms size. Reactive molecular dynamics (MD)
simulations of stress-strain curves up to failure with the IFF-R force field were employed to obtain
accurate stress-strain curves for the diverse structures in the database and to analyze geometric
features that determine the tensile strength and modulus. We developed a hierarchical spatial graph
neural network (HS-GNN) that predicts the tensile strength and the tensile modulus of the
computer-generated 3D atomistic models of pristine and defective carbon nanotube bundles 1,000
times to 10,000 times faster than MD simulations. The HS-GNN involves persistent summaries
with nearest neighbor information and three levels of structural hierarchy to process physical
geometric information. Both nearest neighbor information and hierarchy were necessary to achieve
high accuracy and outperform other methods by up to two orders of magnitude when operating
with sparse data and geometries outside the training range. Predictions of the tensile strength and
modulus are within 3% to 6% deviation from the MD training data, which is similar to the typical
uncertainty in laboratory experiments. The closest alternative was Extreme Gradient Boosted Trees
(XGBoost), which use simpler global features but develop up to ten times higher errors in regions
with sparse training data. Both HS-GNN and XGBoost screen mechanical properties of CNT
structures 3 or 4 orders of magnitude faster than common molecular dynamics (MD) simulations,
respectively, after the networks are trained. Predictions could become even more accurate as the
training database expands. Several other structure-based and feature based machine learning
methods such as DimeNet, vanilla GCNs, MLP, BWGNN, and Linear Regression are up to an

order of magnitude less reliable.

HS-GNN performed well for larger structures and geometries outside the training range, which
included 20 large CNT bundles and 50 carbon fiber cross-sections of up to 80,000 nm size with a
wide variety of defects, as well as CNT junctions. The deviation from the ground truth by MD
simulations was between 10% and 20% while XGBoost and other ML methods scored distinctly

lower. The results provide insights into the role of over ten common defect types, alignment of the
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graphitic layers, cross-links, partial fracture, irregular deformation, and nanostructure size on

mechanical properties.

The database and algorithms can provide guidance towards designing lightweight and
ultrastrong carbon nanostructures and composites for aerospace and automotive applications.
Quantitative structure-property predictions are feasible in real time (sub-seconds) in near-
experimental accuracy towards integration with synthesis, imaging, and generative Al tools.
Extensions of the architecture of HS-GNN and XGBoost to larger structures and other properties
such as conductivity and catalytic activity are feasible, as well as for other chemistries such as
graphene oxide, nitrogen-doped graphitic structures, boron nitride, and polymer composites. The
database is openly available and can be extended using multi-modal data from diverse

experimental and simulation techniques to reduce residual bias and solve multi-scale problems.

4. Methods

The methods are described in detail in Section S13 of the SI Appendix. First, we built the structure
database for CNT bundles and graphitic morphologies, chose the force field, and carried out
reactive molecular dynamics simulations to create training and validation data. Then, we calculated
the mechanical properties for all structures included in the database using reactive molecular
dynamics simulations with IFF-R and identified features to inform machine learning of mechanical
properties. We developed the HS-GNN network architecture, including the heterogeneous graph
representation, hierarchies, and inclusion of spatial information. We utilized the HS-GNN,
XGBoost, and other baseline ML methods to train predictions of mechanical properties based on
3D structures, compared to the ground truth, and explored predictions out of the training

distribution. We utilized common splitting techniques of data sets and report statistical analyses.

The complete 3D structure databases for training and prediction (~3 GB), the code for HS-
GNN, as well as Supporting files with examples of IFF-R reactive molecular dynamics simulations
including force field files, run scripts, and 3D structure files are available in the associated figshare

database.(87) The code for HS-GNN is also available via GitHub.(88)
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