

1

2 **Viral and cellular determinants of polarized trafficking of viral envelope**

3 **proteins from insect-specific and insect-vectored viruses in insect midgut and**

4 **salivary gland cells**

5

6

7 Authors:

8 Jeffrey J. Hodgson^{*1,2}, Robin Y. Chen^{*1}, Gary W. Blissard^{^2#}, Nicolas Buchon^{^1#}

9

10 * Jeffrey J. Hodgson and Robin Y. Chen contributed equally to the work.

11 ^ Nicolas Buchon and Gary W. Blissard contributed equally as co-senior authors.

12 # Corresponding author

13

14 ¹ Department of Entomology, Cornell Institute of Host Microbe Interactions and Disease,

15 Cornell University, Ithaca, New York, USA,

16 ² Boyce Thompson Institute at Cornell University, Ithaca, New York, USA

17

18

19 Keywords: Envelope proteins, polarized trafficking, midgut, enterocytes, salivary gland,

20 VSV G, GP64, arbovirus, rhabdovirus, baculovirus, YxxØ

21

22 Short title: Polarized trafficking of viral envelope proteins in insect tissues

23

24 **Abstract**

25 Systemic viral infection of insects typically begins with primary infection of midgut epithelial cells

26 (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the

27 hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit)

28 occurs upon secondary infection of salivary glands, and is necessary for virus transmission to non-

29 insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed

30 the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular
31 stomatitis virus G) in the midgut and salivary gland cells of the model insect, *Drosophila*
32 *melanogaster*. Using fly lines that inducibly express either GP64 or VSV G, we found that each
33 protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV
34 G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked
35 basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal
36 trafficking in midgut enterocytes, but dispensable for trafficking in salivary gland cells. Using
37 RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab
38 GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate
39 that these viral envelope proteins encode the requisite information and require no other viral factors
40 for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in
41 protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing
42 systemic infections and vectoring infection to other hosts.

43

44

45 **Importance**

46 Viruses that use insects as hosts must navigate specific routes through different insect
47 tissues to complete their life cycles. The routes may differ substantially depending on the life cycle
48 of the virus. Both insect pathogenic viruses and insect vectored viruses must navigate through the
49 polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-
50 vectored viruses must also navigate through the polarized salivary gland epithelium for
51 transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two
52 tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus
53 GP64) alone encode the signals necessary for the polarized trafficking associated with their
54 respective life cycles. Using *Drosophila* as a model to examine tissue-specific polarized trafficking
55 of these viral envelope proteins, we identified one of the virus-encoded signals and several host
56 proteins associated with regulating the polarized trafficking in the midgut epithelium.

57

58 **Introduction**

59 To successfully establish a systemic infection in an animal host, most viruses must enter,
60 replicate, and exit from various cell and tissue types. In some tissues, particularly those comprised
61 of polarized cells, entry of the virus and egress of progeny virus particles must be specifically
62 directed to enable successful propagation of the infection within the organism and to new hosts.
63 This is particularly important for arboviruses, viruses that are vectored between different host
64 species. Of critical importance for arboviruses, the virus must transit through two insect tissue
65 barriers: midgut and salivary gland epithelia.

66 Viruses that infect insects can be subdivided into a) those with simple life cycles requiring
67 only one host to complete their life cycle (e.g., insect-specific viruses) and b) those with complex
68 life cycles requiring more than one host (e.g., arboviruses). Some insect-specific viruses represent
69 important components of ecosystems and may regulate insect populations in nature. One such
70 group, baculoviruses, are virulent pathogens of insects and have been developed as commercial
71 biopesticides to control important pest insect species (1-3). Arboviruses utilize arthropods as
72 vectors to infect vertebrate hosts and can have substantial impacts on human health. Arthropod-
73 transmitted diseases of humans account for roughly 17% of infectious diseases worldwide, with over 3.9
74 billion people at risk for contracting arbovirus diseases (4-6). A fascinating aspect of arbovirus biology
75 is their ability to infect, replicate, and move between two highly divergent host groups, insects and
76 vertebrates, a process that poses substantial biological challenges.

77 In the case of both insect-specific viruses and arboviruses, insect infection is typically
78 initiated when orally acquired virus particles infect midgut epithelial cells (7). Viruses enter the
79 polarized midgut cells (enterocytes) from the apical (gut lumen-facing) cell surface and establish
80 a primary infection there. Following viral replication, progeny virions from the primary midgut
81 infection are released from the basal surfaces of enterocytes into the open circulatory system
82 (hemocoel) of the host insect, where they subsequently initiate a secondary round of infection that
83 may include many other tissues. Thus, for systemic infections, the midgut epithelium is a critical
84 early barrier, and efficient basal trafficking and escape are required to establish a robust secondary
85 infection. In the case of arboviruses, secondary infection of the salivary glands is another pivotal
86 component of the lifecycle, one that is required for transmitting the infection to vertebrate hosts.
87 In salivary gland cells, the virus replicates and releases progeny virions into salivary secretions,
88 which the arthropod vector injects into vertebrate hosts during blood feeding. Thus, appropriately

89 navigating across the polarized cells of both the midgut and salivary glands is necessary to
90 complete the arbovirus life cycle.

91 The midgut epithelium and salivary glands are structurally complex tissues (8-10) with
92 dramatically different functions in the insect. Typical of most insects, the *Drosophila*
93 *melanogaster* midgut is comprised of a single layer of polarized epithelial cells, containing four
94 cell types: enterocytes (ECs), enteroendocrine cells (EEs), enteroblasts (EBs), and intestinal stem
95 cells (ISCs) (11). ECs represent the majority of the biomass of the midgut, accounting for
96 approximately 70% of the cells (12). The midgut cells are protected apically by a non-cellular
97 chitinous structure called the peritrophic matrix (PM), which lines the lumen of the midgut. The
98 midgut cells are supported basally by a layer of extracellular matrix called the basal lamina and a
99 layer of visceral muscles surrounding the gut. Midgut ECs typically have small finger-like
100 projections (microvilli) on the apical surface facing the lumen of the gut. The basal surfaces of
101 ECs comprise a tightly folded and relatively thin labyrinth of the basal membrane, which is closely
102 associated with the basal lamina and surrounded by visceral muscle (13). Midgut cells secrete
103 digestive enzymes into the gut lumen, and nutrients absorbed from the gut are transported across
104 the midgut ECs and delivered to the hemocoel. Thus, the polarized midgut cells robustly transport
105 cargos in both directions. Together, the PM, midgut cells, and basal lamina serve as a substantial
106 primary defense against infection by microorganisms.

107 Similar to the midgut, the salivary glands are also comprised of a single monolayer of
108 epithelial cells, and these cells produce salivary secretions. Salivary secretions facilitate digestion
109 in insects in general, and serve other specialized functions such as delivery of anticoagulants,
110 anesthetics, and vasodilators in blood-feeding insects (14, 15). Similar to the *Drosophila* adult
111 midgut, which is divided into 5 morphologically and transcriptionally distinct regions, the adult
112 salivary gland may be divided into 3 regions that are hypothesized to be responsible for salivary
113 secretion (medial and distal regions) and reabsorption (proximal region) (10, 16, 17).

114 The mechanisms for directing polarized transport of proteins and budding of virus particles
115 in invertebrate tissues (midgut, epidermis, Malpighian tubules, salivary glands, *etc.*) are largely
116 unknown. While a virus may alter the host cell cytoskeleton (18), organellar membranes (19),
117 endocytic and/or trafficking pathways (20, 21), it is also plausible that polarized trafficking of viral
118 proteins is primarily directed by signals and motifs that interact with existing cellular infrastructure
119 for trafficking through intrinsic host pathways (22, 23). These factors may vary for different virus

120 groups and for specific proteins. Thus, an important question is whether substantial modifications
121 of cellular architecture or function are necessary for appropriate polarized trafficking of specific
122 viral proteins.

123 For many insect-specific viruses and arboviruses, virions enter midgut cells from the apical
124 membranes adjacent to the midgut lumen, and progeny are released from basal membranes into
125 the hemocoel, where they circulate and infect a variety of other tissues. In the case of arboviruses,
126 circulating virions enter at the basal surfaces of salivary gland cells, replicate, and progeny virions
127 are released from apical surfaces that interconnect with the salivary gland lumen. Virions in
128 salivary secretions are then delivered to the vertebrate host upon blood feeding. This trafficking
129 scheme represents an enigma: in the midgut, the virus must enter cells apically and release progeny
130 virions basally, whereas in the salivary gland cells, the virus must enter basally and release progeny
131 virions apically. Thus, it appears that arboviruses either differentially modulate trafficking within
132 midgut enterocytes vs. salivary gland cells, or that cellular trafficking pathways may differ
133 significantly in these specialized cell types. It is also possible that some arboviruses may not rely
134 on directional virion release from polarized cells and instead depend on sufficient levels of non-
135 directional virion release. Polarized protein trafficking and virus budding involve many
136 coordinated events, which may include polarized trafficking of: components for nucleocapsid
137 assembly at budding sites and/or pre-assembled nucleocapsids, cellular and/or viral proteins
138 required for fission of host membranes during budding, and viral envelope proteins for display on
139 newly budded virions. Because host membrane proteins can be dramatically segregated on apical
140 or basal membranes of specific polarized cells, viral envelope proteins may utilize existing tissue-
141 specific differences in polarized trafficking pathways to facilitate viral protein trafficking to the
142 appropriate polarized budding sites. Thus, there are many open questions regarding the roles of
143 viral signals and host pathways that direct and regulate polarized protein trafficking and virion
144 egress in critical insect tissues.

145 In the current study, we used two model viral envelope proteins (baculovirus GP64 and
146 vesicular stomatitis virus glycoprotein G, VSV G) as representatives of insect-specific viruses and
147 arboviruses, respectively, to examine polarized trafficking in two vital insect tissues: midgut and
148 salivary glands. Baculoviruses are virulent pathogens in many lepidopteran species, and their
149 pathology primarily results from systemic infection of most host tissues (24). VSV is an arbovirus
150 that causes blister-like lesions in horses, cattle, swine, and occasionally in humans. VSV is

151 transmitted to horses and cattle by blood-feeding insects such as biting midges, black flies, sand
152 flies, and possibly mosquitoes (25). For both viruses, the envelope proteins are essential for the
153 production of infectious progeny virions (26, 27). The VSV G protein has been used extensively
154 as a model for protein trafficking in mammalian cells (28), and VSV G is known to be specifically
155 targeted to basal membranes of polarized mammalian MDCK cells (29, 30). However, little or
156 nothing is known regarding the trafficking of VSV G in insect midgut or salivary gland cells. The
157 structure and function of the baculovirus GP64 protein have also been studied extensively in the
158 context of cultured cell infections (26, 31, 32), and basolateral GP64 localization was previously
159 reported in the insect midgut in the context of baculovirus AcMNPV-infected enterocytes (33).
160 Thus, VSV G and GP64 represent excellent models for studies of viral envelope protein trafficking
161 in polarized insect midgut and salivary gland cells.

162 To investigate trafficking of viral envelope proteins in these polarized tissues, we used the
163 tractable model insect, *Drosophila melanogaster*, to generate a transgenic system for expressing
164 and monitoring viral envelope protein trafficking. We found that expression of either GP64 or
165 VSV G alone was sufficient for the basal trafficking of either protein in midgut enterocytes. In
166 salivary gland cells, GP64 was trafficked basally. In contrast, VSV G was trafficked apically in
167 most salivary gland cells. To explore the mechanisms responsible for polarized trafficking in these
168 key tissues, we first examined a previously identified YxxØ basal trafficking motif that is present
169 in both VSV G and GP64. We found that Alanine substitutions in the YxxØ motif disrupted basal
170 trafficking of both VSV G and GP64 in midgut enterocytes, but had no substantial effect on the
171 trafficking of either VSV G or GP64 in salivary gland cells. Using RNAi in enterocytes, we also
172 examined the roles of clathrin adapter protein (AP) complexes which are known interact with the
173 YxxØ motif, and Rab GTPases which regulate vesicular protein trafficking. To better characterize
174 similarities and differences in trafficking pathways, we also analyzed the localizations of 30 Rab
175 GTPases in midgut and salivary gland cells. We found that AP-1 and AP-3 clathrin adaptor
176 complexes and several Rab GTPases were important for basal VSV G trafficking in enterocytes.
177

178 **Results**

179 **GP64 and VSV G are trafficked basally in *Drosophila* midgut enterocytes independent of
180 viral infection**

181 For viruses that are acquired orally by insects, the midgut is a cellular barrier to systemic infection.
182 Following replication in the midgut epithelial cells (*i.e.* enterocytes or ECs), egress of progeny
183 virions into the hemocoel is critical for initiating the secondary (systemic) phase of infection.
184 Envelope proteins are crucial viral structural components since they are often required for virion
185 assembly and egress, and are necessary for virion binding and entry into host cells (34, 35).
186 Therefore, for many insect viruses, transport of viral envelope proteins to basal membranes of
187 infected midgut enterocytes is essential for efficient assembly and egress of infectious progeny
188 virions. However, it remains unknown whether this requires viral reprogramming of the trafficking
189 pathways in enterocytes, whether these viral proteins utilize existing cell trafficking machinery, or
190 whether they are indeed trafficked basally. We selected two model viral envelope proteins to
191 examine this phenomenon in the insect midgut: GP64 as a representative envelope protein from
192 insect-specific viruses, and VSV G as a representative envelope protein from viruses vectored by
193 insects (arboviruses) (36, 37). GP64 is one of the more intensively studied envelope proteins from
194 insect-specific viruses, and VSV G has served as an important model protein in numerous
195 membrane protein trafficking studies in mammalian cells (26, 38-40).

196 We first investigated whether VSV G or GP64 would traffic basally in insect midgut
197 enterocytes in the absence of infection. To address this question, we generated transgenic
198 *Drosophila* lines that inducibly express either VSV G or GP64, without any other viral protein(s)
199 that might modify cellular architecture or pathways. We found that both VSV G and GP64 were
200 concentrated in the basal portion of the cells adjacent to the visceral muscles (Fig. 1A, B and Fig.
201 S1A), and that were each displayed on basal enterocyte surfaces of non-permeabilized tissues (data
202 not shown). The basal-most 20% region in the enterocytes accounted for $70.4 \pm 1.28\%$ (mean \pm
203 SE, $n = 96$) and $70.3 \pm 1.25\%$ ($n = 90$) of the total VSV G and GP64 signals, respectively (Fig.
204 2B, Midgut, WT VSV G and GP64). Therefore, the information necessary for basal trafficking in
205 insect midgut enterocytes is encoded in both viral envelope proteins and does not require other
206 viral proteins or infection.

207

208 **VSV G trafficking in *Drosophila* salivary gland cells differs from that in midgut enterocytes**

209 After exiting infected enterocytes, viruses circulating in the hemolymph infect secondary
210 tissues by interacting with and entering cells via their hemocoel-facing surfaces. The salivary gland
211 is a secondary site of infection and a tissue barrier that is essential for arboviruses to cross for

212 successful transmission (41). Insect-specific viruses such as baculoviruses may also infect salivary
213 glands, but unlike arboviruses, efficient apical egress of baculovirus progeny virions into saliva is
214 not necessary for their dissemination. Arboviruses, on the other hand, must enter the salivary
215 glands basally but exit apically into the salivary gland lumen, an orientation of transit opposite to
216 that in the midgut epithelium (apical entry and basal exit). Viral envelope proteins of arboviruses
217 may therefore traffic differently in the midgut vs. salivary glands. Because salivary gland epithelial
218 cells have distinctly different cellular architecture and function than midgut enterocytes (Fig. 1A
219 vs. 1C) (10, 17, 42-46), it is unclear whether the same trafficking signals or mechanisms are used
220 in these two barrier tissues. To better understand the differences in the cellular architecture of
221 midgut and salivary gland cells, we examined a series of cellular markers using antibodies and
222 stains that identified proteins associated with apical domains (cortical actin), septate junctions
223 (Discs large), and basolateral domains (E-Cadherin) of polarized cells (Fig. 1 and S2). Midgut
224 epithelial cells (enterocytes) are characterized by apical projections (microvilli; Fig. 1A), and a
225 basal region that is a tightly packed labyrinth of small membrane invaginations (47). In contrast,
226 the polarized salivary gland cells contain large invaginations of the apical surface known as
227 canaliculi that penetrate deep within the cell, and a basal surface that is adjacent to the hemolymph
228 (Fig. 1C). The apical membrane surfaces of the salivary gland cells line the lumen of the canaliculi,
229 which empty into the salivary gland lumen.

230 We expressed VSV G in salivary gland cells and analyzed its distribution to determine
231 whether VSV G expressed alone is sufficient for its apical trafficking, consistent with the
232 requirements for arbovirus egress. We found that VSV G localized near the apical invaginations
233 in most salivary gland cells (Fig. 1D). However, the observed patterns of VSV G distribution were
234 variable. Patterns among VSV G expressing cells ranged from basally enriched (18.8% of cells)
235 to no polarity (52.5%) to apically enriched (28.8%) (Fig. S3). Salivary gland cells with distinct
236 apical localization of VSV G are highlighted in Figure 1D, and examples of basal and non-
237 polarized distributions in salivary gland cells are shown in Figure S3. Thus, VSV G does not have
238 a consistently polarized distribution in salivary glands, which contrasts with the uniformly basal
239 distribution of VSV G in midgut enterocytes. Despite the variability in VSV G distribution, the
240 majority (81.3%, n = 160) of salivary gland cells showed apical VSV G (Fig. S3, WT). The large
241 proportion of cells exhibiting some apical VSV G suggests that this level of apical trafficking could
242 potentially support egress of the virus from salivary gland cells into saliva for transmission.

243 We similarly examined the distribution of GP64 expressed in adult *Drosophila* salivary gland
244 cells. In contrast to the variable but frequently apical localization of VSV G, GP64 was consistently
245 concentrated in basal regions of salivary gland cells (Fig. 1D). This basal enrichment of GP64 in
246 the salivary gland cells was similar to that of the midgut enterocytes, with all (100%, n = 163) of
247 the salivary gland cells showing basal GP64 localization.

248 The divergent trafficking of VSV G in midgut enterocytes and salivary gland cells (basal
249 enrichment in midgut enterocytes and more apical localization in salivary gland cells) parallels the
250 anticipated polarized virion budding in these two tissues. The basal localization of GP64 in both
251 tissues is also consistent with the infection cycle of the insect-specific baculovirus, in which viral
252 egress into the hemocoel facilitates dissemination and systemic infection. In both cases, the
253 interaction of each of these viral envelope proteins with the cell trafficking machinery is sufficient
254 for their appropriate basal or apical trafficking, and reflect key differences between insect-specific
255 and insect-vectored virus movement through their insect hosts.

256

257 **A YxxØ motif directs polarized trafficking of VSV G and GP64 in *Drosophila* midgut
258 enterocytes**

259 Both VSV G and GP64 are homotrimeric type 1 integral membrane proteins that are
260 functionally and structurally related class III viral fusion proteins (48), despite being from different
261 viral families (ssRNA Rhabdoviridae and dsDNA Baculoviridae, respectively) with dramatically
262 different infection cycles. Since they are both trafficked basally when expressed in uninfected
263 midgut enterocytes (Fig. 1B), they may utilize similar strategies or protein motifs to engage insect
264 host cell basal trafficking machinery in the midgut. VSV G and GP64 both contain a canonical
265 tyrosine-based YxxØ motif (Y = tyrosine; x = any amino acid; Ø = a bulky hydrophobic amino
266 acid) in their short cytoplasmic tails (Fig. 2A). The requisite tyrosine (Y) and isoleucine (I)
267 residues of the VSV G YxxØ motif (YTDI) have previously been identified as necessary for its
268 basal trafficking in polarized mammalian cell cultures (MDCK cells) (29, 30). We therefore
269 hypothesized that the YxxØ motif from VSV G and GP64 might direct basal trafficking of these
270 proteins in *Drosophila* midgut enterocytes *in vivo*. To investigate this, we substituted the Y and I
271 residues in VSV G with alanine (YTDI to aTDA) and incorporated the substituted VSV G construct
272 (VSV G^{ΔY}) into a transgenic *Drosophila* line (Fig. 2A, VSV G). We also produced a similar GP64
273 construct in which the corresponding Y and I residues of the putative YxxØ motif of GP64 were

274 substituted (YCM1 to aCMa) and generated a transgenic *Drosophila* line for expressing the
275 modified GP64 (GP64^{ΔY}) (Fig. 2A, GP64). The fly lines encoding VSV G or GP64 with alanine
276 substitutions were then used to functionally analyze the role of the YxxØ motif for basal trafficking
277 of both proteins in polarized insect midgut enterocytes.

278 When VSV G^{ΔY} was expressed in midgut enterocytes, the dramatic basal localization that
279 was previously observed with the VSV G^{WT} protein was lost (Fig. 2B, Midgut, VSV G, WT vs
280 ΔY). VSV G^{WT} was found concentrated along the basal portion of the cell, suggesting association
281 along the tightly invaginated basal labyrinth, while VSV G^{ΔY} was often adjacent to and above
282 nuclei and in the brush border (apical) (Fig. 2B, Midgut, VSV G, ΔY). Similarly, the dramatic
283 basal enrichment of GP64^{WT} was lost when the modified GP64 (GP64^{ΔY}) was expressed in
284 enterocytes (Fig. 2B, Midgut, GP64, WT vs ΔY). To quantify differences in polarized trafficking
285 patterns between WT and modified VSV G and GP64 proteins, we plotted the mean basal-to-apical
286 distributions of the envelope proteins across numerous cells (see Materials and Methods and Fig.
287 S1). Each graph in Figure 2B displays the relative basal-to-apical distribution of the envelope
288 proteins (e.g., VSV G^{WT} vs. VSV G^{ΔY}) from 3 separate replicates with approximately 3-5 guts and
289 at least 20 enterocytes per replicate (total n ≥ 69 per genotype). The VSV G^{WT} localization pattern
290 was strongly basal, with approximately 70.4 ± 1.28% of the signal in the basal-most 20% region
291 of the enterocytes (Fig. 2B, VSV G, WT, open circles). In contrast, VSV G^{ΔY} was significantly
292 less basally enriched with only 32.5 ± 1.20% of the signal in the basal-most 20% of the enterocytes
293 (Welch's t-test: t = 21.6, df = 161, p < 2.2 × 10⁻¹⁶) (Fig. 2B, VSV G, ΔY, filled squares). When the
294 same comparison was performed with GP64^{WT} and GP64^{ΔY}, a similar loss of basal enrichment of
295 GP64^{ΔY} (37.5 ± 1.13% basal signal) was detected when compared to GP64^{WT} (70.3 ± 1.25% basal
296 signal) (t = 19.4, df = 188, p < 2.2 × 10⁻¹⁶) (Fig. 2B, GP64, WT vs ΔY). GP64^{ΔY} signals were more
297 diffuse within cells compared to GP64^{WT}, and GP64^{ΔY} was sometimes detected in the apical brush
298 border. These data indicate that the YxxØ motif in the cytoplasmic tails of both VSV G and GP64
299 are functional motifs required for the basal trafficking of both viral envelope proteins in polarized
300 insect midgut enterocytes.

301

302 **The YxxØ motif is not a prime determinant of polarized trafficking of VSV G or GP64 in**
303 ***Drosophila* salivary gland cells**

304 Our prior analysis of protein markers of cell polarity showed that the apical-basal orientation
305 of midgut enterocytes and salivary gland cells were similar, with basal membranes adjacent to the
306 hemocoel and the apical membranes bordering the lumen of the organ. To determine whether
307 alteration of the YxxØ motif would impact VSV G trafficking in salivary gland cells, we compared
308 the distribution patterns of VSV G^{WT} and VSV G^{ΔY}. Tyrosine motif disruption resulted in slightly
309 reduced basal VSV G localization, with the basal-most 20% region of the salivary gland cells
310 accounting for $23.4 \pm 0.97\%$ of the total VSV G^{WT} signal and $13.8 \pm 0.56\%$ of the total VSV G^{ΔY}
311 signal (Wilcoxon rank-sum test: $w = 25056$, $p = 1.33 \times 10^{-15}$), but did not change the overall
312 distribution pattern and only slightly increased VSV G localization in the apical-most 40% region
313 of the salivary gland cells ($49.5 \pm 1.13\%$ to $53.2 \pm 0.79\%$, $t = -2.62$, $df = 298$, $p = 9.25 \times 10^{-3}$) (Fig.
314 2C, VSV G, graph). Thus, ablation of the YxxØ motif did not result in a substantial change in the
315 overall distribution pattern (Fig. 2C, VSV G, graph; and Fig. S3), suggesting limited involvement
316 of the YxxØ motif in the apical trafficking of VSV G in salivary gland cells. It is important to note
317 that since apical membranes of salivary gland cells extend deep into the cytoplasm (Fig. 1C), our
318 method for quantifying basal-to-apical distribution in salivary gland cells may underestimate
319 apical enrichment of VSV G (*i.e.*, VSV G decorating the apical membrane reaching the level of
320 the nucleus would not appear apical in the graphs). Nevertheless, our results indicate that VSV G
321 is apically localized in most salivary gland cells, and the VSV G YxxØ motif appears to play only
322 a minimal role in its apical trafficking in *Drosophila* salivary gland cells.

323 In contrast to the apical distribution of VSV G^{WT} in the salivary gland cells, GP64^{WT} was
324 concentrated basally in salivary gland cells (Fig. 2C, GP64). This localization of GP64 was similar
325 to that observed in midgut enterocytes (Fig. 2B vs. 2C, GP64). The basal enrichment of GP64^{ΔY}
326 was only marginally reduced in the basal-most 20% region of the salivary gland cells when
327 compared to GP64^{WT} ($52.3 \pm 1.55\%$ for GP64^{ΔY} vs $56.8 \pm 1.53\%$ for GP64^{WT}, $w = 17017$, $p =$
328 0.048) with no influence on the overall distribution pattern (Fig. 2C, GP64, graph). This suggests
329 minimal involvement of the YxxØ motif in the basal trafficking of GP64 in the salivary gland
330 cells.

331 Altogether, our data suggest that while the YxxØ motifs are required for basal trafficking in
332 midgut enterocytes, they are mostly dispensable for directing trafficking of either GP64 or VSV
333 G in salivary gland cells. Furthermore, the observation that VSV G is found apically in salivary
334 gland cells while strictly basal in enterocytes, whereas GP64 is strongly basal in both tissues,

335 indicates that there are additional, yet unidentified trafficking/sorting motifs in VSV G and GP64,
336 as well as differences in the mechanisms of polarized trafficking between midgut enterocytes and
337 salivary gland epithelial cells. Both aspects are topics of interest for future studies.

338

339 **Clathrin AP complexes 1 and 3 direct basal trafficking of VSV G in *Drosophila* midgut**
340 **enterocytes**

341 We next focused on the identification of key host factors involved in the basal trafficking of viral
342 envelope proteins in midgut enterocytes. Clathrin adaptor protein (AP) complexes direct a large
343 variety of membrane trafficking events in the cell. This may include trafficking among
344 compartments (ER, Golgi, endosomes, lysosomes, *etc.*) as well as polarized and non-polarized
345 trafficking to subdomains of the plasma membrane. *Drosophila* encodes 3 AP complexes (AP-1,
346 AP-2, and AP-3) and each is a heterotetrameric assembly composed of two large subunits ($\gamma/\alpha/\delta/\varepsilon/\zeta$
347 or β), a medium subunit (μ), and a small subunit (σ). In models of polarized trafficking of
348 membrane proteins in mammalian cells, interactions between membrane protein Yxx \emptyset motifs and
349 the μ subunits of clathrin AP complexes are early steps in protein trafficking to basal membranes.
350 Also, in a prior RNAi screen of cultured *Drosophila* cells (31), we found that RNAi of clathrin
351 (*chc*) and AP genes ($AP-2\mu$ and $AP-1,2\beta$) resulted in decreased GP64 transport to the cell surface.
352 Although AP-1,2 β is not expected to directly interact with the Yxx \emptyset motif, depletion of any one
353 of the four canonical subunits of an AP complex is expected to render its corresponding complex
354 nonfunctional. In *Drosophila* and other insects, AP-1,2 β is shared between the heterotetrameric
355 AP-1 and AP-2 complexes, both of which would therefore be inactivated upon AP-1,2 β RNAi.
356 Since we identified the importance of the Yxx \emptyset motif in the basal trafficking of VSV G in midgut
357 enterocytes, we next examined the roles of the three AP complexes in the polarized transport of
358 VSV G in that tissue.

359 To probe the role of each AP complex, a fly line (*Myo-GAL4*, *UAS-nlsGFP*, *tub-GAL80^{ts}*;
360 *UAS-VSV G^{WT}*) with temperature-regulated midgut expression of VSV G^{WT} was crossed with
361 RNAi lines to obtain F1 progeny co-expressing VSV G and an RNAi construct targeting
362 (separately) each one of three clathrin adaptor complexes. We then compared VSV G distribution
363 patterns in each of the AP complex RNAi flies to negative controls (midguts from driver/*AttP2*
364 background control, lacking any RNAi). VSV G showed strong basal enrichment in enterocytes
365 of control midguts (Fig. 3, top panels). However, when VSV G was co-expressed with RNAi

366 constructs that targeted AP-1 μ or AP-3 μ , the strong basal localization of VSV G was lost, and
367 VSV G was distributed less basally ($32.3 \pm 0.771\%$ and $45.2 \pm 1.39\%$, respectively) compared to
368 the control ($56.9 \pm 1.06\%$) in the basal 20% region of the enterocytes (Pairwise Wilcoxon rank
369 sum test: $p < 2.00 \times 10^{-16}$ and $p = 6.00 \times 10^{-9}$, respectively) (Fig. 3, Control vs. AP-1 μ and AP-
370 3 μ). This contrasts with the result from the RNAi of AP-2 μ ($53.2 \pm 1.38\%$), in which VSV G
371 distribution appeared similar to that of control enterocytes ($56.9 \pm 1.06\%$ basal) ($p = 0.126$) (Fig.
372 3, Control vs. AP-2 μ). The patterns observed in the presence of AP RNAi targeting AP-1 μ or AP-
373 3 μ were similar to that observed when the Yxx \emptyset motif was ablated in construct VSV G $^{\Delta Y}$ (Fig.
374 2B, VSV G, ΔY). These patterns were consistent across independent midguts (≥ 3) and individual
375 cells ($n \geq 119$) after 3 days of RNAi. We also observed a similar disruption of basal trafficking
376 from an RNAi line targeting AP-1,2 β ($40.4 \pm 0.958\%$), which served as a positive control ($p <$
377 2.00×10^{-16}) (Fig. 3, Control vs. AP-1,2 β). In addition to the above results, pharmacological
378 disruption of the Yxx \emptyset -AP interactions using anthranilic acid (ACA) (49) reduced VSV G $^{\text{WT}}$
379 localization in the basal-most 20% region of midgut enterocytes ($65.4 \pm 1.97\%$ in control vs. 50.4
380 $\pm 1.53\%$ in ACA treated; $w = 4154$, $p = 3.48 \times 10^{-8}$) (Fig. S4). Thus, our results from RNAi of AP
381 complexes combined with results from Yxx \emptyset ablation in VSV G, and exposing flies to ACA
382 suggest that AP-1 and AP-3 but not AP-2 complexes are necessary for Yxx \emptyset -mediated VSV G
383 basal trafficking in midgut enterocytes.

384

385 **Specific Rab GTPases are important for basal trafficking of VSV G in *Drosophila* midgut
386 enterocytes**

387 Rab GTPases are known to be master regulators that direct vesicular protein sorting and
388 trafficking. Their numerous roles include the regulation of vesicle budding, transport, tethering,
389 and fusion with target membranes (50). Specific Rab GTPases may also serve different roles in
390 different cell types (51). Importantly, they have also been shown to be required for basal trafficking
391 of host and viral proteins (52-58). Rab GTPases are engaged in the establishment and maintenance
392 of cell polarization (59, 60) and the specific subcellular localization of some Rab GTPases may
393 differ in different cell types or tissues. To identify Rab GTPases that could be involved in the basal
394 trafficking of VSV G in enterocytes, we first selected two groups of candidate Rab genes: (1) Rab
395 GTPases that have previously been shown to be important for viral protein trafficking in other
396 cellular systems and (2) Rab GTPases that showed divergent apical-basal localization patterns in

397 enterocytes compared to salivary gland cells. For the first group, we had previously identified Rab1
398 and 4 as essential for the transport of GP64 to the surface of non-polarized cultured *Drosophila*
399 cells (31). Although we did not identify Rab11 as important in that study, we included Rab11 in
400 the current study due to its involvement in sorting/recycling endosome function, similar to Rab4,
401 which was important for GP64 surface trafficking (31, 61). It was previously shown that basal
402 trafficking of VSV G in mammalian MDCK cells requires coordination of the AP-1 complex with
403 Rab8 (53) and that Rab10 is required for basal secretion of *Drosophila* gut basal lamina
404 components (57). Therefore, we investigated whether Rab1, 4, 8, 10, and 11 play any roles in basal
405 VSV G trafficking in insect midgut enterocytes. To select a second group of candidate Rab
406 GTPases, we performed a comprehensive comparative analysis of the localization patterns of 30
407 YFP-tagged Rab GTPases (62) in *Drosophila* midgut enterocytes and salivary gland cells (Fig.
408 S5). For this analysis, UAS-driven YFP-tagged Rab GTPases were ubiquitously expressed under
409 the *da-GAL4*, *tub-GAL80^{TS}* driver and we compared the distribution of each YFP-tagged Rab
410 GTPase in midgut vs salivary gland cells by confocal microscopy. We identified several YFP-Rab
411 GTPases with basal enrichment (Rab8, 10, and 30) or both basal and apical enrichment (Rab23
412 and 35) in enterocytes, but with salivary gland cell localization patterns that differed from that of
413 midgut enterocytes; either apically enriched in the canaliculi (Rab23 and 35) or in a non-polarized
414 localization pattern (Rab8, 10, and 30).

415 Next, we examined these selected Rab GTPases to assess their potential roles in basal
416 trafficking of VSV G in *Drosophila* midgut enterocytes. We co-expressed VSV G with RNAi
417 constructs that separately targeted each of the following Rab GTPases: Rab1, 4, 8, 10, 11, 23, 30,
418 or 35 (Fig. 5) by crossing with a fly line with temperature-regulated VSV G midgut expression
419 (*Myo-GAL4*, *UAS-nlsGFP*, *tub-GAL80^{TS}*; *UAS-VSV G^{WT}*). F1 progeny flies were shifted to the
420 permissive temperature to allow co-expression of VSV G and Rab RNAi for 5 days (with the
421 exception of Rab11 RNAi, which was co-expressed with VSV G for only 3 days to avoid gut
422 dysplasia) before dissecting and immunostaining midgut enterocytes to assess VSV G localization.
423 Basal enrichment of VSV G was significantly reduced in midgut enterocytes of flies co-expressing
424 VSV G and each of the RNAi constructs targeting: Rab1 ($42.2 \pm 0.889\%$), Rab4 ($42.8 \pm 0.705\%$),
425 Rab8 ($36.6 \pm 0.884\%$), Rab10 ($39.1 \pm 1.16\%$), Rab23 ($41.8 \pm 0.884\%$), Rab30 ($41.6 \pm 1.07\%$), and
426 Rab35 ($44.7 \pm 1.08\%$) compared to their respective controls (Attp2 for Rab1, 4, 8, and 10: $53.7 \pm$
427 0.980% ; Attp40 for Rab23 and 35: $56.3 \pm 0.839\%$; and Attp2 for Rab30: $56.9 \pm 1.06\%$) (Pairwise

428 Wilcoxon rank sum test: $p = 3.9 \times 10^{-14}$, $p = 3.4 \times 10^{-14}$, $p < 2.0 \times 10^{-16}$, $p = 5.2 \times 10^{-16}$, $p < 2.0 \times$
429 10^{-16} , and $p = 1.3 \times 10^{-14}$, respectively for each Rab RNAi compared to its control) (Fig. 5, graph).
430 Surprisingly, we found no substantial effect on VSV G basal localization from Rab11 RNAi ($79.1 \pm 1.12\%$) compared to the control ($78.0 \pm 1.32\%$) ($w = 7547$, $p = 0.665$) (Fig. 5, Control vs. RNAi
431 Rab11). Thus, our analysis revealed that all but one of the Rab GTPases selected for analysis
432 (Rab1, 4, 8, 10, 23, 30 and 35) appear to be involved in basal trafficking of VSV G in midgut
433 enterocytes. While RNAi has been used extensively, it is important to note the substantial
434 limitations of this indirect technique. Although the Rab GTPase RNAi phenotypes (disrupted basal
435 VSV G trafficking in ECs) mirror those observed for the ΔY VSV G protein, we cannot fully
436 assign direct roles to the identified Rab GTPases, due to their many and coordinated functions in
437 cells. Further studies will be required to explore the direct or indirect roles of these Rab GTPases.

439 **Discussion**

440 Viral trafficking within insect hosts is critical for the success of the viral life cycle. Because
441 little is known about how insect viruses navigate across important tissue barriers in their insect
442 hosts, we examined the subcellular trafficking of two model viral envelope proteins in two critical
443 barrier tissues: midgut and salivary glands. In addition to their roles as barriers and bottlenecks to
444 virus infection and transmission, midgut and salivary glands serve distinct physiological roles in
445 insects. The midgut is the primary tissue for absorption of nutrients and their transfer to the
446 circulatory system. As such, the protein trafficking pathways in the midgut are specialized for
447 apical secretion of digestive enzymes and components of the peritrophic matrix, as well as for
448 absorption of nutrients from the gut lumen. Absorbed nutrients are transported to the basal surfaces
449 of midgut enterocytes, where they are delivered to the hemocoel. In addition, the basal lamina, a
450 thick collagen-containing matrix, is secreted from the basal surfaces of midgut enterocytes. Thus,
451 protein transport and secretory pathways within midgut enterocytes perform many central
452 functions that require precise recognition of proteins and targeted polarized transport. Insect
453 salivary glands produce secretions that play roles in feeding, particularly in food processing (pre-
454 digestion, lubrication) and sometimes in manipulation of the host during blood feeding
455 (anticoagulation, anesthesia, vasodilation, *etc.*). In some insects, such as mosquitoes, salivary
456 gland cells secrete large quantities of saliva, which is stored in large apical cavities (acinar cavities)
457 (17, 42, 44, 63). In other insects, such as blow flies, the apical membrane of the salivary gland
458 cells forms deep invaginations (canalliculi) that greatly increase membrane surface area for

459 secretion (64). As such, the salivary glands represent a robust secretory and release apparatus, but
460 the cellular architecture (invaginated apical membranes) and cell types (the lack of visceral
461 muscles and stem cells) differ fundamentally from that of the midgut. Many viruses that infect
462 insects have adapted to utilize the complex transport systems in various cell types to move
463 infection through the animal successfully. Such navigation of viral infection through the animal is
464 particularly interesting in the case of arboviruses, but it is also crucial for the success of insect-
465 pathogenic viruses.

466 To examine viral envelope protein trafficking through these polarized tissues of insects,
467 we used transgenic *Drosophila* to express genes encoding either baculovirus (AcMNPV) GP64 or
468 an arbovirus (VSV) G in these tissues. Upon expression, each viral envelope protein was
469 transported to and concentrated in the basal region of midgut enterocytes (Fig. 1), and was
470 displayed on basal surfaces, even though no other viral proteins were present. This result mirrors
471 the basal envelope protein trafficking reported during infections (VSV-infected MDCK cells and
472 AcMNPV-infected *T. ni* midgut) (29, 30, 33), and demonstrates that the information required for
473 polarized envelope protein trafficking in insect midgut enterocytes is encoded within the GP64
474 and VSV G proteins.

475 We also examined polarized trafficking of these proteins in salivary gland cells. Salivary
476 gland cells are specialized for secreting proteins into the lumen of the salivary glands. Arboviruses
477 utilize salivary gland trafficking pathways to exit the insect vector host and facilitate infection of
478 the vertebrate host during blood feeding. Because this viral transit appears to be in an orientation
479 that is opposite to that observed in midgut enterocytes, we first used a series of polarity markers
480 to determine the apical-basal orientation of cells within the salivary gland epithelium (Fig. S2).
481 We confirmed that apical membrane domains face the lumen of the salivary glands, and basal
482 membranes are adjacent to the hemocoel. We show that GP64 was consistently localized to basal
483 regions of salivary gland cells, similar to the results from midgut enterocytes (Fig. 1D, GP64). In
484 contrast, yet consistent with the arbovirus life cycle, we found that VSV G was trafficked to the
485 apical invaginations of salivary gland cells (Fig. 1D, VSV G). While VSV G trafficking was not
486 strictly apical in all cells, we found that 28.8% of salivary gland cells had distinctly apical
487 trafficking, while another 52.5% of cells had non-polarized trafficking, and thus some apical
488 presence of VSV G (Fig. S3). This suggests VSV G was trafficked apically in approximately 81%
489 of salivary gland cells, which in the context of a virus infection could effectively promote apical

490 budding of progeny virions. The observed partial or inconsistent polarized trafficking may indicate
491 that viral infection could provide additional factors necessary for robust apical trafficking of G in
492 salivary gland cells. It is also possible that partial apical trafficking in salivary gland cells is
493 sufficient for VSV transmission, and basal trafficking in salivary gland cells may also play a role
494 in the infection cycle. It is of note that some alphaviruses have been observed to bud into both
495 acinar cavities and from lateral and basal membranes of infected mosquito salivary gland cells (42,
496 63). While we have focused on a powerful model insect for the current studies, it will be of great
497 interest to examine viral envelope protein trafficking in mosquitoes and other natural hosts. Most
498 importantly, our results show that when GP64 or VSV G was expressed alone, the polarized
499 trafficking of each protein was sufficient to reach polarized locations in cells appropriate to the
500 infection cycles of their parent viruses. These results from *Drosophila* tissues also suggest that the
501 polarized trafficking pathways in midgut and salivary gland cells are widely conserved in insects
502 and that the signals for appropriate polarized trafficking are largely if not entirely encoded in the
503 protein sequences or structures of these viral envelope proteins.

504 In prior studies of VSV G trafficking in mammalian MDCK cells, a YxxØ (YTDI) amino
505 acid sequence motif in the cytoplasmic tail was identified as necessary for its basolateral targeting
506 (29, 30). When examined in insect midgut enterocytes, we found that alanine substitutions of the
507 key residues in the YxxØ motif resulted in disruption of polarized trafficking, and we concluded
508 that the YxxØ motif is necessary for basal trafficking of VSV G in *Drosophila* midgut enterocytes
509 (Fig. 2). In parallel experiments, we identified a similar YxxØ (YCM) motif in the GP64
510 cytoplasmic tail and found that it was also necessary for basal trafficking. Thus, for both VSV G
511 and baculovirus GP64, the YxxØ motif appears to play a critical role in directing polarized
512 trafficking in *Drosophila* midgut enterocytes (Fig. 2B). Surprisingly, when the same modified
513 VSV G and GP64 constructs (containing an ablated YxxØ motif) were examined in salivary gland
514 cells, we observed no substantial effect on polarized trafficking there (Fig. 2C). While the YxxØ
515 motif is necessary in the midgut epithelium, other signals or motifs appear to be required for
516 polarized trafficking in the salivary gland cells. Thus, the pathways or mechanisms involved in
517 VSV G trafficking appear to differ in the midgut enterocytes and salivary gland cells.

518 In prior studies of cultured mammalian cells, the YxxØ motif was shown to interact with
519 clathrin adapter protein (AP) complexes to direct basal membrane targeting of proteins. (65-69).
520 In mammals and plants, there are five different AP complexes, whereas in *C. elegans*, yeast, and

521 *Drosophila*, there are three (70). We therefore examined the role of each of the 3 AP complexes
522 from *Drosophila* in basal trafficking of VSV G in insect enterocytes. Using RNAi of the μ subunit
523 of each complex (the subunit that binds the Yxx \emptyset motif), we found that disruption of either the
524 AP-1 or AP-3 complex resulted in disruption of basal trafficking of VSV G in midgut enterocytes
525 (Fig. 3). Furthermore, RNAi of AP-1,2 β (which is a beta adaptin shared by the AP-1 and AP-2
526 heterotetrameric complexes in *Drosophila* (70)), resulted in disrupted VSV G basal trafficking.
527 Importantly, the effects of these specific AP complex RNAi were similar to the effects observed
528 from the ablation of the Yxx \emptyset motif in the VSV G protein (Fig. 2B vs. 3).

529 The AP-1 complex localizes to the trans-Golgi Network (TGN) and recycling/sorting
530 endosomes, and is known to direct clathrin-coated vesicular traffic bidirectionally between these
531 compartments and to basolateral plasma membranes (71). Similar to AP-1, the AP-3 complex is
532 also found on endosomal membranes and the TGN, but in discrete sites that are not overlapping
533 with AP-1. AP-3 has been reported to be involved in cargo transport from early to late endosomes,
534 in the production of lysosome-related organelles in epithelia (65), and in the release of exosomes
535 from neurons (72). The basal trafficking of VSV G in midgut epithelium was not substantially
536 affected when the AP-2 complex was disrupted (Fig. 3), consistent with the typical role of the
537 clathrin AP-2 complex in directing protein recycling from the plasma membrane. Although VSV
538 G, like other Yxx \emptyset -motif-containing proteins (73-75), has the potential to be recycled from the
539 plasma membrane to internal organelle membranes, we did not observe an impact on VSV G basal
540 localization in enterocytes when the AP-2 complex was disrupted.

541 Rab GTPases are key regulators of vesicular trafficking, and we therefore examined
542 selected Rab GTPases for their roles or requirements in basal trafficking of VSV G in insect midgut
543 enterocytes. To better understand how the trafficking pathways might differ in midgut enterocytes
544 and salivary gland cells, and to select Rab GTPases for genetic analysis, we used a bank of fly
545 lines expressing Rab-YFP constructs to map and compare Rab localization in midgut enterocytes
546 and salivary gland cells. We identified eight Rab GTPases (Rab1, 4, 8, 10, 11, 23, 30, and 35) that
547 were either differentially localized in cells of the two tissues (Fig. 4 and S5) and/or predicted to be
548 involved in basal trafficking from studies in other systems. We selected these eight Rab genes for
549 analysis by RNAi. We found that RNAi of Rab1, 4, 8, 10, 23, 30, and 35 resulted in substantial
550 reductions in basal localization of VSV G compared to the control (Fig. 5). In the case of Rab11
551 RNAi, VSV G localization was similar to that of the control (Fig. 5).

552 Certain Rab GTPases (Rab4, 8, 10) identified here have been previously associated with
553 basolateral trafficking and/or coordination with clathrin AP complexes (76). Rab4 is a component
554 of the sorting/recycling endosome, and VSV G has been reported in some mammalian cells to
555 require recycling endosomes for its delivery to the plasma membrane (77). In midgut enterocytes,
556 it is unclear whether Rab4 is required for the direct basolateral trafficking of VSV G to the plasma
557 membrane, its recycling, or both. Rab4 and 11 have been identified as regulating distinct "fast"
558 and "slow" recycling pathways, respectively (78). Because the Rab11 RNAi did not appear to
559 affect VSV G basal trafficking, we conclude that if recycling is involved in basal trafficking, it is
560 likely due to a Rab4-dependent slow pathway, and the Rab11-based pathway may not play a
561 substantial role. Rab8 depletion has been shown to affect basolateral trafficking of VSV G in
562 mammalian MDCK cells (53). When Rab8 was depleted, it was reported that only basolateral
563 trafficking of VSV G through the secretory pathway (and not through a recycling pathway) was
564 disrupted (52). When we depleted Rab8 in insect midgut enterocytes, VSV G basolateral
565 trafficking was disrupted, resulting in reduced basal VSV G distribution like that observed from
566 Rab1 and Rab4 depletion (Fig. 5). This is consistent with results from another study that found
567 Rab8 to be critical for basolateral trafficking of basal lamina (BL) constituents (collagen IV) in
568 polarized *Drosophila* follicular epithelium. In addition, RNAi targeting Rab10 disrupted basal
569 enrichment of VSV G. Rab10 was also previously shown to aid in directing basolateral trafficking
570 of *Drosophila* follicular basal lamina components (57). Thus, several Rab GTPases identified in
571 our localization mapping and RNAi knockdowns have been identified as important for basal
572 trafficking of host cell proteins in other epithelial cell types.

573 In the case of most insect pathogenic viruses, such as baculoviruses, the secondary
574 infection of many tissues leads to the death of the insect, and progeny virions are liberated from
575 the insect carcass. For arthropod-vectored viruses, progeny virions produced during secondary
576 infection of salivary glands must be released apically into the lumen to facilitate transmission to
577 vertebrate hosts through blood feeding. This divergent scenario of the apical release of virions
578 from salivary glands, relative to the basal virion release from enterocytes, was reflected by apical
579 (or non-polarized) trafficking of VSV G in salivary glands and basal trafficking of VSV G in insect
580 midgut enterocytes (Fig. 1B and 1D). Although VSV G was enriched at the basal-most
581 compartment of some salivary gland cells, a substantial percentage of cells exhibited strongly
582 apical VSV G enrichment in the canaliculi of salivary gland cells (Fig. S3). This demonstrates that

583 apical VSV G trafficking occurs in these cells in the absence of viral infection. This divergent
584 midgut vs. salivary gland VSV G trafficking pattern, combined with differences in Rab GTPase
585 localization patterns in the two tissues, provides substantial evidence that the composition or
586 function of trafficking machinery differs in midgut enterocytes and salivary gland epithelial cells.
587 Interestingly, GP64 expressed in salivary gland cells was not trafficked apically (as observed for
588 VSV G) but localized basally as observed in midgut enterocytes (Fig. 1B and 1D; VSV G vs.
589 GP64). Polarized budding of baculovirus virions has not been previously studied in insect salivary
590 glands, but our observation of GP64 trafficking in *Drosophila* salivary glands suggest that
591 baculovirus virions may be released from basal membranes of the salivary glands to supplement
592 the systemic infection in these insect-specific pathogens. It is also of note that mutation of the
593 YxxØ motif in both VSV G^{ΔY} and GP64^{ΔY} did not substantially affect the polarized trafficking
594 pattern of either protein in salivary gland epithelium, in contrast to the effects observed in midgut
595 enterocytes (Fig. 2B and 2C). Combined with observed differences in Rab localization patterns in
596 midgut vs. salivary gland cells, this indicates that insect salivary gland cells may have a
597 functionally different membrane protein trafficking network compared to insect midgut
598 enterocytes. The observation that WT VSV G and GP64 traffic in opposite directions in salivary
599 gland cells, while both were minimally affected by mutation of the YxxØ motif in salivary glands,
600 also indicates that there are likely divergent, but yet unidentified, trafficking signals embedded
601 within the VSV G and GP64 sequences or structures.

602 In the current studies, we examined two critical issues in virus interactions with their insect
603 hosts: 1) how viruses (insect-specific and insect-vectored) navigate through the polarized midgut
604 epithelium, the first cellular barrier, to establish systemic infection in the insect host; and 2) how
605 arboviruses move across a second polarized epithelial cell barrier (salivary gland cells) in an
606 opposite direction. To address these issues, we developed and used a powerful genetic system to
607 specifically examine: a) viral envelope protein trafficking in each of these tissues, b) viral protein
608 encoded signals for directing polarized trafficking in both tissues, and c) host cell factors necessary
609 for mediating the polarized trafficking of a viral envelope protein in midgut cells. We found that
610 VSV G and GP64 each encode the signals required for basal trafficking in the midgut epithelium,
611 a necessity for virus budding into the hemocoel and establishing systemic infection. In addition,
612 we found that VSV G was apically trafficked in the salivary gland cells, a process important for
613 virus egress into the saliva. We found that a YxxØ motif was necessary for basal trafficking of

614 both proteins in midgut enterocytes, but was largely dispensable in salivary gland cells for apical
615 VSV G trafficking and basal GP64 trafficking. By examining host proteins potentially involved in
616 protein trafficking in polarized cells, we identified clathrin adapter complexes AP-1 and AP-3, as
617 well as seven Rab GTPases (Rab1, 4, 8, 10, 23, 30, and 35) that are important for directing basal
618 trafficking of VSV G in polarized midgut enterocytes. While we have developed a new genetic
619 system for these studies and answered several important fundamental questions regarding viral
620 envelope protein trafficking in these two critical tissues that serve as important barriers to systemic
621 infection and transmission, our studies also raise many new questions regarding the mechanisms
622 by which insect-specific viruses and arboviruses interact with and navigate through the tissues of
623 their insect hosts.

624 **Materials and Methods:**

625 **Fly transgenesis**

626 *Drosophila* fly lines encoding either WT VSV G (VSV G^{WT}), WT GP64 (GP64^{WT}), modified VSV
627 G (VSV G^{ΔY}) or modified GP64 (GP64^{ΔY}) were generated by inserting the WT or modified ORFs
628 downstream of the upstream activation sequence (UAS) in the *Drosophila* transformation plasmid
629 pUAS^t (*Drosophila* Genomics Resource Center plasmid #1000). The VSV G^{WT} open-reading
630 frame (ORF) was PCR amplified from

631 VSVG-BP95NOTSV (kindly provided by F. M. Boyce) using primers (containing the EcoRI or
632 XbaI sites underlined): forward 5'-
633 AAAGAATTCTGACACTATGAAGTGCCTTTGTACTTAGC-3' and reverse: 5'-
634 AAATCTAGATTACTTCCAAGTCGGTTCATCTC-3' and cloned into EcoRI/XbaI sites of
635 pUAS^t, generating pUAS^t-VSV G. The modified VSV G^{ΔY} ORF contained Y501A and I504A
636 substitutions and was generated by PCR from the VSV G^{WT} template, using the forward primer
637 (containing the EcoRI site underlined): 5'-
638 AAAGAATTCTGACACTATGAAGTGCCTTTGTACTTAGC-3' and the reverse primer: 5'-
639 CGGTTCATCTCAGCGTCTGTAGCAATCTGTCTTTCTTGGTGTGC-3' (mutagenic codons
640 in bold). This primary PCR amplicon was used directly as template for a secondary PCR using the
641 same forward primer and a reverse primer containing an XbaI site (underlined): 5'-
642 AAATCTAGATTACTTCCAAGTCGGTTCATCTCAGCGTCTG-3', then EcoRI/XbaI cloned
643 into pUAS^t to generate pUAS^t-VSV G^{ΔY}. The GP64^{WT} ORF was PCR amplified from AcMNPV

644 genomic DNA using the forward primer (containing an XbaI site, underlined): 5'-
645 **AAATCTAGAATGGTAAGCGCTATTGTTTATGTGC-3'** and the reverse primer
646 (containing an XbaI site, underlined): 5'-
647 **AAATCTAGAATATTGTCTATTACGGTTCTAACATACAG-3'** and XbaI-cloned into
648 pUASt to generate pUASt-GP64. The mutant GP64^{ΔY} ORF, encoding the Y502A and I505A
649 codon substitutions, was generated by PCR. A primary PCR amplicon was generated from the
650 pUASt-GP64^{WT} template using the forward primer (containing an XbaI site, underlined): 5'-
651 **AAATCTAGAATGGTAAGCGCTATTGTTTATGTGC-3'** and the reverse primer: 5'-
652 **AGCCATACAGCCAAAAATAAAATCACAAATTAAATATAATTACAAAGTTAACTAC-3'**
653 that introduced both alanine mutagenic codons (in bold). This primary PCR amplicon was used
654 directly as template for a secondary PCR using the same forward primer: 5'-
655 **AAATCTAGAATGGTAAGCGCTATTGTTTATGTGC-3'** and the reverse primer
656 (containing an XbaI site, underlined): 5'-
657 **AAATCTAGATTAATATTGTCTATTACGGTTCTAGCCATACAGCCAAAAATAAAAT**
658 CAC-3' (mutagenic codons in bold). High fidelity KOD DNA polymerase (Takara) was used to
659 amplify the entire VSV G and GP64 ORFs (WT and ΔY), which were verified by Sanger
660 sequencing. The resulting pUASt-based plasmids containing the VSV G or GP64 fragments were
661 injected into w¹¹¹⁸ flies (BestGene Inc, California), and transgenic fly lines were verified for
662 expression of the viral envelope proteins (WT and ΔY versions of VSV G and GP64) by
663 immunoblot analysis. A single transgenic line (expressing each WT or ΔY version of VSV G or
664 GP64) was selected and used for all experiments. The 3' ends of the VSV G and GP64 ORFs were
665 PCR-amplified (using Taq polymerase, NEB) from DNA isolated from each fly line, and the PCR
666 amplicons were sequenced to verify the WT and ΔY forms of cytoplasmic domain sequences for
667 each line from VSV G or GP64.

668

669 **Fly husbandry and genotypes**

670 All *Drosophila* used in this study were maintained on artificial diet (Table S1) at room temperature
671 (~23°C) under a 12L:12D light cycle unless otherwise indicated. Localization patterns of the WT
672 and alanine-substituted forms of VSV G and GP64 or YFP-Rab GTPases in *Drosophila* midgut
673 enterocytes and salivary gland cells were assessed in the F1 offspring of *da-GAL4*, *tub-GAL80^{ts}*
674 female ubiquitous driver flies crossed with male flies carrying WT or modified *UAS-GP64* or

675 *UAS-VSV G*, *Myo-GAL4*, *UAS-nlsGFP*, *tub-GAL80^{ts}*; *UAS-VSV G^{WT}*, and *Myo-GAL4*, *UAS-*
676 *nlsGFP*, *tub-GAL80^{ts}*; *UAS-GP64^{WT}* midgut-specific female driver lines were crossed with male
677 UAS-regulated RNAi and control lines for quantifying VSV G basal-to-apical distribution in the
678 midgut enterocytes. The F1 progeny were allowed to develop at 18°C. F1 adults (3 to 7 days post-
679 emergence) were then incubated at 29° C for 3 or 5 days to induce transgene expression prior to
680 tissue dissection for processing and microscopy. The incubation time at 29°C in each case was
681 carefully selected to avoid gut dysplasia while maximizing the duration of RNAi induction (79).
682 Control AttP2 (36303), AttP40 (36304), and UAS-regulated RNAi lines were obtained from the
683 Bloomington *Drosophila* Stock Center (BDSC): Rab1 (34670), Rab4 (33757), Rab8 (34373),
684 Rab10 (26289), Rab11 (27730), Rab23 (55352), Rab30 (31120), Rab35 (80547), AP-1μ (27534),
685 AP-1,2β (28328), AP-2μ (28040), and AP-3μ/cm (27282). A fly line ubiquitously expressing E-
686 Cadherin-GFP used in the cell polarity markers analysis was generously provided by Bruce Edgar
687 (University of Utah).

688

689 **Immunostaining and Microscopy**

690 Flies were anesthetized on ice before brief immersion in 70% ethanol to remove cuticular
691 hydrocarbons, then transferred to PBS (pH 7.4) in a 9-well glass spot plate. Midguts and salivary
692 glands were dissected in PBS and immediately transferred to 1 ml of 4% paraformaldehyde in PBS
693 (pH 7.4) at room temperature (RT) for 1 h of fixation. Tissues were rinsed (3x, 10 min each at RT)
694 with 1 ml of PBS-T (PBS pH 7.4 containing 0.1% Triton X-100) for cell permeabilization and
695 blocked in 3% BSA in PBS (pH 7.4) for a minimum of 3 h before incubation with primary
696 antibodies (1:1000) in 1% BSA in PBS overnight at RT. Primary antibodies were removed and
697 tissues were washed (3x, 10 min each at RT) with 1 ml PBS-T. Washed tissues were incubated in
698 secondary antibodies (1:1000) and Alexa Fluor 555 phalloidin (1:1000) (Invitrogen) in 1% BSA
699 in PBS (pH 7.4) for 2-4 h in darkness at RT. Secondary antibodies were removed, and tissues were
700 washed (3x, 10 min each at RT) with PBS, then stained in 1 ml of 0.5 μg/ml DAPI (Sigma-Aldrich)
701 in PBS for 30 min at RT in darkness, then washed (3x for 10 min at RT) with PBS. Stained tissues
702 were mounted onto slides in glycerol-based, aqueous mounting media containing an antifadent
703 (Citifluor AF3). Tissues in mounting media were placed between pedestals consisting of two layers
704 of double-sided Scotch tape to prevent crushing of the tissues by the coverslip. The enterocytes of
705 midgut region 2 and the secretory cells of the medial salivary gland were analyzed in this study.

706 Slides were imaged on a Zeiss 710 confocal microscope using the 40x or 63x oil immersion
707 objectives. Primary antibodies used for immunostaining were directed against: AcMNPV GP64
708 (AcV5), VSV G (8G5F11, generous gift from Gary Whittaker, Cornell University), Discs large
709 (DSHB 4F3), GFP (Invitrogen, A10262), Integrin β 1 (DSHB 7E2), Snakeskin, and Tetraspanin
710 2A (Generous gifts from Mikio Furuse, National Institute for Physiological Sciences, Japan).
711 Alexa Fluor 647 donkey anti-mouse, Alexa Fluor 555 donkey anti-rabbit, and Alexa Fluor 488
712 goat anti-chicken secondary antibodies (Invitrogen) were used in this study.

713

714 **VSV G and GP64 protein distribution in fly tissues**

715 VSV G and GP64 signal distributions in immunostained tissues were determined using ImageJ
716 (v.1.53c). To determine the relative basal-to-apical distributions of WT and modified VSV G and
717 GP64 constructs, individual cells were assessed for the mean gray values of protein staining in a
718 rectangular region of interest (ROI) adjusted to the width of each cell along the basal-to-apical axis
719 of the cell. The polarized orientations of midgut or salivary gland cells were identified by the
720 positions of phalloidin-stained actin in the basal visceral muscles and the apical brush border, and
721 by differential interference contrast (DIC) microscopy. In some instances, when midgut cells were
722 slightly curved, a segmented (curved) ROI was selected to account for the cell curvature. The same
723 ROI was used to measure the mean gray values of the immunostained VSV G or GP64 (Alexa
724 647) and nuclear (DAPI) signals. The images were derived from discrete focal planes and we
725 evaluated only the cells with a nucleus that clearly bisected the cell, to ensure that localization data
726 encompassed the basal to apical limits of each individual cell. In addition, we assessed large
727 numbers of cells ($n \geq 69$ per genotype) from tissues derived from at least 3 individual animals in
728 triplicate experiments.

729 Because we found that VSV G $^{\Delta Y}$ and GP64 $^{\Delta Y}$ proteins were present at lower levels than those
730 of the corresponding WT proteins (e.g. Fig. S6), we measured the differences in the cellular
731 distributions of WT vs. ΔY constructs for these studies. Because cells were not uniform in size or
732 staining intensity, the basal-to-apical distance was expressed in percentage values, and the signal
733 (VSV G, GP64, and DAPI) intensity within each cell was standardized based on the average signal
734 intensity within that cell. The resulting standardized gray values of each cell were binned in 5%
735 intervals across the basal-to-apical axis (to account for differences in cell sizes), averaged across
736 all cells for each condition, and plotted onto graphs. The percentage of total viral protein signal in

737 the apical (top 40%) and basolateral (bottom 20%) compartments of enterocytes and salivary gland
738 cells were quantified from these data to determine the effects of the tyrosine motif mutation and
739 various RNAi of host trafficking components on viral protein distribution in these compartments.
740 These compartments in enterocytes were selected based on DLG and DAPI staining to represent
741 areas of the apical and basolateral compartments relatively free from any interference of the
742 nucleus where the viral protein is absent (Fig. S1). Distinguishing between the apical and
743 basolateral compartments in *Drosophila* salivary gland cells is difficult due to their unique
744 structure [*i.e.*, extensive apical membrane invaginations (canaliculi) reaching deep inside the cell
745 (Fig. 1C)], and therefore could not be accurately determined with our current method. Since these
746 invaginations rarely extend past the nuclei, as indicated by phalloidin staining of the actin-rich
747 canaliculi (Fig. S2C), we decided to quantify viral protein signal in the bottom (basal) 20% of the
748 salivary gland cells to minimize any influence of the nucleus or canaliculi (Fig. S1). The master
749 gain of the laser for acquiring VSV G or GP64 and nuclear stain signals was optimized for each
750 image to avoid pixel saturation. Data shown was compiled from 3 independent experiments, in
751 which ≥ 20 cells from at least 3 individual midguts or salivary glands (total $n \geq 69$) were assessed
752 per experiment. The total number of cells used for each quantification is noted in the figure
753 legends.

754 We measured and compared the basal-to-apical distributions of each of the WT vs. ΔY
755 constructs. To assess the total levels of VSV G^{WT} and VSV G ^{ΔY} staining in cells, the Integrated
756 Density values (IntDen = Mean Gray \times Area) were determined in ROIs drawn around entire cells
757 (guided by actin staining and/or DIC images) using the freehand tool in ImageJ. The master gain
758 of the laser for acquiring VSV G stain signals was kept constant (while avoiding pixel saturation)
759 for all samples. The numbers of cells used for each quantification of total VSV G levels in
760 enterocytes were: VSV G^{WT} ($n = 44$), VSV G ^{ΔY} ($n = 40$), Negative (N) ($n = 53$).

761

762 Statistical analysis

763 The viral protein signal in the apical (top 40%) and basolateral (bottom 20%) compartments of
764 enterocytes and salivary gland cells were assessed statistically for differences relative to controls
765 (WT protein or samples lacking RNAi) upon tyrosine motif mutation and various RNAi targeting
766 host trafficking components. All statistical analyses were conducted using R Statistical Software
767 (RStudio v.4.1.2) (80). Data for each condition was subjected to the Shapiro–Wilk test to

768 determine whether it was normally distributed. For single comparisons of conditions, Welch's t-
769 test was used to compare normally distributed data, while the Wilcoxon rank-sum test was used to
770 compare data that were not normally distributed. For multiple comparisons of conditions, one-way
771 analysis of variance (ANOVA) was used to compare normally distributed data, while the Kruskal–
772 Wallis test was used to compare data that were not normally distributed. If statistically significant
773 differences overall were found ($p \leq 0.05$), then a *post hoc* multiple comparison analysis (with
774 Bonferroni p-value correction) was performed to identify which specific conditions were
775 significantly different from each other.

776

777 **Data Availability**

778 All data are available in the article and supplemental material.

779

780

781 **Acknowledgements**

782 The authors thank F. M. Boyce (Massachusetts General Hospital) for providing plasmid VSVG-
783 BP95NOTSV, Gary Whittaker (Cornell University) for providing anti-VSV G antibody 8G5F11,
784 Mikio Furuse (National Institute for Physiological Sciences, Japan) for antibodies directed against
785 Snakeskin and Tetraspanin 2A, and Bruce Edgar (University of Utah) for E-Cadherin-GFP
786 *Drosophila* line. We also thank Peter Nagy for assistance and expertise with initial Rab GTPase
787 localization mapping.

788

789

790 **Author Contributions**

791 Conceptualization: Nicolas Buchon, Gary Blissard, Jeffrey Hodgson.

792 Formal analysis: Jeffrey Hodgson, Robin Chen, Nicolas Buchon, Gary Blissard

793 Funding acquisition: Gary Blissard, Nicolas Buchon.

794 Investigation: Jeffrey Hodgson, Robin Chen, Nicolas Buchon, Gary Blissard.

795 Methodology: Jeffrey Hodgson, Robin Chen, Nicolas Buchon, Gary Blissard.

796 Project administration: Gary Blissard, Nicolas Buchon.

797 Supervision: Nicolas Buchon, Gary Blissard.

798 Writing – original draft: Jeffrey Hodgson, Robin Chen.
799 Writing – review & editing: Jeffrey Hodgson, Robin Chen, Gary Blissard, Nicolas Buchon.
800

801 **References**

802

803 1. Moscardi F. 1999. Assessment of the application of baculoviruses for control of
804 Lepidoptera. *Annu Rev Entomol* 44:257-89. PMID: 15012374

805 2. Possee RD, King LA. 2014. *Insect Viruses*, eLS
806 doi:10.1002/9780470015902.a0020712.pub2.

807 3. Rohrmann GF. 2019. Baculoviruses as insecticides: Four examples in Baculovirus
808 Molecular Biology, 4th ed: Chapter 9 (ebook). National Center for Biotechnology
809 Information (US), Bethesda (MD).

810 4. Fact-Sheet. 2024. Vector-borne diseases, *on* World Health Organization.
811 <https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases>.
812 Accessed Jan. 18, 2024.

813 5. Pereira Cabral B, da Graca Derengowski Fonseca M, Mota FB. 2019. Long term
814 prevention and vector control of arboviral diseases: What does the future hold? *Int J*
815 *Infect Dis* 89:169-174. PMID: 31606414

816 6. Kading RC, Brault AC, Beckham JD. 2020. Global Perspectives on Arbovirus
817 Outbreaks: A 2020 Snapshot. *Trop Med Infect Dis* 5. PMID: 32906771

818 7. Ma E, Zhu Y, Liu Z, Wei T, Wang P, Cheng G. 2021. Interaction of Viruses with the Insect
819 Intestine. *Annu Rev Virol* 8:115-131. PMID: 33872516

820 8. Buchon N, Osman D. 2015. All for one and one for all: Regionalization of the
821 *Drosophila* intestine. *Insect Biochem Mol Biol* 67:2-8. PMID: 26044368

822 9. Girdler GC, Roper K. 2014. Controlling cell shape changes during salivary gland tube
823 formation in *Drosophila*. *Semin Cell Dev Biol* 31:74-81. PMID: 24685610

824 10. Buchon N, Osman D, David FP, Yu Fang H, Boquete JP, Deplancke B, Lemaitre B. 2013.
825 Morphological and molecular characterization of adult midgut compartmentalization
826 in *Drosophila*. *Cell Rep* 3:1725-38. PMID: 23643535

827 11. Bonfini A, Liu X, Buchon N. 2016. From pathogens to microbiota: How *Drosophila*
828 intestinal stem cells react to gut microbes. *Dev Comp Immunol* 64:22-38. PMID:
829 26855015

830 12. Liu X, Nagy P, Bonfini A, Houtz P, Bing XL, Yang X, Buchon N. 2022. Microbes affect gut
831 epithelial cell composition through immune-dependent regulation of intestinal stem
832 cell differentiation. *Cell Rep* 38:110572. PMID: 35354023

833 13. Miguel-Aliaga I, Jasper H, Lemaitre B. 2018. Anatomy and Physiology of the Digestive
834 Tract of *Drosophila melanogaster*. *Genetics* 210:357-396. PMID: 30287514

835 14. Rivera-Vega LJ, Acevedo FE, Felton GW. 2017. Genomics of Lepidoptera saliva reveals
836 function in herbivory. *Curr Opin Insect Sci* 19:61-69. PMID: 28521944

837 15. Ribeiro JM, Francischetti IM. 2003. Role of arthropod saliva in blood feeding: sialome
838 and post-sialome perspectives. *Annu Rev Entomol* 48:73-88. PMID: 12194906

839 16. Walker GP. 2009. Chapter 228 - Salivary Glands, p 897-901. *In* Resh VH, Cardé RT (ed),
840 Encyclopedia of Insects (Second Edition) doi:<https://doi.org/10.1016/B978-0-12-374144-8.00237-X>. Academic Press, San Diego.

841 17. Van Ree C. 2021. The adult *Drosophila* salivary gland: developing a new epithelial
842 research model. MS. University of Melbourne.

844 18. Döhner K, Sodeik B. 2005. The Role of the Cytoskeleton During Viral Infection, p 67-
845 108. In Marsh M (ed), Membrane Trafficking in Viral Replication doi:10.1007/3-540-
846 26764-6_3. Springer Berlin Heidelberg, Berlin, Heidelberg.

847 19. Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, Takvorian PM, Pau C, van der Schaar
848 H, Kaushik-Basu N, Balla T, Cameron CE, Ehrenfeld E, van Kuppeveld FJ, Altan-Bonnet
849 N. 2010. Viral reorganization of the secretory pathway generates distinct organelles
850 for RNA replication. *Cell* 141:799-811.PMID: 20510927

851 20. Zeltzer S, Zeltzer Carol A, Igarashi S, Wilson J, Donaldson Julie G, Goodrum F. 2018.
852 Virus Control of Trafficking from Sorting Endosomes. *mBio* 9:10.1128/mbio.00683-
853 18.PMID:

854 21. Tognarelli EI, Reyes A, Corrales N, Carreño LJ, Bueno SM, Kalergis AM, González PA.
855 2021. Modulation of Endosome Function, Vesicle Trafficking and Autophagy by
856 Human Herpesviruses. *Cells*. 10(3):doi:10.3390/cells10030542.

857 22. Sobhy H. 2016. A Review of Functional Motifs Utilized by Viruses. *Proteomes* 4.PMID:
858 28248213

859 23. Mihalič F, Simonetti L, Giudice G, Sander MR, Lindqvist R, Peters MBA, Benz C, Kassa
860 E, Badgujar D, Inturi R, Ali M, Krystkowiak I, Sayadi A, Andersson E, Aronsson H,
861 Söderberg O, Dobritzsch D, Petsalaki E, Överby AK, Jemth P, Davey NE, Ivarsson Y.
862 2023. Large-scale phage-based screening reveals extensive pan-viral mimicry of host
863 short linear motifs. *Nature Communications* 14:2409.PMID:

864 24. Popham HJ, Nusawardani T, Bonning BC. 2016. Introduction to the Use of
865 Baculoviruses as Biological Insecticides. *Methods Mol Biol* 1350:383-392.PMID:
866 26820869

867 25. USDA-APHIS. May 2023. Vesicular Stomatitis Fact Sheet. USDA, U.S. Department of
868 Agriculture Animal and Plant Health Inspection Service, APHIS.USDA.gov.
869 <https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/equine/vsv/vesicular-stomatitis>.

870 26. Blissard GW, Theilmann DA. 2018. Baculovirus entry and egress from insect cells.
871 *Annu Rev Virol* 5:113-139.PMID: 30004832

872 27. Albertini AA, Baquero E, Ferlin A, Gaudin Y. 2012. Molecular and cellular aspects of
873 rhabdovirus entry. *Viruses* 4:117-39.PMID: 22355455

874 28. Sevier CS, Weisz OA, Davis M, Machamer CE. 2000. Efficient Export of the Vesicular
875 Stomatitis Virus G Protein from the Endoplasmic Reticulum Requires a Signal in the
876 Cytoplasmic Tail That Includes Both Tyrosine-based and Di-acidic Motifs. *Mol Biol
877 Cell* 11:13-22.PMID: 10637287

878 29. Thomas DC, Roth MG. 1994. The basolateral targeting signal in the cytoplasmic
879 domain of glycoprotein G from vesicular stomatitis virus resembles a variety of
880 intracellular targeting motifs related by primary sequence but having diverse
881 targeting activities. *J Biol Chem* 269:15732-9.PMID: 8195226

882 30. Thomas DC, Brewer CB, Roth MG. 1993. Vesicular stomatitis virus glycoprotein
883 contains a dominant cytoplasmic basolateral sorting signal critically dependent upon
884 a tyrosine. *J Biol Chem* 268:3313-20.PMID:

885 31. Hodgson JJ, Buchon N, Blissard GW. 2022. Identification of cellular genes involved in
886 baculovirus GP64 trafficking to the plasma membrane. *Journal of Virology*
887 96:e0021522.PMID: 35608346

889 32. Dong S, Blissard GW. 2012. Functional analysis of the *Autographa californica* multiple
890 nucleopolyhedrovirus GP64 terminal fusion loops and interactions with membranes.
891 *J Virol* 86:9617-9628.PMID: 22740400

892 33. Keddie BA, Aponte GW, Volkman LE. 1989. The pathway of infection of *Autographa*
893 *californica* nuclear polyhedrosis virus in an insect host. *Science* 243:1728-
894 1730.PMID: 2648574

895 34. Lucas W. 2010. Viral Capsids and Envelopes: Structure and Function, Encyclopedia of
896 Life Sciences doi:10.1002/9780470015902.a0001091.pub2.

897 35. Navaratnarajah CK, Warrier R, Kuhn RJ. 2008. Assembly of Viruses: Enveloped
898 Particles, p 193-200. *In* Mahy BWJ, Van Regenmortel MHV (ed), Encyclopedia of
899 Virology (Third Edition) doi:<https://doi.org/10.1016/B978-012374410-4.00667-1>.
900 Academic Press, Oxford.

901 36. Clem RJ, Passarelli AL. 2013. Baculoviruses: sophisticated pathogens of insects. *PLoS*
902 *Pathog* 9:e1003729.PMID: 24244160

903 37. Dietzgen RG, Kuzmin IV. 2012. Rhabdoviruses: Molecular Taxonomy, Evolution,
904 Genomics, Ecology, Host-vector Interactions, Cytopathology and Control. Caister
905 Academic Press.

906 38. Stalder D, Gershlick DC. 2020. Direct trafficking pathways from the Golgi apparatus
907 to the plasma membrane. *Semin Cell Dev Biol* 107:112-125.PMID: 32317144

908 39. Lippincott-Schwartz J, Roberts TH, Hirschberg K. 2000. Secretory protein trafficking
909 and organelle dynamics in living cells. *Annu Rev Cell Dev Biol* 16:557-89.PMID:
910 11031247

911 40. Xiang Y, Zhang X, Nix DB, Katoh T, Aoki K, Tiemeyer M, Wang Y. 2013. Regulation of
912 protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. *Nat*
913 *Commun* 4:1659.PMID: 23552074

914 41. Franz AW, Kantor AM, Passarelli AL, Clem RJ. 2015. Tissue Barriers to Arbovirus
915 Infection in Mosquitoes. *Viruses* 7:3741-3767.PMID: 26184281

916 42. Sanchez-Vargas I, Olson KE, Black WC. 2021. The Genetic Basis for Salivary Gland
917 Barriers to Arboviral Transmission. *Insects* 12.PMID: 33467430

918 43. Palmer WH, Dittmar M, Gordesky-Gold B, Hofmann J, Cherry S. 2020. *Drosophila*
919 *melanogaster* as a model for arbovirus infection of adult salivary glands. *Virology*
920 543:1-6.PMID: 32056841

921 44. Wells MB, Villamor J, Andrew DJ. 2017. Salivary gland maturation and duct formation
922 in the African malaria mosquito *Anopheles gambiae*. *Sci Rep* 7:601.PMID: 28377572

923 45. Wells MB, Andrew DJ. 2015. Salivary gland cellular architecture in the Asian malaria
924 vector mosquito *Anopheles stephensi*. *Parasit Vectors* 8:617.PMID: 26627194

925 46. Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S,
926 Perrimon N. 2020. A cell atlas of the adult *Drosophila* midgut. *Proc Natl Acad Sci U S*
927 *A* 117:1514-1523.PMID: 31915294

928 47. Shanbhag S, Tripathi S. 2009. Epithelial ultrastructure and cellular mechanisms of
929 acid and base transport in the *Drosophila* midgut. *J Exp Biol* 212:1731-44.PMID:
930 19448082

931 48. Backovic M, Jardetzky TS. 2011. Class III viral membrane fusion proteins. *Adv Exp*
932 *Med Biol* 714:91-101.PMID: 21506008

933 49. Yuan S, Chu H, Huang J, Zhao X, Ye ZW, Lai PM, Wen L, Cai JP, Mo Y, Cao J, Liang R, Poon
934 VK, Sze KH, Zhou J, To KK, Chen Z, Chen H, Jin DY, Chan JF, Yuen KY. 2020. *Viruses*

935 harness YxxØ motif to interact with host AP2M1 for replication: A vulnerable broad-
936 spectrum antiviral target. *Sci Adv* 6:eaba7910.PMID: 32923629

937 50. Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. *Nat Rev Mol Cell
938 Biol* 10:513-25.PMID: 19603039

939 51. Chua CEL, Tang BL. 2018. Rab 10-a traffic controller in multiple cellular pathways and
940 locations. *J Cell Physiol* 233:6483-6494.PMID: 29377137

941 52. Henry L, Sheff DR. 2008. Rab8 regulates basolateral secretory, but not recycling,
942 traffic at the recycling endosome. *Mol Biol Cell* 19:2059-68.PMID: 18287531

943 53. Ang AL, Folsch H, Koivisto UM, Pypaert M, Mellman I. 2003. The Rab8 GTPase
944 selectively regulates AP-1B-dependent basolateral transport in polarized Madin-
945 Darby canine kidney cells. *J Cell Biol* 163:339-50.PMID: 14581456

946 54. Bu Y, Teng Q, Feng D, Sun L, Xue J, Zhang G. 2021. YLMY Tyrosine Residue within the
947 Cytoplasmic Tail of Newcastle Disease Virus Fusion Protein Regulates Its Surface
948 Expression to Modulate Viral Budding and Pathogenicity. *Microbiol Spectr*
949 9:e0217321.PMID: 34937182

950 55. Gunner P, Johnston EMC, Jeffrey Dabundo, Bryce A. Henderson, Keesha M. Matz,
951 Victoria Ortega, Alfredo Ramirez, Arnold Park, Hector C. Aguilara. 2017. Cytoplasmic
952 Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and
953 Egress. *J Virol* doi:10.1128/JVI.02150-16.PMID:

954 56. Devergne O, Sun GH, Schupbach T. 2017. Stratum, a Homolog of the Human GEF Ms4,
955 Partnered with Rab8, Controls the Basal Restriction of Basement Membrane Proteins
956 in Epithelial Cells. *Cell Rep* 18:1831-1839.PMID: 28228250

957 57. Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF, Chaudhry TA, Horne-
958 Badovinac S. 2013. A Rab10-dependent mechanism for polarized basement
959 membrane secretion during organ morphogenesis. *Dev Cell* 24:159-68.PMID:
960 23369713

961 58. Zajac AL, Horne-Badovinac S. 2022. Kinesin-directed secretion of basement
962 membrane proteins to a subdomain of the basolateral surface in *Drosophila* epithelial
963 cells. *Curr Biol* 32:735-748 e10.PMID: 35021047

964 59. Parker SS, Cox C, Wilson JM. 2018. Rabs set the stage for polarity. *Small GTPases*
965 9:116-129.PMID: 28125340

966 60. Gui J, Huang Y, Shimmi O. 2016. Scribbled Optimizes BMP Signaling through Its
967 Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial
968 Morphogenesis. *PLoS Genet* 12:e1006424.PMID: 27814354

969 61. Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney
970 M, Taylor S, Allen J, Norman JC, Zacharchenko T, Caswell PT. 2023. Proximity labelling
971 identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and
972 Rab11 families. *J Cell Sci* 136.PMID: 37232246

973 62. Zhang J, Schulze KL, Hiesinger PR, Suyama K, Wang S, Fish M, Acar M, Hoskins RA,
974 Bellen HJ, Scott MP. 2007. Thirty-one flavors of *Drosophila* Rab proteins. *Genetics*
975 176:1307-22.PMID: 17409086

976 63. Vega-Rúa A, Schmitt C, Bonne I, Krijnse Locker J, Failloux AB. 2015. Chikungunya
977 Virus Replication in Salivary Glands of the Mosquito *Aedes albopictus*. *Viruses*
978 7:5902-7.PMID: 26593936

979 64. Oschman JL, Berridge MJ. 1970. Structural and functional aspects of salivary fluid
980 section in *Calliphora*. *Tissue Cell* 2:281-310.PMID: 18631514

981 65. Park SY, Guo X. 2014. Adaptor protein complexes and intracellular transport. Biosci
982 Rep 34.PMID: 24975939

983 66. Ohno H, Stewart J, Fournier M-C, Bosshart H, Rhee I, Miyatake S, Saito T, Gallusser A,
984 Kirchhausen T, Bonifacino Juan S. 1995. Interaction of Tyrosine-Based Sorting Signals
985 with Clathrin-Associated Proteins. Science 269:1872-1875.PMID:
986 67. Bonifacino JS. 2014. Adaptor proteins involved in polarized sorting. J Cell Biol 204:7-
987 17.PMID: 24395635

988 68. Mardones GA, Burgos PV, Lin Y, Kloer DP, Magadan JG, Hurley JH, Bonifacino JS. 2013.
989 Structural basis for the recognition of tyrosine-based sorting signals by the mu3A
990 subunit of the AP-3 adaptor complex. J Biol Chem 288:9563-71.PMID: 23404500

991 69. Guo X, Mattera R, Ren X, Chen Y, Retamal C, González A, Bonifacino Juan S. 2013. The
992 Adaptor Protein-1 μ 1B Subunit Expands the Repertoire of Basolateral Sorting Signal
993 Recognition in Epithelial Cells. Developmental Cell 27:353-366.PMID:
994 70. Sosa RT, Weber MM, Wen Y, O'Halloran TJ. 2012. A single beta adaptin contributes to
995 AP1 and AP2 complexes and clathrin function in Dictyostelium. Traffic 13:305-
996 16.PMID: 22050483

997 71. Folsch H. 2015. Analyzing the role of AP-1B in polarized sorting from recycling
998 endosomes in epithelial cells. Methods Cell Biol 130:289-305.PMID: 26360041

999 72. Blumstein J, Faundez V, Nakatsu F, Saito T, Ohno H, Kelly RB. 2001. The neuronal form
1000 of adaptor protein-3 is required for synaptic vesicle formation from endosomes. J
1001 Neurosci 21:8034-42.PMID: 11588176

1002 73. Olson JK, Grose C. 1997. Endocytosis and recycling of varicella-zoster virus Fc
1003 receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic
1004 tail. J Virol 71:4042-54.PMID: 9094682

1005 74. Heineman TC, Hall SL. 2001. VZV gB endocytosis and Golgi localization are mediated
1006 by YXXphi motifs in its cytoplasmic domain. Virology 285:42-9.PMID: 11414804

1007 75. Li Y, Marzolo MP, van Kerkhof P, Strous GJ, Bu G. 2000. The YXXL motif, but not the
1008 two NPXY motifs, serves as the dominant endocytosis signal for low density
1009 lipoprotein receptor-related protein. J Biol Chem 275:17187-94.PMID: 10747918

1010 76. Ang SF, Folsch H. 2012. The role of secretory and endocytic pathways in the
1011 maintenance of cell polarity. Essays Biochem 53:29-39.PMID: 22928506

1012 77. Ang AL, Taguchi T, Francis S, Folsch H, Murrells LJ, Pypaert M, Warren G, Mellman I.
1013 2004. Recycling endosomes can serve as intermediates during transport from the
1014 Golgi to the plasma membrane of MDCK cells. The Journal of cell biology 167:531-
1015 43.PMID: 15534004

1016 78. Grant BD, Donaldson JG. 2009. Pathways and mechanisms of endocytic recycling. Nat
1017 Rev Mol Cell Biol 10:597-608.PMID: 19696797

1018 79. Yu S, Nie Y, Knowles B, Sakamori R, Stypulkowski E, Patel C, Das S, Douard V, Ferraris
1019 RP, Bonder EM, Goldenring JR, Ip YT, Gao N. 2014. TLR sorting by Rab11 endosomes
1020 maintains intestinal epithelial-microbial homeostasis. Embo j 33:1882-95.PMID:
1021 25063677

1022 80. Team RC. 2023. R: A language and environment for statistical computing, *on* R
1023 Foundation for Statistical Computing. <https://www.R-project.org/>. Accessed 2023.
1024

1025 **Figure Legends**

1026 **Figure 1.**

1027 Localization of VSV G and GP64 in *Drosophila* midgut and salivary gland cells in the absence of
1028 VSV or baculovirus infection. **(A)** Schematic representation of a *Drosophila* midgut enterocyte
1029 illustrating the polarized morphology with apical microvilli (red, top) adjacent to the gut lumen,
1030 and basal membrane (gray) adjacent to the visceral muscles (red, bottom). The relative locations
1031 of the nuclei (blue) and polarity marker proteins for septate junctions (Discs large; magenta) and
1032 adherens junctions (E-Cadherin; gold) are indicated. **(B)** Localization of VSV G (top panels) and
1033 GP64 (bottom panels) ectopically expressed in adult *Drosophila* midgut tissue (left) and individual
1034 enterocytes (dashed box, right). **(C)** Schematic representation of an adult *Drosophila* salivary
1035 gland epithelial cell showing deep invaginations of the apical membrane (canalliculi; red). The
1036 relative location of the nucleus (blue) and polarity marker proteins for septate junctions (Discs
1037 large; magenta) and adherens junctions (E-Cadherin; gold) are indicated. **(D)** Localization of VSV
1038 G (top panels) and GP64 (bottom panels) in adult *Drosophila* salivary gland tissue (left) and
1039 individual salivary gland epithelial cells (dashed box, right). Tissues were dissected from adult
1040 *Drosophila* expressing each viral envelope protein ubiquitously under the *da-GAL4, tub-GAL80^{ts}*
1041 driver. At 3 to 7 days post-eclosion, flies developed at 18° C were shifted to 29° C for 3 days to
1042 induce expression of VSV G or GP64. Viral envelope proteins (green) were labelled with mouse
1043 anti-VSV G or anti-GP64 primary antibodies and Alexa Fluor 647 donkey anti-mouse secondary
1044 antibody, actin (red) was labelled with Alexa Fluor 555 phalloidin, and nuclei (blue) were stained
1045 with DAPI. Scale bars are 25 μ m for tissue images (left) and 5 μ m (midgut) or 10 μ m (salivary
1046 gland) for cellular images (right).

1047 **Figure 2.**

1048 Analysis of the role(s) of VSV G and GP64 cytoplasmic YxxØ motifs for envelope protein
1049 trafficking in *Drosophila* midgut enterocytes and salivary gland cells. **(A)** Schematic illustrating
1050 the transmembrane (TM) and cytoplasmic tail domains of VSV G and GP64, and illustrating the
1051 locations of the YxxØ motif (yellow highlight) in each protein and the engineered alanine
1052 substitutions (lower case "a"). **(B)** Representative images showing the distribution of WT (left)
1053 and alanine-substituted (right, Δ Y) viral envelope proteins (VSV G and GP64) in midgut
1054 enterocytes after 3 days of ubiquitous expression under the *da-GAL4, tub-GAL80^{ts}* driver. A graph

1055 comparing the average relative distributions (basal-to-apical) of each protein (WT vs. ΔY) is
1056 shown on the right of each pair of immunofluorescence images. The average relative position of
1057 the nucleus (determined by DAPI signal intensity) was plotted as a light gray line in the
1058 background of each graph to indicate areas relatively free from its influence (shaded gray areas).
1059 The basal and apical regions on the graphs were established based on the location of the septate
1060 junctions (discs-large polarity marker) (Fig. S1), and the division is indicated at approximately
1061 52.5% on the x-axis by a vertical dashed line. **(C)** Representative images show the distribution of
1062 WT (left) and modified (right, ΔY) viral envelope proteins (VSV G and GP64) in salivary gland
1063 cells. As above, a graph comparing the average relative distributions (basal-to-apical) of each
1064 protein (WT vs. ΔY) is shown on the right of each pair of immunofluorescence images. The
1065 average relative position of the nucleus was also plotted as a gray line. The average cell height
1066 (basal-to-apical distance in %) (x-axis) and signal intensities (y-axis) were measured and
1067 calculated as described in the Materials and Methods section. The shaded areas on each graph
1068 represent the areas of the cell (basal 20% and apical 40%) relatively free from influence of the
1069 nuclei used for statistical analyses. Number of asterisks refer to the level of statistical significance
1070 (n.s. $p > 0.05$, * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, and **** $p \leq 0.0001$) between distributions
1071 of WT and alanine-substituted (ΔY) envelope proteins in the shaded areas. The numbers of midgut
1072 enterocytes used to generate the graphs were: VSV G^{WT} n = 69; VSV G ^{ΔY} n = 96; GP64^{WT} n = 90;
1073 GP64 ^{ΔY} n = 106. The numbers of salivary gland cells used to generate the graphs were: VSV G^{WT}
1074 n = 160; VSV G ^{ΔY} n = 211; GP64^{WT} n = 163; GP64 ^{ΔY} n = 186. Data shown represents combined
1075 results from 3 independent experiments. Viral envelope proteins (white) were labelled with mouse
1076 anti-VSV G or anti-GP64 primary antibodies and Alexa Fluor 647 donkey anti-mouse secondary
1077 antibody. Scale bars represent 5 μm .

1078 **Figure 3.**

1079 Effects of RNAi of clathrin adaptor protein subunits on basal trafficking of VSV G in *Drosophila*
1080 midgut enterocytes. The image panels (left) show the localization of VSV G (green in images on
1081 the left and white in images on the right) in enterocytes from either control flies (top row, no RNAi)
1082 or from flies co-expressing VSV G and RNAi constructs to deplete AP-1 μ , AP-2 μ , AP-3 μ , or AP-
1083 1,2 β (indicated on the left of each row). The graph in each row compares the basal-to-apical
1084 distribution of VSV G in control enterocytes (top panels) against enterocytes from flies co-
1085 expressing VSV G and an RNAi construct (indicated on the left of each row of image panels). For
1086 all RNAi flies, distribution of VSV G was analyzed after 3 days of RNAi induction under the
1087 midgut *Myo-GAL4, tub-GAL80^{ts}* driver. The average relative position of the nucleus was also
1088 plotted as a gray line. The average cell height (basal-to-apical distance in %) (x-axis) and VSV G
1089 signal intensities (y-axis) were measured and calculated as described in the Materials and Methods
1090 section. The basal and apical regions on the graphs were established based on the location of the
1091 septate junction (discs-large polarity marker) (Fig. S1), and the division is indicated at 52.5% on
1092 the x-axis by a vertical dashed line. The shaded areas on each graph represent the areas of the cell
1093 (basal 20% and apical 40%) relatively free from influence of the nuclei and used for statistical
1094 analyses. The number of asterisks in the shaded areas refer to the level of statistical significance
1095 (n.s. p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001) in VSV G distribution
1096 differences between RNAi and control flies in those areas. The numbers of midgut enterocytes
1097 analyzed were: Control (n = 165), AP-1 μ RNAi (n = 141), AP-2 μ RNAi (n = 119), AP-3 μ RNAi
1098 (n = 122), and AP-1,2 β RNAi (n = 146). Data shown represents combined results from 3
1099 independent experiments. Viral envelope protein (green) was labelled with mouse anti-VSV G
1100 primary antibody and Alexa Fluor 647 donkey anti-mouse secondary antibody, actin (red) was
1101 labelled with Alexa Fluor 555 phalloidin, and nuclei (blue) were stained with DAPI. Scale bars
1102 represent 5 μ m.

1103 **Figure 4**

1104 Rab GTPase localization patterns in *Drosophila* midgut enterocytes and salivary gland cells
1105 illustrated by representative images of immunostained YFP-tagged Rab GTPases (green). The
1106 YFP-tagged Rab GTPases were expressed ubiquitously in adult *Drosophila* under the *da-GAL4*,

1107 *tub-GAL80^{ts}* driver for 3 days before dissection and immunostaining with chicken anti-GFP
1108 primary antibody and Alexa Fluor 488 goat anti-chicken secondary antibody (green). Actin (red)
1109 was labelled with Alexa Fluor 555 phalloidin, nuclei (blue) were stained with DAPI, and Discs
1110 large (magenta) was stained with mouse anti-Discs large primary antibody and Alexa Fluor 647
1111 donkey anti-mouse secondary antibody. Scale bars represent 5 μ m.

1112 **Figure 5.**

1113 Effects of RNAi of selected Rab GTPases on basal trafficking of VSV G in *Drosophila* midgut
1114 enterocytes. The image panels (left) show the localization of VSV G (green in images on the left
1115 and white in images on the right) in enterocytes from either control flies (top row, no RNAi) or
1116 from flies co-expressing VSV G and RNAi constructs to deplete Rab1, Rab4, Rab8, Rab10, Rab11,
1117 Rab23, Rab30, or Rab35 (indicated on the left of each row of image panels). For all RNAi flies
1118 (except Rab11), distribution of VSV G was analyzed after 5 days of RNAi induction (3 days for
1119 Rab11) under the midgut *Myo-GAL4*, *tub-GAL80^{ts}* driver. The average relative position of the
1120 nucleus was also plotted as a gray line. The average cell height (basal-to-apical distance in %) (x-
1121 axis) and VSV G signal intensities (y-axis) were measured and calculated as described in the
1122 Materials and Methods section. The basal and apical regions on the graphs were established based
1123 on the location of the septate junction (discs-large polarity marker) (Fig. S1), and the division is
1124 indicated at 52.5% on the x-axis by a vertical dashed line. The shaded areas on each graph represent
1125 the areas of the cell (basal 20% and apical 40%) relatively free from influence of the nuclei and
1126 used for statistical analyses. The number of asterisks in the shaded areas of the graphs refer to the
1127 level of statistical significance (n.s. $p > 0.05$, * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, and **** $p \leq$
1128 0.0001) in VSV G distribution between RNAi and control flies. The numbers of midgut
1129 enterocytes analyzed were: Control ($n = 572$), Rab1 RNAi ($n = 140$), Rab4 RNAi ($n = 150$), Rab8
1130 RNAi ($n = 138$), Rab10 RNAi ($n = 124$), Rab11 ($n = 131$), Rab23 RNAi ($n = 210$), Rab30 RNAi
1131 ($n = 207$), Rab35 RNAi ($n = 235$). Data shown represent combined results from 3 independent
1132 experiments with each RNAi compared to its appropriate control. Viral envelope protein (green)
1133 was labelled with mouse anti-VSV G primary antibody and Alexa Fluor 647 donkey anti-mouse
1134 secondary antibody, actin (red) was labelled with Alexa Fluor 555 phalloidin, and nuclei (blue)
1135 were stained with DAPI. Scale bars represent 5 μ m.

1136

1137 -----

1138 **Supplemental Data**

1139 **Figure S1.**

1140 The method for quantifying relative viral envelope protein distribution along the basal-to-apical
1141 axis in *Drosophila* midgut enterocytes and salivary gland cells. **(A)** Regions of interest (ROI,
1142 shown in yellow) from which signal intensity was measured along the basal-to-apical axis using
1143 ImageJ (as described in the Materials and Methods section). **(B)** Distribution of select marker
1144 proteins in midgut enterocytes and salivary gland cells. The peak in Discs large signal in
1145 enterocytes at the 52.5% mark (vertical dashed line) represents the location of septate junctions
1146 that define the boundaries between the basal and apical compartments. Phalloidin staining was
1147 used to assess the distribution of cortical actin in the salivary gland cells, indicative of the apical
1148 membrane invaginations. Phalloidin staining pattern and signal distribution closely approximate
1149 VSV G signal distribution (Fig. 2C and S2C), suggesting co-localization. The average signal
1150 distribution density is indicated by the horizontal dashed line and data points above the horizontal
1151 dashed line show regions of marker protein enrichment. **(C)** Locations of midgut enterocyte and
1152 salivary gland cell nuclei were determined by DAPI (blue line) signal distribution. The regions
1153 selected for statistical analysis to detect changes in viral envelope protein distribution are indicated
1154 by gray boxes. Those regions were selected based on average locations of marker proteins and
1155 nuclei (see the Materials and Methods section for details).

1156

1157

1158 **Figure S2.**

1159 Cellular structural marker proteins in *Drosophila* midgut enterocytes and salivary gland epithelial
1160 cells. Tissues from flies constitutively expressing GFP-tagged E-Cadherin (labelling adherens
1161 junctions) were dissected, fixed and immunostained for Discs large (labelling septate junctions),
1162 Snakeskin (labelling septate junctions), Integrin β 1 (labelling basal membrane), Tetraspannin 2A
1163 (labelling septate junctions), phalloidin (labeling cortical actin and visceral muscles), and DAPI
1164 (labeling DNA in nuclei). Scale bars represent 5 μ m.

1165

1166 **Figure S3.**

1167 Localization patterns of VSV G in *Drosophila* salivary gland cells are variable. On the left, a bar
1168 graph illustrates the proportion of salivary gland cells displaying either basal, non-polarized, or
1169 apical enrichment patterns of VSV G^{WT} (n = 160) and VSV G^{ΔY} (n = 211). Basal enrichment was
1170 found in 18.8% and 4.27% of salivary gland cells expressing VSV G^{WT} and VSV G^{ΔY},
1171 respectively. Non-polar distribution pattern was found in 52.5% and 54.5% of salivary gland cells
1172 expressing VSV G^{WT} and VSV G^{ΔY}, respectively. Apical distribution pattern was found in 28.8%
1173 and 41.2% of salivary gland cells expressing VSV G^{WT} and VSV G^{ΔY}, respectively.
1174 Immunofluorescence images on the right illustrate examples of each pattern of VSV G
1175 localization. A vast majority of the salivary gland cells (81.3% for VSV G^{WT} and 95.7% for VSV
1176 G^{ΔY}) showed presence of VSV G in apical regions. We found that the proportion of salivary gland
1177 cells with apically localized VSV G^{ΔY} (95.7%, n = 211) was slightly increased compared to cells
1178 expressing VSV G^{WT} (81.3%, n = 160) (Chi-squared test: $\chi^2 = 18.8$, df = 1, p = 1.46×10^{-5}). Also,
1179 the proportion of cells with basally localized VSV G^{ΔY} was slightly decreased in comparison to
1180 VSV G^{WT} ($13.8 \pm 0.56\%$ for VSV G^{ΔY} vs. $23.4 \pm 0.97\%$ for VSV G^{WT}, w = 25056, p = 1.33×10^{-15}).
1181 VSV G was labelled with mouse anti-VSV G primary antibody and Alexa Fluor 647 donkey
1182 anti-mouse secondary antibody and nuclei were stained with DAPI. Scale bars represent 5 μm .
1183
1184

1185 **Figure S4.**

1186 Anthranilic acid inhibits basal VSV G trafficking in *Drosophila* midgut enterocytes. At 3-5 days
1187 post-eclosion, flies carrying an inducible VSV G expression construct (*Myo-GAL4*, *UAS-nlsGFP*,
1188 *tub-GAL80^{ts}*; *UAS-VSV G^{WT}*) were exposed to anthranilic acid-treated artificial diet (ACA; 240 mg
1189 dissolved in 300 μL of 100% ethanol applied onto the surface of ~10 mL of artificial diet) or the
1190 ethanol vehicle-treated diet (ETH; 300 μL of 100% ethanol) for 3 days at 18°C before shifting to
1191 29°C for 48 h to induce VSV G expression. The average relative position of the nucleus was also
1192 plotted as a gray line. The average cell height (basal-to-apical distance in %) (x-axis) and signal
1193 intensities (y-axis) were measured and calculated as described in the Materials and Methods
1194 section. The basal-to-apical distribution of VSV G resulting from each treatment is shown on the
1195 graph. The basal and apical regions on the graphs were established based on the location of the
1196 septate junction (discs-large polarity marker) (Fig. S1), and the division is indicated at 52.5% on
1197 the x-axis by a vertical dashed line. The shaded areas on each graph represent the areas of the cell

1198 (basal 20% and apical 40%) relatively free from influence of the nuclei and used for statistical
1199 analyses. The number of asterisks refer to the level of statistical significance (n.s. $p > 0.05$, * $p \leq$
1200 0.05, ** $p \leq 0.01$, *** $p \leq 0.001$, and **** $p \leq 0.0001$) between distributions of VSV G in the
1201 midgut enterocytes of ACA ($n = 68$) and ETH ($n = 80$) treated flies in the shaded areas. Data shown
1202 represents combined data from 3 independent replicates.

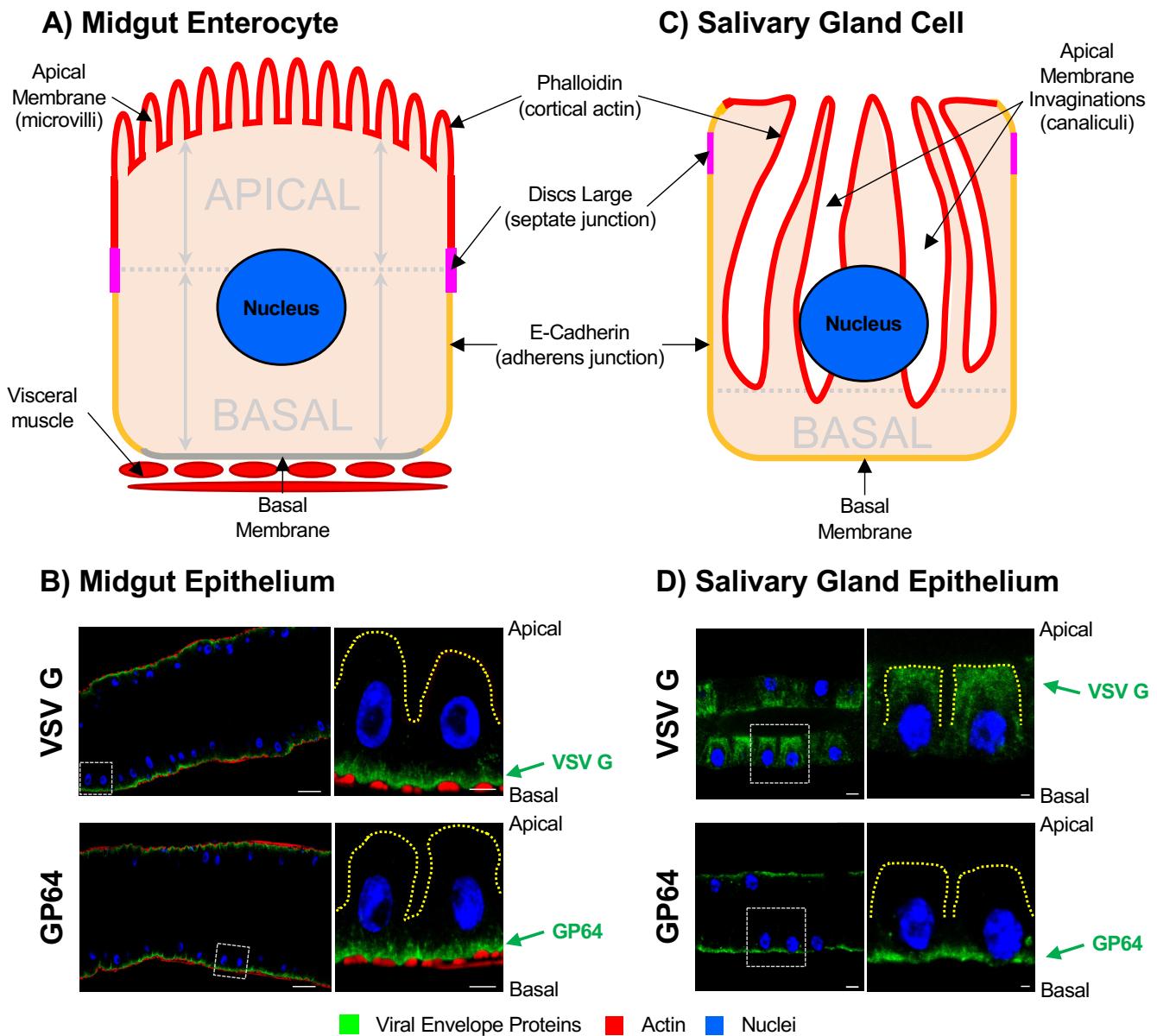
1203

1204 **Figure S5.**

1205 Distribution patterns of YFP-tagged Rab GTPases in *Drosophila* midgut enterocytes and salivary
1206 gland cells. Fly lines (Zhang et. al., 2007; DOI: 10.1534/genetics.106.066761Genetics 176:1307-
1207 22) inducibly and ubiquitously expressing each of 30 UAS-YFP-Rab GTPases for 3 days using
1208 the *da-GAL4*, *tub-GAL80^{ts}* driver were immunostained with chicken anti-GFP primary antibody
1209 and Alexa Fluor 488 goat anti-chicken secondary antibody (green). Actin (red) was labelled with
1210 Alexa Fluor 555 phalloidin, nuclei (blue) were stained with DAPI, and Discs large (magenta) was
1211 stained with mouse anti-Discs large primary antibody and Alexa Fluor 647 donkey anti-mouse
1212 secondary antibody. Scale bars represent 5 μm .

1213

1214 **Figure S6.**


1215 Relative levels of VSV G^{WT} and VSV G^{ΔY} in *Drosophila* midgut enterocytes. Permeabilized
1216 midgut tissues were used to determine whether the ΔY substitutions affect steady state levels of
1217 VSV G^{ΔY} compared to VSV G^{WT} in the entire cell. The total levels of VSV G^{ΔY} in enterocytes
1218 were significantly lower (18.5 times) than that of VSV G^{WT} (Pairwise Wilcoxon rank sum test: p
1219 $< 2.0 \times 10^{-16}$). VSV G expression was induced for 3 days under the *da-GAL4*, *tub-GAL80^{ts}* driver.
1220 VSV G was labelled with mouse anti-VSV G primary antibody and Alexa⁶⁴⁷-conjugated donkey
1221 anti-mouse secondary antibody. Signal levels were measured using ImageJ (as described in
1222 Materials and Methods). Differences in the relative levels of VSV G (WT vs ΔY) could result from
1223 differences in translation efficiency, processing, protein half-life or turnover, and/or from
1224 variations between different fly lines. We therefore focused on the relative distribution patterns of
1225 the VSV G^{WT} and VSV G^{ΔY} proteins in these studies.

1226

1227 **Table S1.**

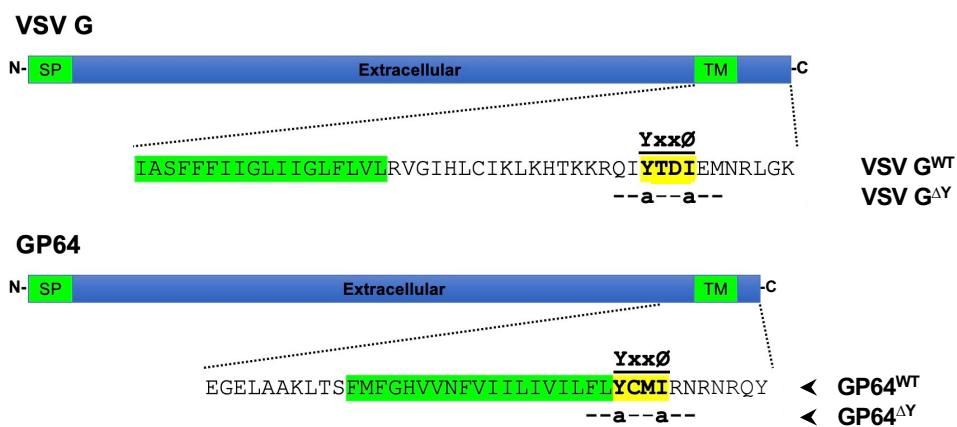

1228 Recipe of artificial *Drosophila* diet used in this study.

Figure 1

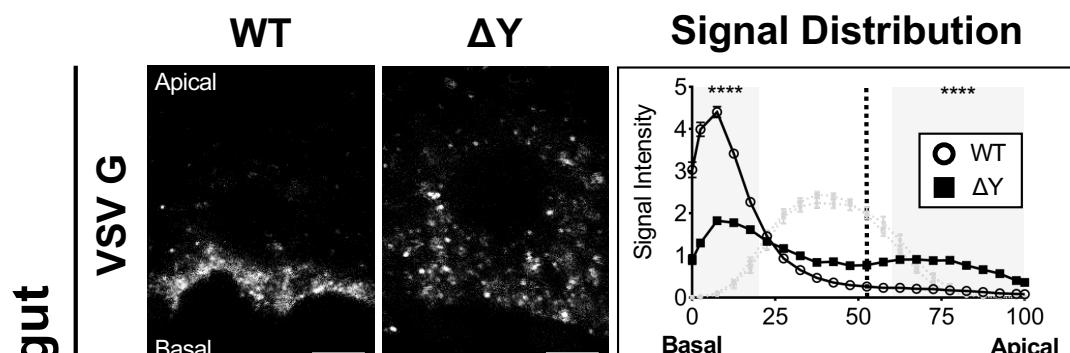
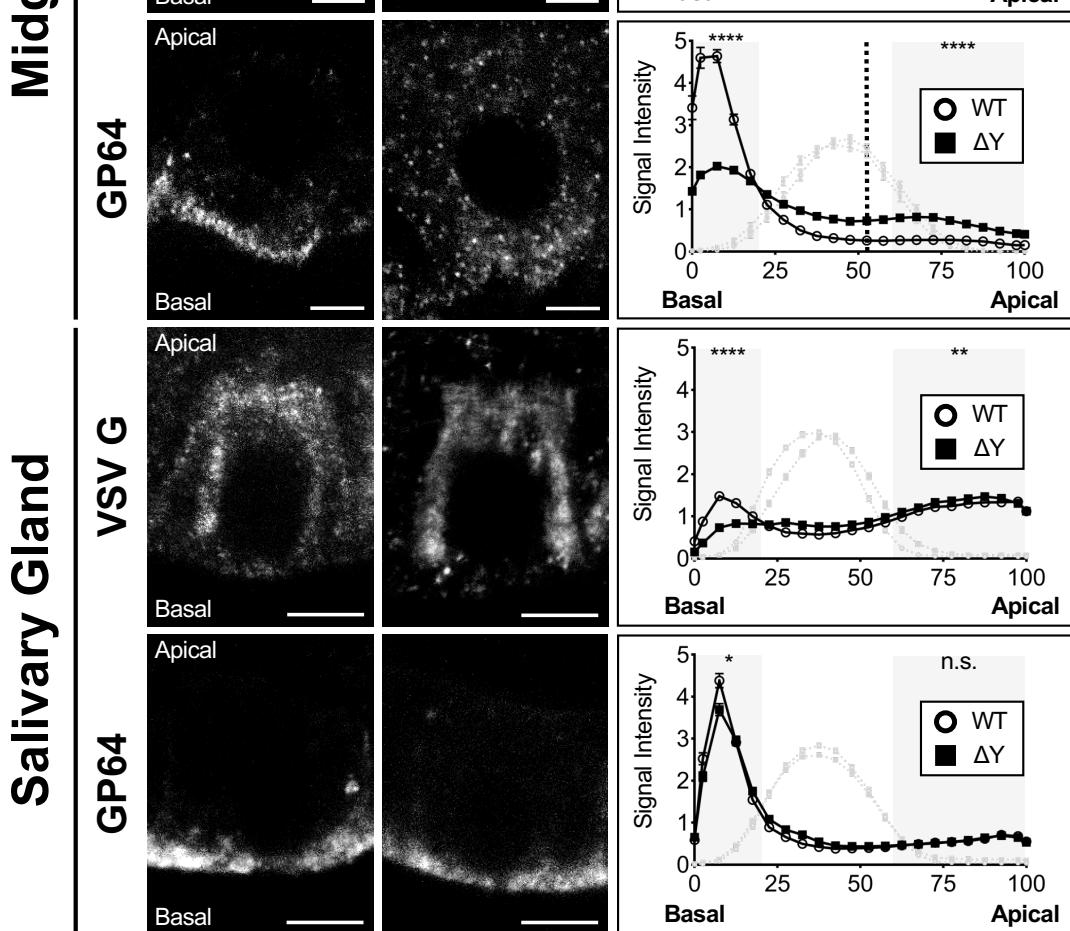
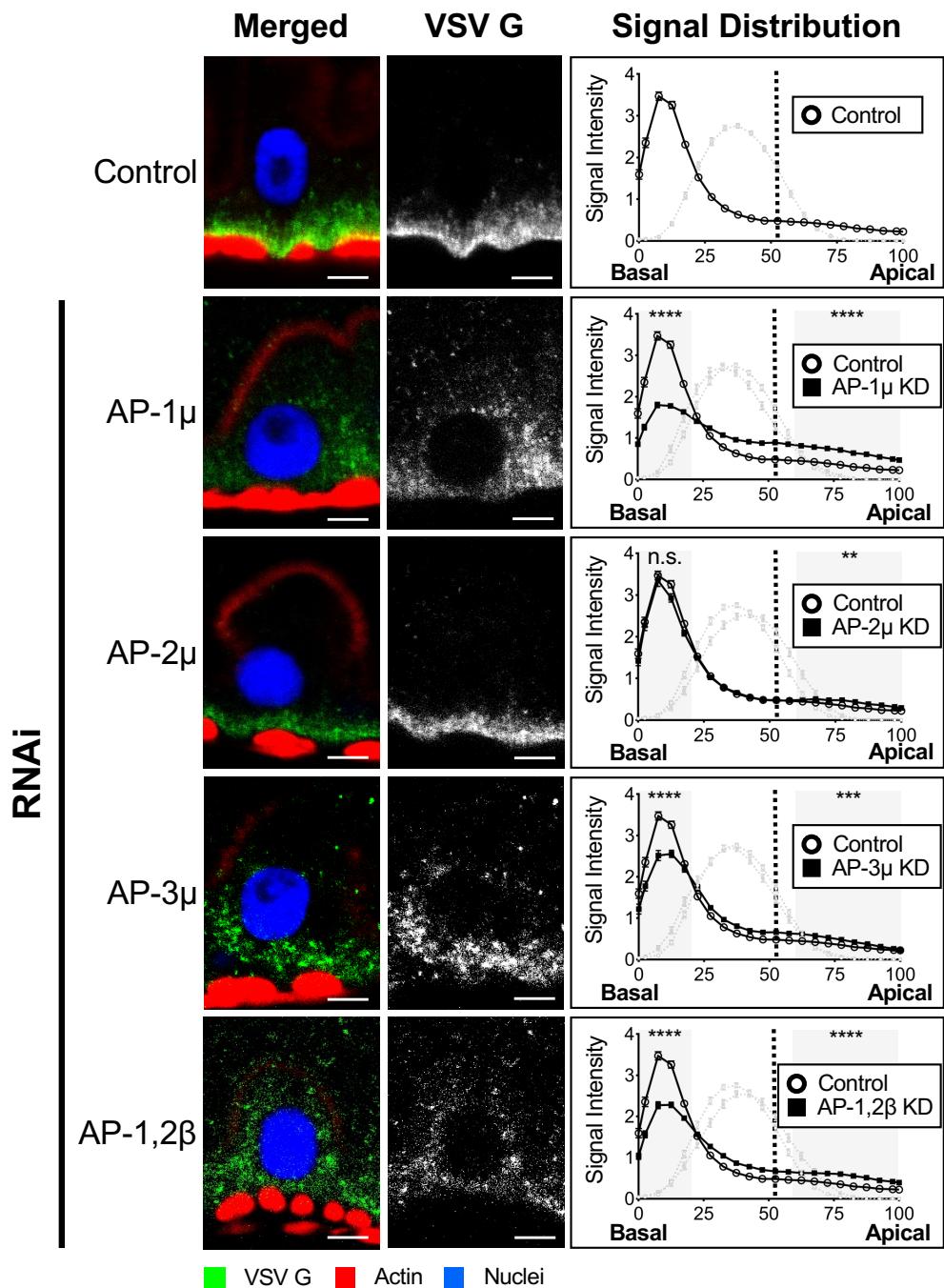
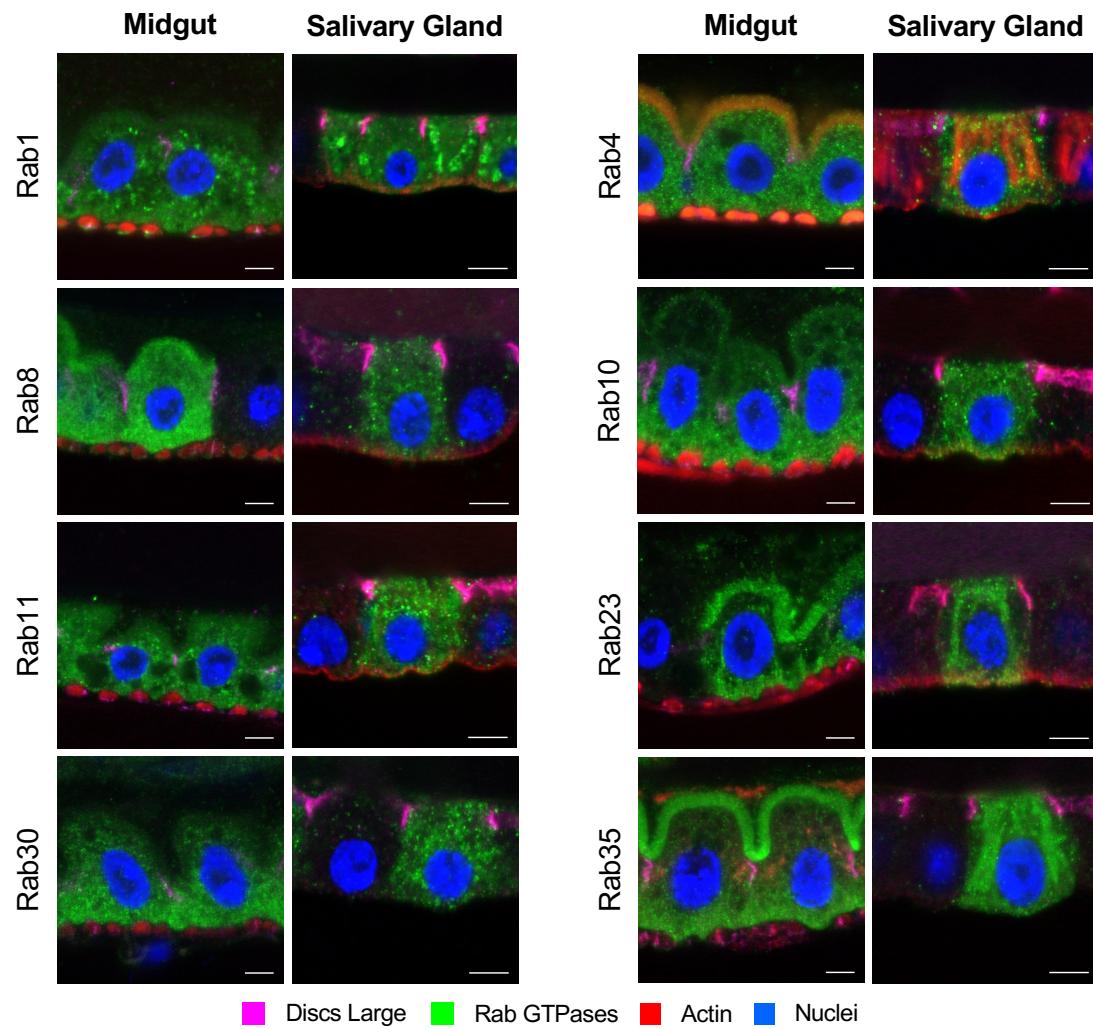
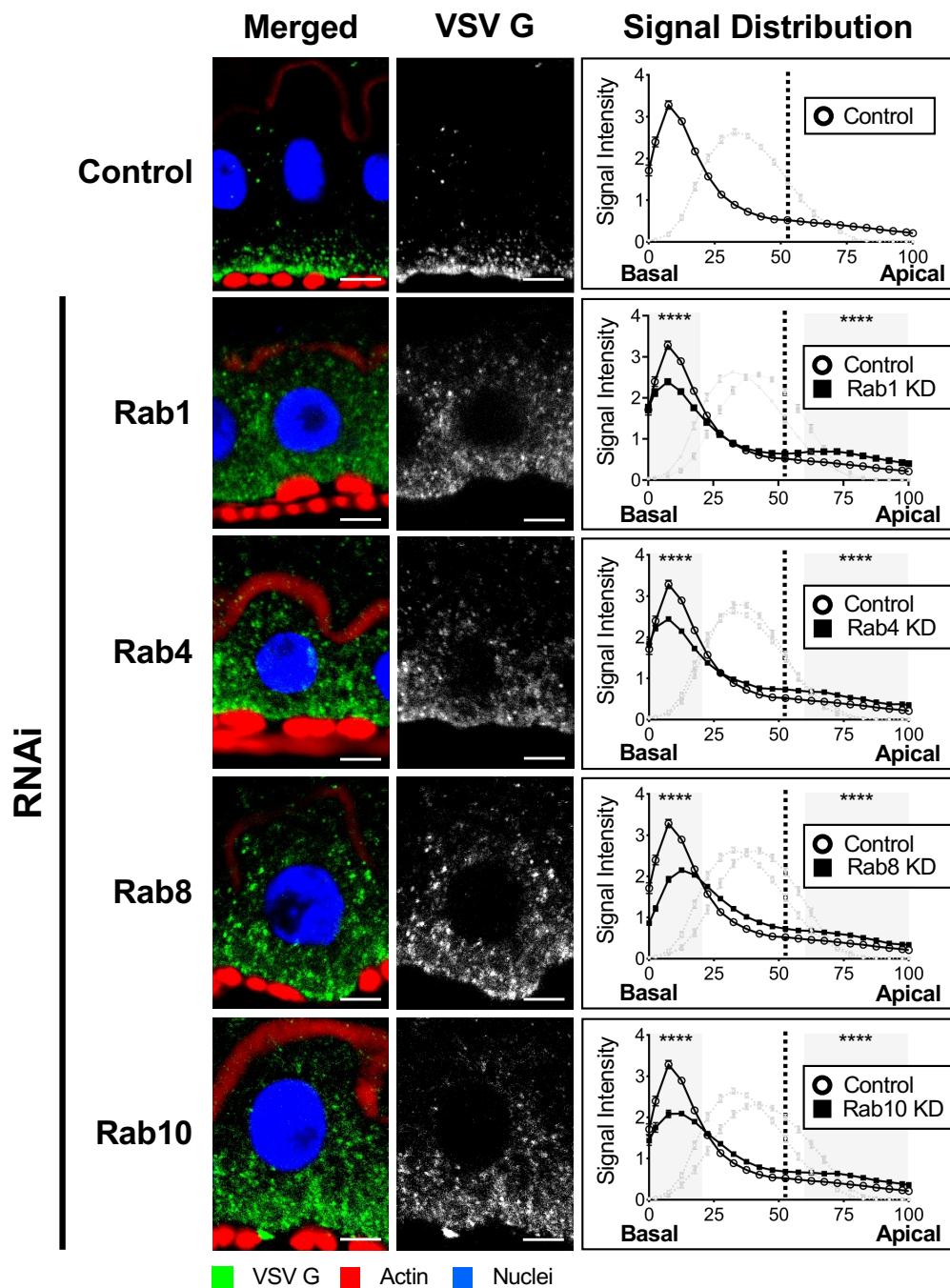


Figure 2


A)


B)


C)


Figure 3

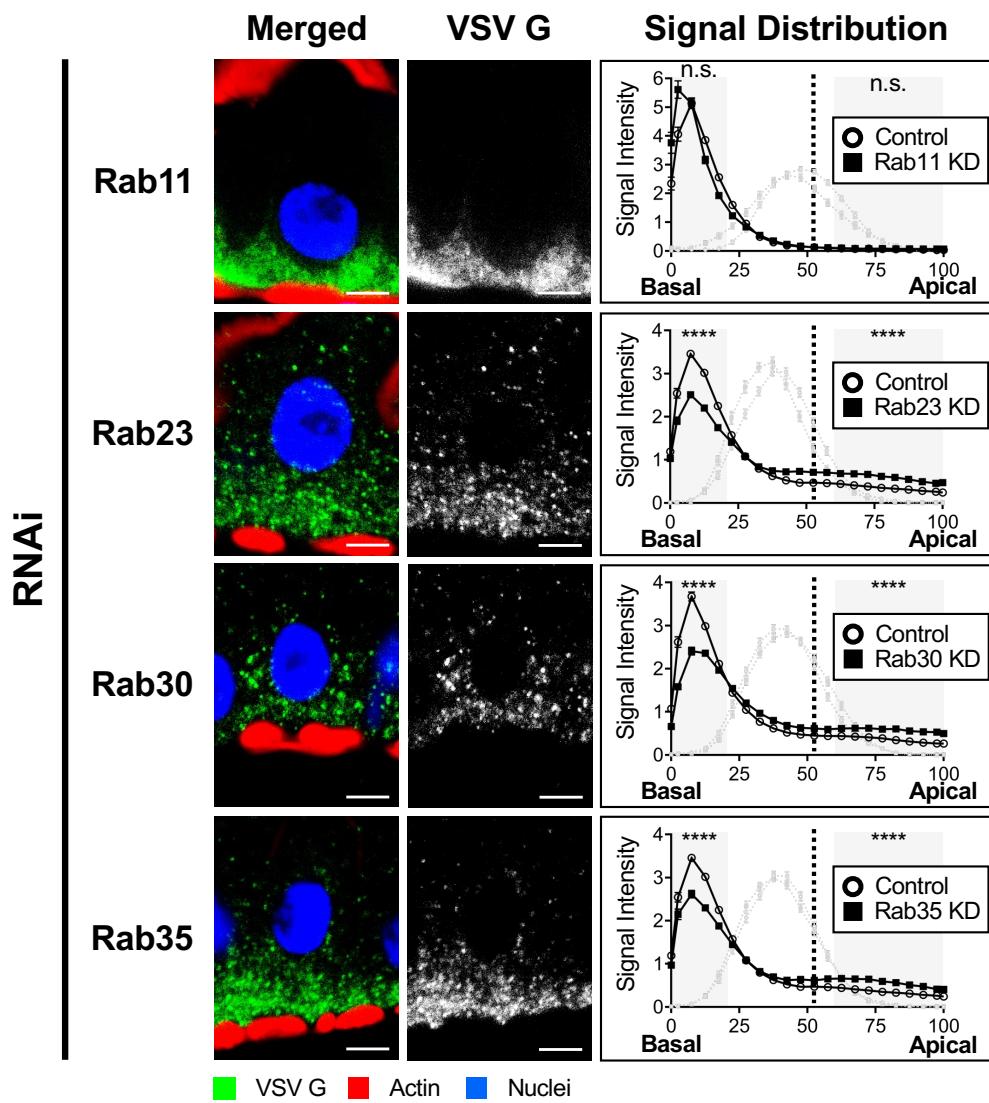
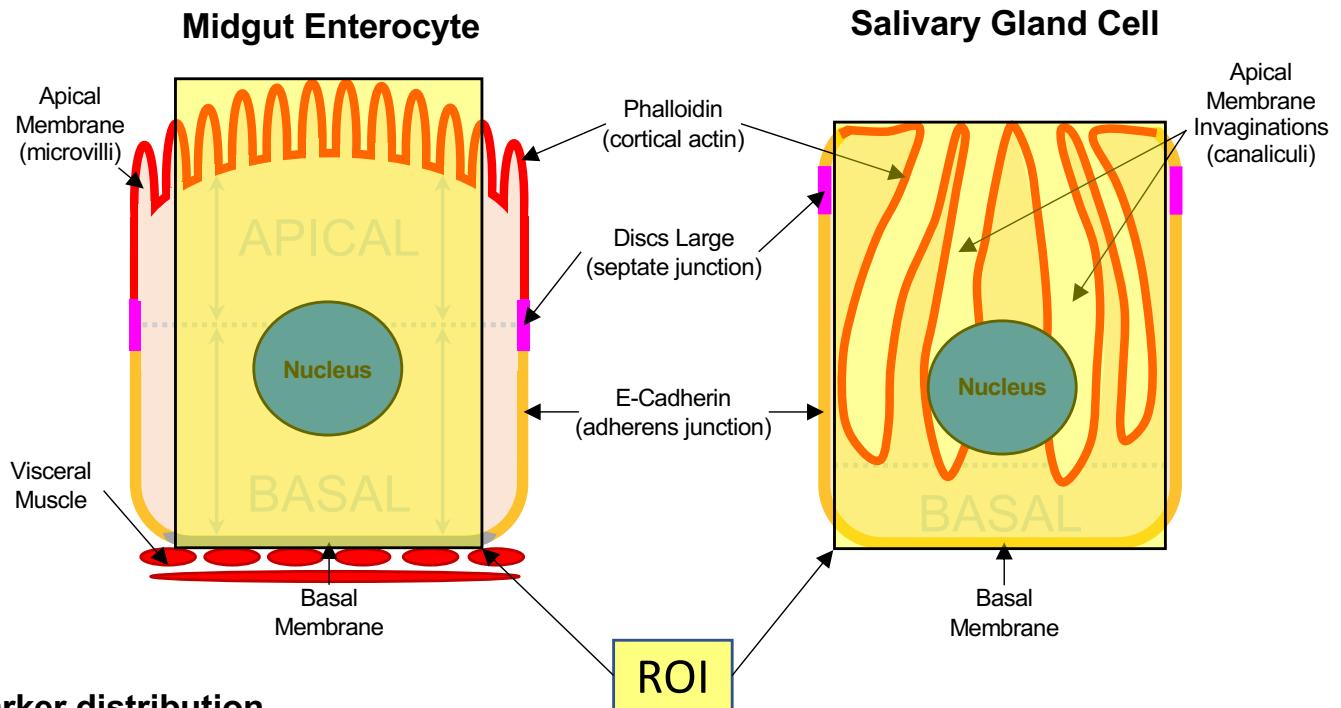

Figure 4

Figure 5


Figure 5 (continued)

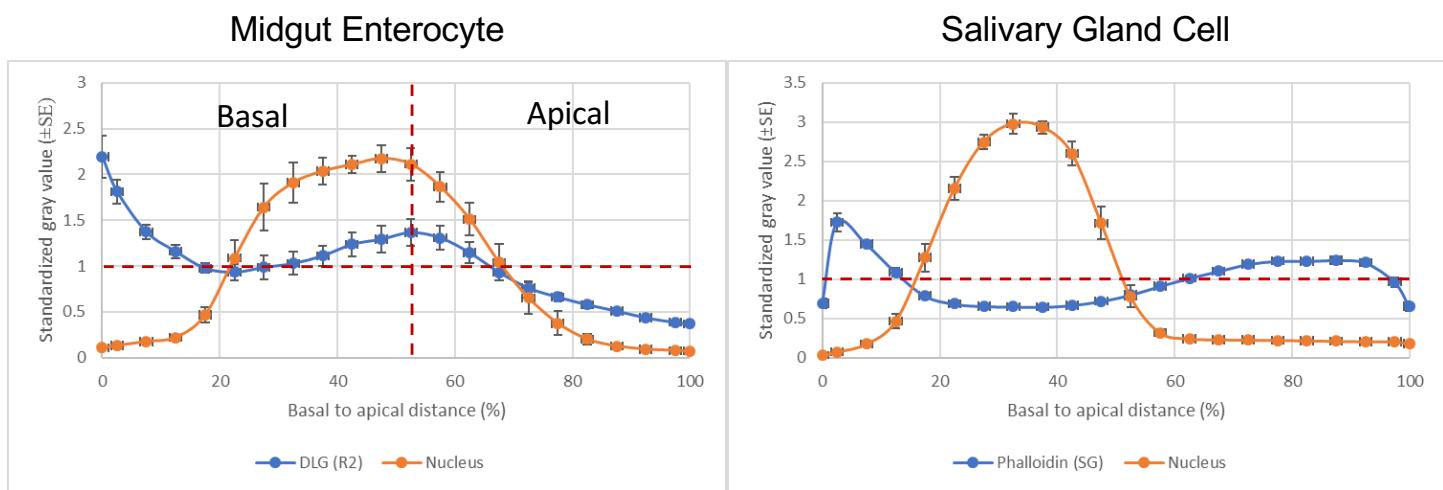
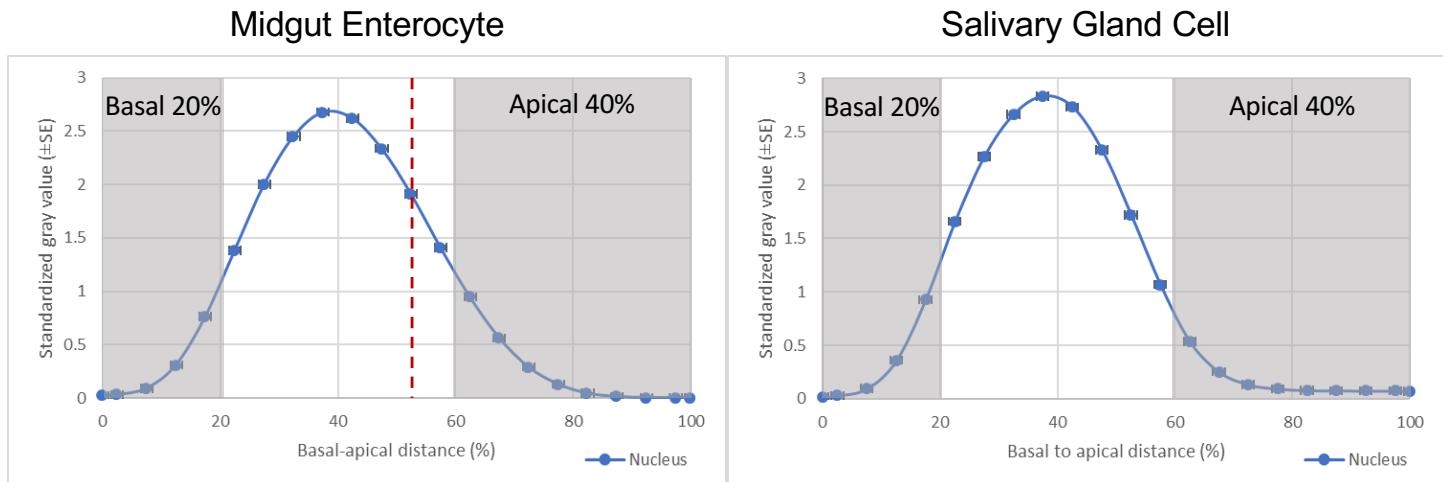

Supplemental Figures

Figure S1


A) Selection of regions of interest (ROI)

B) Marker distribution

C) Regions used for statistical analysis

Figure S2A

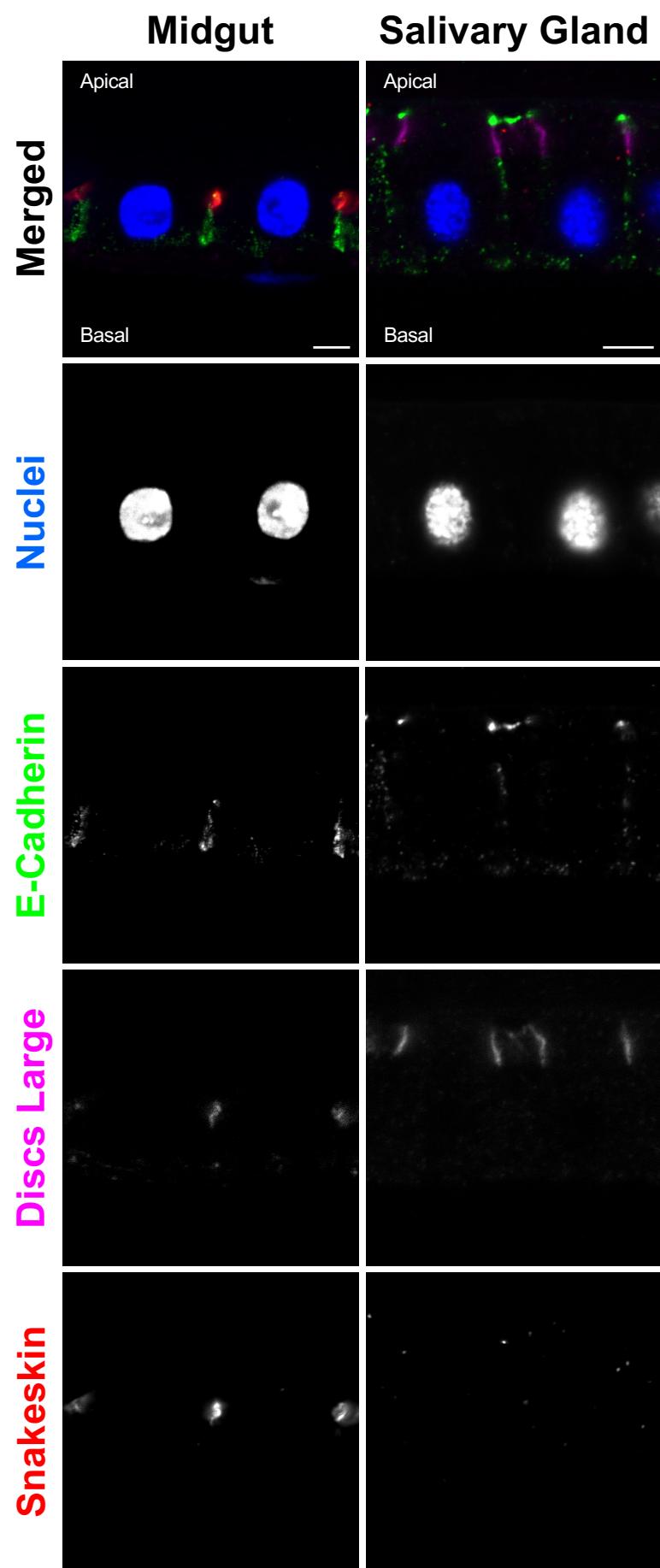
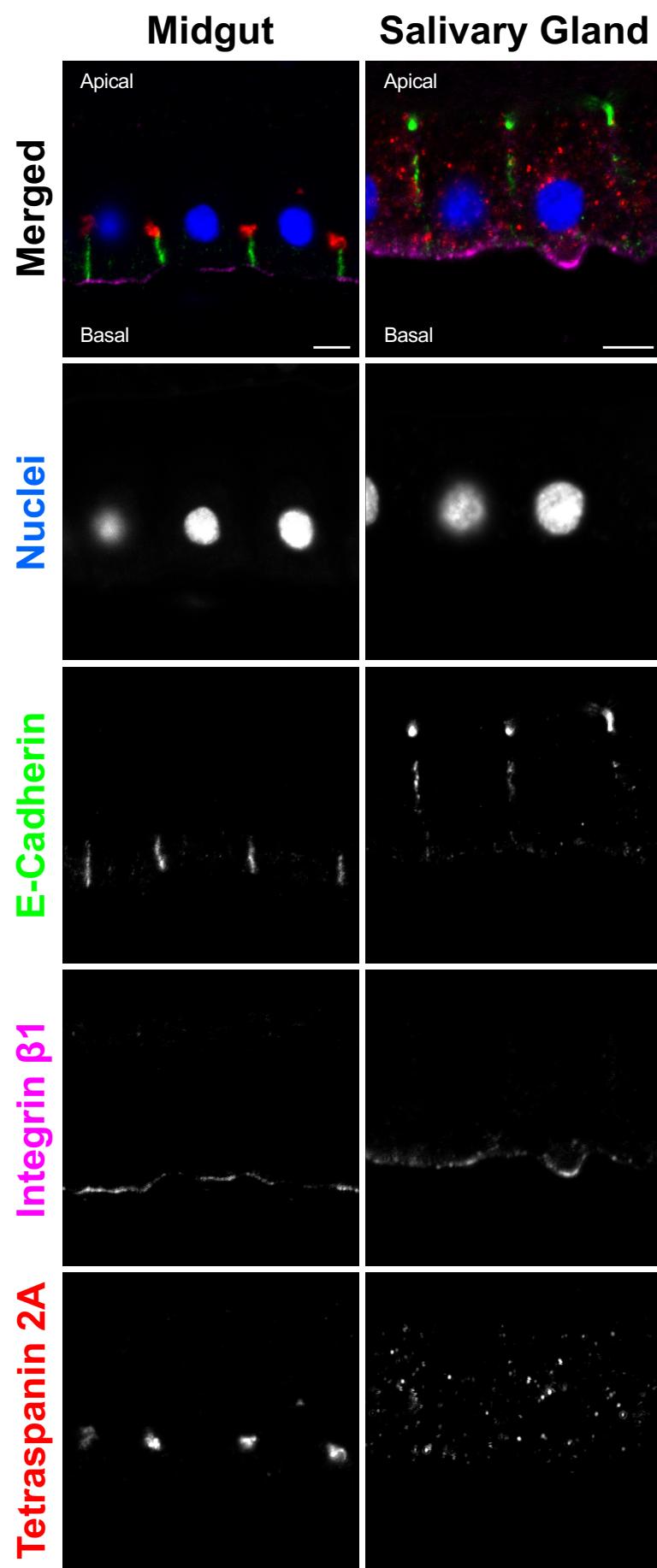
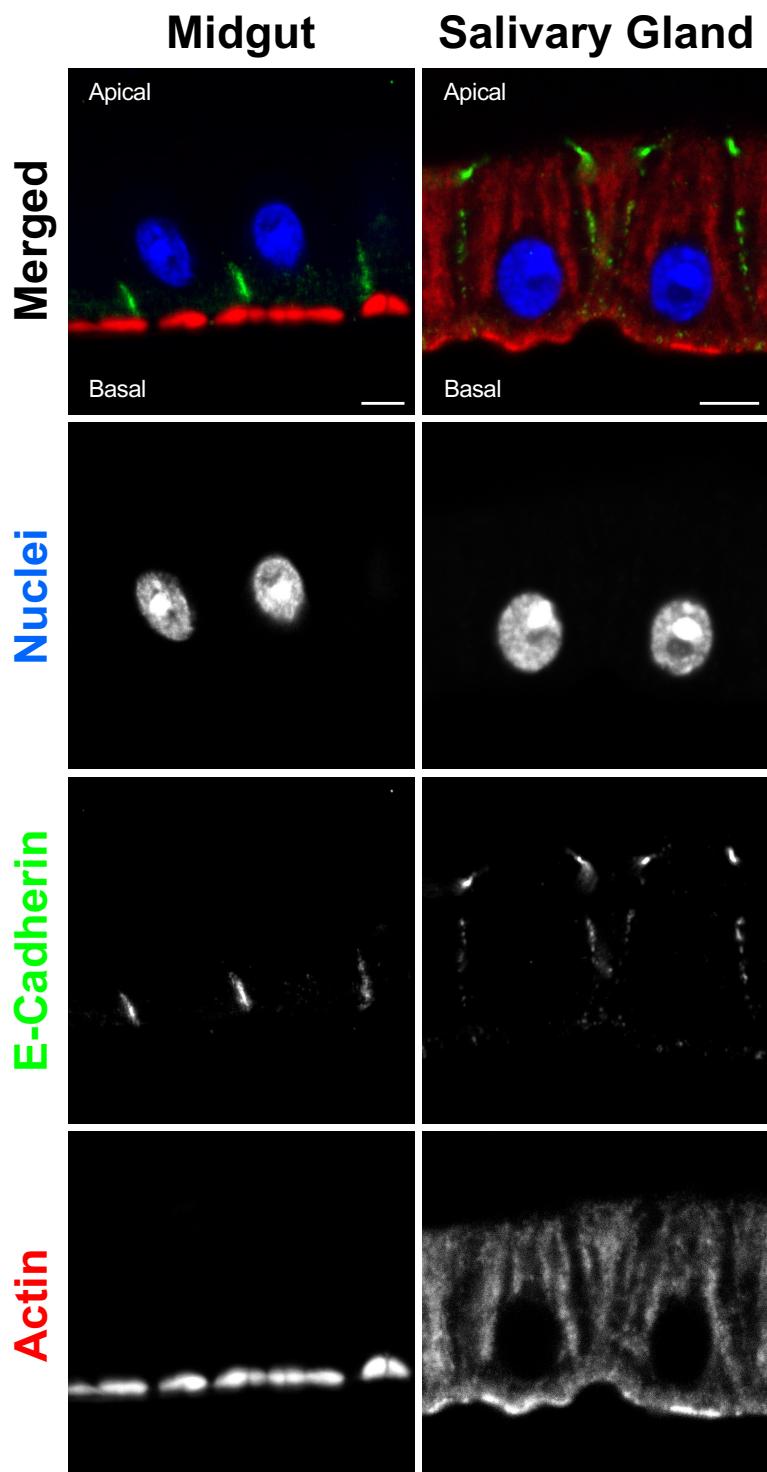




Figure S2B

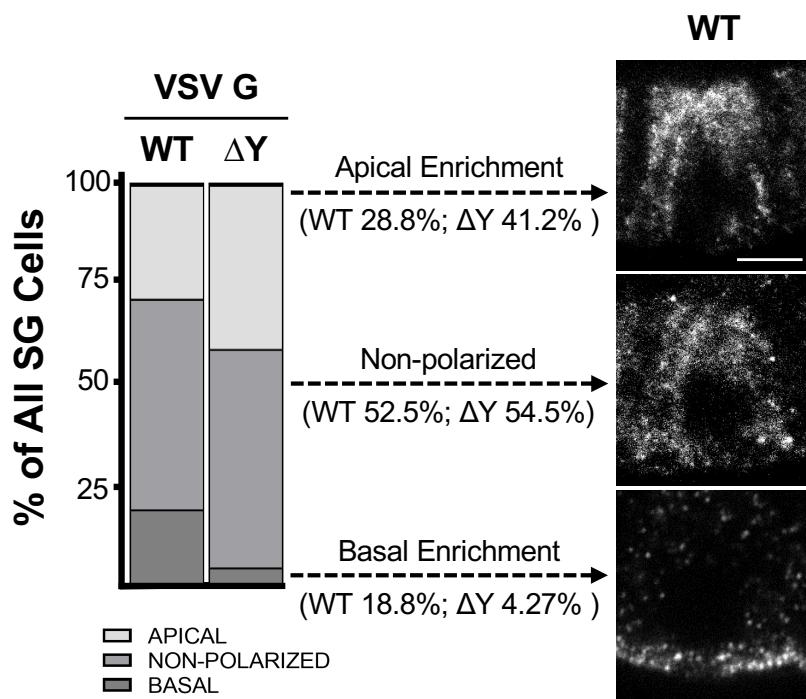


Figure S2C

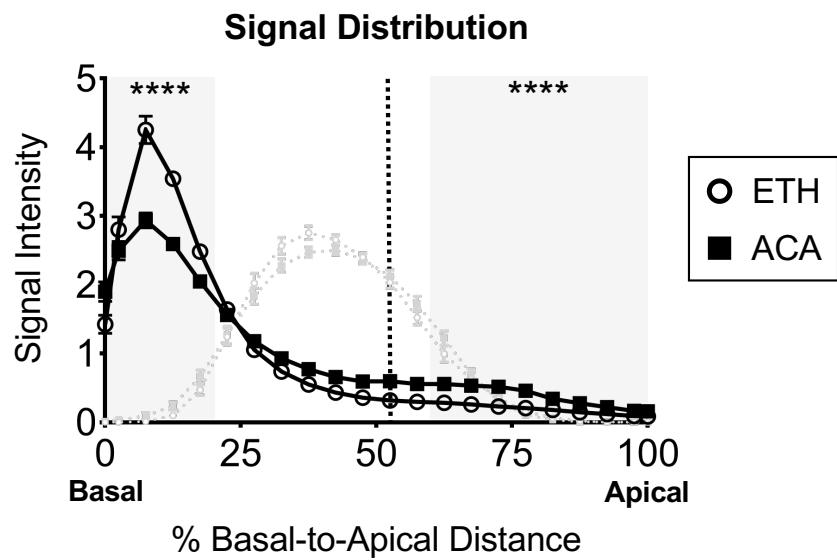


Figure S3

Distribution of VSV G in Salivary Gland Cells

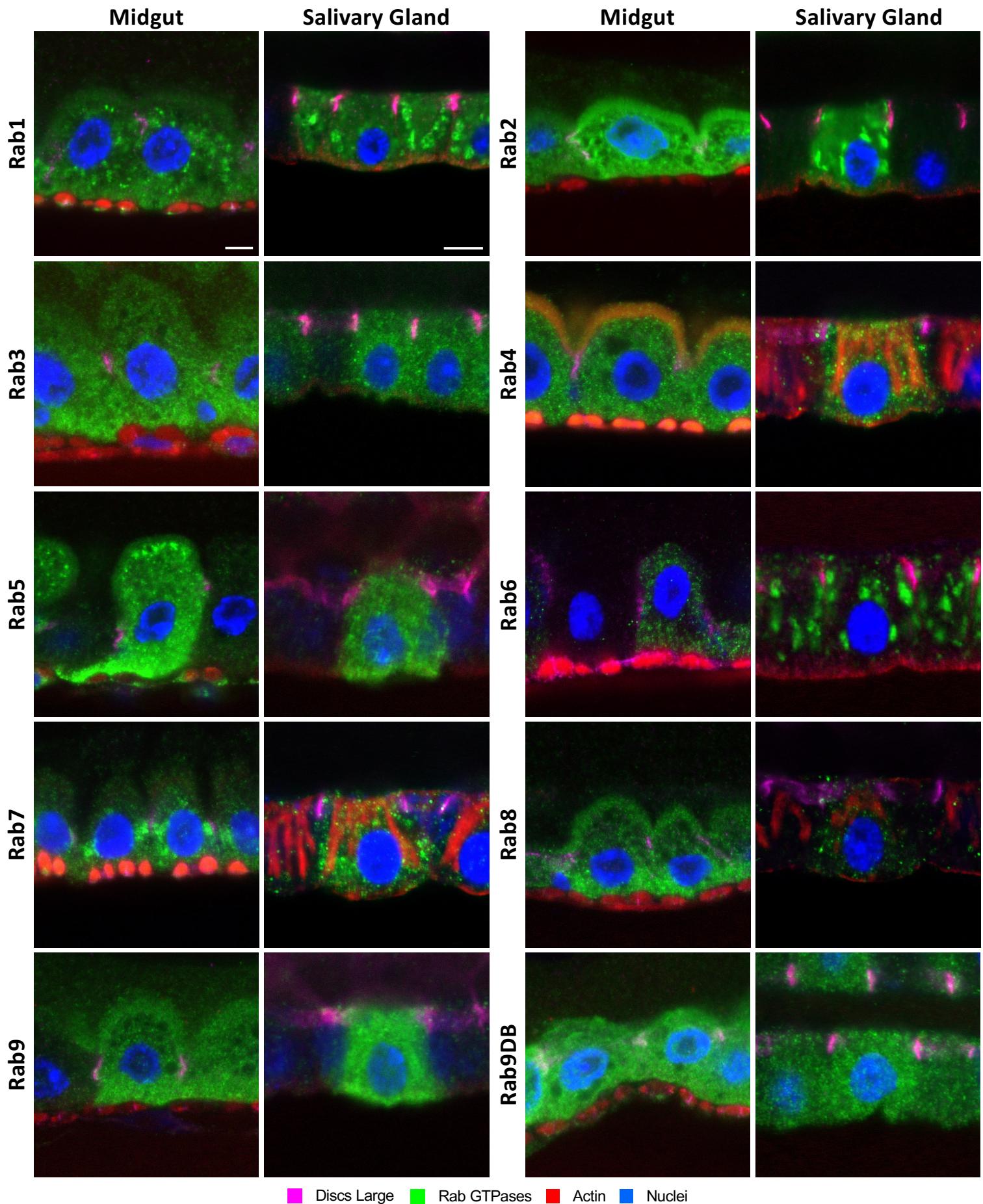
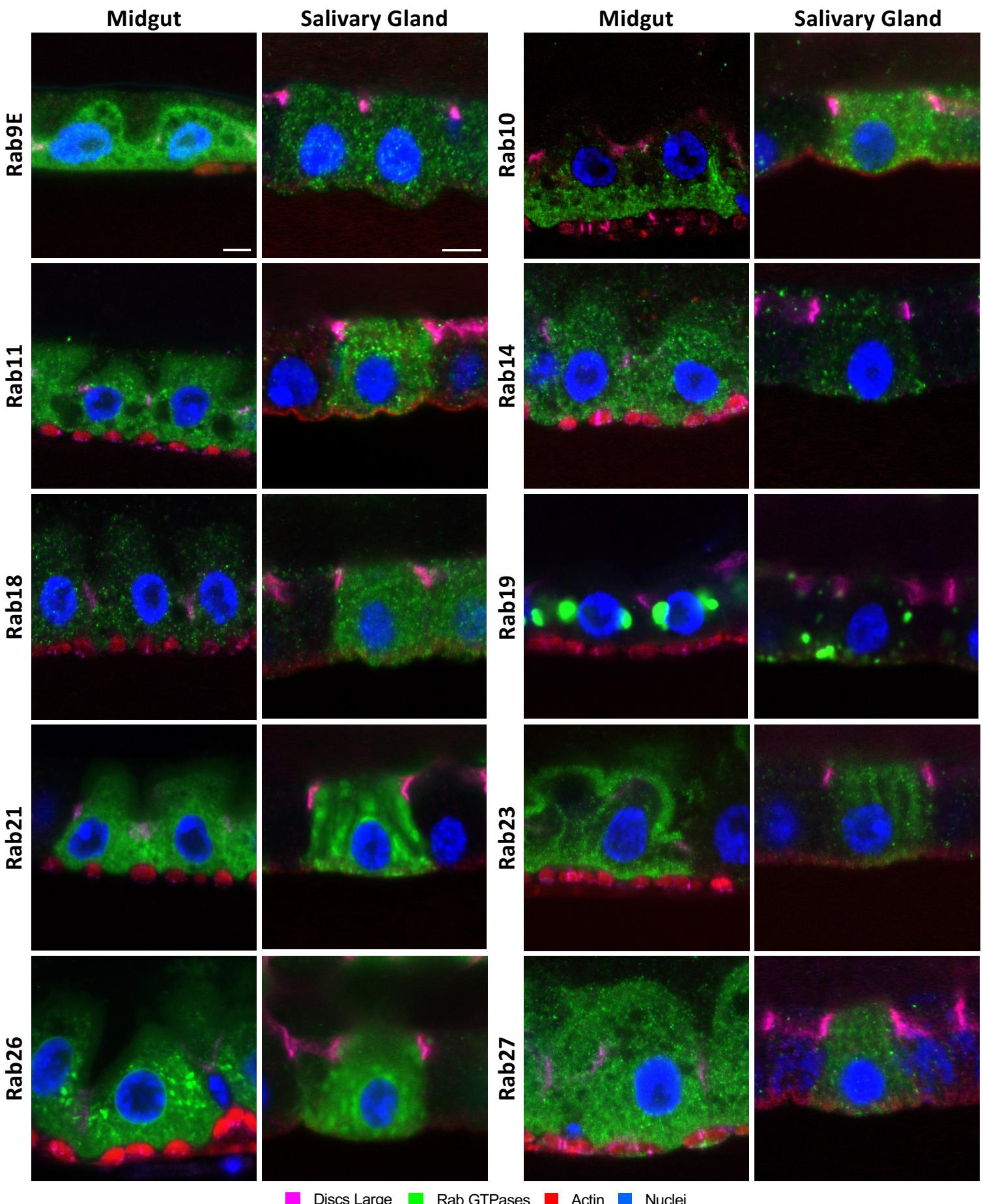
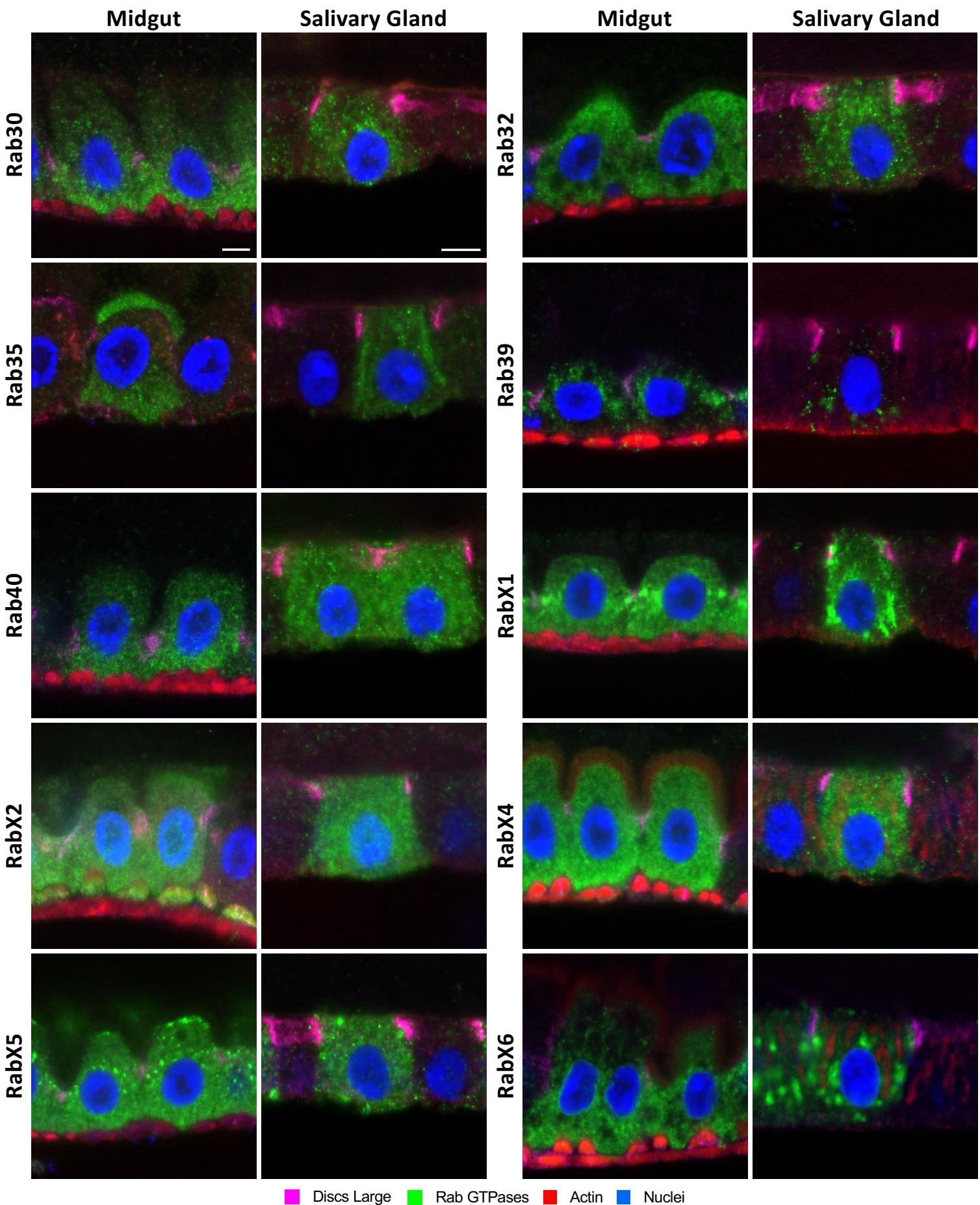


Figure S4

Figure S5A

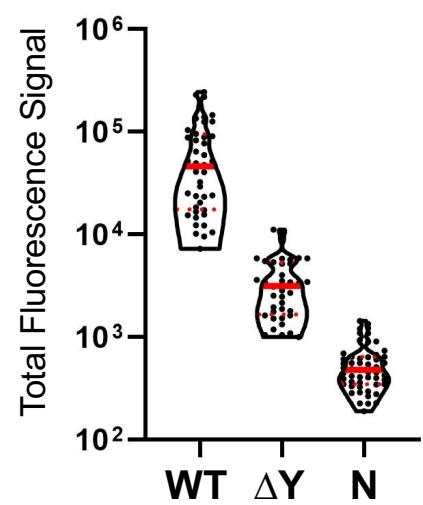

Distribution patterns of YFP-Rab GTPases in midgut enterocytes and salivary gland cells

■ Discs Large ■ Rab GTPases ■ Actin ■ Nuclei


Figure S5B

Distribution patterns of YFP-Rab GTPases in midgut enterocytes and salivary gland cells

Figure S5C


Distribution patterns of YFP-Rab GTPases in midgut enterocytes and salivary gland cells

■ Discs Large ■ Rab GTPases ■ Actin ■ Nuclei

Figure S6

Total VSV G Levels in ECs

Table S1

Artificial Fly Food Recipe (1L)

Ingredient	Amount
Yeast	50g
Yellow Cornmeal	60g
Sucrose	40g
Agar	7g
Moldex (10%)	26.5mL
Acid Mix	12mL
Water	804.5mL

10% Moldex Recipe (1L)

Ingredient	Amount
Moldex	100g
Ethanol (95%)	1L

Acid Mix Recipe (500mL)

Ingredient	Amount
Water	270mL
Propionic acid	209mL
Phosphoric acid	21mL