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Quantum Speedups for Multiproposal MCMC

Chin-Yi Lin∗, Kuo-Chin Chen†, Philippe Lemey§, Marc A. Suchard¶,
Andrew J. Holbrook‖, and Min-Hsiu Hsieh‡

Abstract. Multiproposal Markov chain Monte Carlo (MCMC) algorithms choose
from multiple proposals to generate their next chain step in order to sample from
challenging target distributions more efficiently. However, on classical machines,
these algorithms require !(P ) target evaluations for each Markov chain step when
choosing from P proposals. Recent work demonstrates the possibility of quadratic
quantum speedups for one such multiproposal MCMC algorithm. After generat-
ing P proposals, this quantum parallel MCMC (QPMCMC) algorithm requires only
!(

√
P ) target evaluations at each step, outperforming its classical counterpart.

However, generating P proposals using classical computers still requires !(P )
time complexity, resulting in the overall complexity of QPMCMC remaining !(P ).
Here, we present a new, faster quantum multiproposal MCMC strategy, QPMCMC2.
With a specially designed Tjelmeland distribution that generates proposals close
to the input state, QPMCMC2 requires only !(1) target evaluations and !(logP )
qubits when computing over a large number of proposals P . Unlike its slower
predecessor, the QPMCMC2 Markov kernel (1) maintains detailed balance exactly
and (2) is fully explicit for a large class of graphical models. We demonstrate
this flexibility by applying QPMCMC2 to novel Ising-type models built on bacterial
evolutionary networks and obtain significant speedups for Bayesian ancestral trait
reconstruction for 248 observed salmonella bacteria.
Keywords: Bayesian phylogenetics, MCMC, quantum algorithms, Ising models.

1 Introduction
In their many forms, multiproposal MCMC methods (Tjelmeland, 2004; Frenkel, 2004;
Delmas and Jourdain, 2009; Neal, 2011; Calderhead, 2014; Luo and Tjelmeland, 2019)
use multiple proposals to gain advantage over traditional MCMC algorithms (Metropo-
lis et al., 1953; Hastings, 1970) that only generate a single proposal at each step. After
generating a number of proposals, these methods randomly select the next Markov
chain state from a set containing all P proposals and the current state with selec-
tion probabilities involving the target and proposal density (mass) functions. How-
ever, this claimed advantage has one shortcoming: calculation of proposal probabilities
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2 Quantum Speedups for Multiproposal MCMC

typically scales !(P 2) which outweighs the aforementioned advantages, ultimately re-
sulting in degraded performance. Recent efforts (Glatt-Holtz et al., 2024a; Holbrook,
2023a) focus on efficient joint proposal structures that lead to computationally effi-
cient !(P )-time proposal selection probabilities. Even after incorporating efficient joint
proposals such as the Tjelmeland correction (Section 2.2), selection probabilities still
require evaluation of the function at each of the P proposals. Holbrook (2023b) uses
the Gumbel-max trick to turn the proposal selection task into a discrete optimiza-
tion procedure amenable to established quantum optimization techniques (Durr and
Hoyer, 1996; Yoder et al., 2014). On the one hand, the resulting QPMCMC algorithm fa-
cilitates quadratic speedups, only requiring !(

√
P ) target evaluations. Although these

quadratic speedups are significant, they are still not sufficient for QPMCMC to provide
advantages when increasing the proposal number P . On the other hand, these target
evaluations take the form of generic oracle calls embedded within successive Grover it-
erations (Grover, 1996), the circuit depth of which is not clear. Worse still, the fact that
the optimization algorithms of Durr and Hoyer (1996); Yoder et al. (2014) sometimes
fail to obtain the optimum means that the QPMCMC Markov kernel fails to maintain
detailed balance with non-negligible probability. The relationship between the algo-
rithm’s stationary distribution (if it exists) and the target distribution is unclear as a
result.

Our QPMCMC2 algorithm (Section 3.2) combines multiproposal MCMC with quan-
tum computing but improves upon QPMCMC in multiple ways. First, the QPMCMC2 cir-
cuit depth is !(1), i.e., it does not grow with the number of proposals P . Second,
the QPMCMC2 Markov kernel maintains detailed balance exactly, so the algorithm ob-
tains ergodicity and provides asymptotically exact estimators with the usual guaran-
tees (Tierney, 1994). Third, the QPMCMC2 circuit is fully explicit for a large class of
graphical models, making it possible to quantify circuit depth and the !(logP ) cir-
cuit width. Our algorithm uses the same efficient multiproposal structures as QPMCMC
to simplify selection probabilities, but this is where similarities cease. Instead of in-
directly choosing the next Markov chain state via quantum optimization, we directly
obtain selection probabilities as quantum probability amplitudes that provide weights
for superposed proposal states. Collapsing the quantum state results in easy proposal
selection.

Beyond QPMCMC, other quantum-accelerated MCMC algorithms, such as quantum
simulated annealing (QSA) (Somma et al., 2008) and the quantum Metropolis solver
(QMS) (Montanaro, 2015; Campos et al., 2023), have been proposed. While primarily
designed for optimization tasks, these algorithms can also perform sampling. Theoret-
ically, they achieve significant speedups during the convergence process by leveraging
quantum phase estimation (QPE) (Dorner et al., 2009) and Szegedy’s quantum walk
(Szegedy, 2004). However, these methods execute all iterations within a single quantum
circuit before measurement, drawing only one sample from the target distribution. This
approach has two notable limitations: (1) the reliance on very deep quantum circuits,
which are susceptible to substantial errors, and (2) the inability to retain the samples
generated across iterations as classical data.

Although making a direct comparison between QPMCMC2 and quantum MCMC algo-
rithms like QSA or QMS is challenging, QPMCMC2 offers distinct advantages. Unlike QSA
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and QMS, which rely on a single quantum circuit to process all iterations, QPMCMC2 em-
ploys a separate quantum circuit for each iteration. This significantly reduces the circuit
depth and, consequently, the error rates, making QPMCMC2 more practical for implemen-
tation on noisy quantum devices in the near term. Furthermore, the iterative structure
of QPMCMC2 enables the storage of all samples classically after each iteration, offering
greater flexibility and usability compared to the designs of QSA and QMS, where only
a single sample is generated at the end of the process.

We apply QPMCMC2 to ancestral trait reconstruction on bacterial evolutionary net-
works, the irregularity of which serves as a naturally arising test of the algorithm’s
flexibility. Phylogenetic comparative methods (Felsenstein, 1985) investigate the shared
evolution of biological traits and their mutual associations within or across species. Re-
cent statistical efforts in comparative phylogenetics emphasize big data scalability and
the application of increasingly complex models that condition on—or jointly infer—
phylogenetic trees describing shared evolutionary histories between observed taxa (Has-
sler et al., 2023). For example, Zhang et al. (2021, 2023) develop a statistical comput-
ing framework for learning dependencies between high-dimensional discrete traits and
apply their methods to the Bayesian analysis of, e.g., nearly 1,000 H1N1 influenza
viruses. Unfortunately, these methods are ill-suited for bacterial ancestral trait re-
construction. First, their dynamic programming routines for fast likelihood and log-
likelihood gradient calculations rely on the tree structure that directly characterizes
the shared evolutionary history of the observed specimens, and the phylogenetic tree
fails to capture the reticulate evolution that arises from the exchange of genetic ma-
terial between microbes. Second, the methods of Zhang et al. (2021, 2023) rely on
Gaussianity assumptions in order to efficiently integrate over unobserved ancestral
traits and obtain a reduced likelihood describing only the traits of observed speci-
mens.

Given these shortcomings, we instead define novel Ising-type models on Neighbor-
Net phylogenetic networks (Bryant and Moulton, 2004) that directly account for bacte-
rial reticulate evolution. Within these models, exterior nodes represent observed bacte-
ria, internal nodes represent unobserved ancestors, and spins, the discrete binary vari-
ables associated with each node, represent biological traits. Bayesian ancestral trait re-
construction then amounts to sampling interior spins while keeping exterior spins fixed.
We apply our QPMCMC2 to this sampling task for single- and multi-trait Ising models
that arise from a Neighbor-Net network characterizing the evolutionary history shared
by 248 salmonella bacteria. Notably, this same microbial collection features prominently
in high-impact studies (Mather et al., 2013; Cybis et al., 2015) of the evolution and de-
velopment of antibiotic resistances in salmonella bacteria, a matter of pressing societal
concern.

2 Preliminaries
We present limited introductions to the methods and ideas that are central to our
development and exposition of QPMCMC2, including MCMC and multiproposal MCMC.
See the Supplement (Lin et al., 2025) for a brief introduction to quantum computing.



4 Quantum Speedups for Multiproposal MCMC

2.1 MCMC and Barker’s Algorithm
Markov Chain Monte Carlo (MCMC) constitutes a class of algorithms that are useful for
sampling from probability distributions in situations where direct sampling is otherwise
untenable. Key applications of MCMC include inference of high-dimensional model
parameters within Bayesian inference (Gelman et al., 1995) and simulation of physical
many-body systems (Metropolis et al., 1953; Duane et al., 1987). In the following,
we consider the application of MCMC to discrete-valued models, but the framework
applies equally to both discrete and continuous contexts. Letting # denote some finite
or countably-infinite index set, we consider the discrete set {!α}α∈$. We identify our
target distribution π with a probability mass function π(·) defined with respect to the
counting measure on the power set 2$. The probability measure π may be, e.g., a
posterior distribution in Bayesian inference or a Boltzmann distribution in statistical
mechanics. However, the probability mass function π(·) cannot be accessed in most
practical scenarios. Instead, an unnormalized function π∗(·) ∝ π(·) is accessible.

In this context, Monte Carlo methods generate (pseudo) random samples in order
to obtain estimates of expectations Eπ(f) < ∞ for arbitrary bounded functions f
defined on the set {!α}α∈$. Whereas classical Monte Carlo techniques such as rejection
sampling tend to break down in high dimensions, MCMC effectively generates samples
from high-dimensional distributions by constructing a Markov chain with transition
kernel Q(·, ·) that maintains the target distribution π as a stationary distribution, i.e.,

π(α) =
∑

α′

π(α′)Q(α′,α), ∀α ∈ # . (1)

When designing such Markov kernels Q, it is helpful to note that the detailed balance
condition

π(α′)Q(α′,α) = π(α)Q(α,α′), ∀α,α′ ∈ # (2)

guarantees the kernel Q’s satisfaction of (1), while at the same time verifying more easily
than (1). The Metropolis-Hastings kernel (Metropolis et al., 1953) maintains detailed
balance using two steps: first, it generates a random proposal !1 ∼ q(!0,!1), where
!0 := !(s−1) is the current state of the Markov chain; second, it accepts the proposal
with probability aMH(!0,!1) or remains in the current state for one more iteration.

In fact, other acceptance probabilities besides aMH also maintain detailed balance
when coupled with proposals of the form q(!0,!1). We are particularly interested in the
Barker (Barker, 1965) acceptance probability

aB :=
π(!p)q(!p,!|p−1|)∑1

p′=0 π(!p′)q(!p′ ,!|p′−1|)
, p ∈ {0, 1}. (3)

When q(·, ·) is symmetric in its two arguments, (3) takes the salient form

π(!p)∑1
p′=0 π(!p′)

=: πp, p ∈ {0, 1}, (4)
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Algorithm 1 MCMC with Barker Acceptances and Symmetric Proposals
Input: An initial Markov chain state !(0); a routine for evaluating a function π∗(·) ∝

π(·), where π(·) is our target distribution’s probability mass function; a routine for
sampling !′ from a proposal distribution q(!,!′) symmetric in ! and !′; a routine
for sampling from a discrete distribution Discrete(·) parameterized by an arbitrary
probability vector; the number of samples to generate S.

1: for s ∈ {1, . . . , S} do
2: !0 ← !(s−1); !1 ∼ q(!0, ·);
3: "∗ = (π∗

0 ,π
∗
1)T where π∗

0 ← π∗(!0) and π∗
1 ← π∗(!1);

4: p̂ ∼ Discrete("∗/"∗T1); !(!) ← !"̂;
5: end for
6: return !(1), . . . ,!(#).

leading to Algorithm 1. The notation of (3) and (4) extends to the multiple proposal
case. Here, the development of symmetric joint proposals and simplified acceptances πp

is not straightforward, but leads to significant computational efficiencies. It is worth
noting that the simplified acceptances πp can be obtained by replacing π with π∗:

π∗(!p)∑1
p′=0 π

∗(!p′)
= π(!p)∑1

p′=0 π(!p′)
= πp, p ∈ {0, 1}. (5)

2.2 Multiproposal MCMC and the Tjelmeland Correction
Multiproposal MCMC algorithms use multiple proposals at each iteration to explore
target distributions more efficiently. Recently, Glatt-Holtz et al. (2024a) present general
measure theoretic foundations for the many different multiproposal MCMC algorithms
that already exist. Among many other important contributions, this abstract multi-
proposal MCMC framework incorporates: both Metropolis-Hastings-type and Barker-
type multiproposal MCMC acceptance criteria; and efficient joint proposal structures
(Tjelmeland, 2004; Holbrook, 2023a) called Tjelmeland corrections. We follow Holbrook
(2023a,b) and consider a multiproposal MCMC algorithm that combines Barker-type
acceptance criteria with the Tjelmeland correction.

Again letting !0 := !(s−1) denote the current state of the Markov chain, one ver-
sion of multiproposal MCMC proceeds by generating P proposals (!1, . . . ,!P ) =: Θ−0
from some joint distribution with probability mass function q(!0,Θ−0) and randomly
selecting the next Markov chain state from among the current and proposed states with
probabilities

πp := π(!p)q(!p,Θ−p)∑P
p′=0 π(!p′)q(!p′ ,Θ−p′)

= π∗(!p)q(!p,Θ−p)∑P
p′=0 π

∗(!p′)q(!p′ ,Θ−p′)
, p ∈ {0, . . . , P}, (6)

where Θ−p is the P -columned matrix that results when one extracts the vector !p

from the matrix (!0,!1, . . . ,!P ). Given the burdensome !(P 2) floating-point opera-
tions required to evaluate all P + 1 joint mass functions q(!p,Θ−p), Holbrook (2023a)
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Algorithm 2 Multiproposal MCMC with Barker Acceptances and the Tjelmeland Cor-
rection
Input: An initial Markov chain state !(0); a routine for evaluating a function π∗(·) ∝

π(·), where π(·) is our target distribution’s probability mass function; a routine for
sampling !′ from a Tjelmeland distribution q̄(!,!′) symmetric in ! and !′; a routine
for sampling from a discrete distribution Discrete(·) parameterized by an arbitrary
probability vector; the number of samples to generate S; the number of proposals
P .

1: for s ∈ {1, . . . , S} do
2: !0 ← !(s−1);
3: !(!) ← Multiproposal MCMC iteration (Algorithm 3)
4: end for
5: return !(1), . . . ,!(#).

recommends using joint proposal strategies that enforce the higher-order symmetry re-
lation

q(!0,Θ−0) = q(!1,Θ−1) = · · · = q(!P ,Θ−P ) (7)

and lead to simplified acceptance probabilities

πp = π∗(!p)∑P
p′=0 π

∗(!p′)
, p ∈ {0, 1, . . . , P}. (8)

To this end, Holbrook (2023a) shows that an elegant joint proposal structure put forth by
Tjelmeland (2004) leads to (7). This Tjelmeland correction uses a symmetric probability
distribution with mass function satisfying q̄(!,!′) = q̄(!′,!) to first generate a random
offset !̄ ∼ q̄(!0, ·) and then generate P proposals !1, . . . ,!P

iid∼ q̄(!̄, ·). Because

q(!0,Θ−0) =
∑

$̄

q̄(!0, !̄)
∏

p′ '=0
q̄(!̄,!p′) =

∑

$̄

q̄(!p, !̄)
∏

p′ '=p

q̄(!̄,!p′) = q(!p,Θ−p) ,

this joint proposal strategy satisfies (7) and leads to the simple multiproposal MCMC
routine shown in Algorithm 3. In the following, we refer to q̄(·, ·) as a Tjelmeland kernel
and q̄(!, ·) as a Tjelmeland distribution. According to Theorem 2.11 and Corollary 2.12
in Glatt-Holtz et al. (2024b), Algorithm 2 is guaranteed to maintain detail balance and
leaves the target distribution π∗(·) invariant.

3 Main Result: Fast Quantum Parallel MCMC
In this section, we introduce our main result for QPMCMC2 (Algorithm 4), which presents
a novel quantum sampling algorithm that surpasses the classical multiproposal MCMC
(Algorithm 2). Subsequently, we delineate the technical contribution, and illustrate its
significance in addressing the bottleneck identified in Algorithm 2. Finally, a compre-
hensive elucidation of our algorithm will be presented in detail.
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Algorithm 3 Multiproposal MCMC iteration with Barker Acceptances and the Tjelme-
land Correction
Input: An input Markov chain state !0; a routine for evaluating a function π∗(·) ∝

π(·), where π(·) is our target distribution’s probability mass function; a routine for
sampling !′ from a Tjelmeland distribution q̄(!,!′) symmetric in ! and !′; a routine
for sampling from a discrete distribution Discrete(·) parameterized by an arbitrary
probability vector; the number of proposals P .

1: !̄ ∼ q̄(!0, ·); !1, . . . ,!P
iid∼ q̄(!̄, ·);

2: "∗ = (π∗
0 ,π

∗
1 , . . . ,π

∗
P )T where π∗

p ← π∗(!"), p ∈ {0, 1, . . . , P};
3: p̂ ∼ Discrete("∗/"∗T1);
4: return !"̂.

QPMCMC2 (Algorithm 4) is a quantum sampling algorithm that serves as the quantum
counterpart to the classical multiproposal MCMC (Algorithm 2), offering improved time
complexity under specific conditions. This acceleration is achieved by substituting the
classical iteration step (Algorithm 3) with its quantum-enhanced version (Algorithm 5).
Theorem 3.1. Algorithm 5 is a quantum algorithm that is equivalent to Algorithm 3,
with the additional input ℒ that is a constant larger than max$∼q̄($′,·);$′∈$

[
π($)
π($′)

]
. This

quantum algorithm has a success probability given by:

R =
∑

p∈{0,...,P}

π∗
$̄
(!p)

P + 1 ,

where !̄ ∼ q̄(!0, ·) is the intermediate state generated from input state !0, and π∗
$̄

:=
π

π($̄)ℒ is an unnormalized probability mass function corresponding to π. The time com-
plexity of this quantum algorithm is expressed as:

2!(Oq̄) + !(Oπ∗
!̄
) + !(1), (9)

where Oq̄ and Oπ∗
!̄

represent the quantum operations corresponding to q̄(!,!′) and π∗
$̄
(·),

respectively.1 Furthermore, the success probability R can be lower bounded by a quantity
that only depends on q̄ and π as follow:

R ≥ ℳ
ℒ , (10)

where ℳ = min$∼q̄($′,·);$′∈$

[
π($)
π($′)

]
.

Algorithm 5 is the sub-algorithm used in each iteration of Algorithm 4, representing
a quantum accelerated version of Algorithm 3, which is the sub-algorithm of a single
iteration of the classical multiproposal MCMC (Algorithm 2). We note that Algorithm 3
requires evaluating π∗ and q̄ a total of P times, leading to !(P ) implementations of

1See Supplement for a detailed description.
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these functions. In contrast, Algorithm 5 requires only !(1) implementations, making
it independent of the choice of P . Although Algorithm 5 may fail with a probability
1 − R, it is lower bounded in Equation (10) which is independent of P . With this
quantum-enhanced MCMC iteration (Algorithm 5), the time complexity of QPMCMC2
(Algorithm 4) remains independent of P .

Notice that in Algorithm 5, the lower bound of the success rate R given in Equa-
tion (10) can generally be small while remaining independent of P . Here, we demonstrate
that for a target distribution π(·), if log π(·) satisfies the Lipschitz continuity property
(Definition 3.2), it is possible to calculate higher lower bounds for R for certain specifi-
cally designed Tjelmeland distributions q̄(·, ·).
Definition 3.2. Let K ∈ ℝ+ be a positive constant, and let (. , d* ) and (/ , d+) be
two metric spaces, where d* and d+ are the metrics on the sets . and / , respectively.
A function f : . → / is said to be K-Lipschitz continuous if:

d+(f(x1), f(x2)) ≤ K d* (x1, x2), ∀x1, x2 ∈ . .

For a target distribution π : # → [0, 1] such that log π(!) is K-Lipschitz, the follow-
ing property holds: ∣∣∣∣log

(
π(!1)
π(!2)

)∣∣∣∣ ≤ Kd$(!1,!2), (11)

where !1,!2 ∈ #.
To optimize the lower bound in Equation (10), we design the Tjelmeland distribution

q̄(·, ·) such that it only assigns non-zero probabilities to pairs of states !1,!2 that are
sufficiently close to each other, with a given threshold 2 ∈ ℝ+:

q̄(!1,!2) = 0, ∀d$(!1,!2) > 2. (12)

By combining Equation (11) and Equation (12), for all !′ ∈ # and ! ∼ q̄(!′, ·), the
following inequality holds:

e−KD ≤ π(!)
π(!′) ≤ eKD. (13)

Thus, by setting ℒ = eKD and substituting into Equation (10), we derive:

R ≥
min$∼q̄($′,·);$′∈$

[
π($)
π($′)

]

ℒ ≥ e−2KD.

From this analysis, we observe that reducing 2 leads to a higher lower bound for R,
thereby guaranteeing a higher success rate for Algorithm 5.

Unlike Algorithm 3, Algorithm 5 requires an additional input

ℒ ≥ max
$∼q̄($′,·);$′∈$

[
π(!)
π(!′)

]
.
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From the above analysis, we have shown that when log(π(·)) satisfies Equation (11), a
better choice of ℒ = eKD can be achieved. Additionally, in Section 4, we provide an
example of how to design q̄ to meet the requirement in Equation (12) in the case of
Ising model sampling. However, it is important to note that there is no guarantee to
find such a constant ℒ for arbitrary distributions π(·) and the Tjelmeland distributions
q̄(·, ·). Algorithm 4 and Algorithm 5 is only feasible when ℒ is provided.

Still, R could be very small in certain cases, leading to an enormous rerun of Al-
gorithm 5 as the scaling of !(1/R). In fact, the success rate R in Theorem 3.1 can be
enhanced to surpass 1

2 with !(1/
√
R) calls of Oq̄ and Oπ∗

!̄
, using the quantum amplitude

amplification algorithm presented by Brassard et al. (2000). This improvement leads to
the following corollary:
Corollary 3.2.1. By applying the quantum amplitude amplification algorithm from
Brassard et al. (2000) to Algorithm 5, the time complexity for implementing one itera-
tion in QPMCMC2 (line 2-5, Algorithm 4) is expressed as:

(2!(Oq̄) + !(Oπ∗
!̄
) + !(1)) ·!

( 1√
R

)
. (14)

The quantum amplitude amplification algorithm introduces a quadratic speedup
on the scaling of the success rate R, which is a suitable solution to small R. Detailed
description of the quantum amplitude amplification algorithm is provided in Section 3.3.

3.1 Significance
The significance of QPMCMC2 (Algorithm 4) is twofold. First, it demonstrates an im-
provement in time complexity over the classical multiproposal MCMC (Algorithm 2)
and the earlier quantum parallel MCMC algorithm QPMCMC proposed in (Holbrook,
2023b). Therefore, QPMCMC2 can be used to enhance the convergence rate by increasing
the number of proposals P without requiring P evaluating π∗ and q̄. Second, it enhances
sampling efficiency, particularly by increasing the effective sample size (ESS) (Gelman
et al., 1995), leading to more reliable estimates with fewer samples.

Improvement in Time Complexity

Previous studies have demonstrated the advantages of multiproposal MCMC algorithms
over, e.g., the Metropolis-Hastings algorithm. Specifically, an increase in the number of
proposals P in Algorithm 3, which is an iteration of Algorithm 2, leads to expedited
convergence in the sampling process.

However, this accelerated convergence speed comes with a certain drawback. Typi-
cally, the bottleneck in each iteration of the Markov chain, as outlined in Algorithm 2,
lies in the computation of π∗(·). The heightened number of π∗(·) computations required
by this multiproposal MCMC algorithm demands significant computational resources
when augmenting the proposal number P per iteration. In Algorithm 2, achieving a sin-
gle Markov chain iteration through classical computation necessitates a time complexity
of !(P ).
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Conversely, a quantum circuit can execute parallel calculations across different pro-
posals concurrently. This encompasses the generation of proposal sets, evaluation of
π∗
$̄
(!p) for each !p among this proposal sets, encoding them as a superposition state

with P + 1 components, and the selection of samples among them. This quantum ap-
proach holds promise in mitigating the bottleneck of the multiproposal MCMC algo-
rithm, thereby expediting the convergence process. By concurrently processing multiple
proposals, this quantum multiproposal MCMC algorithm becomes more competitive in
comparison to traditional algorithms that rely on a single proposal.

This work is not the first to utilize quantum circuits in an endeavor to expedite Algo-
rithm 2. In a prior investigation (Holbrook, 2023b), the employment of the Grover search
approach and the Gumbel-Max trick aimed to devise a quantum algorithm (QPMCMC) for
substituting lines 3-4 in Algorithm 2, thereby enhancing the time complexity of these
steps from !(P ) to !(

√
P ). It is noteworthy that, in that study, the acceleration did not

extend to the process of generating P proposal sets (line 2, Algorithm 2), maintaining
the overall complexity for a QPMCMC iteration at !(P ).

Upon comparing this work to the previously mentioned study, it becomes evident
that our approach signifies a notable advancement over them. When proposal count P
is large enough, with a designed Tjelmeland distribution q̄(·, ·) that generates proposals
closed enough to the input state, we achieve an exponential speedup in terms of the P ,
when contrasted with Algorithm 2.

Improvement in Effective Sample Size

With Theorem 3.1, we can improve another indicator of the sampling efficiency, which
is the effective sample size (ESS) (Gelman et al., 1995):

ESS := S∑∞
s=−∞ ρ(s) ,

where S is the number of MCMC samples, and ρ(s) is the autocorrelation of a univariate
time series at lag s. An effective sampler generally exhibits lower autocorrelation for
key model summary statistics, resulting in a larger ESS. The ESS provides a measure
of how many independent samples the correlated chain is equivalent to: it gives you an
idea of the true amount of information your sample contains, taking into account the
correlation between sample points. With the time complexity reduction in our quantum
algorithm, we are able to achieve a larger effective sample size per oracle, making a
more efficient MCMC sampling algorithm.

3.2 Improved Quantum Parallel MCMC and Its Time Complexity
In this subsection, we first provide a detailed description of the quantum-accelerated
multiproposal MCMC iteration (Algorithm 5) used in QPMCMC2 (Algorithm 4). We then
establish its correctness and analyze its time complexity. Similar to Algorithm 3, Al-
gorithm 5 takes the following inputs: an initial Markov chain state !0, the number
of proposals P , and the quantum oracles Oq̄ and Oπ∗

!̄
, which correspond to q̄(!,!′)
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Algorithm 4 Quantum accelerated multiproposal MCMC (QPMCMC2)
Input: An initial Markov chain state !(0); an oracle Oq̄ for sampling !′ from

a Tjelmeland distribution q̄(!,!′) symmetric in ! and !′; a constant ℒ ≥
max$∼q̄($′,·);$′∈$[ π($)

π($′) ]; a control rotation operator CR(·); the number of samples
to generate S; the number of proposals P .

1: for s ∈ {1, . . . , S} do
2: !0 ← !(s−1); !(s) ← Stop
3: while !(s) == Stop do
4: !(s) ← Quantum accelerated multiproposal MCMC iteration (Algorithm 5)
5: end while
6: end for
7: return !(1), . . . ,!(S).

Algorithm 5 Quantum accelerated multiproposal MCMC iteration (An iteration of
QPMCMC2)
Input: An input Markov chain state !0; an oracle Oq̄ for sampling !′ from a Tjelme-

land distribution q̄(!,!′) symmetric in ! and !′; an oracle Oπ∗
!′ for evaluating

an unnormalized probability mass function π∗
$′(·) = π(·)

π($′)ℒ ∝ π(·) with the given
ℒ ≥ max$∼q̄($′,·);$′∈$[ π($)

π($′) ]; a control rotation operator CR(·); the number of pro-
posals P .

1: Prepare a quantum state |ψ0〉 = |0〉- |0〉ℋ0
|0〉ℋ1

|0〉ℋ2
|0〉Π |0〉S

2: Encode !0 in ℋ0.
3: Apply Oq̄, which takes query from ℋ0 and responses the intermediate state !̄ in ℋ1
4: Make a uniform superposition state in 5
5: Apply Oq̄, which takes a query from ℋ1, and responses in ℋ2 on each state
6: Apply Oπ∗

!̄
with , which takes a query from ℋ2, and responses in Π on each state

7: Apply a control rotation gate CR (controlled by each |p〉-), which takes a query
from Π and maps |0〉/ to

√
1 − π∗

$̄
(!p) |0〉S +

√
π∗
$̄
(!p) |1〉S

8: Make a measurement;
9: if 6 register is 0 then:

10: return Stop
11: else
12: !(s) ← the data in ℋ2
13: return !(s)

14: end if

and π∗
$̄

in Algorithm 3, respectively. Additionally, Algorithm 5 requires an extra input
ℒ ≥ max$∼q̄($′,·);$′∈$[ π($)

π($′) ]. Finally, it requires a controlled rotation operation CR.
These quantum operations are introduced in Section 2.3.

The quantum algorithm begins by initializing several quantum registers according
to the following scheme:
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• The first register, denoted as 5, is encoded with the labels of proposals {0, · · · , P}
as specified in Algorithm 2.

• The second register, labeled ℋ0, is encoded with the input state !0.

• The third register, termed ℋ1, is encoded with the random offset !̄ as described
in Algorithm 2.

• The fourth register, denoted as ℋ2, is encoded with the proposals !p
i.i.d.∼ q̄(!,!′)

for each label of proposal p ∈ {0, · · · , P}.

• The fifth register, denoted as Π, is encoded with the evaluated value from the
target distribution π(·) for each label of proposal p.

• The last register, designated as 6, is a register indicating whether the implemen-
tation of the Markov chain is successful or not.

The quantum Algorithm 5 commences by initializing these quantum registers to hold
zero and subsequently executing five steps.

Initially, Algorithm 5 encodes the initial Markov chain state !0 into the register ℋ0.
This operation necessitates approximately !(log(|#|)) controlled-NOT gate operations
where # is the parameter space (introduced in Section 2.1).

Secondly, Algorithm 5 considers an operator Oq̄ characterized by the Tjelmeland
distribution q̄(!0, ·). This operation selects a state !̄ from the distribution q̄(!0, ·) and
encodes this state into the register ℋ1. The resulting state is represented as:

|0〉- |!0〉ℋ0

∣∣!̄
〉
ℋ1

|0〉ℋ2
|0〉Π |0〉S ,

where !̄ ∼ q̄ (!0, ·). The time required for this step is !(Oq̄).
Thirdly, Algorithm 5 creates a uniformly distributed superposition in register 5 such

that each state is entangled with the proposal states !p encoded in register ℋ2. This
process can be achieved by employing approximately !(log(P )) rotation gate operations
on register 5, followed by an operation Oq̄ controlled by each |p〉- . The resultant state
is given by:

1√
P + 1

P∑

p=0
|p〉- |!0〉ℋ0

∣∣!̄
〉
ℋ1

|!p〉ℋ2
|0〉Π |0〉S ,

where !1, . . . ,!P
i.i.d.∼ q̄(θ̄, ·). Note that the time complexity for this operation is !(Oq̄)+

!(1).
The fourth step involves encoding the evaluated value from the target distribution

π(·) for each proposal label into the prefactor of each state. This task comprises two
operations: the first is an oracle Oπ∗

!̄
that accepts queries from ℋ2 and responds with
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the answer in the Π register. Subsequently, a controlled rotation operator CR receives
a query from Π and rotates the qubit in 6. The resulting state is expressed as:

1√
P + 1

P∑

p=0
|p〉- |!0〉ℋ0

∣∣!̄
〉
ℋ1

|!p〉ℋ2

∣∣π∗
$̄(!p)

〉
Π

[√
1 − π∗

$̄
(!p) |0〉/ +

√
π∗
$̄
(!p) |1〉/

]

=
√
R |SUCC〉-,ℋ0,ℋ1,ℋ2,Π |1〉/ +

√
1 −R |FAIL〉-,ℋ0,ℋ1,ℋ2,Π |0〉/ ,

(15)
where we denote R =

∑P
p′=0 π∗

!̄($p′ )
P+1 and set |SUCC〉2 as follows:

|SUCC〉 =
P∑

p=0

√⏐⏐√ π∗
$̄
(!p)

∑P
p′=0 π

∗
$̄
(!p′)

|p〉- |!0〉ℋ0

∣∣!̄
〉
ℋ1

|!p〉ℋ2

∣∣π∗
$̄(!p)

〉
Π .

The remaining states are left as
√

1 −R |FAIL〉. Notice that for all p = 0, . . . , P ,
π∗
$̄
(!p) = π(·)

π($̄)ℒ ∈ [0, 1]. This guarantees that √1 − π∗
$̄

and √
π∗
$̄
∈ [0, 1]. The time

complexity of this task is !(Oπ∗
!̄
) + !(1).

In the final step, Algorithm 5 executes two measurements: the initial measurement
targets the 6 register, followed by a subsequent measurement on the ℋ2 register. Should
the qubit within the 6 register yield a state of 1, the resultant state is altered to:

|SUCC〉 =
P∑

p=0

√⏐⏐√ π∗
$̄
(!p)

∑P
p′=0 π

∗
$̄
(!p′)

|p〉- |!0〉ℋ0

∣∣!̄
〉
ℋ1

|!p〉ℋ2

∣∣π∗
$̄(!p)

〉
Π |1〉/ .

Subsequently, Algorithm 5 performs a measurement on the ℋ2 register, denoting the
outcome as !(s), representing the selected state in the sth Markov chain.

Next, we give a proof of Theorem 3.1.

Proof. The success rate R of Algorithm 5 is the probability of the event that the mea-
surement in the register 6 yields 1. According to Equation (15), R has the following
expression:

R =
∑P

p′=0 π
∗
$̄
(!p′)

P + 1 ≥ min
p∈{0,...,P}

(π∗
$̄(!p)). (16)

According to Algorithm 5, with the generated intermediate state !̄ and the given
ℒ ≥ max$∼q̄($′,·);$′∈$[π($)

π($̄) ], we set π∗
$̄
(·) = π(·)

π($̄)ℒ .

R ≥ min
p∈{0,...,P}

(π∗
$̄(!p)) ≥

min$∼q̄($′,·);$′∈$[π($)
π($̄) ]

ℒ .

Consequently, Theorem 3.1 follows.

In the Section 3.3, we introduce an advanced version of Algorithm 5 with improved
success rate using quantum amplitude amplification (Brassard et al., 2000).

2To reduce the burden of notation, we omit the subscript.
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3.3 QPMCMC2 with Amplitude Amplification
Let χ : X → {0, 1} be a Boolean function that partitions the set X into “good” elements
(where χ(x) = 1) and “bad” elements. Consider a quantum algorithm A such that
A|0〉 =

∑
x∈X αx|x〉, with a =

∑
x is good |αx|2 representing the probability of producing

a good element. If we repeatedly run #, measure the output, and use χ to verify the
result, the expected number of trials to find a good element is 1/a.

Quantum amplitude amplification (AA) (Brassard et al., 2000) is a well-studied
technique that boost the amplitude of target state among superpositions. Using AA,
the number of applications of A and its inverse needed to find a good element, with-
out intermediate measurements, reduces to !(1/√a). This generalizes Grover’s search
algorithm (Grover, 1996) and applies even when there is no promise of a unique solution.

Referring to Algorithm 5, which maps |0〉 to Equation (15) as follows:
√
R |SUCC〉 |1〉/ +

√
1 −R |FAIL〉 |0〉/ . (17)

Applying quantum amplitude amplification with the setting where A is as defined in
Algorithm 5, and the “good” state corresponds to the superposition state associated
with |1〉/ , the probability of measuring the good state is guaranteed to surpass 1/2 after
!(1/

√
R) applications of lines 1-8 in Algorithm 5. Thus, we have the Corollary 3.2.1.

In Section 4 and 5, we’ll discuss the performance of QPMCMC2 through the implemen-
tation on inferring traits on a phylogenetic network.

4 Case Study: Inferring Traits on a Phylogenetic
Network

In order to have a clearer image of how it works, we introduce the problem of inferring
traits on a phylogenetic network as a suitable case study. In this section, we’ll give brief
introduction on this problem, then go through specific settings of Algorithm 4 we used
in this case. Lastly, we’ll provide further analysis on the success rate R corresponding
to our specific settings. The implementation results are left to section 5.

4.1 Introduction to Comparative Phylogenetics and Ancestral Trait
Reconstruction

Sampling algorithms are essential to the field of comparative phylogenetics, in gen-
eral, and Bayesian phylogenetics (Suchard et al., 2018), in particular. Here, we start
with a fixed phylogenetic tree structure and the traits of observed biological specimens
(Figure 1). We make the basic assumption that closely related taxa tend to share the
same traits and establish a phylogenetic Ising model to predict the trait combinations
of unobserved ancestors. We also adapt this model to deviations from the basic tree
graph structure in the context of bacterial reticulate evolution and extend this model
to incorporate multiple traits.
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Figure 1: This phylogenetic tree 7 has Mo = 3 leaf nodes, Mo − 1 = 2 = Ma internal
nodes and 2Mo − 1 = 5 = Mtot total nodes. Leaf nodes represent observed taxa, and
internal nodes are unobserved ancestors. We observe a binary trait variable σm for each
of the leaf nodes and model all (both observed and unobserved) traits σm using an Ising
model with interactions jmm′ which condition on weights wmm′ > 0.

Specifically, suppose we assume a phylogenetic tree 7 (Figure 1) structure that
describes the shared evolutionary history giving rise to Mo observed taxa indexed
m ∈ {Mo − 1, . . . , 2Mo − 1 = Mtot}. This phylogenetic tree is a rooted, undirected,
bifurcating and weighted graph that contains Mtot = 2Mo− 1 nodes, Mo of which (cor-
responding to observed taxa) are leaf nodes, and Ma = Mo − 1 are internal nodes. This
graph also contains 2Mo−2 edges, each of which has its own weight wmm′ > 0. If no edge
exists between the node pair m,m′, we say wm,m′ = ∞. When edges exist, these weights
are roughly proportional to the length of time spanning the existence of two organisms.
Furthermore, suppose that we observe a binary trait, σm ∈ {−1, 1} for each of our ob-
served taxa. We then may use a simple Ising model (Daskalakis et al., 2011) to describe
the joint distribution over observed and unobserved traits # = (σ0, . . . ,σMtot−1):

Pr(#|β, γ,7) ∝ exp

⎛

⎝β
∑

m,m′

jmm′σmσm′

⎞

⎠ , where jmm′ = fγ

( 1
wmm′

)
(18)

and β > 0, fγ : [0,∞) → [0,∞), fγ(0) = 0 and fγ is an increasing function. For
example, fγ(x) = γ

√
x for γ > 0 is one of many possibilities. In the following, we treat

γ and β as fixed, but one may learn them simultaneously with the rest of the model
parameters in the context of Bayesian inference. From (18), we obtain the likelihood for
the observed traits #o = (σMa , . . . ,σMtot−1) by conditioning on unobserved ancestral
traits #a = (σ0, . . . ,σMa−1):

Pr(#o|#a,β, γ,7) ∝ exp

⎛

⎝β
∑

m,m′

jm,m′σmσm′

⎞

⎠ . (19)

Placing the uniform prior on the ancestral traits Pr(#a) ∝ 1, the posterior distribution
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for ancestral traits conditioned on observed traits becomes

Pr(#a|#o,β, γ,7) ∝ Pr(#o|#a,β, γ,7) · Pr(#a) ∝ exp

⎛

⎝β
∑

m,m′

jm,m′σmσm′

⎞

⎠ . (20)

Within the Bayesian paradigm of statistical inference, the problem of inferring unob-
served ancestral traits #a reduces to simulating from the Ising model (3) while keeping
observed traits #o fixed. Note that it is relatively simple to infer the joint posterior
p(#a,β, γ|#o,7), although we do not consider this task here.

We build on this core model in two orthogonal ways. First, we consider the multi-
trait scenario and model T binary traits by allotting the mth specimen a spin of the
form #m = (σm,1, . . . ,σm,T ). Following a development analogous to that of (18), (19)
and (20), we specify a multi-trait phylogenetic Ising model that leads to the posterior
distribution

Pr(#a|#o,β, γ,7) ∝ exp

⎛

⎝β
∑

m,m′

jm,m′#m · #m′

⎞

⎠ , (21)

and #a = (#0, . . . ,#Ma−1). Second, we consider failures of the bifurcating evolutionary
tree hypothesis. Bacterial reticulate evolution (Figure 2) arises from the exchange of
genetic material between microbes. In this context, it is appropriate to model evolution
using a phylogenetic network. The Neighbor-net (Bryant and Moulton, 2004) algorithm
is a popular algorithm for phylogenetic network construction that uses distances be-
tween genetic sequences to construct a planar splits graph. In this graph, extremal
nodes are observed specimens, and interior nodes are potential ancestors. Whereas this
evolutionary network model does not represent an explicit history of individual retic-
ulations, it does represent conflicting signals regarding potential reticulations. These
candidate reticulations take the form of the interior boxes that manifest in Figure 3.

Figure 2: Reticulate evolution. This stylized bacterial phylogenetic network includes a
reticulation (dashed line) that characterizes the exchange of genetic material between
microbes. Whereas the network deviates from the bifurcating tree hypothesis of Figure 1,
the problem of ancestral trait reconstruction is still meaningful.
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On the one hand, using such a phylogenetic network as the base lattice structure
in phylogenetic Ising models does not alter the mathematical details of the posterior
distributions (20) and (21). On the other hand, the existence of cycles in the splits
graph makes sampling these distributions significantly more difficult. Holbrook (2023b)
shows Algorithm 2’s potential for sampling from such challenging target distributions
and advances QPMCMC, which approximately performs this algorithm. In the following,
we present QPMCMC2 and its massive speedups over the !(P ) complexity of Algorithm
2 and the !(

√
P ) complexity of QPMCMC.

4.2 Functions Used in QPMCMC2
The learning of ancestral traits (Section 4.1) within a known phylogenetic network
illustrates our algorithm’s speed, flexibility and fully-explicit nature. Consider a phy-
logenetic network 7(V,E), where V denotes a set of Mtot vertices and E represents a
set of edges. Let Vo be a designated subset of V signifying the observed taxa within
this context, and Va = V \Vo be the complement set of Vo. For the network shown in
Figure 2, we have Mtot = |V | = 11, Vo = {5, . . . , 10} and Va = {0, . . . , 4}. Using the
notation of Sections 2.1, 2.2 and 3, we identify any Markov chain state with a collection
of ancestral traits thus:

! = (#0,#1, . . . ,#Ma−1) , (22)
where #m = (σm,1, . . . ,σm,T ) for σm,t ∈ {−1, 1}. Assuming that each (m,m′) ∈ E
possesses an identical weight J , we rewrite the posterior (21) as

Pr(#a|#o, J,7) ∝ exp

⎛

⎝J
∑

(m,m′)∈E

#m · #m′

⎞

⎠ and set π(!) := Pr(#a|#o, J,7) .

(23)

Fixing the observed traits and sampling unobserved ancestral traits using QPMCMC2
amounts to efficient posterior inference.

In the following, we specify the Tjelmeland distribution q̄(·, ·) and detail the target
distribution π∗(·) for the phylogenetic Ising model. Next, we analyze the qubit require-
ments when applying Algorithm 4 for this specific inferential task. Finally, the success
rate R of Algorithm 4 in this application scenario is introduced.

Tjelmeland Distribution $̄(·, ·)

We specify the symmetric Tjelmeland distribution q̄(·, ·) by defining the distribution
q̄(!, ·) centered at a generic state (22). For each t ∈ {1, . . . , T}= 8 and m ∈ {0, . . . ,Ma−
1} = Va, we define the result state

!m,t = (#0, . . .#
′
m, . . . ,#Ma−1), (24)

where #′
m = (σm,1, . . .−σm,t, . . . ,σm,T ). The vectors ! and !m,t only differ by a negative

sign at the trait (t,m). Since there are MaT = (Mtot −Mo)T possibilities of !m,t, we



18 Quantum Speedups for Multiproposal MCMC

write down q̄(!,!′) formally as

q̄(!,!′) =
{

1
MaT+1 if !′ ∈ Θ
0 otherwise ,

(25)

where Θ = {!m,t : t ∈ 8 and m ∈ Va} ∪ {!}. In words, q̄(!, ·) is a uniform distribution
over the nearest neighbors to ! and ! itself.

Notice that we are able to provide L with this given form Tjelmeland distribution
q̄(·, ·). For two states !̄ and ! ∼ q̄(!̄, ·), they only differ in at most one bit. This leads
to the existence of ℒ:

0 < e−2Jdeg(0) ≤ π(!)
π(!̄)

≤ e2Jdeg(0) =: ℒ. (26)

Here, we find the value of ℳ := min$∼q̄($′,·);$′∈$[ π($)
π($′) ] = e−2Jdeg(0) described in

Theorem 3.1, too. According to Theorem 3.1, using this Tjelmeland distribution q̄(·, ·)
QPMCMC2 are able to run with time complexity independent of P . The success rate of
Algorithm 5 is lowerbounded as follows:

1 ≥ R ≥ ℳ
ℒ = e−4Jdeg(0) (27)

With Equation (27), we analyze how graph types influence the success rate R of
Algorithm 5: for graphs such as ideal tree graphs and 2D square lattice graphs, deg(7)
is guaranteed to be small, resulting in a higher success rate R. In contrast, graphs like
star graphs can exhibit very high degrees deg(7) depend on the number of “legs”, making
the success rate R exponentially small. As a result, our proposed method QPMCMC2 tends
to be less efficient in scenarios where deg(7) is large.

Fortunately, for the ancestral trait reconstruction problems we are interested in,
deg(7) is generally small: for an ideal tree, deg(7) = 3. The deg(7) of a realistic phylo-
genetic tree could exceed 3 due to the reticular evolution, however, the degrees remain
small in general. In Section 5, we focus on sampling Ising models from a 2D square
lattice graph and a realistic Salmonella phylogenetic tree with deg(7) = 8. With small
given Js, in these cases, QPMCMC2 demonstrates high efficiency with high success rate
Rs.

Target Function "∗
$̄
(·)

To introduce the relative target distribution π∗
$̄
(·) in Algorithm 4, we first define a

function f(m,t) which maps a state ! in parameter space to ℝ+ as follows:

f(m,t)(!) =
∑

m′;(m′,m)∈E

σm,t · σm′,t + deg(7),

where σm,t is the trait of ! and deg(7) is the degree of the phylogenetic network 7.
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Considering the Tjelmeland distribution (25) in Algorithm 4, each proposal state
!p has at most one trait that is different from the intermediate state !̄. Therefore, the
function π∗

$̄
(·) in Algorithm 4 that satisfied π∗

$̄
(·) ∝ π(·) can be expressed as

π∗
$̄(!p; !̄) =

{
exp

{
−2Jf(mp,tp)(!̄)

}
if !p := !̄

exp{−2Jdeg(7)} otherwise , (28)

where (mp, tp) is the flipped trait in the proposal state !p. Note that the image of the
function π∗

$̄
(·) belongs to (0, 1].

Qubit Requirement

Given the Tjelmeland distribution Equation (25) and the target function Equation (28)
introduced in this section, we can analyze the qubit requirement for Algorithm 4. Encod-
ing !p in ℋ2 requires ;TMa log2(TMa)< qubits, which becomes infeasible for near-term
applications. However, this dilemma can be mitigated by encoding (mp, tp) (the flipped
trait in the proposal state !p), which is sufficient for calculating the relative target
distribution π∗

$̄
(·) and requires only ;log2(TMa)< qubits.

Secondly, the calculation of the function π∗
$̄
(·) is required for each iteration in Algo-

rithm 4, which is relatively challenging for a near-term quantum computer due to the
complexity of computing this exponential function. However, by considering a constant
J in Equation (28), we can pre-calculate 2deg(7)+1 possibilities of the image of Equa-
tion (28). Consequently, the calculation of π∗

$̄
(!p) can be obtained by providing (mp, tp)

and consulting a lookup table.

4.3 Success Rate Analysis
In this subsection, instead of deriving the lower bound as in Equation (27), we focus
on the expectation value of the success rate R over different random proposal sets. We
believe this serves as a better benchmark for evaluating the efficiency of our algorithm.
For a given input state !0 and a intermediate state !̄ selected according to q̄(!0, ·), we
introduce the expectation and variance of R in Theorem 4.1 in terms of !0, !̄ and some
problem-dependent parameters, over all possible sets of proposals generated according
to q̄(!̄, ·). We provide the proof of Theorem 4.1 in the Supplement.
Theorem 4.1. Consider one iteration in Algorithm 4 by providing the number of pro-
posals P , the previous state !0, the relative target distribution π∗ defined in Equa-
tion (28), and the Tjelmeland distribution defined in Equation (25). For a given Ising
distribution with the coupling constant J and graph 7, the expectation #[R] and vari-
ance $[R] of R over all possible proposal sets {!0, . . . ,!P }, where !p

iid∼ q̄(!̄, ·) for
p = 1, . . . , P , can be bounded as follows:

#[R] ≥ Pr(!0)
−4

TMa exp
[
−2Jdeg(7)(1 + ε2 + 4

TMa
)
]
(1 − ε1) + exp

[
−2Jf(m0,t0)(!̄)

]
ε1.

(29)
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$[R] ≤ ε1. (30)

Here (m0, t0) is the flipped trait in the previous state !0. We denote ε1 = 1
P+1 , ε2 = Mo

Ma
,

and Pr(!) = exp
(
J
∑

t∈1
∑

(m,m′)∈E σm,t · σm′,t

)
where σm,t are the traits of ! as

expressed in Equation (22).

This proposition suggests that the expected success rate R is approximated by
exp[−2Jdeg(7)], and the variance of R approaches 0 when ε1 and ε2 are close to 0
when TMa is large. To address ε1, we can consistently set it to a small value by in-
creasing the number of proposals in QPMCMC2. Regarding ε2, we observe that a realistic
phylogenetic network graph 7 may feature numerous reticulations and Ma being much
larger than Mo.

5 Application: Salmonella and Antibiotic Resistance
Conditioned on antibacterial drug resistance scores for 248 Salmonella bacterial iso-
lates, we apply our QPMCMC2 algorithm to the Bayesian inference of ancestral traits on
a Neighbor-net phylogenetic network (Section 4.1). Mather et al. (2013); Cybis et al.
(2015) previously used this biological dataset to analyze the development of antibiotic
resistances within the genus Salmonella, but their analyses did not account for bac-
terial reticulate evolution. Our phylogenetic network, denoted as 7sal(V,E), comprises
Mtot = 3,313 vertices and |E| = 5,945 edges. Among these vertices, there are Mo = 248
observed taxa, representing the observed biological isolates with known traits. Pertinent
to the theoretical developments in Section 5, the degree of our network is deg(7sal) = 8.
In this section, we use a classical simulator to execute Algorithm 4 and evaluate its effi-
ciency. We apply our algorithm to two Neighbor-net phylogenetic networks: 1) a square
lattice graph which contains 100×100 interior nodes with additional 400 extremal nodes
along 4 sides, representing the observed isolates, and 2) the aforementioned Neighbor-
net phylogenetic network describing the shared evolutionary history of 248 Salmonella
bacterial isolates (see Figure 3). Additionally, we consider two cases: the single-trait
case with the trait number T = 1 and the multi-trait case with the trait number T = 4,
accounting for four traits in each Salmonella bacterial isolate. Each figure is plotted
with results averaged over 10 repetitions of the experiment. The implementation code
is available at https://github.com/CYLin1113/Quantum-Parallel-MCMC-2. To check
the implementational correctness of our code, we run QPMCMC2 on a 3 times 3 square
lattice model, see Supplement.

In all experiments presented in Section 5, the coupling constants J of the Ising models
are set to J = 0.3 for square lattices and J = 0.03 for the Salmonella phylogenetic tree.
These selections of J result in high success rates R, and their impact on the running time
of QPMCMC2 (Algorithm 4) can be mitigated by executing multiple copies of Algorithm 5
simultaneously, with additional qubits independent of proposal number P . Please note
that in specific cases with large Js or large deg(7)s of the target phylogenetic trees,
the acceptance rate Rs could be very small, although they remain independent of P .
In such cases, amplitude amplification techniques, as described in Section 3.3, can be
applied to efficiently boost the success rate R over 0.5 (Brassard et al., 2000).

https://github.com/CYLin1113/Quantum-Parallel-MCMC-2
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Figure 3: A Neighbor-net phylogenetic network describes the shared evolutionary history
of 248 salmonella bacteria isolates. The extremal nodes correspond to the 248 observed
isolates, and the Ma = 3,065 interior nodes correspond to unobserved ancestors. Interior
squares are potential reticulation events. Colors (red, resistance; blue, no resistance)
are observed and posterior mode resistances to the antibiotic ampicillin for observed
microbes and unobserved ancestors, respectively.

From the relationships shown in Figure 4, we demonstrate the value of QPMCMC2 the
classical version of multiproposal MCMC Algorithm 2, labeled as PMCMC, requires
!(P ) oracle calls to execute one iteration, which slows down the convergence process
when using a larger number of proposals. With the help of quantum parallel computing
in our approach, QPMCMC2 is able to compute all P proposals in parallel with !(logP )
qubits during each iteration. This resolves the computational bottleneck of using large
P values in Algorithm 2, where we find potential advantages exist.

In Figure 5 and Figure 6, we include the Metropolis-Hastings (MH) algorithm in
our analysis, as it is generally considered more efficient than Barker-acceptance-based
MCMC. From the relationships shown in plot (a) of Figure 5 and Figure 6, it is evident
that by evaluating more proposals in a single iteration, QPMCMC2 converges faster and
eventually surpasses the MH algorithm. In the case of the square lattice graph, this
speedup is more significant: QPMCMC2 converges 3.8 times faster compared to the MH
algorithm when P = 300. These results indicate that, with the aid of quantum parallel
computing, this Barker-acceptance-based multiproposal MCMC can approach or even
surpass the efficiency of the Metropolis-Hastings algorithm.

We not only apply this method to cases with a single trait (T = 1) but also ex-
tend QPMCMC2 to a phylogenetic network Ising model with multiple traits (ampicillin,
chloramphenicol, ciprofloxacin, and furazolidone resistances). Plot (b) in Figure 5 and
Figure 6 shows the trace plot for the corresponding log-posterior with T = 4. As the
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Figure 4: Comparison between trace plots generated by the QPMCMC2, QPMCMC(Holbrook,
2023b) and Algorithm 2 (PMCMC) for P = 3 and P = 50. For implementation of
one MCMC iteration, QPMCMC2 requires 1 oracle calls of π∗

$̄
(·), while QPMCMC requires

!(
√
P ) calls and multiproposal MCMC requires P+1 calls. In these cases, only QPMCMC2

improves the converge rate when using a larger P .

Figure 5: Trace plots generated by the QPMCMC2 algorithm for different numbers of pro-
posals P and Metropolis-Hastings algorithm, tested on the square lattice graph. For
both the single-trait and multi-trait problem, increasing P accelerates convergence to
higher posterior probability states. Here, we observe that QPMCMC2 significantly out-
performs the Metropolis-Hastings algorithm: for P = 300, QPMCMC2 achieves a 3.8-fold
improvement in convergence rate compared to the Metropolis-Hastings algorithm.

number of parallel proposals P increases, the ancestral trait configuration tends to con-
verge faster while maintaining detailed balance. As expected, the algorithm appears to
require approximately T times the number of iterations compared to the T = 1 case.

Next, we focus on comparing the ESS per oracle among Algorithm 2 (PMCMC),
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Figure 6: Trace plots generated by the QPMCMC2 algorithm for different numbers of
proposals P and Metropolis-Hastings algorithm, tested on the phylogenetic tree of
salmonella bacteria isolates (Section 3). For both the single-trait and multi-trait prob-
lem, increasing P accelerates convergence to higher posterior probability states. Due to
the higher degree deg(7sal) = 8 which leads to a lower success rate (Equation (27)), we
failed to observe the same relative performance gain over MH as we observed for the
square lattices model.

Figure 7: Effective sample size (ESS) for the log posterior per 100,000 oracle calls for
different numbers of proposals P . ESS produced by QPMCMC2 shows a significant im-
provement as P increases, with a noticeable gap compared to the results of the MH
algorithm: using QPMCMC2, we obtain a 11-fold advantage in the case of square lattices,
while it’s a 3.5-fold advantage in the case of salmonella phylogenetic tree, comparing to
the MH algorithm. In contrast, classical multiproposal MCMC (PMCMC) exhibits the
decreasing performance due to the !(P ) complexity using P proposals.

Algorithm 4 (QPMCMC2), and the Metropolis-Hastings (MH) algorithm. We estimate
ESS using the Python package ArviZ (Kumar et al., 2019). As shown in Figure 7,
the ESS per 10k oracles increases significantly when a larger number of proposals P is
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used in QPMCMC2. For the square lattice graph and Salmonella phylogenetic tree, with
sufficiently large P , QPMCMC2 generates samples with ESS values that are 11 and 3.5
times greater than those produced by the MH algorithm, respectively, demonstrating the
remarkable advantages of QPMCMC2 over this classical approach. The same improvement
is not observed in the classical multiproposal MCMC (labeled as PMCMC) due to its
!(P ) cost.

In both the single- and the multi-trait experiments, we observe that using a large pro-
posal count P when applying multiproposal MCMC leads to improved convergence. This
highlights two major strengths of the quantum algorithm we propose. First, QPMCMC2
obtains an exponential speedup: for large P in multiproposal MCMC algorithms, we
reduce the dependence of P of the time complexity from !(P ) to !(1) with !(logP )
ancillary qubits. This is an exponential speedup as a function of P and resolves the
bottleneck of the original Algorithm 2. Second, QPMCMC2 provides accelerated sampling
for real-world problems: we have demonstrate the benefits for our quantum algorithm
in accelerating sampling for a realistic and non-trivial class of graphical models. This
quantum algorithm shows the potential to accelerate Bayesian reconstruction of bacte-
rial antibiotic resistances, an important problem in medicine and evolutionary biology.

6 Discussion
Quantum computing is set to revolutionize certain areas of science (computational
physics/chemistry), but its future impact on many other areas remains unknown. Sim-
ilarly, quantum computing promises extreme speedups for certain technical challenges
(prime factorization in cryptography) while benefits for other prominent challenges re-
main elusive. In particular, many statisticians may wonder how quantum computing
will eventually impact their day-to-day data scientific pipelines. Here, we develop a fast
quantum algorithmic implementation of an advanced MCMC algorithm. Given (1) that
MCMC is a workhorse algorithm of modern statistical inference and (2) the significant
scale of current investment in quantum computing knowledge and infrastructure, other
approaches to quantum accelerated MCMC are sure to follow. We find three particular
avenues of future research interesting.

First, it is clear that the strategies we develop here will provide similar exponen-
tial speedups for other advanced MCMC algorithms. For example, the locally-balanced
proposal scheme of Zanella (2019) generates proposals by selecting among members of
a fixed proposal set with probability proportional to the square-root target function.
One may further combine this strategy with other MCMC approaches that encourage
fast mixing. Nonreversible Metropolis-Hastings schemes (Turitsyn et al., 2011) maintain
momentum between successive MCMC iterations and can lead to orders-of-magnitude
faster convergence when sampling from discrete models. Unfortunately, changing direc-
tions in this framework requires a significant number of target evaluations. Our strategy
may confer exponential speedups here as well. Second, our Ising model case study makes
use of local moves, but quantum computers may prove useful for generating proposals far
away from the current position in a manner that preserves high probabilities of accep-
tance. Layden et al. (2023) achieve this but must compute the target probability at the
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new proposal state from scratch using a conventional computer. Ideally, one would be
able to make global jumps in a manner that uses the quantum device for both proposal
and acceptance steps, as we do here. Finally, the Ising model is a foundational model
that one can also use to approximate diverse targets (Leng et al., 2023), but unlock-
ing the power of quantum computing for statistics will also require adapting additional
discrete models to frameworks like ours. One powerful possibility is applications that
include Bayesian tree-based classifiers and regression models (Chipman et al., 2012; Ma,
2017). An open question is whether these methods may also confer exponential speedups
when sampling discrete topologies for the trees that underpin these models.
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