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Adaptive mesh refinement efficiently facilitates the computation of gravitational waveforms in
numerical relativity. However, determining precisely when, where, and to what extent to refine when
solving the Einstein equations poses challenges; several ad hoc refinement criteria have been explored in
the literature. This work introduces an optimized resolution baseline derived in situ from the inspiral
trajectory (ORBIT). This method uses the binary’s orbital frequency as a proxy for anticipated gravitational
waves to dynamically refine the grid, satisfying the Nyquist frequency requirements on grid resolution up
to a specified spin-weighted spherical harmonic order. ORBIT sustains propagation of gravitational waves
while avoiding the more costly alternative of maintaining high resolution across an entire simulation—both
spatially and temporally. We find that enabling ORBIT decreases waveform noise by an order of magnitude
and better resolves high-order wave amplitudes through merger. Combined with WAMR and other
improvements, updates to DENDRO-GR decrease waveform noise, decrease constraint violations, and boost
refinement efficiency each by factors of Oð100Þ, while reducing computational cost by a factor of 4.
ORBIT and other recent improvements to DENDRO-GR begin to prepare us for gravitational wave science
with next-generation detectors.

DOI: 10.1103/PhysRevD.111.124001

I. INTRODUCTION

Mergers of black holes (BHs) and neutron stars in binary
inspirals generate gravitational waves (GWs) detectable
by the LIGO and Virgo GW observatories. By matching
observed signals to GW templates—precomputed for likely
GW sources—we can estimate the likely progenitors of
those GW events. The reliability of binary merger param-
eter estimation hinges on the accuracy, precision, and
coverage of those templates.
The next generation of GW detectors, including LISA

[1], Cosmic Explorer [2], and the Einstein Telescope [3],
are being planned for the next decade. These new detectors
will be over an order of magnitude more accurate than
current detectors (with higher signal-to-noise ratio), mak-
ing them not only more sensitive to a wider range of GW
sources, but also able to detect much longer portions of the
inspiral signal. Each of these advances in GW science places

new demands on the extent and quality of the waveform
libraries. We need waveform templates that are at least an
order of magnitude more accurate, for a larger class of
possible binaries, and for longer portions of the inspiral [4,5].
The nonlinear equations of motion for gravity make

calculating waveform templates for astrophysical sources
challenging. While some methods approximate solutions
for the early inspiral or late ringdown of binary mergers, the
only consistent method to calculate the full waveform is to
compute solutions of the full nonlinear equations with
numerical relativity (NR) codes. Computing NR wave-
forms is challenging and expensive; even for the lower
accuracy needed by today’s detectors, waveforms have
only been computed for a relatively small part of the binary
merger parameter space [see, e.g., [6] ]. The task of
computing waveforms of sufficient accuracy, duration,
and variety (in mass ratio, spin, orbital eccentricities) to
satisfy the requirements of next generation GW detectors is
beyond the scope of current NR codes [4,5]. Solving this
problem will require novel computational approaches.*Contact author: wkblack@byu.edu
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Numerical solutions of binary inspirals require adequate
resolution on multiple scales, ranging from the size of the
compact objects to their orbital scale to the wavezone to the
outer boundary of the computational domain. In dynamical
problems, adaptive mesh refinement (AMR) efficiently
handles these multiple scales by adjusting grid resolution
to concentrate computational resources close to the com-
pact objects and in regions of strong gravitational wave
emission. This approach maintains high accuracy in critical
regions and lower resolution in less dynamically important
regions, optimizing computational efficiency. In practice,
however, determining precisely where, when, and to what
degree to refine can challenge and defy naive intuition.
Refinement strategies come with various levels of com-

plexity and dependence on the solution of the equations
solved. Broadly speaking, some refinement criteria use
specific features known to occur in a solution, such as the
location of a shock in hydrodynamics or a black hole’s
location in NR, while others rely on measures of the
solution’s convergence (which criteria can be solution
independent). As an example of the first type of refinement
criteria, NR codes can directly track black hole (BH)
apparent horizons and puncture locations. Refinement can
then be focused around these locations to ensure a certain
resolution on the horizon and in its vicinity, structuring a
nested grid of concentric spheres or boxes defined by
empirically determined parameters [see, e.g. [7–11] ].
Other proxies (e.g., functions of the conformal factor,
the lapse, and the Hamiltonian and momentum constraints,
and/or their derivatives) have also been widely used
to determine refinement in binary inspiral simulations
[see, e.g., [10] ].
Refinement criteria based on solution quality have also

been widely used in numerical relativity. Choptuik [12–15]
was the first to use Berger-Oliger AMR [16] in NR, which
estimates convergence using Richardson extrapolation
to guide refinement. Choptuik also advocated for a more
efficient measure of self-convergence using a shadow
hierarchy [17,18], which has been widely implemented
(see [19] for a partial bibliography). Recently, Rashti et al.
[11] monitored solution convergence using Lagrange inter-
polation. Radia et al. [10] describes another method,
monitoring truncation error between refinement levels as
a criteria for additional refinement. Our approach to
monitoring solution convergence uses a wavelet expansion
of the solution variables. The wavelet basis is generated by
shifting and scaling a mother wavelet, giving a compact
basis set that naturally generates spatial refinement.
Wavelet adaptive multiresolution (WAMR) expands in
interpolating wavelets [20–22]; we implement this method
in DENDRO-GR [23,24].

A practical AMR scheme almost always needs a combi-
nation of the two broad approaches listed above. Refine-
ment schemes based on a few specific features can miss
other important aspects of the solution, while general

schemes can waste resources by refining on physically
unimportant regions or aspects of the solution. Thus, there
always remains an element of intuition and experience in
determining precisely how to parametrize each of these
methods. This paper highlights our work using such a
hybrid approach to refinement.
The current work introduces a novel refinement strategy

which provides a resolution floor for GWs produced by
compact binaries. Because the orbital frequency equals or
supersedes the frequency of the emitted GWs (once
rescaled appropriately), we can use it to create an in situ
criteria for resolving the GW Nyquist frequency. We dub
this method ORBIT (see Sec. II B 3) and implement it in the
code DENDRO-GR. We will show that this baseline reso-
lution sustains GWs as they propagate through the grid,
capturing full waveform amplitudes to a higher precision.
In this paper, we show how recent improvements to

DENDRO-GR (Sec. II), including a refinement floor based
on tracking inspiral frequency (ORBIT, Sec. II B 3), permit
us to simulate with improved accuracy, precision, and
efficiency. Section III details these improvements, focusing
on lower mass ratios q ¼ f1; 4g; a future paper will catalog
waveforms at larger mass ratios, q∈ ½8; 32�.

II. METHODS

The relativistic astrophysics code DENDRO-GR [22–27]
uses wavelet-based adaptive multiresolution (WAMR) to
capture sharp features on an unstructured octree grid.
DENDRO-GR calculates wavelet coefficients for all 24
BSSN fields [28] and triggers refinement if the wavelet
expansion coefficients exceed a threshold magnitude
ϵðt;  xÞ. Decreasing this threshold both increases the number
of basis functions used to represent the solution while also
increasing grid resolution in those regions which need it
most, driving the solution toward the convergent regime.
An insufficiently strict wavelet tolerance could then pre-
clude access to the convergent regime, failing to model
crucial features of the evolution. WAMR responds to the
resolution requirements of the wavelet basis, refining regions
near the BHs and regions with strong GW signals while
keeping regions far from the BHs at a lower grid resolution,
truncating the wavelet expansion. DENDRO-GR scales well:
In massively parallel jobs, work per processor remains
roughly constant. This structure allows us to complete full
inspirals in a matter of days to weeks for q≲ 16.
In this paper, we use DENDRO-GR with much of the same

setup as in Fernando et al. [24] (this code version is
hereafter referred to as “v2022”): Utilizing the octree code
Dendro for refinement, we generate initial data with
TwoPunctures [29] and solve the BSSN equations.
Unlike Fernando et al. [24], we make several alterations

to the equations (Sec. II A) and grid structure (Sec. II B).
Our current formalism now incorporates slow-start lapse
[[30], Sec. II A 1] and customized Hamiltonian damping
(HD; Sec. II A 2) into the BSSN equations. Three key
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strategies improve our grid structure: structural adjustments
within the orbital radius (Sec. II B 1), causal wavelet
adaptive mesh refinement (Sec. II B 2), and an evolving
Nyquist refinement floor dictated by BH trajectories
(ORBIT; see Sec. II B 3). The following subsections detail
these enhancements to Dendro’s core functionality.

A. Formalism

We solve the BSSN equations as in Fernando et al. [24]
but with two additions: “slow-start lapse” (SSL) and
custom Hamiltonian damping (HD). Both work to reduce
noise and error in the solution: SSL at early times by
decreasing noise generated by the initial lapse wave, and
HD at later times, damping Hamiltonian constraint viola-
tion over time.

1. Slow-start lapse (SSL)

A common challenge with the standard 1þ log slicing
and Γ-driver shift conditions is the emergence of an initial
gauge wave packet propagating outward from the BHs with
superluminal speed

ffiffiffi
2

p
c [31]. If WAMR is equally applied

across the space that the sharp gauge pulse propagates
through, it will trigger extensive refinement along the two-
dimensional surface associated with the outward-traveling
wave. Dendro most efficiently resolves zero-dimensional
(i.e., pointlike) features, so resolving this 2D surface incurs
substantial computational cost. As this refinement occurs
on an unphysical feature, it would be preferable to avoid
such inefficient expenditures.
Recent results from Etienne [30] show that adding a

“slow-start lapse” (SSL; see Sec. II A 1) condition to BSSN
weakens the initial lapse wave. Particularly at high q, SSL
spreads out the wave packet, reducing lapse wave sharpness
and amplitude. This smoothing of the lapse wave decreases
refinement necessary to resolve the peak and reduces
constraint violations by 2–6 orders of magnitude.
Together with other improvements, numerical noise in
the waveform decreased by a factor of ∼4.3, revealing
previously obscured higher-order modes.
Etienne [30] defines SSL as adding the following term to

the lapse evolution equation:

∂tα ¼ ½� � �� −W½he−1
2
t2=σ2 �ðα −WÞ; ð1Þ

where W ¼ χ1=2 is the square root of the conformal factor
(DENDRO-GR evolves χ), and the dimensionful constants h
and σ are found via numerical experiment; in this work, we
use the default values of h ¼ 0.6=M and σ ¼ 20M. This
additional term drives the initial lapse wave toward α ¼ W.
SSL decreases the lapse wave’s amplitude and frequency
such that its Gaussian curvature (functional; not spacetime)
is reduced by a factor of ∼8q; this both reduces noise on the
grid and reduces refinement required by feature-dependent
strategies like WAMR.

We find that enabling SSL for a q ¼ 1 run reduces
constraint violations by over an order of magnitude at early
times and near merger decreases the necessary mesh size by
a factor of 3 (due to reduced noise on the grid). Overall, this
results in waveforms with roughly four times less noise. As
discussed in Etienne [30], SSL may shift merger time: We
found for a low-resolution q ¼ 1 run a ∼ − 4M shift (which
decreased with higher resolution).

2. Hamiltonian damping (HD)

Our Hamiltonian damping scheme (HD) builds off
previous work [30,32,33], which added the diffusive term
CH (where C is some dimensionful constant and H is the
Hamiltonian constraint violation) to the evolution of the
conformal exponent ϕ. They found a Courant condition
where 2CΔt=ðΔxÞ2 ≤ 1. We replace C with 1

4
cHðΔxÞ2=Δt

to account for dependence on local grid spacing and time
step. As we evolve the conformal factor χ ¼ e−4ϕ instead of
ϕ, we need to include an extra factor of χ in our diffusive
term:

∂tχ ¼ ½� � �� þ cHχ
ðΔxÞ2
Δt

H ð2Þ

(we use cH ¼ 0.077). This modification approaches zero in
the continuum limit.
In our runs, HD rapidly lowers H by an order of

magnitude, but these gains level off. The constant remesh-
ing caused by the BHs traveling across the grid generates
new H with each new interpolation of data (whether from
refining or coarsening). Errors reach an equilibrium during
inspiral, as the same amount ofH generated at each remesh
is removed by the next remesh step, sustaining a somewhat
steady H floor. As with SSL, HD causes a slight shift in
merger time (∼þ 1.5M for a low-resolution q ¼ 1 run,
decreasing with higher resolution).
We have found that the two modifications above

(SSLþ HD) allow DENDRO-GR to run at about half the
computational cost while reducing constraint violations by
over a factor of 20.

B. Grid structure

DENDRO-GR is built atop the computational framework
Dendro, which uses an octree to represent the computa-
tional domain as an adaptive unstructured grid. Dendro
subdivides the initial computational domain into octants
dependent on features present in the initial data through a
wavelet-based approach, iterating until refinement is no
longer required for accurate computation or until a maxi-
mum refinement level is reached. Dendro subjects all
octants to a 2∶1 grid balancing condition—this ensures
that any given octant differs at most by a single level from
its neighbors. Fernando et al. [24] provides an in-depth
explanation of the initial grid generation and refinement
procedures.
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Our modifications require the grid structure to include
hard-coded elements depending on current BH locations
(Onion; see Sec. II B 1), the current time of the simulation
(causal WAMR; see Sec. II B 2), and current BH velocities
(ORBIT; see Sec. II B 3).

1. Onion: Recursive inner grid structure

Different parts of a grid call for different refinement
strategies. We must ensure sufficient resolution while
striving for an efficient implementation. The BHs in the
central region of the grid each require sufficient resolution
throughout the simulation to accurately generate wave-
forms. We therefore enforce a base, core refinement around
each BH. However, we cannot sustain such a high level of
resolution across the entire simulation—we must relax that
refinement as we recede from the BHs; the rate at which
that derefinement occurs can affect the waveform. Further-
more, at the orbital scale, we find that we cannot have
reverted to too little refinement. We discuss our refinement
approaches at each of these scales.

Core refinement. In the vicinity of each BH, wemanually set
the refinement level to ensure a minimum of 50 grid points
across each (nonspinning) horizon (see Appendix A). This
core, maximum refinement level lBH;i encapsulates each BH
to a radius of RAMR;i ∼ 2mi.

Neighboring refinement. As mentioned above, Dendro’s
octree structure has a 2∶1 derefinement criteria, which
requires that cell neighbors differ at most by a single
refinement level [24,34]. While this prevents immediate
derefinement by more than one level, physically proximal
regions could still drastically differ in resolution. Because
coarser grids have a higher effective impedance for signals
(acting like stiff barriers), high-frequency signals can
suffer significant back-reflection on encountering refine-
ment boundaries of lower resolution regions [10]. Without
gradual derefinement about the BHs, the outward propa-
gating initial lapse wave will tend to immediately back-
reflect onto the BHs, generating large constraint violations
and potentially causing an unphysical influence on the BH
trajectories. To help alleviate these rapid shifts in grid
spacing, we construct buffer regions, further limiting the
rate at which the grid coarsens beyond the 2∶1 condition. In
Radia et al. [10], the authors implement buffer regions by
demanding a minimum number of cells between consecutive
refinement level boundaries, thus spatially slowing derefine-
ment. We elect instead to use a physical criteria for grid
derefinement, dependent on the distance from each BH.
As we move away from the highly resolved BHs, we

only permit the refinement level l to decrement once the
radial distance from the BHs has increased by a geometric
factor rl−1 ∼ γrl. Explicitly, the resolution floor follows

l ≥ lBH;i − logγ max ð1; ri=RAMR;iÞ; ð3Þ

where again lBH;i defines the core refinement level within
radius RAMR;i about each BH; the geometric ratio γ then
relaxes between levels. We need a factor of γ > 1 in order
for consecutive radii to expand and provide a buffer region
to reduce back-reflections. If we were to use a factor of
γ > 2, then the radii expand faster than the octree 2∶1 grid
structure, and BH positions could influence refinement in
very distant, spacelike separated regions of the grid. We
choose the golden ratio (γ ≈ 1.618) as a number between
these bounds; this marginally improves grid efficiency over
γ ¼ 2. We find that this gradual derefinement suppresses
spikes in constraint violations (lowering total constraint
violation by ∼4× for a low-resolution q ¼ 1 run), buffering
the initial solution against early, high-amplitude echoes of
the lapse wave on the BHs, reducing net constraint violation.

Orbital scale. At the orbital scale, we enforce a wide base
level of refinement to minimize changes in grid structure
induced by changes in BH locations. As mentioned in
Sec. II A 2, each change to grid resolution generates
Hamiltonian constraint violations H; we therefore desire
to minimize changes to grid structure. To this end, we keep
all points within a certain coordinate radius at a higher
refinement level, lorbit. We set this coordinate radius at the
orbital scale to be

Rorbit ¼ maxðr1; r2Þ þ B; ð4Þ

where ri is the current radial distance of the ith BH from the
grid center, and B is a buffer length. For our particular grids
and grid sizes, we use lorbit ¼ 9 (which corresponds to a
Δx ≈ 0.26M), which gives roughly a tenth the resolution of
the BHs themselves. The buffer length permits the high
refinement immediately about each BH to derefine to lorbit;
for the scales in our simulations, we use B ¼ 8M. In
addition to minimizing grid level changes within Rorbit, this
base level of refinement also keeps the outer regions of the
grid from changing structure with BH rotation. (As an
example of this, in the absence of this floor, if the BHs were
at angles 45° and 225° in the xy plane, then Dendro would
instruct the octants at 135° and 315° to derefine—then re-
refine after the BHs moved another 45°.) This base level of
refinement thus limits the changes to refinement level in
both the inner regions and outer regions of the grid as the
BHs orbit the origin. We find that enabling this orbital-scale
refinement floor reduces Hamiltonian constraint violation
H by about a factor of 2 compared to runs without it.

2. Causal WAMR refinement

The initial lapse wave (see Sec. II A 1) posed a signifi-
cant challenge in our previous paper [24]. The 2022 version
of the code used wavelets across the entire grid, keeping the
orbital region highly refined with wavelets from the start of
the simulation. This invoked a large computational cost at
high mass ratios: The initial sharp lapse pulses propagated
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outward from the BHs in spherical shells, demanding
refinement on their two-dimensional surfaces (while
Dendro most efficiently resolves pointlike, zero-dimensional
objects). Enabling WAMR globally at simulation start
caused a steep mountain of initial refinement as the lapse
wave dispersed.
While SSL ameliorates the issue by smoothing the lapse

wave, it does not eliminate the issue entirely. We use a new
refinement function, which only activates refinement at
times causally connected to the BHs from the initial time
onward. We additionally avoid the noisy wake of the lapse
wave. These two constraints activate WAMR only at times

t > max

�
r;
rþ Lαffiffiffi

2
p

�
; ð5Þ

where t is the current time of the simulation, r is the radial
coordinate, and Lα ¼ 120M is the width of the lapse wave.
We linearly fade in over a time tfade ¼ 100M from a
wavelet tolerance of log10 ϵ ¼ −3 (effectively disabling
wavelet refinement) to a run-time value of log10 ϵ ¼ −5.
This refinement strategy enables WAMR in only clean,

causally connected regions of the grid, disabling it in
regions of the grid spacelike separated to the BH evolution
and regions influenced by the lapse wave’s propagation
(see Fig. 1). By avoiding causally disconnected and noisy
regions, we can increase the sensitivity of our wavelet
tolerance ϵ across the grid, thereby lowering constraint
violations and generating more accurate waveforms.
In addition to the gradual activation of WAMR, we

spatially decrease wavelet tolerance ϵ with respect to
radius. We use a constant value of 10−5 within the orbital
radius r ≤ 8M and the value of 10−3 in outer regions

r ≥ 400M. We linearly interpolate log ϵ with respect to
log r between those boundaries.

3. ORBIT resolution floor

The Nyquist frequency [35] determines the maximum
frequency (minimum wavelength) one can measure on a
grid. If there are fewer than two points per wavelength
of a signal, it will not transmit properly, distorted by
aliasing. In audio processing, 1.1 to 5 times the Nyquist
frequency is often used as a sampling rate to provide
“lossless” signals [36]. Beyond the Nyquist frequency,
error goes down with sampling frequency squared—
sampling at twice the Nyquist frequency decreases errors
by about a half decade compared to sampling at the Nyquist
frequency (see Appendix B 1).
We measure GWs with spin-weighted spherical harmon-

ics ðl; mÞ of the Weyl scalar Ψ4 [39]. Properly transmitting
GWs demands grid resolution Δx ≤ λNyquist ¼ λGW=2.
Because we will not always know the precise GW structure
of a simulation a priori, we cannot easily use the GWs
themselves to make the grid Nyquist compliant. During the
early inspiral, the orbital frequency of the black holes
matches the gravitational wave frequency. In particular, the
orbital frequency forbit will match the GW frequencies

rescaled by their order m: fðl;mÞ
GW =m. Approaching merger,

the black holes’ orbital frequency outpaces that of the GWs
they emit (see, e.g., Fig. 7), and the BHs pass into a
common horizon; beyond this point, their coordinate
positions causally disconnect from the rest of the solution.

Because forbit ≥ fðl;mÞ
GW =m, rescaling the BH orbital fre-

quency to some desired mode m provides a sufficient
standard for estimating GW frequencies. We may thus
satisfy the Nyquist criterion by tracking BH orbital

FIG. 1. Cartoon illustrating two novel refinement strategies recently implemented in DENDRO-GR. Left: causal WAMR, a new
refinement function dictating wavelet tolerances ϵ across the grid. We only activate WAMR in the causally connected and clean regions
of the grid, ignoring the lapse wave (red) and waiting for the GW signal (green) to fill the grid with physical data before refining. After
these two events propagate outward, we gradually lower ϵ to its target value in a given region, requiring strict refinement in the blue-
tinted region. Right: ORBIT, a new refinement floor based on orbital frequency; lighter colors indicate higher refinement levels. We only
activate ORBIT in regions causally connected to the event of the gravitational wave ringdown striking the largest extraction radius
[indicated by dotted white and black lines; see Eq. (7)].
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frequency, calculating the corresponding refinement
requirement and propagating that requirement outward
through the grid at the speed of light (matching the outward
propagating GWs).
In summary, to ensure Nyquist resolution of a gravita-

tional wave mode mmax, it is sufficient to mandate at radius
r and time t that the grid spacingΔxðt; rÞ relates to retarded
orbital frequency forbitðt − rÞ as follows:

Δxðt; rÞ ≤ c
2mmaxforbitðt − rÞ ≤ λðl;mmaxÞ

Nyquist ðt; rÞ: ð6Þ

While this prevents total back-reflection of low frequencies
f < mmaxforbit, partial back-reflection will still occur to
some degree [with error following Eq. (B1)]. To mitigate
back-reflections, one should pick mmax somewhat larger
than the target spin-weighted spherical harmonic order. In
this paper, we use twice the frequency, Nyquist-resolving
mmax ¼ 12 to cleanm ¼ 6. We dub this refinement scheme
ORBIT: an optimized resolution based on the inspiral
trajectory.
Early in the simulation, low orbital frequencies require

minimal refinement, but at plunge, orbital frequencies
rapidly increase (and then flatline; see Fig. 7), resulting
in a stricter refinement criterion postmerger. This high
refinement postmerger need only be used late in the
simulation and only in past timelike regions relative to
the event where the last clean signal reaches the outermost
radius at which GWs are measured RGW;max. In particular,
we disable ORBIT ∼ 122M after merger at the largest
gravitational wave extraction radius RGW;max ¼ 100M and
in all points not causally influencing that final point. That
is, for all regions

jr − RGW;maxj > ðt − tendÞ; ð7Þ

using tend ¼ tmerge þ RGW;max þ tring, with ringdown
duration tring ¼ f22; 72gM past merger for mass ratios
q ¼ f1; 4g [40]. ORBIT therefore gradually increases the
refinement of the grid from the inside out as we approach
merger and dials down refinement in the outer and inner
regions postmerger. As compared to retaining postmerger
resolution globally, ORBIT’s causal activation and deac-
tivation reduces mesh size by an order of magnitude,
improving our ability to place refinement only where
(and when) it is needed.
Figure 1 illustrates our two novel refinement strategies:

causal WAMR and ORBIT. The left plot shows how causal
WAMR acts on a clean and data-filled grid, in the future
lightcone of the simulation. The right plot shows how
ORBIT requires a resolution level dictated by the orbital
frequency. The two refinement strategies combine to clean
waveform noise by an order of magnitude compared to our
previous work.

III. RESULTS

In this section, we present improvements achieved by
enabling ORBIT and other adjustments as we upgrade
DENDRO-GR from its 2022 version (“v2022”) to its 2025
version (“v2025”).
In this paper, we focus on mass ratios q ¼ 1 and q ¼ 4.

Mass ratio q ¼ 1 is of particular interest for ORBIT, as
q ¼ 1 has the fastest orbital frequency (of nonspinning,
noneccentric mergers) and therefore stricter refinement
constraints than higher mass ratios. We include a mass ratio
q ¼ 4 run, leaning toward larger mass ratios. We have not
reduced eccentricity for either of the mass ratios; this allows
for one-to-one comparison to v2022. Future work will
reduce eccentricities and delve into q ≥ 8 in more detail.

For mass ratios q ¼ f1; 4g, we compare enabling
ORBIT (“ORBIT on”; mmax ¼ 12, aiming to resolve well
m ¼ 6) to disabling ORBIT (“ORBIT off”; mmax ¼ 0). For
v2022, only q ¼ 4 is available for comparisons (without
ORBIT) and then only spherical harmonic modes
jmj ≤ l ≤ 4.
We first show that ORBIT enhances waveform precision:

reducing noise and better propagating higher-order
modes (Sec. III A). We also show how v2025 reduces
constraint violations and improves efficiency of grid
structure (Sec. III B). Finally, we compare run times
between v2022 and v2025, illustrating reductions in both
wall time and total cpu hours (Sec. III C).

A. ORBIT enhances waveform fidelity

In this section, we showcase the improved fidelity of our
measured gravitational waveforms, focusing in particular
on the effects of enabling ORBIT, our Nyquist-compliant
orbital-frequency-based resolution floor. Figure 2 displays
Weyl scalar Ψ4 waveform amplitudes for q ¼ 1 and q ¼ 4
mass ratios for ORBIT disabled (blue; “ORBIT off”), for
ORBIT enabled (green; “ORBIT on”), and for the previous
code version (orange; “v2022”; ORBIT unavailable). Both
left and right panels show spin-weighted spherical har-
monic modes ðl; mÞ ¼ ðx;−xÞ with x∈ f2; 4; 6; 8g (though
v2022 only has l ≤ 4 available). Shaded regions approx-
imately indicate portions of the signal made noisy by the
initial conditions (early times) and regions where pertur-
bation theory can take over from numerical relativity
(late times).
We see a clear reduction in waveform noise on enabling

ORBIT, not only in the ringdown (where ORBIT demands
its highest refinement), but also in the early inspiral
(where ORBIT makes minimal demands). Noise reduction
occurs in all modes but is most apparent at higher orders.
Focusing on the ðl; mÞ ¼ ð6;−6Þ mode (the target of
ORBIT’s mmax criterion); Fig. 3 shows roughly an order
of magnitude reduction in waveform noise in the early
inspiral for q ¼ 1 (we see about half an order of magnitude
reduction for q ¼ 4).
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After plunge, ORBIT ensures that the proper peak
amplitude of high-order modes propagates outward.
Disabling ORBIT results in a 24% reduction in merger
amplitude for the ð6;−6Þ mode for q ¼ 1. For q ¼ 4, the
same mode has a higher amplitude, and disabling ORBIT
results in only a 6% reduction. Without ORBIT’s added
resolution floor, higher order modes (which have lower
amplitudes) fail to propagate through the grid to the GW
extraction radii. After transmitting peak amplitude, ORBIT
continues, carrying the ringdown outward. WAMR (our
primary refinement scheme) ignores low-amplitude signals,
so the exponential decay of ringdown amplitude is lost
without ORBIT’s sustaining influence.
Figure 4 highlights waveform improvements gained on

upgrading the code from v2022 to v2025. For the ðl; mÞ ¼
ð4;−4Þ mode of q ¼ 4, we see roughly a factor of 4

reduction in waveform noise in the early inspiral (left
panel). At merger (center panel), v2025 better captures
peak waveform amplitude, matching trends discussed in
Appendix C. Post-ringdown, the noise floor (right panel)
drops by roughly a factor of 10 on moving from v2022 to
ORBIT off v2025, then by an additional factor of 10 on
enabling ORBIT. As next-generation detectors lower the
noise floor on GW observations, the systematic errors of
NR simulations must drop a commensurate amount. This
shows progress in that direction.
Discussed more in Appendix C, mode coupling strength-

ens toward more extreme mass ratios, increasing the
relative importance of higher-order modes. Figure 2 exem-
plifies this in the decreased distance between each of the

FIG. 2. Waveform amplitudes (measured at RGW ¼ 50M) with and without ORBIT enabled (mmax ¼ 12 to enable; 0 to disable); the
end time of the right plot shows at a glance that recent improvements lower the noise floor by two decades. Left and right plots giveWeyl

scalar Ψðl;mÞ
4 spherical harmonic amplitudes for mass ratios q ¼ 1 and q ¼ 4, respectively. We here show modes ðl; mÞ ¼ ðx;−xÞ for

x∈ f2; 4; 6; 8g in order from top to bottom. The right plot additionally includes results from the 2022 version of DENDRO-GR (orange;
“v2022”) for comparison to the new 2025 version of DENDRO-GR (blue, green); this only has modes x∈ f2; 4g available for
comparison. Shaded regions on the left of each plot indicate the causally disconnected regime (t < RGW) and the region corrupted by the
initial lapse wave (t=M < ðLα þ RGWÞ= ffiffiffi

2
p

≐ 120.2M). Shaded regions on the right of each plot indicate where we terminate ORBIT
support. Note that none of the simulations were eccentricity reduced; the q ¼ 1 run has large eccentricity modulating the amplitude.

FIG. 3. Zoom in on several notable regions of the left plot of
Fig. 2 (q ¼ 1; identical coloring), focusing on the ðl; mÞ ¼
ð6;−6Þ mode. ORBIT improves waveform quality both in the
inspiral (left) as well as at merger and ringdown (right).

FIG. 4. Zoom in on several notable regions of the right plot of
Fig. 2 (q ¼ 4; identical coloring), focusing on the ðl; mÞ ¼
ð4;−4Þ mode. Compared to the v2022 (the old code version),
v2025 reduces noise in inspiral waveform (left), better captures
peak waveform at merger (middle), and lowers the noise floor by
nearly 2 orders of magnitude (right).
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q ¼ 4 modes (less than an order of magnitude between
modes) compared to q ¼ 1 (over an order of magnitude
between modes during inspiral). The trend with mass ratio
continues, such that higher-frequency modes are of greater
importance (to reconstruct observed waveforms) for higher
mass ratios than they are for lower mass ratios. We must
therefore resolve higher-frequency modes well for asym-
metric mass ratios if we are to faithfully reconstruct the
outgoing waveform.

B. Code updates efficiently reduce constraints

Updating our code from v2022 to v2025 both improves
waveform quality and reduces net constraint violations.
While globally refining the v2022 run would certainly
reduce constraint violations, we quantify how well our
improvements outpace the expected improvements of
adding refinement to a sixth order code like ours, showing
that our improved strategies refine more judiciously than
before.
The upper panel of Fig. 5 shows reductions in constraint

violations between code versions for q ¼ 4 in moving

from v2022 to v2025. Net constraint violation decreases
by 2 orders of magnitude while Hamiltonian constraint
decreases by up to 3 orders of magnitude. One may then
ask whether this reduction of constraint violation is
superficial—merely an expected outcome of increasing
resolution (not yielding a true improvement in accuracy
per cpu hour spent).
Recall that Dendro uses an octree grid, subdividing each

cell in half with each division. Thus, the grid resolution dx
of a given cell relates to the mesh size μ (the number
of mesh elements or cells in the grid) as dx ∝ μ−1=3.
We currently use sixth order spatial derivatives, so error
decreases as ε ∝ dx6. Globally refining the grid would thus
decrease errors as ε ∝ μ−2; we would thus expect εμ2 to
remain constant. As WAMR refines the grid locally rather
than globally, refining an unimportant region of the grid
will do less to reduce global errors than refining an
important region of the grid. Therefore, lower values of
εμ2 between runs imply improved refinement schemes: not
merely that we have increased refinement, but that we have
done so efficiently, allocating resources where they are
most needed. To this end, we define a notion of “grid
efficiency” as

η≡ Ctot
−1μ−2; ð8Þ

where Ctot is the L2 norm of both Hamiltonian and
momentum constraint violations, H and Mi, across the
entire grid, and μ is again the mesh size. Comparing η thus
measures the relative efficiency of grid subdivision
schemes: Do our choices for refinement result in appro-
priate error reduction, or do they show some relative (in)
efficiency?
The lower panel of Fig. 5 compares grid efficiency η

between v2022 and v2025. Not only do we reduce
constraint violations by 1 to 2 orders of magnitude in
the upgrade, we see similar scale improvements in grid
refinement efficiency, accounting for the expected accuracy
differences due to refinement. This shows that these gains
are not due to superficial changes in refinement.
While premerger refinement primarily serves to prevent

errors (as WAMR does explicitly), postmerger refinement
called for by ORBIT serves to propagate GWs out to the
detection radii. For this reason, we expect the loss of
efficiency in the ORBIT-enabled run, particularly as the
high-frequency ringdown (here at t=M ∼ 625) propagates
out to the most distant GW detection radius (100M). The
slight inefficiency incurred by enabling ORBIT thus points
to the difference in purpose of ORBIT refinement com-
pared to WAMR refinement.

C. Code updates accelerate runs

Recent changes to our algorithm achieve dramatic
improvements in run cost—both in human time (wall
hours) and in computer time (cpu hours). Figure 6 shows

FIG. 5. Comparison of total constraint violation (upper panel;
L2 norm of H & Mi across grid) and grid efficiency [lower; see
Eq. (8)] between code versions for q ¼ 4. We see 10–100× lower
constraint violations as we upgrade from v2022 to v2025. These
improvements are executed efficiently, outperforming by 100×
the expected gains from globally refining a sixth order code.
Coloring as in Fig. 2; shading indicates ORBIT disabling at
gravitational extraction radii of RGW ¼ f50; 100gM.
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that while v2022 took over two weeks to run, a current
v2025 run takes less than four days, cutting down wall time
by a factor of 3.7. Furthermore, computational cost is cut
down by a factor of almost 4. (This is a nontrivial
distinction, as hypothetically, the wall time could have
been decreased by submitting identical code to four times
the number of processors.)
The “ORBIT on” run shows a slight bump in wall time

around 625M, as ORBIT propagates out to sustain the
high-frequency ringdown. As illustrated in Figs. 1 and 7,
postmerger refinement is the most costly, as it fills a 3D
sphere with high refinement. While enabling ORBIT makes
the run almost twice as expensive as disabling it, we find
that the resulting gains in waveform quality (see, e.g.,
Fig. 3) justify the cost.
Updates to the code thus not only improve waveform

quality and reduce constraint violations, but they do so
efficiently and with decreased net computational cost.

IV. CONCLUSIONS

We introduced ORBIT, an optimized resolution baseline
derived from BH inspiral trajectories, and showcase recent
advances in DENDRO-GR over the past few years. These
improvements work toward fulfilling the need of next-
generation GW detectors for higher accuracy in NR
simulations.
ORBIT causally refines Dendro’s grid to sustain propa-

gation of high-order spherical harmonic modes. The
Nyquist criterion—combined with the relationship
between BH orbital frequency ωorbit ¼ 2πforbit and GW
frequency—gives a resolution floor of

Δx ≤ c=ð2mforbitÞ ≤ λNyquist ð9Þ

as a sufficient criteria for Nyquist-resolving GW spin-
weighted spherical harmonics of order m. ORBIT captures
low-amplitude features otherwise missed by error-driven
refinement methods like WAMR. As compared to

maintaining high resolution across the entire duration of
the simulation, this dramatically reduces computational
cost while still maintaining necessary resolution.
This 2025 version of DENDRO-GR, with ORBIT and

other improvements, demonstrates significant progress:
(i) Waveform noise has decreased by 1 to 2 orders of

magnitude.
(ii) Constraint violations are reduced by 2 to 3 orders of

magnitude.
(iii) Refinement efficiency has improved by 2 orders of

magnitude.
(iv) Wall time and total run cost is reduced by a

factor of 4.
In addition to ORBIT, other improvements include imple-
menting slow-start lapse (SSL), our custom Hamiltonian
Damping scheme (HD), causal WAMR, and central grid
structure updates (see Sec. II for details on each of these
changes). By reducing the sharpness of the initial lapse
wave, SSL relaxes grid refinement requirements and
reduces noise on the grid. Though the constant remeshing
required as BHs travel across the grid generates
Hamiltonian constraint violation H (as grid patches inter-
polate to different resolutions), our HD scheme damps total
H by an order of magnitude, preventing its accumulation
during inspiral. Our new causal WAMR structure puts
refinement where we need it by ignoring spacelike regions
of the grid (causally disconnected to the BH evolution) and
by avoiding regions contaminated by the (dampened) lapse
wave. In total, these improvements allow DENDRO-GR to
run at about one-fourth the computational cost while
reducing constraint violations by orders of magnitude.
These gains position DENDRO-GR as an increasingly
capable tool for simulating binary BH mergers, particularly
at higher mass ratios.
We anticipate additional improvements to DENDRO-GR.

For these first pass, proof-of-concept results, our implemen-
tation of ORBIT was hardcoded (see Appendix B); the
method is now softcoded for greater flexibility. Additionally,
we expect a need to extend ORBIT further as we test it more
thoroughly with systems having high spins or large eccen-
tricities. These will certainly present new challenges.
In conclusion, ORBIT and other recent improvements to

DENDRO-GR reduce waveform noise while lowering com-
putational costs. These and other planned advances bring us
closer to meeting the demands of next-generation GW
detectors and to expanding our understanding of BBH
systems across a wider range of systems.
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APPENDIX A: CENTRAL REFINEMENT ABOUT
THE BHS

Here we determine core refinement about each black
hole. To ensure we have N points across the horizon of a
BH of radius rBH on an octree grid of size L with element
order n (determining the number of points across a cell), we
must keep the level of refinement l (where larger l indicate
higher resolution) about the BH to be at least

l ≥ 2þ log2

�
L

n · RBH

�
N þ 1

2

��
; ðA1Þ

(where b�c is the floor operator). In our evolution coor-
dinates, Ri ¼ mi [45]; the larger BH has a mass of m1 ¼
M=ð1þ qÞ while the smaller BH has a mass of
m2 ¼ M=ð1þ 1=qÞ. Additionally accounting for our box
size L ¼ 800M, element order n ¼ 6, and our goal of N ≥
50 gives us level requirements about each BH of

l1 ≥ 13.7þ log2ð1þ qÞ; ðA2Þ

l2 ≥ 13.7þ log2ð1þ 1=qÞ; ðA3Þ

(where mBH;1 ≤ mBH;2). These then dictate lBH;i ≥ 15 for
q ¼ 1, while for q ¼ 4, it dictates 14 and 16 for the larger
and smaller BHs, respectively. More generally, as we
approach extreme mass ratios, we find we need cell level
14 and 14þ log2 q as q → ∞ given our grid size and
element order. We note there exists a two-level offset in the
cell level parameters li from the resulting level on the grid,
such that the above equations enforce cell level 13
for q ¼ 1.

APPENDIX B: MORE ON ORBIT

Here we present more details regarding our Nyquist-
compliant refinement floor ORBIT.

1. Choice of target order

The Nyquist criterion dictates the minimum refinement
necessary to capture and reconstruct a frequency; lower
refinements will preclude propagation of the signal.
Fractional error of a signal frequency fsignal as a function
of sampling rate fsample is given by

ε ¼ 1 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðfsignal=fsampleÞ2
q ; ðB1Þ

where fNyquist ¼ 2fsignal. At high sampling rate (in the
regime where fsample ≫ fsignal), this error approaches
ε ¼ 1

2
ðfsignal=fsampleÞ2: Beyond fNyquist, error falls off as

sampling frequency squared. Thus, if we Nyquist-resolve

mode m (i.e., fsample ¼ 2fðl;mÞ
GW ¼ fNyquist), we have

ε ∼ 10%. Nyquist-resolving to 2m (fsample ¼ 2fNyquist)
would then have only error ε ∼ 3% on mode m while
Nyquist-resolving 7m would yield ε ∼ 1% (lower-
frequency waveforms would improve even more so).
In this paper, we Nyquist-resolve m ¼ 12, decreasing
aliasing-induced errors in the target ðl; mÞ ¼ ð6;−6Þ wave-
form to 3%.

2. Calculation from orbital frequency

We next discuss the relationship between BH orbital
frequency and GW wavelength. The upper panel of Fig. 7
shows angular orbital frequencies ω for the BH orbit as
well as for the emitted GWs; the lower panel shows the
corresponding rescaled wavelengthsmλ (with orbital wave-
length λorbit ≡ 2πc=ωorbit) each overlapping. Angular
frequencies for the BHs are calculated from the progression
of the relative angle between the BHs in the orbital plane
and for the GWs from the phase angle in complex space.
The lower plot then rescales by m, showing universal
agreement in waveform across m in the early inspiral. As

we approach merger, λorbit < mλðl;mÞ
GW , implying that BHs

inspiral faster than their emitted wavelengths. At merger,
the BHs form a common horizon and their coordinate
locations decorrelate from the emitted GWs. This works
to our favor, as refining to grid spacing Δx ¼ λorbit=2jmj
gives a stricter refinement criterion than refining to

Δx ¼ λðl;mÞ
GW =2; using rescaled orbital wavelength therefore

anticipates refinement requirements, ensuring the grid
already has sufficient resolution for the GWs before they
reach a given portion of the grid. As wavelengths cannot
always be known a priori, this provides us with a sufficient
resolution floor to satisfy the Nyquist criterion in situ.
ORBIT thus adapts to support the emitted GWs mid-
simulation.

3. Our formulation for cell level

Given an input orbital wavelength, one can then determine
theparticular refinement level necessary to supportGWsup to
order jmj. Determining the target resolution level l depends
on several simulation-specific factors: We use a sixth-order
derivative scheme (n ¼ 6) on a box size of L ¼ 800M;
Dendro resolution level l gives the subdivision of the octree:
l ¼ 0 would be a single cube (low resolution), while higher
levels repeatedly subdivide that base cube by factors of 2.
Dividing the target wavelength λorbit by two for the Nyquist
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criterion and dividing by the order m of a target mode λðl;mÞ
GW

yields a minimum resolution level requirement of

lNyquistðmÞ ¼ ⌈log2 2L=n
λðl;mÞ
GW

⌉ ≤ ⌈log2 800M=3
λorbit=m

⌉; ðB2Þ

(where λðl;mÞ
GW is the target wavelength, λorbit=m Nyquist-

resolves mode m, and ⌈ � ⌉ is the ceiling operator).
While DENDRO-GR now softcodes ORBIT (actively

in situ tracking BH orbital frequency), these first-pass
proof-of-concept runs were prototyped with an a priori
hardcoded formulation (modeling BH orbital frequency
from past high-quality runs). Following quasicircular orbit
results, we used

λorbit ≈
�
τ > 0∶ max ðAτ3=8; λminÞ
τ < 0∶ λmin;

ðB3Þ

(where τ≡ τ0 − t is time to merger); Table I gives best fit
parameters. Adding the first post-Newtonian term changes
the formula to λ ¼ Aτ3=8ð1þ Bτ−2=8Þ, but B is consistent
with zero for q ¼ 1, and for q ¼ 4, the fit works well
enough with B ¼ 0 for most of the inspiral; near plunge the
simpler fit outpaces the more complex fit, giving a slightly
more conservative refinement criterion. Rather than adding
further post-Newtonian expansion terms to improve the fit,
we will soon have a version of DENDRO-GR, which tracks
past BH orbital frequency midsimulation, giving live
updates to refinement for future, heretofore unexplored
mass ratios.

APPENDIX C: MODE COUPLING OF
WAVEFORMS AT MERGER

Mode coupling strengthens with mass ratio q: spherical
harmonic modes lie closer together at higher mass ratios.
The more extreme the mass ratio, the more nonlinear effects
plague the simulation. We can quantify this mode coupling
by observing how the spin-weighted spherical harmonic

amplitude at merger jΨðl;mÞ
4 jmax decreases with degree l (it

increases with order jmj). The ratio of modes follows

steady patterns, where jΨðl;lÞ
4 jmax=jΨðlþ1;lþ1Þ

4 jmax is roughly

constant (as well as jΨðl;mÞ
4 jmax=jΨðl;mþ1Þ

4 jmax). We can
quantify this trend across many mass ratios, measuring

the log slope of jΨðl;mÞ
4 jmax as a function of l,m, and q. This

allows extrapolation of high-frequency modes, avoiding the
expense of direct calculation.
Figure 8 shows relative GW amplitudes at merger

(normalized at the maximum amplitude) for both q ¼ 1
and q ¼ 4. The left and right plots have different vertical
scales: Most of the modes for q ¼ 4 are of higher relative
amplitude than those of q ¼ 1; they therefore have far
smaller errors (see also Fig. 2).
There are a few ways to estimate error on these values.

The symmetries of our q ¼ 1 run imply that all odd m
modes (colored red) should have null amplitude; their
nonzero values thus roughly estimate epistemic error.
Mirroring �m mode amplitudes should have equal ampli-
tude; differences between values thus roughly estimates
aleatoric error. Accounting for these uncertainties, clear
trends emerge across l, m, and q.

Fitting l ¼ jmj (excluding odd m for q ¼ 1) amplitudes
for nonspinning, nonelliptical mergers, we find a steady

TABLE I. Fit parameters for Eq. (B3), modeling BH orbital
wavelength λorbit. Amplitude of inspiral given by A, merger time
estimated as τ0, minimum orbital wavelength given by λmin, and
ORBIT end time given by tend [see Eq. (7)].

Run A τ0 λmin tend

q ¼ 1 18.8 445.0 14.49 580.14
q ¼ 4 17.0 490.0 18.10 670.40

FIG. 7. Angular frequencies (upper plot) and corresponding
rescaled wavelengths (lower plot) from a q ¼ 1 binary inspiral. In
blue are curves from BH coordinate positions; the vertical line
indicates the point where BH separation distance is ds ¼ 1M
(near this time, the BHs form a common horizon and their
coordinate positions decorrelate with GW emission). In orange
and green are data from the ðl; mÞ ¼ ð2;−2Þ and ð4;−4Þ GW
modes. Because λorbit ≲mλðl;mÞ

GW , refining to Δx ¼ λorbit=2jmj is
sufficient to Nyquist-resolve GWs of order ≤ jmj. Shaded regions
as in Fig. 2.
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flattening of log slope as a function of symmetric mass ratio
ν≡ q=ð1þ qÞ2. This shows that higher-degree modes are
increasingly important for unequal mass ratios. Fitting
the results of q∈ f1; 2; 4; 8g, we find a clean power law
relation of slope versus symmetric mass ratio:

d
dl

log10jΨðl;lÞ
4 jmax ¼ −eð7.23�0.07Þν−ð2.91�0.01Þ: ðC1Þ

Thus, we have relative mode strength (quantified as the
magnitude of the power law slope of the spherical harmonic
decomposition main modes) increasing in amplitude
toward more equal mass ratios (ν → 1=4) and decreasing
in amplitude toward more extreme mass ratios (ν → 0).
While at q ¼ 1, an increment in l results in roughly a factor
of 2 loss of relative amplitude, as q → ∞, incrementing l
results in only a ∼10% loss of amplitude. While for q ¼ 1,
the ðl; mÞ ¼ ð2;�2Þ mode makes up ≲1=2 of the total
signal, the same mode for q → ∞ only makes up ≲10% of
the total signal. This then quantifies the relative importance
of higher-amplitude modes at more extreme mass ratios at
merger.

Not only do we see clear trends in jΨðl;lÞ
4 jmax, we also see

rich structure within lower-m modes. The right panel of
Fig. 8 (with q ¼ 4) has larger amplitude modes and is thus
less contaminated by noise; this better resolves the non-
dominant modes, revealing an inner structure to the mode
amplitudes. The patterns in ðl; mÞ mode amplitudes hint at
the ability to extrapolate to infinite degree (traveling out
on the top bar of l ¼ jmj, then filling in the inner structure
with decreasing jmj), given only the trends from the first
few ðl; mÞmodes. This would incur relatively small extrapo-
lation error, as modes grow progressively weaker with
increased extrapolation. As estimation of mode amplitudes
grows increasingly expensive (and error fraught) toward
high l, extrapolating higher modes would decrease computa-
tional expense. This may well produce more accurate
waveforms than using the raw measured waveform ampli-
tudes (which are infiltrated by noise around 10−3 relative
amplitude).
More generally, these trends could perhaps even be

extrapolated out toward more extreme mass ratios, spins,
and eccentricities, moving toward a universal fit to wave-
form amplitudes at merger.
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