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Accurate estimates of biomass burning (BB) emissions are of great importance worldwide due to the impacts
of these emissions on human health, ecosystems, air quality, and climate. Atmospheric modeling efforts to
represent these impacts require BB emissions as a key input. This paper is presented by the Biomass Burning
Uncertainty: Reactions, Emissions and Dynamics (BBURNED) activity of the International Global Atmospheric
Chemistry project and largely based on a workshop held in November 2023. The paper reviews 9 of the BB
emissions datasets widely used by the atmospheric chemistry community, all of which rely heavily on Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite observations of fires scheduled to be discontinued at
the end of 2025. In this time of transition away from MODIS to new fire observations, such as those from the
Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments, we summarize the contemporary
status of BB emissions estimation and provide recommendations on future developments. Development of
global BB emissions datasets depends on vegetation datasets, emission factors, and assumptions of fire
persistence and phase, all of which are highly uncertain with high degrees of variability and complexity and
are continually evolving areas of research. As a result, BB emissions datasets can have differences on the
order of factor 2-3, and no single dataset stands out as the best for all regions, species, and times. We
summarize the methodologies and differences between BB emissions datasets. The workshop identified 5
key recommendations for future research directions for estimating BB emissions and quantifying the
associated uncertainties: development and uptake of satellite burned area products from VIIRS and other
instruments; mapping of fine scale heterogeneity in fuel type and condition; identification of spurious signal
detections and information gaps in satellite fire radiative power products; regional modeling studies and
comparison against existing datasets; and representation of the diurnal cycle and plume rise in BB emissions.

Keywords: Biomass burning, Emission estimation, Earth observation, Atmospheric composition

1. Introduction ecosystems, air quality, and climate. All major atmospheric
Biomass burning (BB) emissions are of great importance modeling efforts (e.g., models of atmospheric chemistry and
worldwide due to their impacts on human health, transport, operational air quality forecast models, Earth-
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system models, etc.) require accurate estimates of BB
emissions as a key input. Development of global BB emis-
sions datasets relies on observations of active or recent fires,
vegetation datasets and modeling, and emission factors (EFs;
required to estimate the mass of smoke pollutant emitted
per mass of fuel burned), all of which are highly uncertain
and evolving fields of research. Current BB emissions data-
sets rely heavily on satellite observations, and in particular
on observations of fire radiative power (FRP) and burned
area from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) instruments on the National Aeronautics
and Space Administration (NASA) Terra and Aqua satellites.
However, these observations will not be available for much
longer as the orbits of the satellites degrade and are decom-
missioned at the end of 2025. The Visible Infrared Imaging
Radiometer Suite (VIIRS) satellite instruments, on the joint
NASA and National Oceanic and Atmospheric Administra-
tion (NOAA) Suomi National Polar-orbiting Partnership
(Suomi NPP), NOAA-20, and NOAA-21 weather satellites, are
currently the main replacement for the Aqua MODIS instru-
ment. These instruments have an equator crossing time at
around 1.30 PM/AM local solar time (LST) and therefore
observe the typical afternoon peak in global BB activity
(e.g, Mu et al, 2011; Andela et al.,, 2015). VIIRS has almost
4 times higher spatial resolution than MODIS, at 375 m
compared to 1 km of MODIS at nadir. A burned area product
has been developed for VIIRS based on the mapping
approach derived from the most recent MODIS burned area
algorithm (Giglio et al., 2024a) but has not yet been used by
any of the BB emission datasets considered here. VIIRS does,
however, offer other enhancements over MODIS such as the
day—night band which allows for estimation of the visible
energy fraction and modified combustion efficiency (MCE) at
night (Zhou et al., 2023). Another relevant instrument is Sea
and Land Surface Temperature Radiometer (SLSTR) on the
European Sentinel-3 satellites, which has the same 1 km
spatial resolution at nadir as MODIS and will replace the
Terra MODIS observations during the late morning orbit at
10.30 AM/PM, but has experienced some difficulties with
daytime fire registration and quantification. While the main
peak in BB activity typically occurs during the afternoon, the
nighttime observations are important for capturing the diur-
nal cycle, particularly in light of evidence of a weakening
nighttime barrier in some parts of the world allowing wild-
fires to burn through the night (e.g., Balch et al.,, 2022). The
Canadian WildFireSat mission (https://database.eohandbook.
com/database/missionsummary.aspx?missionlD=906) to be
launched in the late 2020s will provide much needed mea-
surements later in the afternoon and capture more of the
diurnal cycle of BB activity (Hope et al., 2024).

With growing interest in BB emissions not only in the
scientific community but also for the wider public, better
understanding and quantification of the uncertainties is
becoming more important. The International Global
Atmospheric Chemistry (IGAC) project’s sponsored activity
on Biomass Burning Uncertainty: Reactions, Emissions and
Dynamics (BBURNED; https://igacproject.org/activities/
bburned) aims to better quantify the current understand-
ing of the uncertainty and variability in BB emission esti-
mation and to determine how to more accurately
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represent atmospheric chemistry resulting from fire. A
virtual Fire Emissions Workshop (FEW 2023), organized
by BBURNED, jointly with the Task Force on Hemispheric
Transport of Air Pollution (HTAP), in November 2023,
brought together BB emissions developers to present their
methodologies, recent developments, and challenges/
uncertainties, followed by researchers presenting on emis-
sions intercomparisons, at both regional and global scales,
and by species. This report provides a summary of the FEW
2023 workshop and the contemporary status of BB emis-
sions estimation nearing the conclusion of the MODIS era
and to provide an assessment on future developments.

2. Biomass burning observations

and emissions estimation

2.1. Global biomass burning observation methods
Earth observation satellites are essential for timely
measurements of the global distribution, relative scale,
and growth of fires. The information that they provide,
and their potential application, depend on the orbital
configuration of the satellite, which leads to trade-offs
in spatial resolution and temporal frequency further con-
tributing to the complexity in estimating BB emission
uncertainties. Satellites in a Sun-synchronous Low Earth
Orbit (LEO), utilized by many sensors (i.e., MODIS, VIIRS,
SLSTR), cross the equator at the same LST on each over-
pass, have a consistent repeat time, and provide finer
spatial resolution measurements than satellites in geosta-
tionary orbit (GEO). Sensors on LEO satellites do not mea-
sure throughout the full possible diurnal fire cycle that
can be captured with the high temporal resolution from
GEO satellites, which have also been shown to be able to
detect smaller fires (e.g., Soja et al., 2009). However, no
single sensor is able to provide global coverage (e.g.,
Roberts et al., 2015; Wooster et al., 2015).

2.2. Fire types, vegetation, and distribution
Vegetation fires have always been a naturally occurring,
and essential, component of the Earth system with a grow-
ing number of studies in the scientific literature quantify-
ing the impact human activities have on fire occurrence
around the world (e.g., Bowman et al., 2020; Jones et al.,
2024). Vegetation fires can refer to many different fire
types (e.g., forest fires, grass fires, crop fires) and intensi-
ties (e.g., high intensity crown fires and low intensity, or
smoldering, peat fires).

The heterogeneity of vegetation globally means that
the characteristics of fires and the resulting smoke will
be different based on vegetation type along with human
activities. Figure 1 illustrates the fire types that global fire
emissions datasets are typically aligned with. For global
implementation, vegetation type and its distribution must
be simplified and this map represents one means of repre-
senting what is inherently a complex and heterogeneous
variety of the vegetation fuels that can burn under various
conditions. The term fuel is used to represent the material
(biomass) subject to burning and is made up of the live
and dead vegetation found in the landscape (Prichard
et al., 2024). Fuels serve as the foundation of what can
potentially end up as smoke; they are highly variable
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Figure 1. Dominant fire types extrapolated from van der Werf et al. (2010) in Kaiser et al. (2012) and
adapted here for 2018 using ESA CCI Land Cover and Xu et al. (2018). 1 = savannah fires; 2 = savannah
fires with potential soil organic matter burning; 3 = agricultural fires; 4 = agricultural fires with potential soil organic
matter burning; 5 = tropical forest fires; 6 = peat burning; 7 = extra-tropical forest fires; 8 = extra-tropical forest fires

with potential soil organic matter burning.

down to site-level scales and range from grasslands
dominated by low-density herbaceous species to dense
forests with large amounts of dead vegetation debris
or deep organic soils which can hold as much as
1,000 Mg/ha or more of live and dead fuel, but with high
temporal and spatial variability (Prichard et al., 2019).

2.3. Estimation of biomass burning emissions

and smoke production

Combustion of biomass fuels produces energy (heat and
light), gases, and solids of various sizes that are either left
as residue at the site (ash and char) or lofted into the air.
The process is fuels-driven and mediated by weather and
topography to create spatial-temporal complexity in how
and where fuels burn and the resulting emissions. A
variety of different gaseous and particulate combustion
products are emitted into the atmosphere depending on
the fuel type and conditions during burning, including the
fuel moisture, arrangement of fuels, terrain, and fire
weather, which influence the intensity and efficiency of
burning (Prichard et al., 2024).

Emissions of smoke from BB are estimated in a variety
of ways to provide a consistent data record over space and
time. Current regional and global inventory records begin
in the 1980s using observations from satellite systems
(Giglio et al., 2024b). Here we review the approaches used
in global and continental-scale emissions estimation,
including the methods reviewed for emissions systems
covered in FEW 2023 (Section 3).

Emissions amount and composition (A,) is calculated
using an inventory approach from the total fuel consumed

(M) in a specific place and emission factors (EF) of specific
combustion products (x):

M, = M, x EF, (1)

Determination of both A, and EF takes into consider-
ation many factors, including the characteristics of the fuels
and the conditions of the burn. Fuel type and condition are
important in determining M, as well as the combustion
efficiency, which influences the composition of the smoke.
EFs represent combustion efficiency to partition total fuel
combusted into different smoke components and are
explained in more detail in Section 2.4. Emissions invento-
ries presented in this review employ one of the two
approaches for determining the amount of biomass con-
sumption for wildland fire (Figure 2). The first is the burn
area approach (Figure 2a) used by the Global Fire Emis-
sions Database (GFED) and the Fire INventory from NCAR
(FINN). In this accounting-based approach, emissions are
calculated from empirically derived models of consumption
with estimates of the amount of area burned, the amount
of fuel at the site, and fraction of that fuel that is converted
to smoke (Seiler and Crutzen, 1980; Ottmar, 2014). The
second is the combustion approach (Figure 2b), used by
Quick Fire Emission Database (QFED), Global Biomass Burn-
ing Emissions Product eXtended (GBBEPx), and Global Fire
Assimilation System (GFAS) datasets, which utilizes
satellite-based observations of FRP from active fires and
determines combustion level through empirically defined
consumption factors (e.g., Wooster et al., 2005). Details on
these activity-based approaches can be found in French and
Hudak (2024).
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Figure 2. Two approaches to determine emissions
from BB. (a) The burn area approach considers the
amount of area burned (A), prefire fuels (B), and
proportion of fuel consumed (B). (b) The combustion
approach uses fire radiative energy (FRE) to estimate
consumption based on fuel-type-specific combustion
factors (C). An emission factor (EF) for each product is
applied based on combustion conditions (French and
Hudak, 2024).

The quality of BB emission estimation starts with the
quality of the input fire observations, whether burn area
or active fires, knowledge of the representative fuels
related to the observation, and area. In mapping burn
area, the basis for computing emissions for the burn area
approach, and for calibrating the combustion approach,
maps can be incomplete due to satellite coverage and
because fire events can be obscured by clouds or forest
canopies. Additionally, subsurface fires, such as those in
peat lands, are not currently well detected by satellites and
emissions can be underestimated. For FRP observations,
false detections and spurious signals can arise from active
volcanoes and bright surfaces, such as solar panels and
shallow coastal waters at certain viewing angles, requiring
screening of the raw thermal anomaly data. Gas flaring is
also a source of spurious signals for BB emission estima-
tion but FRP observations have been used in quantifying
emissions from these activities (e.g., Caseiro et al., 2020).

The fuel availability, described in Section 2.2, and its
associated variability are also critical components in esti-
mating BB emissions. Both the amount and density of fuel
(referred to as fuel loading) and the fuel condition, such as
moisture and arrangement, contribute to the amount of
fuel that is available to burn and what is actually con-
sumed during combustion (combustion completeness).
These factors introduce large spatial and temporal
variability in emissions. Fuel heterogeneity represents one
of the largest sources of uncertainty in any emissions esti-
mation approach, while variability in combustion com-
pleteness adds to the high uncertainty in estimating
emissions even when fuel type is known (French et al.,
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2004; Larkin et al., 2012). Use of fire energy estimates
from observations in the combustion approach (right side
of Figure 2) can capture some but not all of the combus-
tion completeness variability and does not avoid the need
for spatially resolved information on fuel types and fire
regimes (e.g., Ichoku and Kaufman, 2005; Mota and
Wooster, 2018). Development of methods to improve
quantification and to characterize BB fuels is on-going
(Bright et al., 2022; Cova et al., 2023) as well as ways to
better map and quantify fuels and fuel consumption var-
iability in space and time (Prichard et al., 2019; French
et al., 2020; Kennedy et al., 2020).

2.4. Emission factors
EFs define the partitioning of combustion products into
species-specific emissions, which are variable based on the
fuel type and combustion conditions. In general, the more
oxygenated the burning conditions (flaming vs. smolder-
ing combustion), the more efficient the combustion and
the more carbon dioxide (CO,) is produced relative to
other combustion products (Yokelson et al., 1996). BB EFs
are determined by measuring the relative concentrations
of pollutants from BB emissions (either from controlled
burning in the laboratory/field or sometimes from aircraft
campaigns measuring uncontrolled fires) (e.g., Yokelson
et al., 1996; Yokelson et al., 2013; Urbanski et al., 2022).
Seasonal and regional variability in EFs is an important
source of uncertainty in BB emission estimation (e.g., Ver-
nooij et al., 2023), and the uncertainty can depend on the
scale at which EFs are applied. For global scale emissions
inventories, specific EFs are applied by biome (e.g., Kaiser
et al., 2012; van Leeuwen et al., 2014). EFs are dependent
on the fuel type and combustion conditions (e.g., Prichard
et al., 2020) and, therefore, can have a high degree of
variability for event-based and regional BB emission esti-
mation. Region-specific knowledge of EFs is often applied
for air quality modeling efforts in different countries. This
has been particularly the case for Australia where studies
combining locally measured EFs and knowledge of indig-
enous cultural burning practices to provide more detailed
information on country-specific BB emissions estimates
(see Supplementary Material for more information).
Recent efforts to better characterize the composition of
smoke for emissions modeling have resulted in several
updates to EFs from BB and other open burning (Andreae,
2019; Prichard et al., 2020). The Andreae (2019) inventory
includes EFs for 121 gas- and particle-phase species or
constituents (i.e., total particulate matter, TPM). The data
are almost entirely from field measurements and include
a range of globally relevant fuel and fire types. The Smoke
Emissions Repository Application (SERA) database (Pri-
chard et al., 2020) includes EFs for 276 gas- and
particle-phase species or constituents focused on North
American wildland fuels including both laboratory and
field data. The Next-generation Emissions InVentory
expansion of Akagi database (NEIVA; Binte Shahid et al.,
2024), described in Section 2.4.1, is similar to Andreae
(2019), and includes EFs for globally relevant fuel and fire
types, but covers over 800 compounds and representative
laboratory data were selectively included. As with
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SERA, NEIVA is an online, searchable database. The EFs in
these databases are generally used as static inputs to mod-
els even though they are dependent on the stage of com-
bustion (e.g., flaming vs. smoldering). With the emergence
in recent years of space-based estimates of MCE, efforts
are under way to establish acceptable assumptions of
these effects on EFs for general use (e.g., Zhou et al.,
2023).

2.4.1. NEIVA

The NEIVA database (NEIVA; Binte Shahid et al., 2024) is
a new database in which the EFs for 14 globally relevant
fuel and fire types have been updated to include data
from recent studies, with a focus on gaseous non-
methane organic compounds (NMOC_g, where g
denotes gaseous emissions). In v1.0, NEIVA exists as a col-
lection of datasets and Python script files, all of which
are available through the NEIVA GitHub site (https://
github.com/NEIVA-BB-Emissions-Inventory). The data-
sets include a primary database with collected and refor-
matted data from: existing emission inventories (e.g.,
Akagi et al.,, 2011 and updates; Andreae, 2019); recent
laboratory and field campaigns compiled from 30 pub-
lications (2015 and later); a recommended EF dataset
with EFs averaged across studies and summarized for
the 14 fuel and fire types.

Additional features of NEIVA include a property dataset
that links each NMOC_g with a suite of chemical and
physical properties using unique identifiers; NMOC_g are
mapped to SAPRC, MOZART-T1, and GEOS-Chem model
surrogates to facilitate inclusion of recent data in model

Table 1. Summary of global BB emissions datasets®
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applications; EFs for inorganic gases and particulate
matter (PM) constituents (e.g., elemental carbon, organic
carbon, water soluble organic carbon, ions); and flexible
querying across datasets (that represent different levels of
processing, merging, and averaging) that allow EF retrieval
from the individual study level to averaged across all stud-
ies for a given fuel or fire type, and from the individual
compound or constituent level to representative model
surrogate species.

The number of NMOC_g represented in NEIVA is up to
an order of magnitude higher than in the most recent EF
compilations. Inclusion of this more diverse set of
NMOC_g changes property distributions, for example, the
volatility distribution and OH reactivity (OHR) of the
represented compounds, that can affect predictions of
atmospheric composition and chemistry. Mapping this
more diverse set of NMOC_g to model surrogates also
leads to distinct differences in the surrogate distributions
when compared with other existing compilations that are
likely to affect multiscale model predictions. NEIVA has
a better representation of intermediate volatility com-
pounds, resulting in a shift in the volatility distribution
to lower volatilities, with the lowest volatility bin shifted
by up to 3 orders of magnitude. In addition, the NEIVA
NMOC_g speciation profiles when mapped to SAPRC-07
model surrogates resulted in higher OHR by 40%-90%
(Binte Shahid et al., 2024).

3. Emissions datasets
Each emission dataset is described in a sub-section below,
and its characteristics summarized in Table 1.

Aerosol Peat Fire
Dataset  Sensor Product Approach Resolution NRT  Scaling Emissions Main Use
GFEDv4s MODIS burned area, active fire Burn area 0.25° No No Yes for tropical A
geolocations peatlands
GFEDv5 MODIS burned area, MODIS Burn area 0.25° Yes No Yes A
and VIIRS active fires
QFEDv2.5 MODIS and VIIRS Fire Radiative Combustion 0.1° Yes Yes No A B
Power (FRP)
GBBEPX VIIRS FRP Combustion 0.1° Yes Yes No B
GFASv1.2 MODIS FRP Combustion 0.1° Yes No Yes A B
FEERV1.0  MODIS FRP Combustion 0.1° No Yes No A
FINNv2.5 MODIS and VIIRS active fire Burn area 1 km Yes No No A'B
geolocations
FLAMBE =~ MODIS active fire geolocations Burn area 1-3 km Yes Yes No B
IS4FIRES MODIS FRP Combustion 0.1° Yes Yes No A B

#Approach refers to the use of the burn area or combustion approaches, described in Section 2.3, to estimate emissions. NRT refers to
near-real-time availability of the data required for operational smoke and air quality forecasts. Aerosol scaling refers to tuning of
output emissions based on regional or other empirically derived factors for model applications. Peat fire emissions indicate if specific
BB emissions for peatlands are available in the dataset. The main use of these datasets has been to provide publicly available long-
term datasets better understanding long-term changes in global BB (labeled A in the table) and for operational air quality and

atmospheric composition forecasts (labeled B in the table).
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3.1. GFED

The Global Fire Emissions Database (GFED) computes fire
emissions based on the Seiler and Crutzen (1980) equa-
tion; multiplying satellite-derived burned area with mod-
eled fuel consumption. Currently GFED version 4 (GFED4)
with the addition of small fires (GFED4s) uses MODIS
burned area collection 5 (Giglio et al., 2013) and small
fire burned area based on statistical relations between
MODIS active fire detections inside mapped burn scars
(Randerson et al., 2012). Burned area is then multiplied
by fuel consumption, which is modeled and varies spa-
tially and temporally (van der Werf et al., 2017).

Over the course of 2025 GFED will transition to version
5 (GFEDS5), providing a major overhaul, and is expected to
be released later in 2025, but a Beta version is currently
available. GFED5 is based on the MODIS collection 6
burned area product (Giglio et al., 2018), and the small
fire burned area detection algorithm has benefited from
the use of Landsat and Sentinel-2 burn area information
to better constrain the algorithm (Chen et al., 2023). Fuel
consumption is based on van Wees et al. (2022) who ran
a simplified GFED fuel model at native MODIS resolution.
This allowed for improved calibration with field-derived
fuel consumption. EFs are based on NEIVA (Section 2.4.1)
and dynamic EFs for savannas from Vernooij et al. (2023).

The purpose of the dataset is to provide a publicly
available, relatively long-term, retrospective, and consis-
tent source of information to understand the role of fires
in the global carbon cycle and climate system. The GFED4
dataset covers the 1997-2024 period, with the pre-MODIS
era being based on Visible and Infrared Scanner (Giglio
et al., 2000) and Along-Track Scanning Radiometer (Eva
and Lambin, 1998) satellite observations, and post-2016
emissions are derived from grid-cell-specific relations
between emissions and MODIS active fires for the 2001-
2016 overlapping period. GFED5 covers the 1997—now
period, the post-2022 period will be based on VIIRS active
fire detections scaled to GFED5 emissions. The spatial res-
olution of the GFED datasets is 0.25°, the temporal reso-
lution is monthly and uses scalars to convert monthly data
to daily or 3-hourly timesteps. The EFs used are mostly
derived from Akagi et al. (2011).

GFED4s data are publicly available with a delay of
approximately 1 year. However, the use of VIIRS active fire
detections used in GFED5 will provide near-real-time
(NRT) availability. More information can be found on
http://www.globalfiredata.org/.

3.2. QFED

The Quick Fire Emissions Dataset (QFED) (Darmenov and
da Silva, 2015) uses an approach based on MODIS and
VIIRS FRP observations to calculate gridded daily fire
emissions and daily mean gridded FRP for each satellite
instrument and biome. BB emission estimation with QFED
is based on 4 global biomes (tropical forest, extratropical
forest, savanna, and grassland), which is an aggregate of
the International Geosphere—Biosphere Programme
(IGBP) land cover classes. Calibration of BB emissions for
trace gases and aerosols is made in 2 ways. For trace gases,
GFED-based calibration is performed for carbon monoxide
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(CO), and emissions of the other species are derived based
on the ratio of EFs. For aerosols, QFED is intended as
a perceived emission dataset; that is, the emissions that
initialize smoke in the GEOS model are needed to simu-
late realistic aerosol optical depth (AOD) distributions in
the atmosphere. Calibration coefficients for each biome
are obtained through an inverse calculation constrained
by MODIS AOD observations retrieved using Global
Modeling and Assimilation Office’s Neural Net Retrieval
trained on AERONET data.

In preparation for the end of the MODIS era, QFED
developments are planned to use FRP observations from
geostationary satellites to capture the diurnal cycle in
emissions. Additional future developments for QFED
include the adoption of the biomes, including peatlands,
provided by the NASA Fire Light Detection Algorithm
(FILDA; Zhou et al., 2023) and to implement MCE
calculations to modulate EFs using nighttime and daytime
distributions. A Bayesian multispectral, biphasic algorithm
is being developed to provide separate estimates of the
flaming and smoldering/residual components of FRP,
alongside associated heat fluxes. These capabilities permit
the specification of combustion phase dependent EFs, and
when combined with the thermodynamic environment,
the estimation of vertical mass distribution functions
using plume rise models such as Freitas et al. (2010).

QFED is operated in NRT and in delayed (reanalysis)
mode by the NASA GMAO. QFED provides emissions for
the aerosol, greenhouse, and reactive gases components
for the GEOS Earth System model and is the foundation
for GMAO reanalyses, mid-range, sub-seasonal, and sea-
sonal forecasting systems.

Currently, QFED provides gridded emissions products
at 25 and 10 km nominal resolution with a latency of
approximately 6-h after 00 UTC for NRT, and approxi-
mately 1 week for “science quality” data. The dataset
covers the full MODIS period with VIIRS starting in
2012. The data are publicly available on request from
NASA GMAO.

3.3. GBBEPx and RAVE

The current operational Global Biomass Burning
Emissions Product eXtended (GBBEPx) V5 algorithm esti-
mates fire emissions from VIIRS 375m FRP observations
aggregated by biome type (tropical forest, extratropical
forest, savanna, and grassland) to a 0.05° grid cell. Initial
versions of the GBBEPx algorithm were applied to MODIS
and VIIRS observations, GBBEPx phased out MODIS and
currently uses only VIIRS instruments on the NOAA-20
and NOAA-21 satellites.

FRP density for a predefined grid (e.g., 0.1° x 0.1°) is
calculated by remapping individual VIIRS active fire obser-
vations. Emissions are estimated using regression para-
meters derived by correlating VIIRS FRP density with
QFED V2.5 emissions stratified into different biome types
for each continent. The reliance on QFED V2.5 to derive
GBBEPx emissions requires regression parameter updates
whenever QFED undergoes a revision. NOAA is planning
to completely modify its emissions algorithm to use
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merged polar-orbiting and geostationary satellites using
its newly developed algorithm (see Li et al., 2022).

NOAA has also developed a new operational algorithm
(Li et al., 2021), Regional hourly Advanced Baseline
Imager and Visible Infrared Imaging Radiometer Suite
Emissions (RAVE), to generate regional hourly 3 km fire
emissions across North America using a combination of
FRP observations from the Advanced Baseline Imager
(ABI) on the Geostationary Operational Environmental
Satellites—R Series (GOES-R) and VIIRS. High temporal res-
olution of ABI allows for characterizing fires and emissions
on a diurnal scale. The RAVE algorithm calibrates and
fuses the ABI FRP with VIIRS FRP in 3 km grids. FRP
diurnal cycles at an interval of 5 min are reconstructed
using the fused ABI-VIIRS FRP combined with the land
cover-ecoregion-specific FRP diurnal climatologies. The
reconstructed FRP diurnal cycles are applied to estimate
hourly emissions of 10 species (e.g., CO and fine PM with
diameters < 2.5 um (PM,s)). The RAVE algorithm is
expanding to use geostationary FRP observations covering
Europe and Asia.

Daily GBBEPx emissions are currently used by the
NOAA National Weather Service in its operational global
aerosol model (Zhang et al., 2022). Hourly RAVE emissions
data are operationally used by the National Weather Ser-
vice regional air quality forecast model. NOAA currently
has processed the entire VIIRS record from 2012 to the
present and the datasets on a 0.25° x 0.25° grid resolu-
tion that are made available to users by request. Opera-
tional GBBEPx data with a 1-day latency are publicly
available for download at https://www.ospo.noaa.gov/
products/land/gbbepx/, and operational RAVE data with
a 2-h latency are publicly available for download at
https://www.ospo.noaa.gov/products/land/rave/.

3.4. GFAS

The Global Fire Assimilation System (GFAS) computes fire
emissions in NRT from satellite observations of FRP and
assumptions dependent on vegetation type (Kaiser et al.,
2009; Kaiser et al., 2012). GFAS version 1.2 (GFASv1.2) is
based on FRP observations from the MODIS instruments
on the Terra and Aqua satellites (Giglio et al., 2016) to
calculate emission rates of various smoke constituents
using static EFs from Andreae and Merlet (2001) and
Christian et al. (2003). These calculations of combustion
rate and species emissions contain representations of peat
in Southeast Asia and Siberia.

Spurious signals, for example, from gas flaring, power-
plants, and volcanic outflow, are masked with a static map
and the combustion rate is calculated from FRP (following
Wooster et al., 2005) currently using 8 empirical factors
for 8 different land cover types, which have been derived
from a regression against the combustion rate of GFED3
(van der Werf et al., 2010; Kaiser et al., 2012). Furthermore,
the GFAS algorithm applies a solution for partial observa-
tional cloud coverage, taking into account observation
representativity errors as well as observation uncertainty
due to satellite sensor detection limits to estimate a GFAS
analysis of FRP where observations are combined with
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previous day analysis (or first-guess) using a Kalman filter
approach.

An updated, higher (hourly) temporal resolution
version, GFASv1.4, also based on MODIS FRP observations,
is already deployed in Copernicus Atmosphere Monitoring
Service (CAMS) operational forecasts and planned to be
released in the near future. The higher temporal resolu-
tion is achieved by assimilating daytime and nighttime
FRP separately and superimposing a climatological diur-
nal cycle. Future updates to GFAS will assimilate FRP
observations from the VIIRS instrument on the Suomi-
NPP, NOAA-20, and NOAA-21 satellites (Csiszar et al.,
2014) and from the geostationary Meteosat, GOES-E,
GOES-W, and Himawari satellites to ensure the post-
MODIS continuation of the dataset. Furthermore, dynam-
ical bias correction, a machine learning-based FRP model,
and EF updates are planned to contribute to GFAS
improvements.

GFAS is operated in NRT by the European Centre for
Medium-Range Weather Forecasts (ECMWF) as part of
CAMS and used as input, with persistence, for operational
forecasts, reanalysis, and other services provided by CAMS,
as well as being publicly disseminated as an open access
dataset. More information, and data access, is available
from https://atmosphere.copernicus.eu/. The data are
provided at a 0.1° spatial resolution for the period 2003
to present day, to cover the combined availability of both
MODIS instruments. The data are publicly available 1-day
behind (GFASv1.2) and 7-h behind (GFASv1.4) real time.
GFASv1.2 is currently distributed via https://ads.
atmosphere.copernicus.eu/datasets/cams-global-fire-
emissions-gfas?tab=overview and GFASv1.4 data will also
be distributed from there during 2025.

3.5. FEER

The Fire Energetics and Emissions Research (FEER) version
1.0 developed a global BB emissions dataset for various
particle and trace gas species using the combustion
approach (Ichoku and Ellison, 2014). Initially, FEER gener-
ated a global gridded map of emission coefficients (Ce) for
smoke TPM by leveraging simultaneous measurements of
FRP from the GFAS product (Kaiser et al., 2012), AOD from
the MODIS sensors on the Terra and Aqua satellites, and
wind vector data from the NASA Modern-Era Retrospec-
tive analysis for Research and Applications, Version 1
(MERRA) (Ichoku et al., 2008). Subsequently, the smoke
TPM is calculated by multiplying Ce by time-integrated
FRP. Finally, EFs are used to convert TPM emission esti-
mates into the various species included in the FEERv1.0
emissions inventory. These EFs are derived from Andreae
and Merlet (2001), with updates provided by Andreae
(2019). The FEERv1.0 dataset for various particle and trace
gas species between 2003 and 2013 is available from
https://science.gsfc.nasa.gov/feer/.

3.6. FINN

The Fire INventory from NCAR (FINN) is a model
framework that produces global, daily fire emissions esti-
mates at an approximate 1 km? horizontal resolution
(Wiedinmyer et al., 2011; Wiedinmyer et al., 2023). The
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model uses the Seiler and Crutzen (1980) equation (burn
area method), assuming that the emissions are a function
of burned area, fuel loading, fuel consumption, and EF.
The FINN framework estimates burned area from satellite-
derived fire detections and satellite-derived vegetation
inputs with estimates of fuel loading and EFs reported
from field and laboratory studies.

The most recent version of FINN, version 2.5
(FINNv2.5), enables simultaneous use of multiple satellite
products for emissions estimates. Currently, MODIS Col-
lection 6 (MCD14DL) active fire detections and VIIRS
active fire products obtained from NASA's Fire Informa-
tion for Resource Management System data portal can be
applied: one or both products may be used. Land Cover is
assigned by year from the MODIS LCT MCD12Q1 Version 6
Land Cover Type Product with the IGBP classification
scheme and the MODIS MOD44B v006 MODIS/Terra Veg-
etation Continuous Fields annual product. FINNv2.5
includes a preprocessor and an emissions module, all
openly accessible (Wiedinmyer et al., 2023). Within the
FINNv2.5 preprocessor, fire detections are spatially pro-
cessed to produce estimates of burn areas and overlaid
onto the vegetation information.

FINN BB emissions are used in applications including
forecasting in the NCAR Whole Atmosphere Community
Climate Model (WACCM), and retrospective model
analyses.

Emission estimates are available from 2002 to the
present day (Wiedinmyer and Emmons, 2022) at a spatial
resolution of 1 km and daily temporal resolution. The
emissions are available in NRT and the data are publicly
available from https://www2.acom.ucar.edu/modeling/
finn-fire-inventory-ncar.

3.7. FLAMBE

The Fire Locating and Monitoring of Burning Emissions
(FLAMBE) system generates satellite-based estimates of
spatially and temporally resolved emissions of PM in NRT
(Reid et al., 2009). It has been used to supply emissions
estimation for operational smoke predictions from the
Navy Aerosol Analysis and Prediction System (NAAPS)
since 2007. FLAMBE was originally developed to utilize
the fire detections from GOES imagers provided by the
Wildfire Automated Biomass Burning Algorithm (Prins
and Menzel, 1994), and it currently uses the MODIS
MOD14 thermal anomaly product, Collection 6.1 (Giglio
et al., 2016) to calculate burn area.

FLAMBE does not use MODIS FRP, relying instead on
scaling hot spots to burned area according to land cover
classification (burn area approach). Fuel loading, fuel con-
sumption, and EFs are derived from field observations
(e.g., Reid et al., 2005a; Reid et al., 2005b) and similarly
assigned based on land cover.

Applications of FLAMBE have typically applied regional
scaling factors to improve the realism of outputs from
specific chemical and aerosol transport models (e.g.,
GEOS-Chem in Fisher et al., 2010; NAAPS in Hyer and
Chew, 2010; and WRF-Chem in Wang et al., 2013). Lynch
et al. (2016) applied both a regional scaling of FLAMBE
emissions and a temporal filter to mitigate day-to-day
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shifts in the orbital pattern (Heald et al., 2003).
Forecasting using FLAMBE emissions is done with
persistence, although some testing of dynamic emissions
has been done (Peterson et al., 2013).

The design of FLAMBE reflects the goals of low latency
for NRT operations, traceability to field measurements,
and simplicity. FLAMBE emissions are a means to include
spatially and temporally resolved BB emissions in atmo-
spheric models, but they are not constrained to balance
with other components of the carbon cycle and thus are
not suited for most climate research applications.

FLAMBE provides emissions in a vector form, with
emissions assigned at the locations of observed satellite
hot spots; this is done to maximize consistency between
simulations from models with different horizontal grids.
Hourly emissions are estimated by applying land-cover-
dependent diurnal cycles derived from geostationary fire
observations (Reid et al., 2004).

Consistently processed FLAMBE emissions datasets
are available for 2002-2022 and can be obtained from
the Global Ocean Data Assimilation Experiment
(GODAE;  https://usgodae.org/cgi-bin/datalist.pl?
dset=nrl_7seas&summary=Go). GODAE also includes
some additional documentation of the FLAMBE data
products.

3.8. IS4FIRES

The emission inventory produced by Integrated System for
vegetation fires, IS4FIRES (http://is4fires.fmi.fi), is com-
puted from MODIS FRP using the combustion approach:
emission of gases and aerosols is calculated directly from
FRP using empirical EFs (Sofiev et al., 2009; Soares et al.,
2015). The IS4FIRES system is operated by Finnish
Meteorological Institute in close connection with the Sys-
tem for Integrated modelling of Atmospheric coMposi-
tion (SILAM; http://silam.fmi.fi) and used as inputs to
forecast and hindcast of atmospheric composition, air
quality, data for impact assessment studies, and so on
(Romanello et al., 2023; Chowdhury et al., 2024; Curto
et al,, 2024).

The approach relies on the linear relation between the
FRP and a rate of the biomass consumption (Mota and
Wooster, 2018; Nguyen et al., 2023) and uses inverse dis-
persion modeling to identify these factors.

The inventory is based on 2 primary EFs converting FRP
to total-PM and CO, which are obtained via inversion per-
formed with SILAM. The EFs for PM are inferred from an
iterative fitting of SILAM-calculated AOD with the corre-
sponding Aeronet and MODIS AOD observations. The EFs
for CO are based on a similar calibration procedure with
Measurements Of Pollution In The Troposphere (MOPITT)
retrievals: CO column and vertical profiles. The EFs distin-
guish between the continents and 7 land-use classes in
each continent (in total, 34 nontrivial land-use categories).
Each land-use category has its own EF from FRP to PM and
from FRP to CO, that is, the fitting has 68 factors to
identify from an inverse-problem solution. To constrain
this multidimensional problem, the emission inversion
is performed over a time period of 3-5 years. The total-
PM and CO emissions are used as proxies for
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multicomponent emissions supplied to SILAM. EFs for the
other emitted species are taken from Akagi et al. (2011).

Conversion of instant MODIS FRP observations into
hourly emission fluxes involves the diurnal variation
obtained from FRP retrievals from the SEVIRI geostation-
ary satellite over Africa, also covering Europe (Soares et al.,
2015). The obtained diurnal variation is extended to other
continents using multiannual MODIS FRP data: the shape
of the variation is kept but the absolute variation is scaled
according to the MODIS day—night FRP ratio. The emission
inversion depends on the features of the plume disper-
sion; therefore, attention was given to the plume eleva-
tion, for which the semiempirical formula has been
derived using MISR active fire and plumes datasets (Sofiev
et al., 2012; Sofiev et al., 2013).

At the global scale, IS4FIRES BB emissions are provided
with a spatial resolution 0.1° and 1 h time resolution.

The current IS4FIRES v.2.0 is operated in NRT with the
data open at the SILAM data portal http://silam.fmi.fi/
thredds. The portal also contains the archive starting from
the beginning of MODIS observations in 2000. The histor-
ical fire-induced smoke concentrations are openly avail-
able from an online data archive (Hanninen et al., 2024).

4, Intercomparison and known differences

Direct evaluation of global BB emissions is challenging
due to highly limited availability of independent measure-
ments (especially from satellites) and the heterogeneous
spatial and temporal distribution of BB activity. However,
indirect evaluation is possible through intercomparison of
different BB emissions inventories, as well as by using
these inventories in chemical transport models and eval-
uating the resulting modeled smoke against satellite
observations and in situ measurements. Evaluation
against satellite observations has typically occurred for
CO, nitrogen dioxide (NO;), and AOD; although formalde-
hyde (HCHO) and some other species are also possible.
Several emission intercomparison studies have revealed
large differences in BB emissions by species and by region.
There have also been several studies that applied the dif-
ferent emissions in the same model in order to evaluate
the results against measurements. This section sum-
marizes the important findings in those studies, first glob-
ally (Section 4.1), and then by region (Section 4.2).

4.1. Global

Fire emissions from several inventories have been com-
pared by Wiedinmyer et al. (2023), namely FINNv2.5
(MODIS-+VIIRS), FINNv2.5 (MODIS), GFED4s, FEER, GFAS,
and QFED. Global and regional comparisons for 2012—
2019 highlight the complexity in evaluating BB emissions,
with varied results across inventories for different species
in different regions (Figure 3). In general, the year-to-year
variabilities in the annual fire emissions are consistent
between different inventories, however the magnitudes
of the emissions differ. The 2 inventories predicting the
highest global emissions of CO, and CO were FINNv2.5
with MODIS+VIIRS and FEER. These inventories estimated
approximately double the emissions of CO, and CO, com-
pared to GFED4s, QFED, GFAS, and FINNv1.5. However,
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these inventory differences are not conserved across
different species. Species variability is indicated by, for
example, QFED producing the lowest global HCHO
emissions but highest global black carbon (BC) + organic
carbon (OC) emissions, compared to the other inventories.
Additionally, these estimates vary regionally. For example,
FINNv2.5 (MODIS+VIIRS) has significantly higher emis-
sions over Southeast Asia in spring than other inventories.
In contrast, GFED4s and GFAS have higher emissions than
other inventories over Boreal North America and Equato-
rial Asia in summer, likely due to the inclusion of peat fire
emissions. Targeted measurements, such as the recent Air-
borne and Satellite Investigation of Asian Air Quality
(ASIA-AQ) field campaign in early 2025, will help under-
stand Southeast Asia BB emission inventory accuracy.

Griffin et al. (2024) compared CO emissions estimates
from fires with satellite-derived CO emissions worldwide.
They used high-resolution satellite data from the Tropo-
spheric Monitoring Instrument (TROPOMI) to estimate CO
emissions from individual fires globally between 2019 and
2021. As a first step, CO BB emissions were estimated
directly from the satellite observations using a flux
method, where the total mass of the CO enhancement is
estimated from the satellite column observations aver-
aged in 4 km boxes upwind and downwind across the fire
entire plume, combined with ERA5 winds to determine an
emission rate. As a next step, by combining these esti-
mates with satellite FRP data from MODIS, they developed
biome-specific emission coefficients and created annual
CO BB emissions. Combining these TROPOMI-MODIS
derived emission coefficients and total MODIS FRP (such
as the GFAS FRP), total emissions annual CO emissions
were derived. They found that Southern Hemisphere
Africa had the highest CO emissions from BB, accounting
for over 25% of the global total of 300-390 Mt(CO)/yr
from 2003 to 2021, in terms of biomes: broad-leaved
evergreen tree fires contributing almost 25% of global
emissions. The study also compared different BB CO emis-
sion inventories (including the Global Forest Fire Emis-
sions Prediction System [GFFEPS; Anderson et al., 2024],
GFED4.1, FINN1.5, FINN2.5, and GFAS) to the TROPOMI-
MODIS total emissions (Figure 4a). The average global
annual CO emissions from wildfires are roughly between
300 and 400 Mt/yr for all inventories except FINN2.5
inventory reported CO emissions on the order of 500—
700 Mt/yr, consistent with Wiedinmyer et al. (2023). Over
the past 2 decades, the satellite-derived global CO BB
emissions have generally decreased by 5.1-8.7 Mt(CO)/
yr, this decrease is driven by decreasing wildfire emissions
from Africa and South America, however, the Temperate
Forest North America (TENA) shows increasing emissions
(Griffin et al., 2024; Figure 4b).

The fire emissions of aerosols from 6 global biomass
burning emission datasets (i.e., QFED2.4, FEER1.0,
FINN1.5, GFED3.1, and GFED4s) have been intercompared
by Pan et al. (2020). In most regions worldwide, QFED2.4
and FEER1.0 datasets based on FRP have significantly
more OC BB emissions than other datasets (Figure 5a).
Averaged globally, QFED2.4 has a factor of 3.8 more OC
emissions than GFED 4s, which has the least. Using the
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Figure 3. Intercomparison of several BB emissions datasets for several species and regions. Figure from

Wiedinmyer et al. (2023, corrigendum).

NASA Goddard Earth Observing System (GEOS) model,
simulated AODs with the QFED2.4 and FEER1.0 datasets
are closest to the observed AOD from MISR and AERONET
in the southern hemisphere when and where biomass
burning emissions dominate (Figure 5b). In contrast,
simulated AOD with GFED4s was underestimated most.
Both QFED2.4 and FEER1.0 are based on FRP and con-
strain the emission coefficients used to derive BB aerosol
emissions based on MODIS AOD. However, this constraint
does not apply to other BB emission datasets.

4.2. Regional

Other research has had a more regional focus for evalu-
ating fire emission estimates and their impact on air
quality and climate modeling. For example, Carter et al.
(2020) focused on North America within a global context
using 4 commonly used smoke inventories (GFED4s,
FINN1.5, GFASv1.2, and QFED2.4), a chemical transport

model (GEOS-Chem), and observations from surface net-
works, aircraft, and satellites. They found that the 4
inventories perform differently depending on emitted
species, location, and season (e.g., Figure 6). They also
calculated that average BC and OC emissions differ by
roughly a factor of 5 and 4, respectively, across the inven-
tories in boreal North America. The range in BC and OC
emissions in the contiguous United States is even larger
(a factor of approximately 7 and 6, respectively). Global
ranges in BC emissions are smaller than those in North
America (approximately 2.3) with a somewhat more
modest spread (approximately 1.7) in OC emissions, pos-
sibly because of EF differences. They also demonstrated
that dry matter, not EF, differences are the driving force
for emissions variation across inventories. Carter et al.
(2020) showed that 2 of the inventories (GFED4s and
GFASv1.2) lead to a better agreement between the model
and observations in North America (Figure 6). While

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq



Parrington et al: Biomass burning emission estimation in the MODIS era

Art. 13(1) page 11 of 23

120
@I TROPOMI/FRE
D GFFEPS
100{ 3 GFED
(a) 3 GFAS
@B FINN1.5
_ 801 mmm FINN2S
£
S 601
2
8

BN
o

N
o

Total CO (Mt)

(b)

BONA TENA CEAM NHSA SHSA EURO MIDE NH-AF SHAF BOAS CEAS SEAS EQAS AUST
Region
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Griffin et al. (2024).

most air quality and climate studies only use one smoke
inventory, they find that there is a large range across the
inventories in health-relevant surface smoke concentra-
tions and climate-relevant direct radiative effects. Tang
et al. (2022) found for the Western United States, mod-
eled CO and AOD using FINNv2.5 inputs to compare well
with MOPITT CO and MODIS AOD. However, similar

evaluations in other parts of the world suggested that
FINN estimates of CO are overestimated in the Amazon
basin and in central Africa.

Liu et al. (2020a) intercompared fire emissions in
Indonesia for GFED4s, FINN1.5, QFED2.5r1, GFASv1.2,
and FEER1.0-G1.2 and modeled surface smoke concentra-
tions across Equatorial Asia (Indonesia, Malaysia, and
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a model. Figures from Pan et al. (2020).
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Singapore; Figure 7). They reported that the main
challenges include accounting for the high fuel consump-
tion in peatlands and high cloud cover and thick smoke
obscuring fire disturbances, detected as either thermal
anomalies or abrupt changes in surface reflectance (Giglio
et al., 2016; 2018). First, some inventories do not partition
peatlands into a separate land cover type, and thus do not
account for differences in fuel consumption and EFs
(Akagi et al., 2011; van der Werf et al.,, 2017; Andreae,
2019). Model simulations using inventories with peat fire
specifications, such as GFASv1.2 and GFED4s, better
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Figure 6. Intercomparison of BC (a, b) and organic
aerosol (c, d) vertical profiles from a model using
several BB emissions compared to aircraft-based
measurements in North America. Figure from
Carter et al. (2020).
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captured the high anomalies in smoke concentrations
observed at ground monitors in Singapore and Malaysia
in high fire years such as 2006 and 2015 compared to
other inventories (Figure 7). Second, as seen in 2015,
thick haze during severe fire seasons can hinder fire detec-
tion even further, leading to underestimates in fire emis-
sions. Model simulations using inventories that adjusted
for such cloud/haze gaps such as GFASv1.2 and
QFED2.5r1 see higher temporal correlations with smoke
concentrations observed at ground monitors.

Desservettaz et al. (2022) carried out a focused inter-
comparison study of Australian BB CO emissions estimates
from FINNv1.5, GFED4s, and QFEDv2.4, processed
through chemical transport models. FINNv1.5 signifi-
cantly underestimated emissions from savanna fires in
northern Australia when compared to GFED4s and
QFEDv2.4—an order of magnitude lower than the latter.
This discrepancy was so pronounced that models driven by
FINNv1.5 could not replicate the observed levels and pat-
terns of CO in the region. Wiedinmyer et al. (2023) note
that the updated FINNv2.5 has increased CO emissions for
the region, but remains lower than GFAS, QFED, and FEER.
GFED4s and QFEDv2.4 inventories showed much closer
agreement in their estimates for Australian emissions.
However, QFEDv2.4 provided consistently higher emission
estimates in Australia overall.

Regionally, the magnitude and temporal variability of
fire emissions may differ substantially among different
global inventories, and the performance of inventories
may differ accordingly. Importantly, efforts toward stan-
dardization of core inputs and adjustments for construct-
ing inventories, such as land cover classes and cloud/haze
gap adjustments can reduce the variation in estimates
across fire inventories. Simultaneously, region-specific
adjustments of inventories, such as with household survey
data of agricultural fire practices (Liu et al., 2020b) or
geostationary satellite observations to improve the fire
diurnal cycle (Li et al., 2022), can help to inform and
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Figure 7. Intercomparison of PM, 5 in Indonesia using several BB emissions and comparison to observed

PM, 5 (dashed lines). Figure from Liu et al. (2020a).
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improve global inventories. Online tools such as FIRECAM
(https://globalfires.earthengine.app/view/firecam) can
provide end-users with a first-order assessment of
differences among global fire inventories for a study
region of interest (Liu et al., 2020a).

Satellite observations of atmospheric composition
related to BB smoke, in particular TROPOMI CO as used
by Griffin et al. (2024), described above, have been playing
a growing role in evaluating and consolidating BB emis-
sions at regional scales. Recent studies for Australia (van
der Velde et al., 2021), Southern Africa (van der Velde
et al,, 2024), boreal North America and Eurasia (Zheng
et al,, 2023), and Canada (Byrne et al., 2024) have utilized
inverse modeling approaches to constrain BB emissions
estimated by some, although not all, of the datasets
described in Section 3, and highlight the potential of
atmospheric observations for addressing uncertainties in
BB emission estimation.

5. Future directions and recommendations

The FEW in November 2023 provided a timely opportu-
nity to bring together the BB emissions community to
present and discuss the state-of-the-art in BB emission
estimation, comparing some of the most widely used data-
sets and their continued development with changes in the
availability of the observations. The upcoming decommis-
sioning of the 2 MODIS instruments marks a significant
change in the global observing system and the end of
a remarkable era of satellite observations for BB emissions
covering the past 2 decades. Of the other sensors provid-
ing fire observations, the VIIRS instruments launched on
NOAA polar-orbiting satellites are already being used in
the production of some BB emissions datasets using active
fire observations. VIIRS and observations from the other
sensors listed in the introduction are planned for imple-
mentation in datasets to ensure provision of BB emissions
estimates in the post-MODIS era.

5.1. Development, and uptake, of satellite burned
area products from VIIRS and other instruments
AVIIRS burned area product has been developed but has
not yet been used in the production of BB emissions.
While active fire observations provide the NRT capability
required for operational air quality forecasting, the BB
emissions from FRP are often calibrated against BB esti-
mates derived from burned area. Similarly, recent devel-
opments and applications of Artificial Intelligence (Al) for
burned area and BB emission estimation strongly depend
on training and calibration against the empirical burned
area products. Therefore, continued development and
availability of burned area datasets from the available
sensors is strongly recommended.

5.2. Mapping of the fine scale heterogeneity in fuel
type and condition

The variability of fuel type and condition, defined by bio-
geography, climate, and weather, is a major factor impact-
ing emission amount, rate, and composition. Mapping the
inherent heterogeneity of fuels at appropriate scales is
important for accurate smoke modeling. For local to
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landscape-scale smoke modeling, fuel type and condition
are important to map at fine scales. In contrast, global
approaches apply broad assumptions about fuel type and
condition but still require an understanding of the under-
lying heterogeneity in these factors to accurately parame-
trize at a larger scale and properly account for variability
in combustion and emissions.

5.3. Identification of spurious signals detections

and information gaps in satellite FRP products

The higher resolution of the VIIRS measurements com-
pared to MODIS makes them more susceptible to spurious
signals from non-fire thermal anomalies (such as active
volcanoes, gas flaring, solar farms, and shallow coastal
waters) and continued improvement in methodologies
to account for these errors of commission is also recom-
mended. Additionally, accurate and regularly updated
maps of biomes and fuels, especially global peatlands
where fires are difficult to detect and quantify, are recom-
mended to help remove omission errors, which can be
a large source of uncertainty in BB emission estimation.
Improved accounting of small fires in GFEDS5, for example,
highlights their significant contribution to the global total
emission burden (Chen et al., 2023) and should be fac-
tored into spurious signal detection and updated biome
and fuel maps.

5.4, Regional modeling studies and comparison
against existing datasets

In order to best validate fire emissions datasets,
atmospheric models must use those datasets to simulate
the resulting atmospheric concentration of smoke-related
pollutants and then compare model output to observed
concentrations. However, models have other uncertainties
in addition to emissions uncertainties. An important step
is to characterize and quantify the uncertainties by run-
ning multiple simulations with different BB datasets in
one model framework (as some studies mentioned in Sec-
tion 4 have done) as well as using multiple models to run
simulations with the same BB datasets. Both of these are
proposed for the HTAP3 Fires model intercomparison pro-
ject (Whaley et al., 2025), which started in 2025. Multiple
regions and pollutant species will be targeted in this inter-
comparison. Also, in order to isolate the uncertainty that
appears due to EFs, an experiment in which each fire
emissions dataset uses the same EFs—such as those from
NEIVA—would remove that source of variability.

After quantifying sources of variability in model simu-
lations, a more precise understanding of differences can
be gained when comparing model results with observa-
tions, such as those from satellites. Regional evaluation
against in situ measurements, including vertically resolved
aircraft campaign measurements of multiple smoke pol-
lutants would also be valuable. The FIREX-AQ, WE-CAN,
BBFLUX, BBOP, aircraft campaigns represent some of the
best field observations of BB conditions and coordinated
effort of model simulations against these datasets can
help identify systematic biases in fire emissions input.
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5.5. Representation of the diurnal cycle and plume
rise in BB emissions

Finally, we know that the diurnal cycle in fire emissions is
important, and difficult to represent when so much
dependence is on once-or-twice-daily satellite observa-
tions. However, it is well known that fire emissions vary
greatly over the day and night and thus, for many model
applications, this needs to be well represented. In addi-
tion, injection height and vertical distribution of smoke
plumes into the atmosphere (e.g., Feng et al., 2024) is also
very important as it determines where the fire emissions
are added to the atmosphere, which further impacts the
transport, chemistry, and lifetime of fire emitted trace
gases and aerosols. More studies are needed to address
injection height of fire plumes, and indeed, the HTAP3
Fires study will also include injection height perturbation
experiments (Whaley et al., 2025). The injection height of
fire plumes and diurnal cycle of fire emissions are also
a coupled problem due to the diurnal cycle of meteorol-
ogy (Tang et al., 2022). For example, during the day, when
fire emissions tend to be stronger, vertical mixing and
convection are also more intense. At night, both fire emis-
sions and vertical mixing tend to weaken. Incorporating
both injection height and the diurnal cycle of fire emis-
sions in the model could have a synergistic effect, ampli-
fying their combined impact.

5.6. The evolving research landscape and final
remarks

In the time that has elapsed since the FEW in November
2023 several new studies have been published which
highlight advances in modeling, and the potential appli-
cation of Al and machine learning (ML), to address key
uncertainties in some of the inputs to BB emission esti-
mation. For example, McNorton and Di Giuseppe (2024)
developed the combined use of satellite observations of
above ground fuel and modeled Net Ecosystem Exchange
to improve fuel characteristics including live and dead fuel
moisture. Similarly, Forkel et al. (2025) applied satellite
observations and ML to address uncertainties in dry mat-
ter burned by biome and fire type, taking into account
land-use change/drought and dynamic EFs, with the fur-
ther application of satellite observations of atmospheric
constituents to constrain estimated emissions. These stud-
ies, along with the satellite inverse modeling studies cited
earlier, further highlight the critical importance of satellite
observations for BB emission estimation from different
biomes and fuel availability, and the potential for isolating
some of the key uncertainties at regional and global
scales.

Imminent changes to the available observations, and
continuing advances under the rapidly developing disci-
pline of wildfire science, make it imperative to identify
and better quantify the key uncertainties in BB emissions.
The outcomes and recommendations presented in this
manuscript, and the goals of the IGAC BBURNED activity,
represent the forward-looking multidisciplinary approach
required to pool resources for improving BB emission
estimation and its uncertainties.

Parrington et al: Biomass burning emission estimation in the MODIS era

Data accessibility statement
All data that were considered in this work are available in
the cited literature.

Supplemental files
The supplemental files for this article can be found as
follows:

Supplementary Information.pdf

Acknowledgments

We would like to start by thanking Amber Soja, an anon-
ymous reviewer and the editors for their constructive com-
ments and suggestions in reviewing the manuscript. We
thank NSF NCAR for hosting the virtual Fire Emission
Workshop (FEW), and especially UCAR Multimedia Tech-
nician Joseph Ehrman for providing technical help before,
during, and after the workshop, and Software Engineer
Carl Drews for help with posting workshop recordings.
We also thank NSF NCAR/ACOM for hosting the record-
ings on their YouTube site. NSF NCAR/ACOM also pro-
vides website hosting for BBURNED and FEW. Finally, we
express thanks to the Scientific Steering Committee of
HTAP (Tim Butler, Terry Keating, Jacek Kaminsky, and Rosa
Wu) for their contributions to planning and running the
workshop. The BBURNED activity is supported by IGAC
and overseen by IGAC steering committee member Louisa
Emmons.

Funding

The Copernicus Atmosphere Monitoring Service is oper-
ated by the European Centre for Medium-Range Weather
Forecasts (ECMWF) on behalf of the European Commis-
sion as part of the Copernicus Programme (http://
copernicus.eu). The participation of Clare Paton-Walsh
(Murphy) and Maximilien Desservettaz was supported by
the New South Wales Department of Climate Change,
Energy, the Environment and Water, within the Bushfire
and Natural Hazards Research Centre via the project
known as RUSH (Research for Understanding Smoke
Hazards). Edward Hyer's participation was supported by
the Office of Naval Research Code 32. Nancy French's
participation was supported with internal funding from
Michigan Tech Research Institute and NASA Interdisciplin-
ary Science Program Grant #80NSSC24K0299. Contribu-
tion of Mikhail Sofiev was funded by a project of Finnish
Research Council VFSP-WASE (grant 359421), Andreas
Uppstu was supported by EU Horizon project FirEUrisk
(grant number 101003890), and Julia Palamarchuk was
funded by a Finnish Research Council project HEATCOST
(grant 334798).

Competing interests
The authors have declared that no competing interests
exist.

Disclaimer

Views expressed in this paper are those of author(s) and
do not necessarily reflect those of NOAA or the Depart-
ment of Commerce.

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


http://copernicus.eu
http://copernicus.eu

Parrington et al: Biomass burning emission estimation in the MODIS era

Author contributions

Contributed to conception and design: MP, CHW, NHFF,
RRB.

Contributed to analysis and interpretation of data: All
authors.

Drafted and/or revised the article: All authors.
Approved the submitted version for publication: All
authors.

References

Akagi, SK, Yokelson, RJ, Wiedinmyer, C, Alvarado, MJ,
Reid, JS, Karl, T, Crounse, JD, Wennberg, PO.
2011. Emission factors for open and domestic bio-
mass burning for use in atmospheric models. Atmo-
spheric Chemistry and Physics 11: 4039-4072. DOI:
https://doi.org/10.5194/acp-11-4039-2011.

Andela, N, Kaiser, JW, van der Werf, GR, Wooster, MJ.
2015. New fire diurnal cycle characterizations to
improve fire radiative energy assessments made
from MODIS observations. Atmospheric Chemistry
and Physics 15: 8831-8846. DOI: https://doi.org/
10.5194/acp-15-8831-2015.

Anderson, K, Chen, J, Englefield, P, Griffin, D, Makar,
PA, Thompson, D. 2024. The Global Forest Fire
Emissions Prediction System version 1.0. Geoscienti-
fic Model Development 17: 7713-7749. DOL: https://
doi.org/10.5194/gmd-17-7713-2024.

Andreae, MO. 2019. Emission of trace gases and aerosols
from biomass burning—An updated assessment.
Atmospheric  Chemistry and Physics 19:
8523-8546. DOI: https://doi.org/10.5194/acp-19-
8523-2019.

Andreae, MO, Merlet, P. 2001. Emission of trace gases
and aerosols from biomass burning. Global Biogeo-
chemical Cycles 15(4): 955-966. DOI: https://doi.
org/10.1029/2000GB001382.

Balch, JK, Abatzoglou, JT, Joseph, MB, Koontz, M],
Mahood, AL, McGlinchy, J, Cattau, ME, Williams,
AP. 2022. Warming weakens the night-time barrier
to global fire. Nature 602: 442—-448. DOI: https://
doi.org/10.1038/541586-021-04325-1.

Binte Shahid, S, Lacey, FG, Wiedinmyer, C, Yokelson,
RJ, Barsanti, KC. 2024. NEIVAv1.0: Next-generation
Emissions InVentory expansion of Akagi et al. (2011)
version 1.0. Geoscientific Model Development 17:
7679-7711. DOIL: https://doi.org/10.5194/gmd-17-
7679-2024.

Bowman, DMJS, Kolden, CA, Abatzoglou, JT, Johnston,
FH, van der Werf, GR, Flannigan, M. 2020.
Vegetation fires in the Anthropocene. Natural
Reviews Earth and Environment 1: 500-515. DOL:
https://doi.org/10.1038/s43017-020-0085-3.

Bright, BC, Hudak, AT, McCarley, TR, Spannuth, A,
Sanchez-Lopez, N, Ottmar, RD, Soja, AJ. 2022.
Multitemporal lidar captures heterogeneity in fuel
loads and consumption on the Kaibab Plateau. Fire
Ecology 18(1): 18. DOI: https://doi.org/10.1186/
s42408-022-00142-7.

Byrne, B, Liu, J, Bowman, KW, Pascolini-Campbell, M,
Chatterjee, A, Pandey, S, Miyazaki, K, van der

Art. 13(1) page 17 of 23

Werf, GR, Wunch, D, Wennberg, PO, Roehl, CM,
Sinha, S. 2024. Carbon emissions from the 2023
Canadian wildfires. Nature 633: 835-839. DOI:
https://doi.org/10.1038/s41586-024-07878-z.

Carter, TS, Heald, CL, Jimenez, JL, Campuzano-jost, P,
Kondo, Y, Moteki, N, Schwarz, JP, Wiedinmyer, C,
Darmenov, AS, da Silva, AM, Kaiser, JW. 2020.
How emissions uncertainty influences the distribu-
tion and radiative impacts of smoke from fires in
North America. Atmospheric Chemistry and Physics
20: 2073-2097. DOI: https://doi.org/10.5194/acp-
20-2073-2020.

Caseiro, A, Gehrke, B, Rucker, G, Leimbach, D, Kaiser,
JW. 2020. Gas flaring activity and black carbon
emissions in 2017 derived from the Sentinel-3A Sea
and Land Surface Temperature Radiometer. Farth
System Science Data 12: 2137-2155. DOI: https://
doi.org/10.5194/essd-12-2137-2020.

Chen, Y, Hall, J, van Wees, D, Andela, N, Hantson, S,
Giglio, L, van der Werf, GR, Morton, DC, Rander-
son, JT. 2023. Multi-decadal trends and variability
in burned area from the fifth version of the Global
Fire Emissions Database (GFED5). Earth System Sci-
ence Data 15: 5227-5259. DOI: https://doi.org/10.
5194/essd-15-5227-2023.

Chowdhury, S, Hinninen, R, Sofiev, M, Aunan, K.
2024. Fires as a source of annual ambient PM, s
exposure and chronic health impacts in Europe. Sci-
ence of The Total Environment 922: 171314. DOL:
https://doi.org/10.1016/j.scitotenv.2024.171314.

Christian, TJ, Kleiss, B, Yokelson, RJ, Holzinger, R, Crut-
zen, PJ, Hao, WM, Saharjo, BH, Ward, DE. 2003.
Comprehensive laboratory measurements of
biomass-burning emissions: 1. Emissions from Indo-
nesian, African, and other fuels. Journal of Geophys-
ical Research: Atmospheres 108(23). DOI: https://
doi.org/10.1029/2003jd003704.

Cova, GR, Prichard, SJ, Rowell, E, Drye, B, Eagle, P,
Kennedy, MC, Nemens, DG. 2023. Evaluating
close-range photogrammetry for 3D understory fuel
characterization and biomass prediction in pine for-
ests. Remote Sensing 15(19): 4837. DOI: https://doi.
org/10.3390/rs15194837.

Csiszar, I, Schroeder, W, Giglio, L, Ellicott, E, Vadrevu,
KP, Justice, CO, Wind, B. 2014. Active fires from
the Suomi NPP Visible Infrared Imaging Radiometer
Suite: Product status and first evaluation results.
Journal of Geophysical Research: Atmospheres
119(2): 803-816. DOI: https://doi.org/10.1002/
2013JD020453.

Curto, A, Nunes, J, Mila, C, Nhacolo, A, Hinninen, R,
Sofiev, M, Valentin, A, Sadte, F, Kogevinas, M,
Sacoor, C, Bassat, Q, Tonne, C. 2024. Associations
between landscape fires and child morbidity in
southern Mozambique: A time-series study. The Lan-
cet Planetary Health 8: e41-e50. DOI: https://doi.
org/10.1016/52542-5196(23)00251-6.

Darmenov, AS, da Silva, A. 2015. The Quick Fire Emis-
sions Dataset (QFED): Documentation of versions
2.1, 2.2 and 2.4. NASA/TM-2015-104606/, vol. 38.

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


https://doi.org/10.5194/acp-11-4039-2011
https://doi.org/10.5194/acp-15-8831-2015
https://doi.org/10.5194/acp-15-8831-2015
https://doi.org/10.5194/gmd-17-7713-2024
https://doi.org/10.5194/gmd-17-7713-2024
https://doi.org/10.5194/acp-19-8523-2019
https://doi.org/10.5194/acp-19-8523-2019
https://doi.org/10.1029/2000GB001382
https://doi.org/10.1029/2000GB001382
https://doi.org/10.1038/s41586-021-04325-1
https://doi.org/10.1038/s41586-021-04325-1
https://doi.org/10.5194/gmd-17-7679-2024
https://doi.org/10.5194/gmd-17-7679-2024
https://doi.org/10.1038/s43017-020-0085-3
https://doi.org/10.1186/s42408-022-00142-7
https://doi.org/10.1186/s42408-022-00142-7
https://doi.org/10.1038/s41586-024-07878-z
https://doi.org/10.5194/acp-20-2073-2020
https://doi.org/10.5194/acp-20-2073-2020
https://doi.org/10.5194/essd-12-2137-2020
https://doi.org/10.5194/essd-12-2137-2020
https://doi.org/10.5194/essd-15-5227-2023
https://doi.org/10.5194/essd-15-5227-2023
https://doi.org/10.1016/j.scitotenv.2024.171314
https://doi.org/10.1029/2003jd003704
https://doi.org/10.1029/2003jd003704
https://doi.org/10.3390/rs15194837
https://doi.org/10.3390/rs15194837
https://doi.org/10.1002/2013JD020453
https://doi.org/10.1002/2013JD020453
https://doi.org/10.1016/S2542-5196(23)00251-6
https://doi.org/10.1016/S2542-5196(23)00251-6

Art. 13(1) page 18 of 23

Available at https://gmao.gsfc.nasa.gov/media/
publications/zbly36ziNFDFbmYmvhQeVqPhUo/
Darmenov796.pdf.

Desservettaz, M], Fisher, JA, Luhar, AK, Woodhouse,
MT, Bukosa, B, Buchholz, RR, Wiedinmyer, C,
Griffith, DWT, Krummel, PB, Jones, NB,
Deutscher, NM, Greenslade, GW. 2022. Australian
fire emissions of carbon monoxide estimated by
global biomass burning inventories: Variability and
observational constraints. Journal of Geophysical
Research: Atmospheres 127: €2021JD035925. DOL:
https://doi.org/10.1029/2021JD035925.

Eva, H, Lambin, EF. 1998. Burnt area mapping in Central
Africa using ATSR data. International Journal of
Remote Sensing 19(18): 3473-3497. DOI: https://
doi.org/10.1080/014311698213768.

Feng, X, Mickley, LJ, Bell, ML, Liu, T, Fisher, JA, Val
Martin, M. 2024. Improved estimates of smoke
exposure during Australia fire seasons: Importance
of quantifying plume injection heights. Atmospheric
Chemistry and Physics 24: 2985-3007. DOI: https://
doi.org/10.5194/acp-24-2985-2024.

Fisher, JA, Jacob, DJ, Purdy, MT, Kopacz, M, Le Sager, P,
Carouge, C, Holmes, CD, Yantosca, RM,
Batchelor, RL, Strong, K, Diskin, GS, Fuelberg,
HE, Holloway, JS, Hyer, EJ, McMillan, WW,
Warner, J, Streets, DG, Zhang, Q, Wang, Y,
Wu, S. 2010. Source attribution and interannual
variability of Arctic pollution in spring constrained
by aircraft (ARCTAS, ARCPAC) and satellite (AIRS)
observations of carbon monoxide. Atmospheric
Chemistry and Physics 10: 977-996. DOI: https://
doi.org/10.5194/acp-10-977-2010.

Forkel, M, Wessollek, C, Huijnen, V, Andela, N, de Laat,
A Kinalczyk, D, Marrs, C, van Wees, D, Bastos, A,
Ciais, P, Fawcett, D, Kaiser, JW, Klauberg, C,
Kutchartt, E, Leite, R, Li, W, Silva, C, Sitch, S,
Goncalves De Souza, ], Zaehle, S, Plummer, S.
2025. Burning of woody debris dominates fire emis-
sions in the Amazon and Cerrado. Nature Geoscience
18: 140-147. DOI: https://doi.org/10.1038/s41561-
024-01637-5.

Freitas, SR, Longo, KM, Trentmann, J, Latham, D. 2010.
Technical Note: Sensitivity of 1-D smoke plume rise
models to the inclusion of environmental wind
drag. Atmospheric Chemistry and Physics 10: 585.
DOI: https://doi.org/10.5194/acp-10-585-2010.

French, NHE Goovaerts, P, Kasischke, ES. 2004. Uncer-
tainty in estimating carbon emissions from boreal
forest fires. Journal of Geophysical Research: Atmo-
spheres 109: D14S08. DOI: https://doi.org/10.
1029/2003JD003635.

French, NHF, Hudak, AT. 2024. Biomass burning fuel
consumption and emissions for air quality, in
Loboda, TV, French, NHF, Puett RC eds., Landscape
fire, smoke, and health: Linking biomass burning
emissions to human well-being. Hoboken, NJ: John
Wiley & Sons, Inc. (Geophysical Monograph, vol.
280). DOI: https://doi.org/10.1002/978111
9757030.

Parrington et al: Biomass burning emission estimation in the MODIS era

French, NHF, Prichard, SJ, Billimire, MG, Kennedy, M,
Andreu, AG, Eagle, PC, Tanzer, D, McKenzie, D,
Ottmar, R. 2020. North American Wildland Fuels
Database. Available at https://fuels.mtri.org/.
Accessed April 14, 2025.

Giglio, L, Boschetti, L, Roy, DP, Humber, ML, Justice,
CO. 2018.The Collection 6 MODIS burned area map-
ping algorithm and product. Remote Sensing of Envi-
ronment 217: 72—85. DOI: https://doi.org/10.1016/
j.rse.2018.08.005.

Giglio, L, Hall, JV, Humber, M, Argueta, F Boschetti, L,
Roy, D. 2024a. Collection 2 VIIRS Burned Area Prod-
uct User's Guide Version 1.1. NASA EOSDIS Land
Processes Distributed Active Archive Center. DOL:
https://doi.org/10.5067 /VIIRS/VNP64A1.002.
Accessed March 18, 2025.

Giglio, L, Kendall, JD, Tucker, CJ. 2000. Remote sensing
of fires with the TRMM VIRS. International Journal of
Remote Sensing 21(1): 203-207. DOI: https://doi.
org/10.1080/014311600211109.

Giglio, L, Randerson, JT, van der Werf, GR. 2013. Anal-
ysis of daily, monthly, and annual burned area using
the fourth-generation global fire emissions database
(GFEDA4). Journal of Geophysical Research: Biogeos-
ciences 118: 317-328. DOI: https://doi.org/10.
1002/jgrg.20042.

Giglio, L, Roy, DP, Humber, ML, Ellicott, E, Zubkova, M,
Justice, CO. 2024b. Mapping and characterizing
fire, in Loboda, TV, French, NHF, Puett, RC eds.,
Landscape fire, smoke, and health: Linking biomass
burning emissions to human well-being. Hoboken,
NJ: John Wiley & Sons, Inc. (Geophysical Mono-
graph, vol. 280). DOI: https://doi.org/10.1002/
9781119757030.

Giglio, L, Schroeder, W, Justice, CO. 2016. The collection
6 MODIS active fire detection algorithm and fire
products. Remote Sensing of Environment 178:
31-41. DOL: https://doi.org/10.1016/].rse.2016.02.
054.

Griffin, D, Chen, J, Anderson, K, Makar, P, McLinden,
CA, Dammers, E, Fogal, A. 2024. Biomass burning
CO emissions: Exploring insights through TROPOMI-
derived emissions and emission coefficients. Atmo-
spheric Chemistry and Physics 24: 10159-10186.
DOI: https://doi.org/10.5194/acp-24-10159-2024.

Hénninen, R, Sofiev, M, Uppstu, A, Kouznetsov, R. 2024.
Daily surface concentration of fire related PM2.5 for
2003-2023, modelled by SILAM CTM when using the
MODIS satellite data for the fire radiative power [data-
set]. Finnish Meteorological Institute. DOI: https://
doi.org/10.57707 /FMI-B2SHARE.D1CAC971B3224
D438D5304E945E9F 16C.

Heald, CL, Jacob, DJ, Palmer, PI, Evans, MJ, Sachse, GW,
Singh, HB, Blake, DR. 2003. Biomass burning emis-
sion inventory with daily resolution: Application to
aircraft observations of Asian outflow. Journal of Geo-
physical Research: Atmospheres 108(D21): 8811. DOL:
https://doi.org/10.1029/2002JD003082.

Hope, ES, McKenney, DW, Johnston, LM, Johnston, JM.
2024. A cost-benefit analysis of WildFireSat,

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


https://gmao.gsfc.nasa.gov/media/publications/zbly36ziNFDFbmYmvhQeVqPhUo/Darmenov796.pdf
https://gmao.gsfc.nasa.gov/media/publications/zbly36ziNFDFbmYmvhQeVqPhUo/Darmenov796.pdf
https://doi.org/10.1029/2021JD035925
https://doi.org/10.1080/014311698213768
https://doi.org/10.1080/014311698213768
https://doi.org/10.5194/acp-24-2985-2024
https://doi.org/10.5194/acp-24-2985-2024
https://doi.org/10.5194/acp-10-977-2010
https://doi.org/10.5194/acp-10-977-2010
https://doi.org/10.1038/s41561-024-01637-5
https://doi.org/10.1038/s41561-024-01637-5
https://doi.org/10.5194/acp-10-585-2010
https://doi.org/10.1029/2003JD003635
https://doi.org/10.1029/2003JD003635
https://doi.org/10.1002/9781119757030
https://doi.org/10.1002/9781119757030
https://fuels.mtri.org/
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.5067/VIIRS/VNP64A1.002
https://doi.org/10.1080/014311600211109
https://doi.org/10.1080/014311600211109
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.1002/9781119757030
https://doi.org/10.1002/9781119757030
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.5194/acp-24-10159-2024
https://doi.org/10.57707/FMI-B2SHARE.D1CAC971B3224D438D5304E945E9F16C
https://doi.org/10.57707/FMI-B2SHARE.D1CAC971B3224D438D5304E945E9F16C
https://doi.org/10.57707/FMI-B2SHARE.D1CAC971B3224D438D5304E945E9F16C
https://doi.org/10.1029/2002JD003082

Parrington et al: Biomass burning emission estimation in the MODIS era

a wildfire monitoring satellite mission for Canada.
PLoS ONE 19(5): e0302699. DOI: https://doi.org/
10.1371/journal.pone.0302699.

Hyer, EJ, Chew, BN. 2010. Aerosol transport model eval-
uation of an extreme smoke episode in Southeast
Asia. Atmospheric Environment 44(11): 1422-1427.
DOI: https://doi.org/10.1016/j.atmosenv.2010.01.
043.

Ichoku, C, Ellison, L. 2014. Global top-down smoke-
aerosol emissions estimation using satellite fire radi-
ative power measurements. Atmospheric Chemistry
and Physics 14: 6643-6667. DOI: https://doi.org/
10.5194/acp-14-6643-2014.

Ichoku, C, Kaufman, YJ. 2005. A method to derive smoke
emission rates from MODIS fire radiative energy
measurements. [EEE Transactions on Geoscience and
Remote Sensing 43(11): 2636-2649. DOI: https://
doi.org/10.1109/TGRS.2005.857328.

Ichoku, C, Martins, JV, Kaufman, YJ, Wooster, MJ,
Freeborn, PH, Hao, WM, Baker, S, Ryan, CA,
Nordgren, BL. 2008. Laboratory investigation of
fire radiative energy and smoke aerosol emissions.
Journal of Geophysical Research: Atmospheres 113:
D14S09. DOI: https://doi.org/10.1029/2007]
D009659.

Jones, MW, Veraverbeke, S, Andela, N, Doerr, SH,
Kolden, C, Mataveli, G, Lucrecia Pettinari, M,
Le Quéré, C, Rosan, TM, van der Werf, GR, Wees,
D, Abatzoglou, JT. 2024. Global rise in forest fire
emissions linked to climate change in the extratro-
pics. Science 386(6719). DOI: https://doi.org/10.
1126/science.adl5889.

Kaiser, JW, Heil, A, Andreae, MO, Benedetti, A,
Chubarova, N, Jones, L, Morcrette, JJ, Razinger,
M, Schultz, MG, Suttie, M, van der Werf, GR.
2012. Biomass burning emissions estimated with
a global fire assimilation system based on observed
fire radiative power. Biogeosciences 9(1). DOI:
https://doi.org/10.5194/bg-9-527-2012.

Kaiser, JW, Suttie, M, Flemming, J, Morcrette, ]JJ,
Boucher, O, Schultz, MG. 2009. Global real-time
fire emission estimates based on space-borne fire
radiative power observations. AIP Conference Pro-
ceedings 1100: 645—648. DOI: https://doi.org/10.
1063/1.3117069.

Kennedy, MC, Prichard, SJ, McKenzie, D, French, NHE
2020. Quantifying how sources of uncertainty in
combustible biomass propagate to prediction of
wildland fire emissions. International Journal of
Wildland Fire 29(9): 793-806. DOI: https://doi.
org/10.1071/WF19160.

Larkin, NK, Strand, TM, Drury, SA, Raffuse, SM,
Solomon, RC, O'Neill, SM, Wheeler, N, Huang,
S, Roring, M, Hafner, HR. 2012. Phase 1 of the
Smoke and Emissions Model Intercomparison Pro-
ject (SEMIP): Creation of SEMIP and evaluation of
current models. Final Report to the Joint Fire Sci-
ence Program Project #08-1-6-10. Available at

Art. 13(1) page 19 of 23

Li, F Zhang, X, Kondragunta, S. 2021. Highly anomalous
fire emissions from the 2019-2020 Australian bush-
fires. Environmental Research Communications 3:
105005. DOI: https://doi.org/10.1088/2515-7620/
ac2e6f.

Li, F Zhang, X, Kondragunta, S, Lu, X, Csiszar, I,
Schmidt, CC. 2022. Hourly biomass burning
emissions product from blended geostationary and
polar-orbiting satellites for air quality forecasting
applications. Remote Sensing of Environment 281:
113237. DOIL: https://doi.org/10.1016/].rse.2022.
113237.

Liu, T, Mickley, L], Marlier, ME, DeFries, RS, Khan, ME,
Latif, MT, Karambelas, A. 2020a. Diagnosing
spatial biases and uncertainties in global fire emis-
sions inventories: Indonesia as regional case study.
Remote Sensing of Environment 237: 111517. DOL:
https://doi.org/10.1016/j.rse.2019.111557.

Liu, T, Mickley, LJ, Singh, S, Jain, M, DeFries, RS,
Marlier, ME. 2020b. Crop residue burning practices
across north India inferred from household survey
data: Bridging gaps in satellite observations. Atmo-
spheric Environment: X 8: 100091. DOLI: https://doi.
org/10.1016/j.aea0a.2020.100091.

Lynch, P, Reid, JS, Westphal, DL, Zhang, J, Hogan, TF
Hyer, EJ, Curtis, CA, Hegg, DA, Shi, Y, Campbell,
JR, Rubin, JI, Sessions, WR, Turk, FJ, Walker, AL.
2016. An 11-year global gridded aerosol optical
thickness reanalysis (v1.0) for atmospheric and cli-
mate sciences. Geoscientific Model Development 9:
1489-1522. DOI: https://doi.org/10.5194/gmd-9-
1489-2016.

McNorton, JR, Di Giuseppe, F. 2024. A global fuel char-
acteristic model and dataset for wildfire prediction.
Biogeosciences 21: 279-300. DOI: https://doi.org/
10.5194/bg-21-279-2024.

Mota, B, Wooster, M]J. 2018. A new top-down approach
for directly estimating biomass burning emissions
and fuel consumption rates and totals from geosta-
tionary satellite fire radiative power (FRP). Remote
Sensing of Environment 206: 45-62. DOI: https://
doi.org/10.1016/j.rse.2017.12.016.

Mu, M, Randerson, JT, van der Werf, GR, Giglio, L,
Kasibhatla, P, Morton, D, Collatz, GJ, DeFries,
RS, Hyer, EJ, Prins, EM, Griffith, DWT, Wunch,
D, Toon, GC, Sherlock, V, Wennberg, PO. 2011.
Daily and 3-hourly variability in global fire emis-
sions and consequences for atmospheric model pre-
dictions of carbon monoxide. Journal of Geophysical
Research: Atmospheres 116: D24303. DOI: https://
doi.org/10.1029/2011]JD016245.

Nguyen, HM, He, J, Wooster, MJ. 2023. Biomass burning
CO, PM and fuel consumption per unit burned area
estimates derived across Africa using geostationary
SEVIRI fire radiative power and Sentinel-5P CO data.
Atmospheric Chemistry and Physics 23: 2089-2118.
DOI: https://doi.org/10.5194/acp-23-2089-2023.

https://digitalcommons.unl.edu/jfspresearch/42/. Ottmar, RD. 2014. Wildland fire emissions, carbon, and

Accessed July 12, 2024.

climate: Modeling fuel consumption. Forest Ecology

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


https://doi.org/10.1371/journal.pone.0302699
https://doi.org/10.1371/journal.pone.0302699
https://doi.org/10.1016/j.atmosenv.2010.01.043
https://doi.org/10.1016/j.atmosenv.2010.01.043
https://doi.org/10.5194/acp-14-6643-2014
https://doi.org/10.5194/acp-14-6643-2014
https://doi.org/10.1109/TGRS.2005.857328
https://doi.org/10.1109/TGRS.2005.857328
https://doi.org/10.1029/2007JD009659
https://doi.org/10.1029/2007JD009659
https://doi.org/10.1126/science.adl5889
https://doi.org/10.1126/science.adl5889
https://doi.org/10.5194/bg-9-527-2012
https://doi.org/10.1063/1.3117069
https://doi.org/10.1063/1.3117069
https://doi.org/10.1071/WF19160
https://doi.org/10.1071/WF19160
https://digitalcommons.unl.edu/jfspresearch/42/
https://doi.org/10.1088/2515-7620/ac2e6f
https://doi.org/10.1088/2515-7620/ac2e6f
https://doi.org/10.1016/j.rse.2022.113237
https://doi.org/10.1016/j.rse.2022.113237
https://doi.org/10.1016/j.rse.2019.111557
https://doi.org/10.1016/j.aeaoa.2020.100091
https://doi.org/10.1016/j.aeaoa.2020.100091
https://doi.org/10.5194/gmd-9-1489-2016
https://doi.org/10.5194/gmd-9-1489-2016
https://doi.org/10.5194/bg-21-279-2024
https://doi.org/10.5194/bg-21-279-2024
https://doi.org/10.1016/j.rse.2017.12.016
https://doi.org/10.1016/j.rse.2017.12.016
https://doi.org/10.1029/2011JD016245
https://doi.org/10.1029/2011JD016245
https://doi.org/10.5194/acp-23-2089-2023

Art. 13(1) page 20 of 23

and Management 317: 41-50. DOI: https://doi.org/
10.1016/j.foreco.2013.06.010.

Pan, X, Ichoku, C, Chin, M, Bian, H, Darmenov, A,
Colarco, P, Ellison, L, Kucsera, T, da Silva, A,
Wang, J, Oda, T, Cui, G. 2020. Six global biomass
burning emission datasets: Intercomparison and
application in one global aerosol model.
Atmospheric Chemistry and Physics 20: 969—-994.
DOIL: https://doi.org/10.5194/acp-20-969-2020.

Peterson, D, Hyer, E, Wang, J. 2013. A short-term pre-
dictor of satellite-observed fire activity in the North
American boreal forest: Toward improving the pre-
diction of smoke emissions. Atmospheric Environ-
ment 71: 304-310. DOLI: https://doi.org/10.1016/].
atmosenv.2013.01.052.

Prichard, SJ, Kennedy, MC, Andreu, AG, Eagle, P,
French, NHF. 2019. Next-generation biomass map-
ping for regional emissions and carbon inventories:
Incorporating uncertainty in wildland fuel character-
ization. jJournal of Geophysical Research: Biogeos-
ciences 124. DOI: https://doi.org/10.1029/
2019JG005083.

Prichard, SJ, O'Neill, SM, Eagle, P, Andreu, AG, Drye, B,
Dubowy, J, Urbanski, S, Strand, TM. 2020. Wild-
land fire emission factors in North America: Synthe-
sis of existing data, measurement needs and
management applications. International Journal of
Wildland Fire 29(2): 132—147. DOL: https://doi.
org/10.1071/WF19066.

Prichard, SJ, Rowell, E, Keane, RE, Hudak, AT, Lutes, D,
Loudermilk, EL. 2024. Wildland fuel characteriza-
tion across space and time, in Loboda, TV, French,
NHF, Puett, RC eds., Landscape fire, smoke, and
health: Linking biomass burning emissions to human
well-being. Hoboken, NJ: John Wiley & Sons, Inc.
DOI: https://doi.org/10.1002/9781119757030.

Prins, EM, Menzel, WP. 1994. Trends in South-American
biomass burning detected with the GOES visible
infrared spin scan radiometer atmospheric sounder
from 1983 to 1991. journal of Geophysical Research:
Atmospheres 99(D8): 16719-16735. DOI: https://
doi.org/10.1029/94JD01208.

Randerson, JT, Chen, Y, van derWerf, GR, Rogers, BM,
Morton, DC. 2012. Global burned area and biomass
burning emissions from small fires. Journal of Geo-
physical Research: Biogeosciences 117: G04012. DOI:
https://doi.org/10.1029/2012JG002128.

Reid, JS, Eck, TF, Christopher, SA, Koppmann, R, Dubo-
vik, O, Eleuterio, DP, Holben, BN, Reid, EA,
Zhang, J. 2005a. A review of biomass burning emis-
sions part III: Intensive optical properties of biomass
burning particles. Atmospheric Chemistry and Physics
5: 827-849. DOI: https://doi.org/10.5194/acp-5-
827-2005.

Reid, JS, Hyer, EJ, Prins, EM, Westphal, DL, Zhang, J,
Wang, J, Christopher, SA, Curtis, CA, Schmidt,
CC, Eleuterio, DP, Richardson, KA, Hoffman, JP.
2009. Global monitoring and forecasting of
biomass-burning smoke: Description of and lessons
from the Fire Locating and Modeling of Burning

Parrington et al: Biomass burning emission estimation in the MODIS era

Emissions (FLAMBE) Program. [EEE Journal of
Selected Topics in Applied Earth Observations and
Remote Sensing 2(3): 144-162. DOI: https://doi.
org/10.1109/]JSTARS.2009.2027443.

Reid, JS, Koppmann, R, Eck, TE Eleuterio, DP. 2005b. A
review of biomass burning emissions part II: Intensive
physical properties of biomass burning particles.
Atmospheric Chemistry and Physics 5: 799-825. DOL:
https://doi.org/10.5194/acp-5-799-2005.

Reid, JS, Prins, EM, Westphal, DL, Schmidt, CC,
Richardson, KA, Christopher, SA, Eck, TF Reid,
EA, Curtis, CA, Hoffman, JP. 2004. Real-time mon-
itoring of South American smoke particle emissions
and transport using a coupled remote sensing/box-
model approach. Geophysical Research Letters 31(6).
DOI: https://doi.org/10.1029/2003GL018845.

Roberts, G, Wooster, MJ, Xu, W, Freeborn, PH, Morcr-
ette, JJ, Jones, L, Benedetti, A, Jiangping, H,
Fisher, D, Kaiser, JW. 2015. LSA SAF Meteosat FRP
products—Part 2: Evaluation and demonstration for
use in the Copernicus Atmosphere Monitoring Ser-
vice (CAMS). Atmospheric Chemistry and Physics
15(22): 13241-13267. DOI: https://doi.org/10.
5194/acp-15-13241-2015.

Romanello, M, Napoli, CD, Green, C, Kennard, H, Lam-
pard, P, Scamman, D, Walawender, M, Ali, Z,
Ameli, N, Ayeb-Karlsson, S, Beggs, PJ, Belesova,
K, Berrang Ford, L, Bowen, K, Cai, W, Callaghan,
M, Campbell-Lendrum, D, Chambers, J, Cross, TJ,
Van Daalen, KR, Dalin, C, Dasandi, N, Dasgupta,
S, Davies, M, Dominguez-Salas, P, Dubrow, R, Ebi,
KL, Eckelman, M, Ekins, P, Freyberg, C, Gaspar-
yan, O, Gordon-Strachan, G, Graham, H, Gun-
ther, SH, Hamilton, I, Hang, Y, Hinninen, R,
Hartinger, S, He, K, Heidecke, J, Hess, JJ, Hsu,
SC, Jamart, L, Jankin, S, Jay, O, Kelman, I, Kiese-
wetter, G, Kinney, P, Kniveton, D, Kouznetsov, R,
Larosa, F Lee, JKW, Lemke, B, Liu, Y, Liu, Z, Lott,
M, Lotto Batista, M, Lowe, R, Odhiambo Sewe, M,
Martinez-Urtaza, J, Maslin, M, McAllister, L,
McMichael, C, Mi, Z, Milner, J, Minor, K, Minx,
JC, Mohajeri, N, Momen, NC, Moradi-Lakeh, M,
Morrissey, K, Munzert, S, Murray, KA, Neville, T,
Nilsson, M, Obradovich, N, O'Hare, MB, Oliveira,
C, Oreszczyn, T, Otto, M, Owfi, F Pearman, O,
Pega, F, Pershing, A, Rabbaniha, M, Rickman, J,
Robinson, EJZ, Rocklév, ], Salas, RN, Semenza,
JC, Sherman, JD, Shumake-Guillemot, J, Silbert,
G, Sofiev, M, Springmann, M, Stowell, JD, Taba-
tabaei, M, Taylor, J, Thompson, R, Tonne, C, Tres-
kova, M, Trinanes, JA, Wagner, F Warnecke, L,
Whitcombe, H, Winning, M, Wyns, A, Yglesias-
Gonzalez, M, Zhang, S, Zhang, Y, Zhu, Q, Gong,
P, Montgomery, H, Costello, A. 2023. The 2023
report of the Lancet Countdown on health and cli-
mate change: The imperative for a health-centred
response in a world facing irreversible harms. The
Lancet 402(10419): 2346-2394. DOI: https://doi.
org/10.1016/S0140-6736(23)01859-7.

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


https://doi.org/10.1016/j.foreco.2013.06.010
https://doi.org/10.1016/j.foreco.2013.06.010
https://doi.org/10.5194/acp-20-969-2020
https://doi.org/10.1016/j.atmosenv.2013.01.052
https://doi.org/10.1016/j.atmosenv.2013.01.052
https://doi.org/10.1029/2019JG005083
https://doi.org/10.1029/2019JG005083
https://doi.org/10.1071/WF19066
https://doi.org/10.1071/WF19066
https://doi.org/10.1002/9781119757030
https://doi.org/10.1029/94JD01208
https://doi.org/10.1029/94JD01208
https://doi.org/10.1029/2012JG002128
https://doi.org/10.5194/acp-5-827-2005
https://doi.org/10.5194/acp-5-827-2005
https://doi.org/10.1109/JSTARS.2009.2027443
https://doi.org/10.1109/JSTARS.2009.2027443
https://doi.org/10.5194/acp-5-799-2005
https://doi.org/10.1029/2003GL018845
https://doi.org/10.5194/acp-15-13241-2015
https://doi.org/10.5194/acp-15-13241-2015
https://doi.org/10.1016/S0140-6736(23)01859-7
https://doi.org/10.1016/S0140-6736(23)01859-7

Parrington et al: Biomass burning emission estimation in the MODIS era

Seiler, W, Crutzen, PJ. 1980. Estimates of gross and net
fluxes of carbon between the biosphere and atmo-
sphere from biomass burning. Climatic Change 2:
207-247. DOI: https://doi.org/10.1007/BF00
137988.

Soares, J, Sofiev, M, Hakkarainen, J. 2015. Uncertainties
of wild-land fires emission in AQMEII phase 2 case
study. Atmospheric Environment 115: 361-370. DOI:
https://doi.org/10.1016/j.atmosenv.2015.01.068.

Sofiev, M, Ermakova, T, Vankevich, R. 2012. Evaluation
of the smoke-injection height from wild-land fires
using remote-sensing data. Atmospheric Chemistry
and Physics 12: 1995-2006. DOI: https://doi.org/
10.5194/acp-12-1995-2012.

Sofiev, M, Vankevich, R, Ermakova, T, Hakkarainen, ].
2013. Global mapping of maximum emission
heights and resulting vertical profiles of wildfire
emissions. Atmospheric Chemistry and Physics 13:
7039-7052. DOI: https://doi.org/10.5194/acp-13-
7039-2013.

Sofiev, M, Vankevich, R, Lotjonen, M, Prank, M, Petu-
khov, V, Ermakova, T, Koskinen, J, Kukkonen, J.
2009. An operational system for the assimilation of
the satellite information on wild-land fires for the
needs of air quality modelling and forecasting.
Atmospheric Chemistry and Physics 9: 6833-6847.
DOI: https://doi.org/10.5194/acp-9-6833-2009.

Soja, AJ, Al-Saadi, JA, Giglio, L, Randall, D, Kittaka, C,
Pouliot, GA, Kordzi, JJ, Raffuse, SM, Pace, TG,
Pierce, T, Moore, T, Roy, B, Pierce, B, Szykman,
JJ. 2009. Assessing satellite-based fire data for use
in the National Emissions Inventory. Journal of
Applied Remote Sensing 3(1): 031504. DOI:
https://doi.org/10.1117/1.3148859.

Tang, W, Emmons, LK, Buchholz, RR, Wiedinmyer, C,
Schwantes, RH, He, C, Kumar, R, Pfister, GG,
Worden, HM, Hornbrook, RS, Apel, EC. 2022.
Effects of fire diurnal variation and plume rise on
U.S. air quality during FIREX-AQ and WE-CAN based
on the Multi-Scale Infrastructure for Chemistry and
Aerosols (MUSICAvVO0). Journal of Geophysical
Research: Atmospheres 127(16): €2022JD036650.
DOIL: https://doi.org/10.1029/2022)JD036650.

Urbanski, SP, O'Neill, SM, Holder, AL, Green, SA, Graw,
RL. 2022. Emissions, in Peterson, DL, McCaffrey, SM,
Patel-Weynand, T eds., Wildland fire smoke in the
United States. Cham, Switzerland: Springer. DOI:
https://doi.org/10.1007,/978-3-030-87045-4_5.

van der Velde, IR, van der Werf, GR, Houweling, S,
Maasalkkers, JD, Borsdorff, T, Landgraf, J, Tol, P,
van Kempen, TA, van Hees, R, Hoogeveen, R,
Veefkind, JP, Aben, 1. 2021. Vast CO, release from
Australian fires in 2019-2020 constrained by satel-
lite. Nature 597: 366—369. DOI: https://doi.org/10.
1038/541586-021-03712-y.

van der Velde, IR, van der Werf, GR, van Wees, D,
Schutgens, NAJ, Vernooij, R, Houweling, S,
Tonucci, E, Chuvieco, E, Randerson, JT, Frey,
MM, Borsdorff, T, Aben, 1. 2024. Small fires, big
impact: Evaluating fire emission estimates in

Art. 13(1) page 21 of 23

Southern Africa using new satellite imagery of
burned area and carbon monoxide. Geophysical
Research Letters 51: e€2023GL106122. DOI:
https://doi.org/10.1029/2023GL106122.

van der Werf, GR, Randerson, JT, Giglio, L, Collatz, GJ,
Mu, M, Kasibhatla, PS, Morton, DC, Defries, RS,
Jin, Y, van Leeuwen, TT. 2010. Global fire emissions
and the contribution of deforestation, savanna, for-
est, agricultural, and peat fires (1997-2009). Atmo-
spheric Chemistry and Physics Discussions 10(6):
16153-16230. DOI: https://doi.org/10.5194/acpd-
10-16153-2010.

van der Werf, GR, Randerson, JT, Giglio, L, van
Leeuwen, TT, Chen, Y, Rogers, BM, Mu, M, van
Marle, MJE, Morton, DC, Collatz, GJ, Yokelson,
RJ, Kasibhatla, PS. 2017. Global fire emissions esti-
mates during 1997-2016. Earth System Science Data
9: 697-720. DOL: https://doi.org/10.5194/essd-9-
697-2017.

van Leeuwen, TT, van der Werf, GR, Hoffmann, AA,
Detmers, RG, Riicker, G, French, NHE Archibald,
S, Carvalho JA Jr, Cook, GD, de Groot, W], Hély, C,
Kasischke, ES, Kloster, S, McCarty, JL, Pettinari,
ML, Savadogo, P, Alvarado, EC, Boschetti, L, Man-
uri, S, Meyer, CP, Siegert, F, Trollope, LA, Trollope,
WSW. 2014. Biomass burning fuel consumption
rates: A field measurement database. Biogeosciences
11: 7305-7329. DOL: https://doi.org/10.5194/bg-
11-7305-2014.

van Wees, D, van der Werf, GR, Randerson, JT, Rogers,
BM, Chen, Y, Veraverbeke, S, Giglio, L, Morton,
DC. 2022. Global biomass burning fuel consump-
tion and emissions at 500 m spatial resolution
based on the Global Fire Emissions Database
(GFED). Geoscientific Model Development 15:
8411-8437. DOI: https://doi.org/10.5194/gmd-15-
8411-2022.

Vernooij, R, Eames, T, Russell-Smith, J, Yates, C, Beatty,
R, Evans, J, Edwards, A, Ribeiro, N, Wooster, M,
Strydom, T, Giongo, MV, Borges, MA, Menezes
Costa, M, Barradas, ACS, van Wees, D, van der
Werf, GR. 2023. Dynamic savanna burning emis-
sion factors based on satellite data using a machine
learning approach. Earth System Dynamics 14:
1039-1064. DOI: https://doi.org/10.5194/esd-14-
1039-2023.

Wang, J, Ge, C, Yang, Z, Hyer, EJ, Reid, JS, Chew, BN,
Mahmud, M, Zhang, Y, Zhang, M. 2013. Mesoscale
modeling of smoke transport over the Southeast
Asian Maritime Continent: Interplay of sea breeze,
trade wind, typhoon, and topography. Atmospheric
Research 122: 486-503. DOI: https://doi.org/10.
1016/j.atmosres.2012.05.009.

Whaley, CH, Butler, T, Adame, JA, Ambulkar, R,
Arnold, SR, Buchholz, RR, Gaubert, B, Hamilton,
DS, Huang, M, Hung, H, Kaiser, JW, Kaminski,
JW, Knote, C, Koren, G, Kouassi, JL, Lin, M, Liu,
T, Ma, ], Manomaiphiboon, K, Bergas Masso, E,
McCarty, JL, Mertens, M, Parrington, M, Peiro, H,
Saxena, P, Sonwani, S, Surapipith, V, Tan, D,

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


https://doi.org/10.1007/BF00137988
https://doi.org/10.1007/BF00137988
https://doi.org/10.1016/j.atmosenv.2015.01.068
https://doi.org/10.5194/acp-12-1995-2012
https://doi.org/10.5194/acp-12-1995-2012
https://doi.org/10.5194/acp-13-7039-2013
https://doi.org/10.5194/acp-13-7039-2013
https://doi.org/10.5194/acp-9-6833-2009
https://doi.org/10.1117/1.3148859
https://doi.org/10.1029/2022JD036650
https://doi.org/10.1007/978-3-030-87045-4_5
https://doi.org/10.1038/s41586-021-03712-y
https://doi.org/10.1038/s41586-021-03712-y
https://doi.org/10.1029/2023GL106122
https://doi.org/10.5194/acpd-10-16153-2010
https://doi.org/10.5194/acpd-10-16153-2010
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.5194/bg-11-7305-2014
https://doi.org/10.5194/bg-11-7305-2014
https://doi.org/10.5194/gmd-15-8411-2022
https://doi.org/10.5194/gmd-15-8411-2022
https://doi.org/10.5194/esd-14-1039-2023
https://doi.org/10.5194/esd-14-1039-2023
https://doi.org/10.1016/j.atmosres.2012.05.009
https://doi.org/10.1016/j.atmosres.2012.05.009

Art. 13(1) page 22 of 23 Parrington et al: Biomass burning emission estimation in the MODIS era

Tang, W, Tanpipat, V, Tsigaridis, K, Wiedinmyer,
C, Wild, O, Xie, Y, Zuidema, P. 2025. HTAP3 Fires:
Towards a multi-model, multi-pollutant study of fire
impacts. Geoscientific Model Development Discus-
sions [preprint]. DOI: https://doi.org/10.5194/
gmd-2024-126.

Wiedinmyer, C, Akagi, SK, Yokelson, RJ, Emmons, LK,
Al-Saadi, JA, Orlando, ]JJ, Soja, AJ. 2011. The Fire
INventory from NCAR (FINN): A high resolution
global model to estimate the emissions from open
burning. Geoscientific Model Development 4:
625-641. DOI: https://doi.org/10.5194/gmd-4-
625-2011.

Wiedinmyer, C, Emmons, L. 2022. Fire Inventory from
NCAR version 2 Fire Emission. Research Data
Archive at the National Center for Atmospheric
Research. Computational and Information Systems
Laboratory. DOI: https://doi.org/10.5065/XNPA-
AFQ09.

Wiedinmyer, C, Kimura, Y, McDonald-Buller, EC,
Emmons, LK, Buchholz, RR, Tang, W, Seto, K,
Joseph, MB, Barsanti, KC, Carlton, AG, Yokelson,
R. 2023. The Fire Inventory from NCAR version 2.5:
An updated global fire emissions model for climate
and chemistry applications. Geoscientific Model
Development 16: 3873-3891. DOI: https://doi.org/
10.5194/gmd-16-3873-2023.

Wooster, MJ, Roberts, G, Freeborn, PH, Xu, W,
Govaerts, Y, Beeby, R, He, J, Lattanzio, A, Fisher,
D, Mullen, R. 2015. LSA SAF Meteosat FRP pro-
ducts—Part 1: Algorithms, product contents, and
analysis. Atmospheric Chemistry and Physics 15:
13217-13239. DOI: https://doi.org/10.5194/acp-
15-13217-2015.

Wooster, MJ, Roberts, G, Perry, GLW, Kaufman, Y]J.
2005. Retrieval of biomass combustion rates and
totals from fire radiative power observations: FRP
derivation and calibration relationships between
biomass consumption and fire radiative energy
release. Journal of Geophysical Research: Atmo-
spheres 110: D24311. DOI: https://doi.org/10.
1029/2005JD006318.

Xu, J, Morris, PJ, Liu, J, Holden, J. 2018. PEATMAP: Refin-

ing estimates of global peatland distribution based
on a meta-analysis. CATENA 160: 134-140. DOI:
https://doi.org/10.1016/].CATENA.2017.09.010.

Yokelson, RJ, Burling, IR, Gilman, JB, Warneke, C,

Stockwell, CE, de Gouw, J, Akagi, SK, Urbanski,
SP, Veres, P, Roberts, JM, Kuster, WC, Reardon, J,
Griffith, DWT, Johnson, TJ, Hosseini, S, Miller,
JW, Cocker, DR III, Jung, H, Weise, DR. 2013.
Coupling field and laboratory measurements to esti-
mate the emission factors of identified and uniden-
tified trace gases for prescribed fires. Atmospheric
Chemistry and Physics 13: 89-116. DOI: https://
doi.org/10.5194/acp-13-89-2013.

Yokelson, RJ, Griffith, DWT, Ward, DE. 1996. Open-path

Fourier transform infrared studies of large-scale
laboratory biomass fires. Journal of Geophysical
Research: Atmospheres 101: D15. DOI: https://doi.
org/10.1029/96JD01800.

Zhang, L, Montuoro, R, McKeen, SA, Baker, B, Bhatta-

charjee, PS, Grell, GA, Henderson, J, Pan, L, Frost,
GJ, McQueen, J, Saylor, R, Li, H, Ahmadov, R,
Wang, J, Stajner, I, Kondragunta, S, Zhang, X,
Li, E 2022. Development and evaluation of the
Aerosol Forecast Member in the National Center for
Environment Prediction (NCEP)'s Global Ensemble
Forecast System (GEFS-Aerosols v1). Geoscientific
Model Development 15: 5337-5369. DOI: https://
doi.org/10.5194/gmd-15-5337-2022.

Zheng, B, Ciais, P, Chevallier, F Yang, H, Canadell, JG,

Chen, Y, van der Velde, IR, Aben, I, Chuvieco, E,
Davis, SJ, Deeter, M, Hong, C, Kong, Y, Li, H, Li, H,
Lin, X, He, K, Zhang, Q. 2023. Record-high CO,
emissions from boreal fires in 2021. Science
379(6635): 912-917. DOI: https://doi.org/10.
1126/science.ade0805.

Zhou, M, Wang, J, Garcia, LC, Chen, X, da Silva, AM,

Wang, Z, Roman, MO, Hyer, EJ, Miller, SD. 2023.
Enhancement of nighttime fire detection and com-
bustion efficiency characterization using Suomi-NPP
and NOAA-20 VIIRS instruments. [EEE Transactions
on Geoscience and Remote Sensing 61: 1-20. DOL:
https://doi.org/10.1109/TGRS.2023.3261664.

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


https://doi.org/10.5194/gmd-2024-126
https://doi.org/10.5194/gmd-2024-126
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.5065/XNPA-AF09
https://doi.org/10.5065/XNPA-AF09
https://doi.org/10.5194/gmd-16-3873-2023
https://doi.org/10.5194/gmd-16-3873-2023
https://doi.org/10.5194/acp-15-13217-2015
https://doi.org/10.5194/acp-15-13217-2015
https://doi.org/10.1029/2005JD006318
https://doi.org/10.1029/2005JD006318
https://doi.org/10.1016/J.CATENA.2017.09.010
https://doi.org/10.5194/acp-13-89-2013
https://doi.org/10.5194/acp-13-89-2013
https://doi.org/10.1029/96JD01800
https://doi.org/10.1029/96JD01800
https://doi.org/10.5194/gmd-15-5337-2022
https://doi.org/10.5194/gmd-15-5337-2022
https://doi.org/10.1126/science.ade0805
https://doi.org/10.1126/science.ade0805
https://doi.org/10.1109/TGRS.2023.3261664

Parrington et al: Biomass burning emission estimation in the MODIS era Art. 13(1) page 23 of 23

How to cite this article: Parrington, M, Whaley, CH, French, NHF, Buchholz, RR, Pan, X, Wiedinmyer, C, Hyer, EJ, Kondra-
gunta, S, Kaiser, JW, Di Tomaso, E, van der Werf, GR, Sofiev, M, Barsanti, KC, da Silva, AM, Darmenov, AS, Tang, W, Griffin, D,
Desservettaz, M, Carter, T, Paton-Walsh, C, Liu, T, Uppstu, A, Palamarchuk, J. 2025. Biomass burning emission estimation in
the MODIS era: State-of-the-art and future directions. Elementa: Science of the Anthropocene 13(1).

DOI: https://doi.org/10.1525/elementa.2024.00089

Domain Editor-in-Chief: Detlev Helmig, Boulder AIR LLC, Boulder, CO, USA

Associate Editor: Maria Val Martin, School of Biosciences, The University of Sheffield, Sheffield, UK

Knowledge Domain: Atmospheric Science

Part of an Elementa Special Feature: International Global Atmospheric Chemistry (IGAC) 35-year Anniversary
Published: September 04, 2025  Accepted: June 7, 2025 Submitted: December 3, 2024

Copyright: © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

A2 ELEMENTA Elem Sci Anth is a peer-reviewed open access OPEN ACCESS
) journal published by University of California Press. a

G20z Jequisidag 6z uo 3sanb Aq Jpd 680007202 EIUSWSIR/GL L 568/68000/1/€ L APd-8l0IHE/BIUBWSIS/NPS SSBIdoN"BUl|UO//:dRY WOl papeojumOoq


http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1525/elementa.2024.00089

	Biomass burning emission estimation in the MODIS era: State-of-the-art and future directions 
	1. Introduction 
	2. Biomass burning observations and emissions estimation 
	2.1. Global biomass burning observation methods 
	2.2. Fire types, vegetation, and distribution 
	2.3. Estimation of biomass burning emissions and smoke production 
	2.4. Emission factors 
	2.4.1. NEIVA 


	3. Emissions datasets 
	3.1. GFED 
	3.2. QFED 
	3.3. GBBEPx and RAVE 
	3.4. GFAS 
	3.5. FEER 
	3.6. FINN 
	3.7. FLAMBE 
	3.8. IS4FIRES 

	4. Intercomparison and known differences 
	4.1. Global 
	4.2. Regional 

	5. Future directions and recommendations 
	5.1. Development, and uptake, of satellite burned area products from VIIRS and other instruments 
	5.2. Mapping of the fine scale heterogeneity in fuel type and condition 
	5.3. Identification of spurious signals detections and information gaps in satellite FRP products 
	5.4. Regional modeling studies and comparison against existing datasets 
	5.5. Representation of the diurnal cycle and plume rise in BB emissions 
	5.6. The evolving research landscape and final remarks 
	Data accessibility statement 
	Supplemental files 
	Acknowledgments 
	Funding 
	Competing interests 
	Disclaimer 
	Author contributions 


	References 




