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Accurate estimates of biomass burning (BB) emissions are of great importance worldwide due to the impacts 
of these emissions on human health, ecosystems, air quality, and climate. Atmospheric modeling efforts to 
represent these impacts require BB emissions as a key input. This paper is presented by the Biomass Burning 
Uncertainty: Reactions, Emissions and Dynamics (BBURNED) activity of the International Global Atmospheric 
Chemistry project and largely based on a workshop held in November 2023. The paper reviews 9 of the BB 
emissions datasets widely used by the atmospheric chemistry community, all of which rely heavily on Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite observations of fires scheduled to be discontinued at 
the end of 2025. In this time of transition away from MODIS to new fire observations, such as those from the 
Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments, we summarize the contemporary 
status of BB emissions estimation and provide recommendations on future developments. Development of 
global BB emissions datasets depends on vegetation datasets, emission factors, and assumptions of fire 
persistence and phase, all of which are highly uncertain with high degrees of variability and complexity and 
are continually evolving areas of research. As a result, BB emissions datasets can have differences on the 
order of factor 2–3, and no single dataset stands out as the best for all regions, species, and times. We 
summarize the methodologies and differences between BB emissions datasets. The workshop identified 5 
key recommendations for future research directions for estimating BB emissions and quantifying the 
associated uncertainties: development and uptake of satellite burned area products from VIIRS and other 
instruments; mapping of fine scale heterogeneity in fuel type and condition; identification of spurious signal 
detections and information gaps in satellite fire radiative power products; regional modeling studies and 
comparison against existing datasets; and representation of the diurnal cycle and plume rise in BB emissions. 
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1. Introduction 
Biomass burning (BB) emissions are of great importance 
worldwide due to their impacts on human health, 

ecosystems, air quality, and climate. All major atmospheric 
modeling efforts (e.g., models of atmospheric chemistry and 
transport, operational air quality forecast models, Earth-
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system models, etc.) require accurate estimates of BB 
emissions as a key input. Development of global BB emis
sions datasets relies on observations of active or recent fires, 
vegetation datasets and modeling, and emission factors (EFs; 
required to estimate the mass of smoke pollutant emitted 
per mass of fuel burned), all of which are highly uncertain 
and evolving fields of research. Current BB emissions data
sets rely heavily on satellite observations, and in particular 
on observations of fire radiative power (FRP) and burned 
area from the Moderate Resolution Imaging Spectroradi
ometer (MODIS) instruments on the National Aeronautics 
and Space Administration (NASA) Terra and Aqua satellites. 
However, these observations will not be available for much 
longer  as  the orbits of the  satellites  degrade and  are decom
missioned at the end of 2025. The Visible Infrared Imaging 
Radiometer Suite (VIIRS) satellite instruments, on the joint 
NASA and National Oceanic and Atmospheric Administra
tion (NOAA) Suomi National Polar-orbiting Partnership 
(Suomi NPP), NOAA-20, and NOAA-21 weather satellites, are 
currently the main replacement for the Aqua MODIS instru
ment. These instruments have an equator crossing time at 
around 1.30 PM/AM local solar time (LST) and therefore 
observe the typical afternoon peak in global BB activity 
(e.g., Mu et al., 2011; Andela et al., 2015). VIIRS has almost 
4 times higher spatial resolution than MODIS, at 375 m 
compared to 1 km of MODIS at nadir. A burned area product 
has been developed for VIIRS based on the mapping 
approach derived from the most recent MODIS burned area 
algorithm (Giglio et al., 2024a) but has not yet been used by 
any of the BB emission datasets considered here. VIIRS does, 
however, offer other enhancements over MODIS such as the 
day–night band which allows for estimation of the visible 
energy fraction and modified combustion efficiency (MCE) at 
night (Zhou et al., 2023). Another relevant instrument is Sea 
and Land Surface Temperature Radiometer (SLSTR) on the 
European Sentinel-3 satellites, which has the same 1 km 
spatial resolution at nadir as MODIS and will replace the 
Terra MODIS observations during the late morning orbit at 
10.30 AM/PM, but has experienced some difficulties with 
daytime fire registration and quantification. While the main 
peak in BB activity typically occurs during the afternoon, the 
nighttime observations are important for capturing the diur
nal cycle, particularly in light of evidence of a weakening 
nighttime barrier in some parts of the world allowing wild
fires to burn through the night (e.g., Balch et al., 2022). The 
Canadian WildFireSat mission (https://database.eohandbook. 
com/database/missionsummary.aspx?missionID=906) to be 
launched in the late 2020s will provide much needed mea
surements later in the afternoon and capture more of the 
diurnal cycle of BB activity (Hope et al., 2024). 

-

With growing interest in BB emissions not only in the 
scientific community but also for the wider public, better 
understanding and quantification of the uncertainties is 
becoming more important. The International Global 
Atmospheric Chemistry (IGAC) project’s sponsored activity 
on Biomass Burning Uncertainty: Reactions, Emissions and 
Dynamics (BBURNED; https://igacproject.org/activities/ 
bburned) aims to better quantify the current understand
ing of the uncertainty and variability in BB emission esti
mation and to determine how to more accurately 

-
-

represent atmospheric chemistry resulting from fire. A 
virtual Fire Emissions Workshop (FEW 2023), organized 
by BBURNED, jointly with the Task Force on Hemispheric 
Transport of Air Pollution (HTAP), in November 2023, 
brought together BB emissions developers to present their 
methodologies, recent developments, and challenges/ 
uncertainties, followed by researchers presenting on emis
sions intercomparisons, at both regional and global scales, 
and by species. This report provides a summary of the FEW 
2023 workshop and the contemporary status of BB emis
sions estimation nearing the conclusion of the MODIS era 
and to provide an assessment on future developments. 

-

-

2. Biomass burning observations 
and emissions estimation 
2.1. Global biomass burning observation methods 

Earth observation satellites are essential for timely 
measurements of the global distribution, relative scale, 
and growth of fires. The information that they provide, 
and their potential application, depend on the orbital 
configuration of the satellite, which leads to trade-offs 
in spatial resolution and temporal frequency further con
tributing to the complexity in estimating BB emission 
uncertainties. Satellites in a Sun-synchronous Low Earth 
Orbit (LEO), utilized by many sensors (i.e., MODIS, VIIRS, 
SLSTR), cross the equator at the same LST on each over
pass, have a consistent repeat time, and provide finer 
spatial resolution measurements than satellites in geosta
tionary orbit (GEO). Sensors on LEO satellites do not mea
sure throughout the full possible diurnal fire cycle that 
can be captured with the high temporal resolution from 
GEO satellites, which have also been shown to be able to 
detect smaller fires (e.g., Soja et al., 2009). However, no 
single sensor is able to provide global coverage (e.g., 
Roberts et al., 2015; Wooster et al., 2015). 

-

-

-
-

2.2. Fire types, vegetation, and distribution 

Vegetation fires have always been a naturally occurring, 
and essential, component of the Earth system with a grow
ing number of studies in the scientific literature quantify
ing the impact human activities have on fire occurrence 
around the world (e.g., Bowman et al., 2020; Jones et al., 
2024). Vegetation fires can refer to many different fire 
types (e.g., forest fires, grass fires, crop fires) and intensi
ties (e.g., high intensity crown fires and low intensity, or 
smoldering, peat fires). 

-
-

-

The heterogeneity of vegetation globally means that 
the characteristics of fires and the resulting smoke will 
be different based on vegetation type along with human 
activities. Figure 1 illustrates the fire types that global fire 
emissions datasets are typically aligned with. For global 
implementation, vegetation type and its distribution must 
be simplified and this map represents one means of repre
senting what is inherently a complex and heterogeneous 
variety of the vegetation fuels that can burn under various 
conditions. The term fuel is used to represent the material 
(biomass) subject to burning and is made up of the live 
and dead vegetation found in the landscape (Prichard 
et al., 2024). Fuels serve as the foundation of what can 
potentially end up as smoke; they are highly variable 

-
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Figure 1. Dominant fire types extrapolated from van der Werf et al. (2010) in Kaiser et al. (2012) and 
adapted here for 2018 using ESA CCI Land Cover and Xu et al. (2018). 1 = savannah fires; 2 = savannah 
fires with potential soil organic matter burning; 3 = agricultural fires; 4 = agricultural fires with potential soil organic 
matter burning; 5 = tropical forest fires; 6 = peat burning; 7 = extra-tropical forest fires; 8 = extra-tropical forest fires 
with potential soil organic matter burning. 

down to site-level scales and range from grasslands 
dominated by low-density herbaceous species to dense 
forests with large amounts of dead vegetation debris 
or deep organic soils  which can hold as much as 
1,000 Mg/ha or more of live and dead fuel, but with high 
temporal and spatial variability (Prichard et al., 2019). 

2.3. Estimation of biomass burning emissions 

and smoke production 

Combustion of biomass fuels produces energy (heat and 
light), gases, and solids of various sizes that are either left 
as residue at the site (ash and char) or lofted into the air. 
The process is fuels-driven and mediated by weather and 
topography to create spatial–temporal complexity in how 
and where fuels burn and the resulting emissions. A 
variety of different gaseous and particulate combustion 
products are emitted into the atmosphere depending on 
the fuel type and conditions during burning, including the 
fuel moisture, arrangement of fuels, terrain, and fire 
weather, which influence the intensity and efficiency of 
burning (Prichard et al., 2024). 

Emissions of smoke from BB are estimated in a variety 
of ways to provide a consistent data record over space and 
time. Current regional and global inventory records begin 
in the 1980s using observations from satellite systems 
(Giglio et al., 2024b). Here we review the approaches used 
in global and continental-scale emissions estimation, 
including the methods reviewed for emissions systems 
covered in FEW 2023 (Section 3). 

Emissions amount and composition (Mx) is calculated 
using an inventory approach from the total fuel consumed 

(Mc) in a specific place and emission factors (EF) of specific 
combustion products (x): 

Mx = Mc ✗ EFx (1) 

Determination of both Mc and EF takes into consider
ation many factors, including the characteristics of the fuels 
and the conditions of the burn. Fuel type and condition are 
important in determining Mc as well as the combustion 
efficiency, which influences the composition of the smoke. 
EFs represent combustion efficiency to partition total fuel 
combusted into different smoke components and are 
explained in more detail in Section 2.4. Emissions invento
ries presented in this review employ one of the two 
approaches for determining the amount of biomass con
sumption for wildland fire (Figure 2). The first is the burn 
area approach (Figure 2a) used by the Global Fire Emis
sions Database (GFED) and the Fire INventory from NCAR 
(FINN). In this accounting-based approach, emissions are 
calculated from empirically derived models of consumption 
with estimates of the amount of area burned, the amount 
of fuel at the site, and fraction of that fuel that is converted 
to smoke (Seiler and Crutzen, 1980; Ottmar, 2014). The 
second is the combustion approach (Figure 2b), used by 
Quick Fire Emission Database (QFED), Global Biomass Burn
ing Emissions Product eXtended (GBBEPx), and Global Fire 
Assimilation System (GFAS) datasets, which utilizes 
satellite-based observations of FRP from active fires and 
determines combustion level through empirically defined 
consumption factors (e.g., Wooster et al., 2005). Details on 
these activity-based approaches can be found in French and 
Hudak (2024). 

-

-

-

-

-
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Figure 2. Two approaches to determine emissions 
from BB. (a) The burn area approach considers the 
amount of area burned (A),  prefire fuels (B),  and 
proportion of fuel consumed (β). (b) The combustion 
approach uses fire radiative energy (FRE) to estimate 
consumption based on fuel-type-specific combustion 
factors (C ). An emission factor (EF) for each product is 
applied based on combustion conditions (French and 
Hudak, 2024). 

The quality of BB emission estimation starts with the 
quality of the input fire observations, whether burn area 
or active fires, knowledge of the representative fuels 
related to the observation, and area. In mapping burn 
area, the basis for computing emissions for the burn area 
approach, and for calibrating the combustion approach, 
maps  can  be incomplete due  to  satellite coverage and  
because fire events can be obscured by clouds or forest 
canopies. Additionally, subsurface fires, such as those in 
peat lands, are not currently well detected by satellites and 
emissions can be underestimated. For FRP observations, 
false detections and spurious signals can arise from active 
volcanoes and bright surfaces, such as solar panels and 
shallow coastal waters at certain viewing angles, requiring 
screening of the raw thermal anomaly data. Gas flaring is 
also a source of spurious signals for BB emission estima
tion but FRP observations have been used in quantifying 
emissions from these activities (e.g., Caseiro et al., 2020). 

-

The fuel availability, described in Section 2.2, and its 
associated variability are also critical components in esti
mating BB emissions. Both the amount and density of fuel 
(referred to as fuel loading) and the fuel condition, such as 
moisture and arrangement, contribute to the amount of 
fuel that is available to burn and what is actually con
sumed during combustion (combustion completeness). 
These factors introduce large spatial and temporal 
variability in emissions. Fuel heterogeneity represents one 
of the largest sources of uncertainty in any emissions esti
mation approach, while variability in combustion com
pleteness adds to the high uncertainty in estimating 
emissions even when fuel type is known (French et al., 

-

-

-
-

2004; Larkin et al., 2012). Use of fire energy estimates 
from observations in the combustion approach (right side 
of Figure 2) can capture some but not all of the combus
tion completeness variability and does not avoid the need 
for spatially resolved information on fuel types and fire 
regimes (e.g., Ichoku and Kaufman, 2005; Mota and 
Wooster, 2018). Development of methods to improve 
quantification and to characterize BB fuels is on-going 
(Bright et al., 2022; Cova et al., 2023) as well as ways to 
better map and quantify fuels and fuel consumption var
iability in space and time (Prichard et al., 2019; French 
et al., 2020; Kennedy et al., 2020). 

-

-

2.4. Emission factors 

EFs define the partitioning of combustion products into 
species-specific emissions, which are variable based on the 
fuel type and combustion conditions. In general, the more 
oxygenated the burning conditions (flaming vs. smolder
ing combustion), the more efficient the combustion and 
the more carbon dioxide  (CO2) is produced relative to  
other combustion products (Yokelson et al., 1996). BB EFs 
are determined by measuring the relative concentrations 
of pollutants from BB emissions (either from controlled 
burning in the laboratory/field or sometimes from aircraft 
campaigns measuring uncontrolled fires) (e.g., Yokelson 
et al., 1996; Yokelson et al., 2013; Urbanski et al., 2022). 
Seasonal and regional variability in EFs is an important 
source of uncertainty in BB emission estimation (e.g., Ver
nooij et al., 2023), and the uncertainty can depend on the 
scale at which EFs are applied. For global scale emissions 
inventories, specific EFs are applied by biome (e.g., Kaiser 
et al., 2012; van Leeuwen et al., 2014). EFs are dependent 
on the fuel type and combustion conditions (e.g., Prichard 
et al., 2020) and, therefore, can have a high degree of 
variability for event-based and regional BB emission esti
mation. Region-specific knowledge of EFs is often applied 
for air quality modeling efforts in different countries. This 
has been particularly the case for Australia where studies 
combining locally measured EFs and knowledge of indig
enous cultural burning practices to provide more detailed 
information on country-specific BB emissions estimates 
(see Supplementary Material for more information). 

Recent efforts to better characterize the composition of 
smoke for emissions modeling have resulted in several 
updates to EFs from BB and other open burning (Andreae, 
2019; Prichard et al., 2020). The Andreae (2019) inventory 
includes EFs for 121 gas- and particle-phase species or 
constituents (i.e., total particulate matter, TPM). The data 
are almost entirely from field measurements and include 
a range of globally relevant fuel and fire types. The Smoke 
Emissions Repository Application (SERA) database (Pri
chard et al.,  2020) includes EFs for 276 gas- and 
particle-phase species or constituents focused on North 
American wildland fuels including both laboratory and 
field data. The Next-generation Emissions InVentory 
expansion of Akagi database (NEIVA; Binte Shahid et al., 
2024), described in Section 2.4.1, is similar to Andreae 
(2019), and includes EFs for globally relevant fuel and fire 
types, but covers over 800 compounds and representative 
laboratory data were selectively included. As with 

-

-

-

-

-
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SERA, NEIVA is an online, searchable database. The EFs in 
these databases are generally used as static inputs to mod
els even though they are dependent on the stage of com
bustion (e.g., flaming vs. smoldering). With the emergence 
in recent years of space-based estimates of MCE, efforts 
are under way to establish acceptable assumptions of 
these effects on EFs for general use (e.g., Zhou et al., 
2023). 

-
-

2.4.1. NEIVA 

The NEIVA database (NEIVA; Binte Shahid et al., 2024) is 
a new database in which the EFs for 14 globally relevant 
fuel and fire types have been updated to include data 
from recent studies,  with a focus on gaseous non-
methane organic  compounds (NMOC_g,  where  g  
denotes gaseous emissions). In v1.0,  NEIVA exists as a col
lection of datasets and Python script files, all of which 
are available through the NEIVA GitHub site (

-

https:// 
github.com/NEIVA-BB-Emissions-Inventory). The data
sets include a primary database with collected and refor
matted data from: existing emission inventories (e.g., 
Akagi et al., 2011 and updates; Andreae, 2019); recent 
laboratory and field campaigns compiled from 30 pub
lications (2015 and later); a recommended EF dataset 
with EFs averaged across studies and summarized for 
the 14 fuel and fire types. 

-
-

-

Additional features of NEIVA include a property dataset 
that links each NMOC_g with a suite of chemical and 
physical properties using unique identifiers; NMOC_g are 
mapped to SAPRC, MOZART-T1, and GEOS-Chem model 
surrogates to facilitate inclusion of recent data in model 

applications; EFs for inorganic gases and particulate 
matter (PM) constituents (e.g., elemental carbon, organic 
carbon, water soluble organic carbon, ions); and flexible 
querying across datasets (that represent different levels of 
processing, merging, and averaging) that allow EF retrieval 
from the individual study level to averaged across all stud
ies for a given fuel or fire type, and from the individual 
compound or constituent level to representative model 
surrogate species. 

-

The number of NMOC_g represented in NEIVA is up to 
an order of magnitude higher than in the most recent EF 
compilations. Inclusion of this more diverse set of 
NMOC_g changes property distributions, for example, the 
volatility distribution and OH reactivity (OHR) of the 
represented compounds, that can affect predictions of 
atmospheric composition and chemistry. Mapping this 
more diverse set of NMOC_g to model surrogates also 
leads to distinct differences in the surrogate distributions 
when compared with other existing compilations that are 
likely to affect multiscale model predictions. NEIVA has 
a better representation of intermediate volatility com
pounds, resulting in a shift in the volatility distribution 
to lower volatilities, with the lowest volatility bin shifted 
by up to 3 orders of magnitude. In addition, the NEIVA 
NMOC_g speciation profiles when mapped to SAPRC-07 
model surrogates resulted in higher OHR by 40%–90% 
(Binte Shahid et al., 2024). 

-

3. Emissions datasets 
Each emission dataset is described in a sub-section below, 
and its characteristics summarized in Table 1. 

Table 1. Summary of global BB emissions datasetsa 

Dataset Sensor Product Approach Resolution NRT 
Aerosol 
Scaling 

Peat Fire 
Emissions Main Use 

GFEDv4s MODIS burned area, active fire 
geolocations 

Burn area 0.25˚ No No Yes for tropical 
peatlands 

A 

GFEDv5 MODIS burned area, MODIS 
and VIIRS active fires 

Burn area 0.25˚ Yes No Yes A 

QFEDv2.5 MODIS and VIIRS Fire Radiative 
Power (FRP) 

Combustion 0.1˚ Yes Yes No A, B 

GBBEPx VIIRS FRP Combustion 0.1˚ Yes Yes No B 

GFASv1.2 MODIS FRP Combustion 0.1˚ Yes No Yes A, B 

FEERv1.0 MODIS FRP Combustion 0.1˚ No Yes No A 

FINNv2.5 MODIS and VIIRS active fire 
geolocations 

Burn area 1 km Yes No No A, B 

FLAMBE MODIS active fire geolocations Burn area 1–3 km Yes Yes No B 

IS4FIRES MODIS FRP Combustion 0.1˚ Yes Yes No A, B 

aApproach refers to the use of the burn area or combustion approaches, described in Section 2.3, to estimate emissions. NRT refers to 
near-real-time availability of the data required for operational smoke and air quality forecasts. Aerosol scaling refers to tuning of 
output emissions based on regional or other empirically derived factors for model applications. Peat fire emissions indicate if specific 
BB emissions for peatlands are available in the dataset. The main use of these datasets has been to provide publicly available long
term datasets better understanding long-term changes in global BB (labeled A in the table) and for operational air quality and 
atmospheric composition forecasts (labeled B in the table). 

-
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3.1. GFED 

The Global Fire Emissions Database (GFED) computes fire 
emissions based on the Seiler and Crutzen (1980) equa
tion; multiplying satellite-derived burned area with mod
eled fuel consumption. Currently GFED version 4 (GFED4) 
with the addition of small fires (GFED4s) uses MODIS 
burned area collection 5 (Giglio et al., 2013) and small 
fire burned area based on statistical relations between 
MODIS active fire detections inside mapped burn scars 
(Randerson et al., 2012). Burned area is then multiplied 
by fuel consumption, which is modeled and varies spa
tially and temporally (van der Werf et al., 2017). 

-
-

-

Over the course of 2025 GFED will transition to version 
5 (GFED5), providing a major overhaul, and is expected to 
be released later in 2025, but a Beta version is currently 
available. GFED5 is based on the MODIS collection 6 
burned area product (Giglio et al., 2018), and the small 
fire burned area detection algorithm has benefited from 
the use of Landsat and Sentinel-2 burn area information 
to better constrain the algorithm (Chen et al., 2023). Fuel 
consumption is based on van Wees et al. (2022) who ran 
a simplified GFED fuel model at native MODIS resolution. 
This allowed for improved calibration with field-derived 
fuel consumption. EFs are based on NEIVA (Section 2.4.1) 
and dynamic EFs for savannas from Vernooij et al. (2023). 

The purpose of the dataset is to provide a publicly 
available, relatively long-term, retrospective, and consis
tent source of information to understand the role of fires 
in the global carbon cycle and climate system. The GFED4 
dataset covers the 1997–2024 period, with the pre-MODIS 
era being based on Visible and Infrared Scanner (Giglio 
et al., 2000) and Along-Track Scanning Radiometer (Eva 
and Lambin, 1998) satellite observations, and post-2016 
emissions are derived from grid-cell-specific relations 
between emissions and MODIS active fires for the 2001– 
2016 overlapping period. GFED5 covers the 1997–now 
period, the post-2022 period will be based on VIIRS active 
fire detections scaled to GFED5 emissions. The spatial res
olution of the GFED datasets is 0.25○ , the temporal reso
lution is monthly and uses scalars to convert monthly data 
to daily or 3-hourly timesteps. The EFs used are mostly 
derived from Akagi et al. (2011). 

-

-
-

GFED4s data are publicly available with a delay of 
approximately 1 year. However, the use of VIIRS active fire 
detections used in GFED5 will provide near-real-time 
(NRT) availability. More information can be found on 
http://www.globalfiredata.org/. 

3.2. QFED 

The Quick Fire Emissions Dataset (QFED) (Darmenov and 
da Silva, 2015) uses an approach based on MODIS and 
VIIRS FRP observations to calculate gridded daily fire 
emissions and daily mean gridded FRP for each satellite 
instrument and biome. BB emission estimation with QFED 
is based on 4 global biomes (tropical forest, extratropical 
forest, savanna, and grassland), which is an aggregate of 
the International Geosphere–Biosphere Programme 
(IGBP) land cover classes. Calibration of BB emissions for 
trace gases and aerosols is made in 2 ways. For trace gases, 
GFED-based calibration is performed for carbon monoxide 

(CO), and emissions of the other species are derived based 
on the ratio of EFs. For aerosols, QFED is intended as 
a perceived emission dataset; that is, the emissions that 
initialize smoke in the GEOS model are needed to simu
late realistic aerosol optical depth (AOD) distributions in 
the atmosphere. Calibration coefficients for each biome 
are obtained through an inverse calculation constrained 
by MODIS AOD observations retrieved using Global 
Modeling and Assimilation Office’s Neural Net Retrieval 
trained on AERONET data. 

-

In preparation for the end of the MODIS era, QFED 
developments are planned to use FRP observations from 
geostationary satellites to capture the diurnal cycle in 
emissions. Additional future developments for QFED 
include the adoption of the biomes, including peatlands, 
provided by the NASA FIre Light Detection Algorithm 
(FILDA; Zhou et al.,  2023) and to implement MCE 
calculations to modulate EFs using nighttime and daytime 
distributions. A Bayesian multispectral, biphasic algorithm 
is being developed to provide separate estimates of the 
flaming and smoldering/residual components of FRP, 
alongside associated heat fluxes. These capabilities permit 
the specification of combustion phase dependent EFs, and 
when combined with the thermodynamic environment, 
the estimation of vertical mass distribution functions 
using plume rise models such as Freitas et al. (2010). 

QFED is operated in NRT and in delayed (reanalysis) 
mode by the NASA GMAO. QFED provides emissions for 
the aerosol, greenhouse, and reactive gases components 
for the GEOS Earth System model and is the foundation 
for GMAO reanalyses, mid-range, sub-seasonal, and sea
sonal forecasting systems. 

-

Currently, QFED provides gridded emissions products 
at 25 and 10 km nominal resolution with a latency of 
approximately 6-h after 00 UTC for NRT, and approxi
mately 1 week for “science quality” data. The dataset 
covers the full MODIS period with VIIRS starting in 
2012. The data are publicly available on request from 
NASA GMAO. 

-

3.3. GBBEPx and RAVE 

The current operational Global Biomass Burning 
Emissions Product eXtended (GBBEPx) V5 algorithm esti
mates fire emissions from VIIRS 375m FRP observations 
aggregated by biome type (tropical forest, extratropical 
forest, savanna, and grassland) to a 0.05○ grid cell. Initial 
versions of the GBBEPx algorithm were applied to MODIS 
and VIIRS observations, GBBEPx phased out MODIS and 
currently uses only VIIRS instruments on the NOAA-20 
and NOAA-21 satellites. 

-

FRP density for a predefined grid (e.g., 0.1○ ✗ 0.1○) is  
calculated by remapping individual VIIRS active fire obser
vations. Emissions are estimated using regression para
meters derived by correlating VIIRS FRP density with 
QFED V2.5 emissions stratified into different biome types 
for each continent. The reliance on QFED V2.5 to derive 
GBBEPx emissions requires regression parameter updates 
whenever QFED undergoes a revision. NOAA is planning 
to completely modify its emissions algorithm to use 

-
-
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merged polar-orbiting and geostationary satellites using 
its newly developed algorithm (see Li et al., 2022). 

NOAA has also developed a new operational algorithm 
(Li et al., 2021), Regional hourly Advanced Baseline 
Imager and Visible Infrared Imaging Radiometer Suite 
Emissions (RAVE), to generate regional hourly 3 km fire 
emissions across North America using a combination of 
FRP observations from the Advanced Baseline Imager 
(ABI) on the Geostationary Operational Environmental 
Satellites–R Series (GOES-R) and VIIRS. High temporal res
olution of ABI allows for characterizing fires and emissions 
on a diurnal scale. The RAVE algorithm calibrates and 
fuses the ABI FRP with VIIRS FRP in 3 km grids. FRP 
diurnal cycles at an interval of 5 min are reconstructed 
using the fused ABI-VIIRS FRP combined with the land 
cover-ecoregion-specific FRP diurnal climatologies. The 
reconstructed FRP diurnal cycles are applied to estimate 
hourly emissions of 10 species (e.g., CO and fine PM with 
diameters < 2.5 μm (PM2.5)). The RAVE algorithm is 
expanding to use geostationary FRP observations covering 
Europe and Asia. 

-

Daily GBBEPx emissions are currently used by the 
NOAA National Weather Service in its operational global 
aerosol model (Zhang et al., 2022). Hourly RAVE emissions 
data are operationally used by the National Weather Ser
vice regional air quality forecast model. NOAA currently 
has processed the entire VIIRS record from 2012 to the 
present and the datasets on a 0.25○ ✗ 0.25○ grid resolu
tion that are made available to users by request. Opera
tional GBBEPx data with a 1-day latency are publicly 
available for download at 

-

-
-

https://www.ospo.noaa.gov/ 
products/land/gbbepx/, and operational RAVE data with 
a 2-h latency are publicly available for download at 
https://www.ospo.noaa.gov/products/land/rave/. 

3.4. GFAS 

The Global Fire Assimilation System (GFAS) computes fire 
emissions in NRT from satellite observations of FRP and 
assumptions dependent on vegetation type (Kaiser et al., 
2009; Kaiser et al., 2012). GFAS version 1.2 (GFASv1.2) is 
based on FRP observations from the MODIS instruments 
on the Terra and Aqua satellites (Giglio et al., 2016) to 
calculate emission rates of various smoke constituents 
using static EFs from Andreae and Merlet (2001) and 
Christian et al. (2003). These calculations of combustion 
rate and species emissions contain representations of peat 
in Southeast Asia and Siberia. 

Spurious signals, for example, from gas flaring, power-
plants, and volcanic outflow, are masked with a static map 
and the combustion rate is calculated from FRP (following 
Wooster et al., 2005) currently using 8 empirical factors 
for 8 different land cover types, which have been derived 
from a regression against the combustion rate of GFED3 
(van der Werf et al., 2010; Kaiser et al., 2012). Furthermore, 
the GFAS algorithm applies a solution for partial observa
tional cloud coverage, taking into account observation 
representativity errors as well as observation uncertainty 
due to satellite sensor detection limits to estimate a GFAS 
analysis of FRP where observations are combined with 

-

previous day analysis (or first-guess) using a Kalman filter 
approach. 

An updated, higher (hourly) temporal resolution 
version, GFASv1.4, also based on MODIS FRP observations, 
is already deployed in Copernicus Atmosphere Monitoring 
Service (CAMS) operational forecasts and planned to be 
released in the near future. The higher temporal resolu
tion is achieved by assimilating daytime and nighttime 
FRP separately and superimposing a climatological diur
nal cycle. Future updates to GFAS will assimilate FRP 
observations from the VIIRS instrument on the Suomi-
NPP, NOAA-20, and NOAA-21 satellites (Csiszar et al., 
2014) and from the geostationary Meteosat, GOES-E, 
GOES-W, and Himawari satellites to ensure the post-
MODIS continuation of the dataset. Furthermore, dynam
ical bias correction, a machine learning-based FRP model, 
and EF updates are planned to contribute to GFAS 
improvements. 

-

-

-

GFAS is operated in NRT by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) as part of 
CAMS and used as input, with persistence, for operational 
forecasts, reanalysis, and other services provided by CAMS, 
as well as being publicly disseminated as an open access 
dataset. More information, and data access, is available 
from https://atmosphere.copernicus.eu/. The data are 
provided at a 0.1○ spatial resolution for the period 2003 
to present day, to cover the combined availability of both 
MODIS instruments. The data are publicly available 1-day 
behind (GFASv1.2) and 7-h behind (GFASv1.4) real time. 
GFASv1.2 is  currently distributed via https://ads.  
atmosphere.copernicus.eu/datasets/cams-global-fire-
emissions-gfas?tab=overview and GFASv1.4 data will also 
be distributed from there during 2025. 

3.5. FEER 

The Fire Energetics and Emissions Research (FEER) version 
1.0 developed a global BB emissions dataset for various 
particle and trace gas species using the combustion 
approach (Ichoku and Ellison, 2014). Initially, FEER gener
ated a global gridded map of emission coefficients (Ce) for 
smoke TPM by leveraging simultaneous measurements of 
FRP from the GFAS product (Kaiser et al., 2012), AOD from 
the MODIS sensors on the Terra and Aqua satellites, and 
wind vector data from the NASA Modern-Era Retrospec
tive analysis for Research and Applications, Version 1 
(MERRA) (Ichoku et al., 2008). Subsequently, the smoke 
TPM is calculated by multiplying Ce by time-integrated 
FRP. Finally, EFs are used to convert TPM emission esti
mates into the various species included in the FEERv1.0 
emissions inventory. These EFs are derived from Andreae 
and Merlet (2001), with updates provided by Andreae 
(2019). The FEERv1.0 dataset for various particle and trace 
gas species between 2003 and 2013 is available from 

-

-

-

https://science.gsfc.nasa.gov/feer/. 

3.6. FINN 

The Fire INventory from NCAR (FINN) is a model  
framework that produces global, daily fire emissions esti
mates at an approximate 1 km2 horizontal resolution 
(Wiedinmyer et al., 2011; Wiedinmyer et al., 2023). The 

-
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model uses the Seiler and Crutzen (1980) equation (burn 
area method), assuming that the emissions are a function 
of burned area, fuel loading, fuel consumption, and EF. 
The FINN framework estimates burned area from satellite-
derived fire detections and satellite-derived vegetation 
inputs with estimates of fuel loading and EFs reported 
from field and laboratory studies. 

The most recent version of FINN, version 2.5 
(FINNv2.5), enables simultaneous use of multiple satellite 
products for emissions estimates. Currently, MODIS Col
lection 6 (MCD14DL) active fire detections and VIIRS 
active fire products obtained from NASA’s Fire Informa
tion for Resource Management System data portal can be 
applied: one or both products may be used. Land Cover is 
assigned by year from the MODIS LCT MCD12Q1 Version 6 
Land Cover Type Product with the IGBP classification 
scheme and the MODIS MOD44B v006 MODIS/Terra Veg
etation Continuous Fields annual product. FINNv2.5 
includes a preprocessor and an emissions module, all 
openly accessible (Wiedinmyer et al., 2023). Within the 
FINNv2.5 preprocessor, fire detections are spatially pro
cessed to produce estimates of burn areas and overlaid 
onto the vegetation information. 

-

-

-

-

FINN BB emissions are used in applications including 
forecasting in the NCAR Whole Atmosphere Community 
Climate Model (WACCM),  and retrospective model 
analyses. 

Emission estimates are available from 2002 to the 
present day (Wiedinmyer and Emmons, 2022) at a spatial 
resolution of 1 km and daily temporal resolution. The 
emissions are available in NRT and the data are publicly 
available from https://www2.acom.ucar.edu/modeling/ 
finn-fire-inventory-ncar. 

3.7. FLAMBE 

The Fire Locating and Monitoring of Burning Emissions 
(FLAMBE) system generates satellite-based estimates of 
spatially and temporally resolved emissions of PM in NRT 
(Reid et al., 2009). It has been used to supply emissions 
estimation for operational smoke predictions from the 
Navy Aerosol Analysis and Prediction System (NAAPS) 
since 2007. FLAMBE was originally developed to utilize 
the fire detections from GOES imagers provided by the 
Wildfire Automated Biomass Burning Algorithm (Prins 
and Menzel, 1994), and it currently uses the MODIS 
MOD14 thermal anomaly product, Collection 6.1 (Giglio 
et al., 2016) to calculate burn area. 

FLAMBE does not use MODIS FRP, relying instead on 
scaling hot spots to burned area according to land cover 
classification (burn area approach). Fuel loading, fuel con
sumption, and EFs are derived from field observations 
(e.g., Reid et al., 2005a; Reid et al., 2005b) and similarly 
assigned based on land cover. 

-

Applications of FLAMBE have typically applied regional 
scaling factors to improve the realism of outputs from 
specific chemical and aerosol transport models (e.g., 
GEOS-Chem in Fisher et al., 2010; NAAPS in Hyer and 
Chew, 2010; and WRF-Chem in Wang et al., 2013). Lynch 
et al. (2016) applied both a regional scaling of FLAMBE 
emissions and a temporal filter to mitigate day-to-day 

shifts in the orbital  pattern (Heald et  al.,  2003).  
Forecasting using FLAMBE emissions is  done with 
persistence, although some testing of dynamic emissions 
has been done (Peterson et al., 2013). 

The design of FLAMBE reflects the goals of low latency 
for NRT operations, traceability to field measurements, 
and simplicity. FLAMBE emissions are a means to include 
spatially and temporally resolved BB emissions in atmo
spheric models, but they are not constrained to balance 
with other components of the carbon cycle and thus are 
not suited for most climate research applications. 

-

FLAMBE provides emissions in a vector form, with 
emissions assigned at the locations of observed satellite 
hot spots; this is done to maximize consistency between 
simulations from models with different horizontal grids. 
Hourly emissions are estimated by applying land-cover-
dependent diurnal cycles derived from geostationary fire 
observations (Reid et al., 2004). 

Consistently processed FLAMBE emissions datasets 
are available for 2002–2022 and can be obtained from 
the Global Ocean Data Assimilation Experiment 
(GODAE; https://usgodae.org/cgi-bin/datalist.pl? 
dset=nrl_7seas&summary=Go). GODAE also includes 
some additional documentation of the FLAMBE data 
products. 

3.8. IS4FIRES 

The emission inventory produced by Integrated System for 
vegetation fires, IS4FIRES (http://is4fires.fmi.fi), is com
puted from MODIS FRP using the combustion approach: 
emission of gases and aerosols is calculated directly from 
FRP using empirical EFs (Sofiev et al., 2009; Soares et al., 
2015).  The IS4FIRES system is operated  by Finnish  
Meteorological Institute in close connection with the Sys
tem for Integrated modeLling of Atmospheric coMposi
tion (SILAM; 

-

-
-

http://silam.fmi.fi) and used as inputs to 
forecast and hindcast of atmospheric composition, air 
quality, data for impact assessment studies, and so on 
(Romanello et al., 2023; Chowdhury et al., 2024; Curto 
et al., 2024). 

The approach relies on the linear relation between the 
FRP and a rate of the biomass consumption (Mota and 
Wooster, 2018; Nguyen et al., 2023) and uses inverse dis
persion modeling to identify these factors. 

-

The inventory is based on 2 primary EFs converting FRP 
to total-PM and CO, which are obtained via inversion per
formed with SILAM. The EFs for PM are inferred from an 
iterative fitting of SILAM-calculated AOD with the corre
sponding Aeronet and MODIS AOD observations. The EFs 
for CO are based on a similar calibration procedure with 
Measurements Of Pollution In The Troposphere (MOPITT) 
retrievals: CO column and vertical profiles. The EFs distin
guish between the continents and 7 land-use classes in 
each continent (in total, 34 nontrivial land-use categories). 
Each land-use category has its own EF from FRP to PM and 
from FRP to CO, that is, the fitting has 68 factors to 
identify from an inverse-problem solution. To constrain 
this multidimensional problem, the emission inversion 
is performed over a time period of 3–5 years. The total-
PM and CO emissions are used as proxies for 

-

-

-
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multicomponent emissions supplied to SILAM. EFs for the 
other emitted species are taken from Akagi et al. (2011). 

Conversion of instant MODIS FRP observations into 
hourly emission fluxes involves the diurnal variation 
obtained from FRP retrievals from the SEVIRI geostation
ary satellite over Africa, also covering Europe (Soares et al., 
2015). The obtained diurnal variation is extended to other 
continents using multiannual MODIS FRP data: the shape 
of the variation is kept but the absolute variation is scaled 
according to the MODIS day–night FRP ratio. The emission 
inversion depends on the features of the plume disper
sion; therefore, attention was given to the plume eleva
tion, for which the semiempirical formula has been 
derived using MISR active fire and plumes datasets (Sofiev 
et al., 2012; Sofiev et al., 2013). 

-

-
-

At the global scale, IS4FIRES BB emissions are provided 
with a spatial resolution 0.1○ and 1 h time resolution. 

The current IS4FIRES v.2.0 is operated in NRT with the 
data open at the SILAM data portal http://silam.fmi.fi/ 
thredds. The portal also contains the archive starting from 
the beginning of MODIS observations in 2000. The histor
ical fire-induced smoke concentrations are openly avail
able from an online data archive (Hänninen et al., 2024). 

-
-

4. Intercomparison and known differences 
Direct evaluation of global BB emissions is challenging 
due to highly limited availability of independent measure
ments (especially from satellites) and the heterogeneous 
spatial and temporal distribution of BB activity. However, 
indirect evaluation is possible through intercomparison of 
different BB emissions inventories, as well as by using 
these inventories in chemical transport models and eval
uating the resulting modeled smoke against satellite 
observations and in situ measurements. Evaluation 
against satellite observations has typically occurred for 
CO, nitrogen dioxide (NO2), and AOD; although formalde
hyde (HCHO) and some other species are also possible. 
Several emission intercomparison studies have revealed 
large differences in BB emissions by species and by region. 
There have also been several studies that applied the dif
ferent emissions in the same model in order to evaluate 
the results against measurements. This section sum
marizes the important findings in those studies, first glob
ally (Section 4.1), and then by region (Section 4.2). 

-

-

-

-

-
-

4.1. Global 

Fire emissions from several inventories have been com
pared by Wiedinmyer et al. (2023), namely FINNv2.5 
(MODIS+VIIRS), FINNv2.5 (MODIS), GFED4s, FEER, GFAS, 
and QFED. Global and regional comparisons for 2012– 
2019 highlight the complexity in evaluating BB emissions, 
with varied results across inventories for different species 
in different regions (Figure 3). In general, the year-to-year 
variabilities in the annual fire emissions are consistent 
between different inventories, however the magnitudes 
of the emissions differ. The 2 inventories predicting the 
highest global emissions of CO2 and CO were FINNv2.5 
with MODIS+VIIRS and FEER. These inventories estimated 
approximately double the emissions of CO2 and CO, com
pared to GFED4s, QFED, GFAS, and FINNv1.5. However, 

-

-

these inventory differences are not conserved across 
different species. Species variability is indicated by, for 
example, QFED producing the lowest global HCHO 
emissions but highest global black carbon (BC) + organic 
carbon (OC) emissions, compared to the other inventories. 
Additionally, these estimates vary regionally. For example, 
FINNv2.5 (MODIS+VIIRS) has significantly higher emis
sions over Southeast Asia in spring than other inventories. 
In contrast, GFED4s and GFAS have higher emissions than 
other inventories over Boreal North America and Equato
rial Asia in summer, likely due to the inclusion of peat fire 
emissions. Targeted measurements, such as the recent Air
borne and Satellite Investigation of Asian Air Quality 
(ASIA-AQ) field campaign in early 2025, will help under
stand Southeast Asia BB emission inventory accuracy. 

-

-

-

-

Griffin et al. (2024) compared CO emissions estimates 
from fires with satellite-derived CO emissions worldwide. 
They used high-resolution satellite data from the Tropo
spheric Monitoring Instrument (TROPOMI) to estimate CO 
emissions from individual fires globally between 2019 and 
2021. As a first step, CO BB emissions were estimated 
directly from the satellite observations using a flux 
method, where the total mass of the CO enhancement is 
estimated from the satellite column observations aver
aged in 4 km boxes upwind and downwind across the fire 
entire plume, combined with ERA5 winds to determine an 
emission rate. As a next step, by combining these esti
mates with satellite FRP data from MODIS, they developed 
biome-specific emission coefficients and created annual 
CO BB emissions. Combining these TROPOMI-MODIS 
derived emission coefficients and total MODIS FRP (such 
as the GFAS FRP), total emissions annual CO emissions 
were derived. They found that Southern Hemisphere 
Africa had the highest CO emissions from BB, accounting 
for over 25% of the global total of 300–390 Mt(CO)/yr 
from 2003 to 2021, in terms of biomes: broad-leaved 
evergreen tree fires contributing almost 25% of global 
emissions. The study also compared different BB CO emis
sion inventories (including the Global Forest Fire Emis
sions Prediction System [GFFEPS; Anderson et al., 2024], 
GFED4.1, FINN1.5, FINN2.5, and GFAS) to the TROPOMI-
MODIS total emissions (Figure 4a). The average global 
annual CO emissions from wildfires are roughly between 
300 and 400 Mt/yr for all inventories except FINN2.5 
inventory reported CO emissions on the order of 500– 
700 Mt/yr, consistent with Wiedinmyer et al. (2023). Over 
the past 2 decades, the satellite-derived global CO BB 
emissions have generally decreased by 5.1–8.7 Mt(CO)/ 
yr, this decrease is driven by decreasing wildfire emissions 
from Africa and South America, however, the Temperate 
Forest North America (TENA) shows increasing emissions 
(Griffin et al., 2024; Figure 4b). 

-

-

-

-
-

The fire emissions of aerosols from 6 global biomass 
burning emission datasets (i.e.,  QFED2.4, FEER1.0, 
FINN1.5, GFED3.1, and GFED4s) have been intercompared 
by Pan et al. (2020). In most regions worldwide, QFED2.4 
and FEER1.0 datasets based on FRP have significantly 
more OC BB emissions than other datasets (Figure 5a). 
Averaged globally, QFED2.4 has a factor of 3.8 more OC 
emissions than GFED 4s, which has the least. Using the 
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Figure 3. Intercomparison of several BB emissions datasets for several species and regions. Figure from 
Wiedinmyer et al. (2023, corrigendum). 

NASA Goddard Earth Observing System (GEOS) model, 
simulated AODs with the QFED2.4 and FEER1.0 datasets 
are closest to the observed AOD from MISR and AERONET 
in the southern hemisphere when and where biomass 
burning emissions dominate (Figure 5b). In contrast, 
simulated AOD with GFED4s was underestimated most. 
Both QFED2.4 and FEER1.0 are based on FRP and con
strain the emission coefficients used to derive BB aerosol 
emissions based on MODIS AOD. However, this constraint 
does not apply to other BB emission datasets. 

-

4.2. Regional 

Other research has had a more regional focus for evalu
ating fire emission estimates and their impact on air 
quality and climate modeling. For example, Carter et al. 
(2020) focused on North America within a global context 
using 4 commonly used smoke inventories (GFED4s, 
FINN1.5, GFASv1.2, and QFED2.4), a chemical transport 

-

model (GEOS-Chem), and observations from surface net
works, aircraft, and satellites. They found that the 4 
inventories perform differently depending on emitted 
species, location, and season (e.g., Figure 6). They also 
calculated that average BC and OC emissions differ by 
roughly a factor of 5 and 4, respectively, across the inven
tories in boreal North America. The range in BC and OC 
emissions in the contiguous United States is even larger 
(a factor of approximately 7 and 6, respectively). Global 
ranges in BC emissions are smaller than those in North 
America (approximately 2.3) with a somewhat more 
modest spread (approximately 1.7) in OC emissions, pos
sibly because of EF differences. They also demonstrated 
that dry matter, not EF, differences are the driving force 
for emissions variation across inventories. Carter et al. 
(2020) showed that 2 of the inventories (GFED4s and 
GFASv1.2) lead to a better agreement between the model 
and observations in North America (Figure 6). While 

-

-

-
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Figure 4. Intercomparison of several BB CO emission inventories compared to those derived from satellite 
measurements. (a) Regional annual totals for 2019 and (b) regional annual totals 2003–2021. Figure adapted from 
Griffin et al. (2024). 

most air quality and climate studies only use one smoke 
inventory, they find that there is a large range across the 
inventories in health-relevant surface smoke concentra
tions and climate-relevant direct radiative effects. Tang 
et al. (2022) found for the Western United States, mod
eled CO and AOD using FINNv2.5 inputs to compare well 
with MOPITT CO and MODIS AOD. However, similar 

-

-

evaluations in other parts of the world suggested that 
FINN estimates of CO are overestimated in the Amazon 
basin and in central Africa. 

Liu et al. (2020a) intercompared fire emissions in 
Indonesia for GFED4s, FINN1.5, QFED2.5r1, GFASv1.2, 
and FEER1.0-G1.2 and modeled surface smoke concentra
tions across Equatorial Asia (Indonesia, Malaysia, and 

-

D
ow

nloaded from
 http://online.ucpress.edu/elem

enta/article-pdf/13/1/00089/895115/elem
enta.2024.00089.pdf by guest on 29 Septem

ber 2025



Art. 13(1) page 12 of 23 Parrington et al: Biomass burning emission estimation in the MODIS era 

(continued). 
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Figure 5. (i) Intercomparison of several BB OC emissions, and (ii) the resulting AOD when they are applied in 
a model. Figures from Pan et al. (2020). 
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Singapore; Figure 7).  They reported that the main 
challenges include accounting for the high fuel consump
tion in peatlands and high cloud cover and thick smoke 
obscuring fire disturbances, detected as either thermal 
anomalies or abrupt changes in surface reflectance (Giglio 
et al., 2016; 2018). First, some inventories do not partition 
peatlands into a separate land cover type, and thus do not 
account for differences in fuel consumption and EFs 
(Akagi et al., 2011; van der Werf et al., 2017; Andreae, 
2019). Model simulations using inventories with peat fire 
specifications, such as GFASv1.2 and GFED4s, better 

-

Figure 6. Intercomparison of BC (a, b) and organic 
aerosol (c, d) vertical profiles from a model using 
several BB emissions compared to aircraft-based 
measurements in North America. Figure from 
Carter et al. (2020). 

captured the high anomalies in smoke concentrations 
observed at ground monitors in Singapore and Malaysia 
in high fire years such as 2006 and 2015 compared to 
other inventories (Figure 7). Second, as seen in 2015, 
thick haze during severe fire seasons can hinder fire detec
tion even further, leading to underestimates in fire emis
sions. Model simulations using inventories that adjusted 
for such cloud/haze gaps such as GFASv1.2 and 
QFED2.5r1 see higher temporal correlations with smoke 
concentrations observed at ground monitors. 

-
-

Desservettaz et al. (2022) carried out a focused inter-
comparison study of Australian BB CO emissions estimates 
from FINNv1.5,  GFED4s,  and QFEDv2.4,  processed 
through chemical transport models. FINNv1.5 signifi
cantly underestimated emissions from savanna fires in 
northern Australia when compared to GFED4s and  
QFEDv2.4—an order of magnitude lower than the latter. 
This discrepancy was so pronounced that models driven by 
FINNv1.5 could not replicate the observed levels and pat
terns of CO in the region. Wiedinmyer et al. (2023) note 
that the updated FINNv2.5 has increased CO emissions for 
the region, but remains lower than GFAS, QFED, and FEER. 
GFED4s and QFEDv2.4 inventories showed much closer 
agreement in their estimates for Australian emissions. 
However, QFEDv2.4 provided consistently higher emission 
estimates in Australia overall. 

-

-

Regionally, the magnitude and temporal variability of 
fire emissions may differ substantially among different 
global inventories, and the performance of inventories 
may differ accordingly. Importantly, efforts toward stan
dardization of core inputs and adjustments for construct
ing inventories, such as land cover classes and cloud/haze 
gap adjustments  can reduce the  variation in estimates  
across fire inventories. Simultaneously, region-specific 
adjustments of inventories, such as with household survey 
data of agricultural fire practices (Liu et al., 2020b) or 
geostationary satellite observations to improve the fire 
diurnal cycle  (Li et al., 2022), can help to inform and 

-
-

Figure 7. Intercomparison of PM2.5 in Indonesia using several BB emissions and comparison to observed 
PM2.5 (dashed lines). Figure from Liu et al. (2020a). 
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improve global inventories. Online tools such as FIRECAM 
(https://globalfires.earthengine.app/view/firecam) can 
provide end-users with a  first-order assessment of  
differences among global fire inventories for a study 
region of interest (Liu et al., 2020a). 

Satellite observations of atmospheric composition 
related to BB smoke, in particular TROPOMI CO as used 
by Griffin et al. (2024), described above, have been playing 
a growing role in evaluating and consolidating BB emis
sions at regional scales. Recent studies for Australia (van 
der Velde et al., 2021), Southern Africa (van der Velde 
et al., 2024), boreal North America and Eurasia (Zheng 
et al., 2023), and Canada (Byrne et al., 2024) have utilized 
inverse modeling approaches to constrain BB emissions 
estimated by some, although not all, of the datasets 
described in Section 3, and highlight the potential of 
atmospheric observations for addressing uncertainties in 
BB emission estimation. 

-

5. Future directions and recommendations 
The FEW in November 2023 provided a timely opportu
nity to bring together the BB emissions community to 
present and discuss the state-of-the-art in BB emission 
estimation, comparing some of the most widely used data
sets and their continued development with changes in the 
availability of the observations. The upcoming decommis
sioning of the 2 MODIS instruments marks a significant 
change in the global observing system and the end of 
a remarkable era of satellite observations for BB emissions 
covering the past 2 decades. Of the other sensors provid
ing fire observations, the VIIRS instruments launched on 
NOAA polar-orbiting satellites are already being used in 
the production of some BB emissions datasets using active 
fire observations. VIIRS and observations from the other 
sensors listed in the introduction are planned for imple
mentation in datasets to ensure provision of BB emissions 
estimates in the post-MODIS era. 

-

-

-

-

-

5.1. Development, and uptake, of satellite burned 

area products from VIIRS and other instruments 

A VIIRS burned area product has been developed but has 
not yet  been  used  in  the production of BB emissions.  
While active fire observations provide the NRT capability 
required for operational air quality forecasting, the BB 
emissions from FRP are often calibrated against BB esti
mates derived from burned area. Similarly, recent devel
opments and applications of Artificial Intelligence (AI) for 
burned area and BB emission estimation strongly depend 
on training and calibration against the empirical burned 
area products. Therefore, continued development and 
availability of burned area datasets from the available 
sensors is strongly recommended. 

-
-

5.2. Mapping of the fine scale heterogeneity in fuel 

type and condition 

The variability of fuel type and condition, defined by bio-
geography, climate, and weather, is a major factor impact
ing emission amount, rate, and composition. Mapping the 
inherent heterogeneity of fuels at appropriate scales is 
important for accurate smoke modeling. For local to 

-

landscape-scale smoke modeling, fuel type and condition 
are important to map at fine scales. In contrast, global 
approaches apply broad assumptions about fuel type and 
condition but still require an understanding of the under
lying heterogeneity in these factors to accurately parame
trize at a larger scale and properly account for variability 
in combustion and emissions. 

-
-

5.3. Identification of spurious signals detections 

and information gaps in satellite FRP products 

The higher resolution of the VIIRS measurements com
pared to MODIS makes them more susceptible to spurious 
signals from non-fire thermal anomalies (such as active 
volcanoes, gas flaring, solar farms, and shallow coastal 
waters) and continued improvement in methodologies 
to account for these errors of commission is also recom
mended. Additionally, accurate and regularly updated 
maps of biomes and fuels, especially global peatlands 
where fires are difficult to detect and quantify, are recom
mended to help remove omission errors, which can be 
a large source of uncertainty in BB emission estimation. 
Improved accounting of small fires in GFED5, for example, 
highlights their significant contribution to the global total 
emission burden (Chen et al., 2023) and should be fac
tored into spurious signal detection and updated biome 
and fuel maps. 

-

-

-

-

5.4. Regional modeling studies and comparison 

against existing datasets 

In order to best validate fire emissions datasets,  
atmospheric models must use those datasets to simulate 
the resulting atmospheric concentration of smoke-related 
pollutants and then compare model output to observed 
concentrations. However, models have other uncertainties 
in addition to emissions uncertainties. An important step 
is to characterize and quantify the uncertainties by run
ning multiple simulations with different BB datasets in 
one model framework (as some studies mentioned in Sec
tion 4 have done) as well as using multiple models to run 
simulations with the same BB datasets. Both of these are 
proposed for the HTAP3 Fires model intercomparison pro
ject (Whaley et al., 2025), which started in 2025. Multiple 
regions and pollutant species will be targeted in this inter-
comparison. Also, in order to isolate the uncertainty that 
appears due to EFs, an experiment in which each fire 
emissions dataset uses the same EFs—such as those from 
NEIVA—would remove that source of variability. 

-

-

-

After quantifying sources of variability in model simu
lations, a more precise understanding of differences can 
be gained when comparing model results with observa
tions, such as those from satellites. Regional evaluation 
against in situ measurements, including vertically resolved 
aircraft campaign measurements of multiple smoke pol
lutants would also be valuable. The FIREX-AQ, WE-CAN, 
BBFLUX, BBOP, aircraft campaigns represent some of the 
best field observations of BB conditions and coordinated 
effort of model simulations against these datasets can 
help identify systematic biases in fire emissions input. 

-

-

-
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5.5. Representation of the diurnal cycle and plume 

rise in BB emissions 

Finally, we know that the diurnal cycle in fire emissions is 
important, and difficult to represent when so much 
dependence is on once-or-twice-daily satellite observa
tions. However, it is well known that fire emissions vary 
greatly over the day and night and thus, for many model 
applications, this needs to be well represented. In addi
tion, injection height and vertical distribution of smoke 
plumes into the atmosphere (e.g., Feng et al., 2024) is also 
very important as it determines where the fire emissions 
are added to the atmosphere, which further impacts the 
transport, chemistry, and lifetime of fire emitted trace 
gases and aerosols. More studies are needed to address 
injection height of fire plumes, and indeed, the HTAP3 
Fires study will also include injection height perturbation 
experiments (Whaley et al., 2025). The injection height of 
fire plumes and diurnal cycle of fire emissions are also 
a coupled problem due to the diurnal cycle of meteorol
ogy (Tang et al., 2022). For example, during the day, when 
fire emissions tend to be stronger, vertical mixing and 
convection are also more intense. At night, both fire emis
sions and vertical mixing tend to weaken. Incorporating 
both injection height and the diurnal cycle of fire emis
sions in the model could have a synergistic effect, ampli
fying their combined impact. 

-

-

-

-

-
-

5.6. The evolving research landscape and final 

remarks 

In the time that has elapsed since the FEW in November 
2023 several new studies have been published which 
highlight advances in modeling, and the potential appli
cation of AI and machine learning (ML), to address key 
uncertainties in some of the inputs to BB emission esti
mation. For example, McNorton and Di Giuseppe (2024) 
developed the combined use of satellite observations of 
above ground fuel and modeled Net Ecosystem Exchange 
to improve fuel characteristics including live and dead fuel 
moisture. Similarly, Forkel et al. (2025) applied satellite 
observations and ML to address uncertainties in dry mat
ter burned by biome and fire type, taking into account 
land-use change/drought and dynamic EFs, with the fur
ther application of satellite observations of atmospheric 
constituents to constrain estimated emissions. These stud
ies, along with the satellite inverse modeling studies cited 
earlier, further highlight the critical importance of satellite 
observations for BB emission estimation from different 
biomes and fuel availability, and the potential for isolating 
some of the key uncertainties at regional and global 
scales. 

-

-

-

-

-

Imminent changes to the available observations, and 
continuing advances under the rapidly developing disci
pline of wildfire science, make it imperative to identify 
and better quantify the key uncertainties in BB emissions. 
The outcomes and recommendations presented in this 
manuscript, and the goals of the IGAC BBURNED activity, 
represent the forward-looking multidisciplinary approach 
required to pool resources for improving BB emission 
estimation and its uncertainties. 

-
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