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Abstract—In this paper, we analyze collaborative inference in a
mobile edge computing (MEC) network aided by a reconfigurable
intelligent surface (RIS). In particular, we consider multiple user
equipments (UEs) with collaborative inference tasks. The goal is
to minimize the long-term average energy consumption subject
to a long-term average computing queue backlog constraint.
We first transform the considered problem into a Lyapunov
optimization problem and then propose a deep reinforcement
learning (DRL)-based algorithm to solve it. An optimization
subroutine is embedded in the proposed algorithm to directly
obtain the optimal RIS coefficients, while the UEs’ deep neural
network (DNN) partition decisions and computational resource
allocations at the MEC server are obtained from the DRL-
based algorithm. Numerical results show that the proposed
algorithm solves the problem efficiently, and the introduced RIS
improves the long-term average energy consumption significantly.
Furthermore, the impact of various parameters (e.g., bandwidth
and the maximum CPU frequency at the MEC server) is analyzed.

Index Terms—Energy consumption, edge computing, collab-
orative inference, reconfigurable intelligent surface (RIS), deep
reinforcement learning.

I. INTRODUCTION

In recent years, an increased demand for high data rates
and advanced computing capabilities (e.g., due to heightened
computational requirements in mobile data services and appli-
cations) has resulted in congestion challenges within cellular
networks and data servers [1]. Addressing these challenges,
mobile edge computing (MEC) has emerged as a promising
solution, allowing user equipments (UEs) to fully or partially
offload their tasks to nearby edge servers instead of relying on
remote data servers [2].

Along with advances in edge computing, the progress in
deep learning (DL) has enabled the management and process-
ing of more intelligent tasks. However, the execution of com-
plex deep neural networks (DNN) for inference applications
on UEs consumes a substantial amount of energy, particularly
as DL models grow in complexity and size.

As both UEs and the MEC server possess the capability to
execute learning and perception tasks (such as classification,
recognition, reasoning, etc.) to varying extents, collaborative
inference in MEC networks has recently attracted interest as
a strategy to diminish energy consumption while adhering
to constrained inference latency [3]. With such collaboration,
UEs can handle more machine learning applications that in-
volve substantial computational demands through the adoption
of collaborative inference with the MEC server. For instance,
in [4], the authors have introduced a method to partition a DNN
task into multiple sub-tasks. These sub-tasks can be processed
locally by the UEs or offloaded to one or more powerful edge
nodes or servers, such as those in fog networking.

The cooperation between devices in the industrial internet of
things (IoT) and edge networks is of paramount importance for
supporting computation-intensive DNN-based inference tasks
that demand low latency and high accuracy. In the study in
[5], the authors explored the collaborative inference challenge
in industrial IoT networks and formulated the problem as a
constrained Markov decision process (CMDP). This formula-
tion has jointly considered sampling rate adaptation, inference

task offloading, and edge computing resource allocation, with
the aim of minimizing the average service delay for various
inference services.

As yet another technological advance, reconfigurable intel-
ligent surfaces (RISs) have recently been extensively studied
and shown to significantly enhance both the propagation en-
vironment and spectral efficiency [6]. In particular, the proper
design of the phase shift matrix at the RIS leads to substantial
improvements on the wireless propagation environment and
performance [7].

Motivated by the aforementioned challenges in effective
management of resources under latency requirements, in this
paper we consider an RIS-assisted MEC network aiming
to minimize the long-term average energy consumption in
collaborative inference under a long-term average computing
queue backlog constraint. Unlike our previous work in [8], we
have further considered the latency requirements by analyzing
the long-term computing queue backlog at the MEC server.
Such a long-term consideration makes the problem more
challenging in pursuing an optimal solution. Below are the
primary contributions of this paper:

1) In a multi-UE MEC network, we define and evaluate the
computing queue backlog at the MEC server.

2) We analyze the minimization of the long-term average
energy consumption with constrained long-term average
computing queue backlog.

3) We construct a DRL-based algorithm combined with an
embedded optimization subroutine (for RIS coefficients)
to solve the formulated optimization problem.

The remainder of this paper is organized as follows. We first
describe the collaborative inference model and the RIS-aided
transmission model, and then we specify the computing queue
backlog at the MEC server as well as the energy consumption
model in Section II. In Section III, we state the optimization
problem under a long-term average computing queue backlog
constraint and then provide a DRL-based algorithm to address
it, within which an embedded subroutine for RIS coefficient
optimization is introduced and investigated. Simulation results
are provided in Section IV. Finally, in Section V, we draw
conclusions.

II. SYSTEM MODEL

An RIS-aided MEC network where the BS is equipped with
an MEC server is considered in this paper. Each of the M
UEs in the network has a single antenna. The BS has N
antennas and the RIS has K reflecting components. A wireless
controller is used by the BS to operate the RIS so that it is
capable of dynamically adjusting the RIS phase shift matrix
(i.e., the phase shift of each reflecting element).

Fig. 1 illustrates the considered network, where each UE in
the UE set M = {1, 2, ...,M} needs to complete computation-
intensive DNN inference tasks for e.g., classification, recog-
nition or reasoning applications. The UE can partially offload
the DNN tasks to the MEC server via wireless links. In this
paper, the same pre-trainted DNN will be processed among all



Fig. 1: An illustration of the considered MEC network.

UEs and MEC server. Similar to [4], we use a directed acyclic
graph (DAG) G to represent the DNN, consisting of V layers
and L links. Each link refers to the order of processing and
the input-output relationship between two connected layers.

A. Collaborative Inference Model
For the m-th UE, let Um denote the number of new

perception input data (e.g., images in classification) to the
DNN. The pre-trained DNN is divided into two portions by a
partition decision Dm. The m-th UE processes the first Dm

layers locally, while the MEC server processes the remaining
V −Dm layers. The total CPU cycles needed for processing the
pre-trained DNN is fixed for the majority of inference tasks,
such as object identification or image classification, and in this
paper it is represented by C cycles. Moreover, (1−α(Dm))C
is the amount of CPU cycles needed to process the previous
Dm layers, where α(Dm) ∈ [0, 1] is the fraction of CPU cycles
needed to complete the DNN after the Dm-th layer over the
total required CPU cycles.

In this paper, we use Im to represent the intermediate
results from the output of layer Dm. Such intermediate results
are transmitted to the MEC server to be considered as the
input for the remaining V −Dm layers. When the MEC server
receives the offloaded data from UE m, it then processes the
remaining V − Dm layers and produces the final inference
results based on the output of layer V .1

B. Transmission Model with RIS
Each channel between the UE and the BS, as well as the RIS

is assumed to experience block fading, and thus the channels
remain constant throughout a transmission block. In this paper,
the length of each frame is assumed to be τ seconds.

As a result of the RIS deployment, the channel from the UE
to the BS now consists of two links: the direct link and the
two-hop link (UE to RIS to BS), as shown in Fig. 1. Therefore,
the channel fading vector from the m-th UE to the BS can be
expressed as [9]

hm = hH
d,m + hH

r,mΘG, (1)

where the channel vector from the UE to the BS is hH
d,m ∈

C1×N , the channel vector from the UE to the RIS is hH
r,m ∈

C1×K , and the channel matrix from the RIS to the BS is
G ∈ CK×N . The phase shift matrix of the RIS, denoted by
Θ, is defined as Θ = βdiag(eiθ1 , ..., eiθK ) ∈ CK×K where
θk ∈ [0, 2π], k ∈ {1, 2, ...,K} and the amplitude reflection
coefficient β ∈ [0, 1] is set to be 1 in this article. Frequency-
division multiple access (FDMA) is adopted in the offloading
transmissions. As a consequence, the received signal at the
MEC server from the m-th UE can be written as

ym = hmxm + n, ∀m ∈ M (2)

where xm is the signal transmitted from the m-th UE, with
an average power of E[|xm|2] = Pm, and n is the additive

1The time in downloading from the BS/edge server is negligible compared
to the time needed for offloading and computation due to the small sizes of
the final inference results.

white Gaussian noise (AWGN) at the MEC server, e.g., n ∼
CN (0, σ2IN ).

Therefore, the SNR γm can be expressed as

γm = ρm||hH
d,m + hH

r,mΘG||2, (3)

where ρm = Pm

σ2 .

C. Computing Queue Backlog at the MEC Server
The m-th UE requires (1 − α(Dm))C CPU cycles to

complete the processing of the first Dm layers in the DNN.
Hence, we can compute the local processing time/latency as

TL,m =
Um(1− α(Dm))C

fm
, (4)

where fm is the local CPU frequency (in cycles per second)
of UE m. Furthermore, the transmission data rate of UE m to
the MEC server in offloading can be formulated as

Rm = B log2 (1 + γm) , (5)

where B is the bandwidth. Consequently, the offloading
time/latency of UE m is expressed as

TR,m =
UmI(Dm)

Rm
. (6)

where I(Dm) is the size (in bits) of the intermediate results
Im. In this paper, we use Bt to denote the MEC computing
queue backlog (in bits) in the t-th frame. Thereby, we can
define the queue backlog at the MEC server for the m-th
UE/task as

Bt
m =

[Bt−1
m −

(T t
L,m + T t

R,m)F t
m

Xm

]+
+

α(Dt
m)C − (τ − T t

L,m − T t
R,m)F t

m

Xm

]+ (7)

where [x]
+
= max{x, 0}, B0

m = 0, ∀m ∈ M. Moreover, Xm

and F t
m are the task computation intensity of UE m and the

allocated CPU frequency for the m-th UE at the MEC server
in the t-th frame, respectively. Note that the first two terms
on the right-hand side of (7) represents the possible remaining
computing backlog from the t − 1-th frame before the MEC
server starts to process in the t-th frame, and the third term
(i.e.,

α(Dt
m)C−(τ−T t

L,m−T t
R,m)F t

m

Xm
) is the possible computing

backlog after processing the DNN tasks of the t-th frame.

D. Energy Consumption of UEs
In this paper, the energy consumption of each UE consists

of two parts, i.e., local processing energy consumption EL,m

and offloading energy consumption ER,m.
According to [2], the local CPU frequency fm and the

local processing time TL,m of the m-th UE determine the
energy consumption for local computing, which is expressed
as follows:

EL,m = TL,mΓmf3
m, (8)

where Γm, which varies depending on the processor’s archi-
tecture, is the m-th UE’s effective capacitance coefficient.

For the m-th UE, ER,m is evaluated as the product of the
offloading transmission power Pm and the offloading time
TR,m of the UE:

ER,m = PmTR,m. (9)

Subsequently, the total power consumption at UE m is
computed as

Em = EL,m + ER,m. (10)



III. MINIMIZATION OF THE LONG-TERM AVERAGE
ENERGY CONSUMPTION

In this section, we first formulate and analyze the global
optimization problem and subsequently propose a deep RL-
based algorithm to tackle the problem.
A. Problem Formulation

Our goal is to minimize the long-term average total energy
consumption of all UEs under long-term average computing
queue backlog constraint by jointly determining the RIS re-
flecting coefficients θ, the UEs’ partition decisions {Dm}, and
the CPU frequency allocations {Fm} to the tasks among all
UEs at the MEC server. Consequently, our global optimization
problem is the following:

P1: Minimize
{Dm,Fm,θ}

lim
T→∞

1

T

T∑
t=1

M∑
m=1

Et
m (11)

s. t. Dm ∈ {1, 2, ..., V }, ∀m ∈ M (11a)

lim
T→∞

1

T

T∑
t=1

Bt
m ≤ Bth, ∀m ∈ M (11b)

Bm ≤ 2Bth, ∀m ∈ M (11c)
M∑

m=1

Fm ≤ Fmax, (11d)

where Fmax is the total available CPU frequency at the
MEC server. (11a) represents the feasible range of partition
decisions. (11b) and (11c) indicate the long-term average
computing queue backlog constraint and the maximum in-
stantaneous computing queue backlog limitation, respectively.
(11d) provides the MEC total CPU frequency constraint. Note
that offloading of the input raw data directly is not allowed
since we want to preserve data privacy, i.e., Dm ≥ 1.

Due to the non-convex long-term constraint and the highly
correlated optimization variables {Dm}, {Fm},θ, the deter-
mination of the globally optimal solution of the non-convex
problem P1 is extremely challenging. In this paper, we con-
struct a deep RL-based algorithm to solve P1. In particular,
we obtain the optimal {Dm}, {Fm} via deep RL, and we
determine the optimal RIS coefficients θ via an optimization
subroutine which is embedded in the proposed deep RL
learning algorithm.
B. Problem Transformation

Addressing the long-term constraint is one of the main
challenges in solving P1. To overcome this bottleneck, we
employ the Lyapunov approach [10], [11] to transform P1.
The key technique is to introduce buffer deficit queues to
describe the status of the long-term computing queue backlog
constraint, and these assist the learning agent to achieve the
long-term average computing queue backlog constraint.

For each UE, we first develop computing deficit queues that
is updated as follows:

Zt+1
m =

[
Bt

m − Bth + Zt
m

]+
, ∀m ∈ M (12)

where Z0
m = 0 and Bth (as also defined above) is the

computing queue backlog limit at the MEC server.
In (12), Zt

m represents the difference between the attained
current computing queue backlog and the required long-term
size limitation. Subsequently, according to [5], we construct a
Lyapunov function L(Zt

m) =
(Zt

m)2

2 to describe the degree
of contentment in the long-term computing queue backlog
constraint. Note that the long-term computing queue backlog
limitation is well satisfied when L(Zt

m) is small.
Moreover, we need to make sure the introduced Lyapunov

function L(Zt
m) will keep a low value constantly, leading

to a satisfied long-term computing queue backlog constraint.
Similar as in [20], we analyze the one-shot Lyapunov drift

to investigate the deviation of the Lyapunov function L(Zt
m)

during two consecutive frames. Such one-shot Lyapunov drift
∆(Zt

m) is characterized as follows:

∆(Zt
m) = L(Zt+1

m )− L(Zt
m) (13)

=
(Zt+1

m )2

2
− (Zt

m)2

2
(a)

≤ 1

2
[(Bt

m − Bth + Zt
m)2 − (Zt

m)2]

=
1

2
(Bt

m − Bth)
2 + Zt

m(Bt
m − Bth)

(b)

≤ (Bth)
2

2
+ Zt

m(Bt
m − Bth).

Inequality in (a) above is due to the fact that [x]+ ≤ |x|, and
hence ([x]

+
)2 ≤ x2. Inequality in (b) exists due to (Bth)

2

2 ≥
(Bth−Bt

m)2

2 =
(Bt

m−Bth)
2

2 since 0 ≤ Bt
m ≤ 2Bth. Therefore,

by employing an auxiliary parameter W , we can construct a
one-shot drift-plus-energy function during the t-th frame, and
we have

M∑
m=1

W·∆(Zt
m) +

M∑
m=1

Et
m ≤

M∑
m=1

(W· Bth)
2

2
+ (14)

M∑
m=1

[W· Zt
m(Bt

m − Bth) + Et
m].

Accordingly, utilizing the Lyapunov optimization theory, we
can transform the original optimization problem P1 aiming
to minimize the long-term average total energy consump-
tion while satisfying the long-term average computing queue
backlog constraints into a long-term average drift-plus-energy
minimization problem P2 as follows:

P2: Minimize
{Dm,Fm,θ}

lim
T→∞

1

T

T∑
t=1

M∑
m=1

[
W· Zt

m(Bt
m − Bth) + Et

m

]
(15)

s. t. Dm ∈ {1, 2, ..., V }, ∀m ∈ M (15a)
Bm ≤ 2Bth, ∀m ∈ M (15b)
M∑

m=1

Fm ≤ Fmax, (15c)

where the auxiliary parameter W is a positive parameter to
balance the weight between the energy consumption mini-
mization and the contentment degree of the long-term average
computing queue backlog constraint. This adjustment can be
explained as follows. If any violation occurs in the long-term
average computing queue backlog constraint, i.e., Zt

m > 0,
we may decrease the value of W so that achieving a small
computing queue backlog becomes relatively more important
than improving the energy consumption.

C. DRL-based Algorithm

By solving P2, we not only minimize the global energy
consumption, but also guarantee the long-term computing
queue backlog requirements. In this section, we introduce
and describe the main structure of DRL-based algorithm to
address P2. Specifically, its action space, state space and
reward function are defined as follows:

1) Action Space: The action space in our proposed DRL-
based algorithm consists of the UEs’ partition decisions D =
{D1, D2, ..., Dm, ...DM},m ∈ M and the CPU frequency
allocations F = {F1, F2, ..., Fm, ...FM},m ∈ M at the MEC
server, i.e.,

at = {Dt,F t}. (16)

Note that following constraints should be guaranteed in all
the selected actions: (i) Dm ∈ {1, 2, ..., V } ∀m ∈ M, which
constrains each UEs’ partition decision to an integer set; (ii)



∑M
m=1 Fm ≤ Fmax and 0 ≤ Fm ≤ Fmax ∀m ∈ M, which

are imposed on MEC CPU frequency allocations.
2) State Space: The state space in this DRL con-

sists of the numbers of UEs’ new perception data U =
{U1, U2, ..., Um, ...UM}, channel states of all UEs H =
{h1, h2, ..., hm, ...hM}, computing queue backlogs at the MEC
server B = {B1, B2, ..., Bm, ...BM}, i.e.,

st = {U t,Ht,Bt−1}. (17)

Note that the computing queue backlogs are obtained from the
t− 1-th frame.

3) Reward Function: We construct the reward function with
the objective to minimize the drift-plus-energy in any given
frame t, i.e.,

rt = R− V ·
M∑

m=1

[W· Zt
m(Bt

m − Bth) + Et
m], (18)

where R and V are constants to balance the reward. With
the above state, action and reward definitions, we propose
a DRL-based algorithm, which is extended from the deep
deterministic policy gradient (DDPG) framework proposed in
[12]. In this section, we aim to solve P2 without considering
the optimization of RIS coefficients, which will be addressed
via an embedded optimization subroutine introduced in the
next subsection. Such proposed DRL-based algorithm can be
deployed at the MEC server since it can collect all the required
information about the channel states and apply the policy to
all served UEs.

D. Subroutine for the Optimization of RIS Coefficients
In the previous subsection, we introduced our proposed

DRL-based algorithm without considering the optimization
of RIS coefficients. In this subsection, we investigate the
optimization of RIS coefficients in each frame.

1) Relationship between Bt
m and T t

R,m: During the t-th
frame, P2 is transformed into P3 when Dm, Fm are fixed:

P3: Minimize
θ

M∑
m=1

[W· Zt
m(Bt

m − Bth) + Et
m] (19)

s. t. Bt
m ≤ 2Bth, ∀m ∈ M. (19a)

In P3, from (12) we observe that Zt
m is fixed in the t-

th frame since it is determined by Zt−1
m and Bt−1

m , and
thereby minimizing Bt

m and Et
m is equivalent to minimizing

the objective in P3. Note that by properly adjusting the RIS
coefficients θ, the channel fading vectors of all UEs will
change correspondingly, and hence the SNRs will be enhanced,
resulting in an improvement in the transmission data rate as
well as the offloading time {T t

R,m}.
Now we explore the inherent property of Bt

m. We first define

a value of Tt,eq
R,m so that Bt−1

m =
(T t

L,m+Tt,eq
R,m)F t

m

Xm
. Next, we

consider two different scenarios of T t
R,m:when T t

R,m≤Tt,eq
R,m:Bt−1

m ≥ (T t
L,m+T t

R,m)F t
m

Xm
,we have Bt

m = Bt,A
m ;

when T t
R,m>Tt,eq

R,m:Bt−1
m <

(T t
L,m+T t

R,m)F t
m

Xm
,we have Bt

m = Bt,B
m ,

where Bt,A
m =

[
Bt−1

m +
α(Dt

m)C−τF t
m

Xm

]+
and Bt,B

m =[
α(Dt

m)C−(τ−T t
L,m−T t

R,m)F t
m

Xm

]+
.

Defining Y t
m = Bt−1

m +
α(Dt

m)C−τF t
m

Xm
, we have the following

case:
when T t

R,m≥Tt,eq
R,m:Y t

m

(c)

≤
(T t

L,m + T t
R,m)F t

m

Xm
+

α(Dt
m)C − τF t

m

Xm
(20)

=
α(Dt

m)C − (τ − T t
L,m − T t

R,m)F t
m

Xm
.

Above, inequality (c) holds because when T t
R,m ≥ Tt,eq

R,m,

we have Bt−1
m ≤ (T t

L,m+T t
R,m)F t

m

Xm
, and adding α(Dt

m)C−τF t
m

Xm

to both sides of this inequality leads to inequality (c). We
subsequently have the following conclusions:{

when Y t
m ≤ 0 : Bt,A

m = 0, and hence Bt,A
m ≤ Bt,B

m ;
when Y t

m ≥ 0 : Bt,A
m ≤ Bt,B

m , due to the inequality (20).

Therefore, we conclude that regardless of the value of Y t
m,

we always have Bt,A
m ≤ Bt,B

m . Furthermore, considering
Bt,B

m , increasing T t
R,m leads to a linear increase in Bt,B

m .
Consequently, we have the following figures to demonstrate
the characteristics of Bt

m versus T t
R,m in both cases. Note that

Bt,A
m is a constant that is equal to [Y t

m]
+ when Dt

m and F t
m are

fixed. From Fig. 2a and Fig. 2b, we observe that by decreasing
T t
R,m until T t

R,m = Tt,eq
R,m, we can obtain improvement in Bt,B

m

in either case.

(a) (b)
Fig. 2: Bt

m versus T t
R,m

2) Equivalent Optimization of RIS Coefficients: According
to (9), it is obvious that a small T t

R,m contributes to small
energy consumption in transmission. However, since there is
no improvement in Bt,B

m by decreasing T t
R,m when T t

R,m <

Tt,eq
R,m, simply aiming to achieve a small value of T t

R,m to
achieve the optimal objective in P3 is not accurate. As a
consequence, we construct the following P4 as an equivalent
problem to P3:

P4:Minimize
θ

M∑
m=1

[St
m(TR,m − Tt,eq

R,m + |TR,m − Tt,eq
R,m|)+ Et

m]

(21)

s. t. T t
R,m ≤ Tt,th

m , ∀m ∈ M (21a)

where Tt,th
m in (21a) is the transmission time requirement

when Bt
m = 2Bth, and St

m = W · Zt
mF t

m

2Xm
is the weighted

parameter for UE m which remains constant during the t-
frame. The underlying rationale in P4 is the following. When
T t
R,m decreases and T t

R,m ≥ Tt,eq
R,m, we attain improvements

in both the computing queue backlog Bt
m and the energy

consumption Et
m. On the other hand, when T t

R,m decreases
but T t

R,m ≤ Tt,eq
R,m, we can only obtain an improvement in

Et
m since TR,m−Tt,eq

R,m will be canceled by its absolute value
in this case.

However, P4 is still nontrivial to solve because of the pres-
ence of the absolute value of TR,m−Tt,eq

R,m in the objective.To
address this, we introduce an auxiliary parameter κt

m and
transform P4 in to P4-1:

P4-1: Minimize
θ,{κt

m}

M∑
m=1

(
2St

m|κt
m|+ Et

m

)
(22)

s. t. T t
R,m ≤ Tt,th

m , ∀m ∈ M (22a)

T t
R,m ≤ Tt,eq

m + κt
m, ∀m ∈ M (22b)

κt
m ≥ −Tt,eq

m , ∀m ∈ M. (22c)

In P4-1, (22b) and (22c) ensure that T t
R,m is not negative.

Considering the case when T t
R,m ≤ Tt,eq

m , i.e., κt
m ≤ 0,

in P4-1, we note that any decrease in T t
R,m will only result



in an improvement in Et
m since κt

m will be 0 to have |κt
m|

minimized. This is due to the fact that given any T t
R,m ≤ Tt,eq

m ,
the constraint in (22b) will always be satisfied when we set
κt
m = 0. Consequently, decreasing T t

R,m will only improve
Et

m in this case.
On the other hand, when κt

m > 0, any decrease in T t
R,m will

not only improve Et
m, but also lead to a smaller |κt

m| since
we can always tighten the upper bound of T t

R,m in (22b) by
adjusting κt

m to be smaller, which results in further improve-
ment in the objective of P4-1. In this case, the improvement
of |κt

m| corresponds to the enhancement in computing queue
backlog Bt

m.
Therefore, when T t

R,m ≤ Tt,eq
R,m, we can obtain an improve-

ment only in the energy consumption as we keep decreasing
T t
R,m. We can achieve a weighted improvement both in the

energy consumption and computing queue backlog Bt
m when

we decrease T t
R,m until T t

R,m = Tt,eq
R,m. Consequently, P4-1 is

equivalent to P4.
3) Optimization of RIS Coefficients: We can adopt similar

methods as in our previous work [8] to solve P4-1. The
following descriptions pertain to a given frame t, and hence,
for brevity, we can eliminate t in the notations of e.g.,
channel vectors and RIS coefficients. We first define a vector
ϕ = [ϕ1, ϕ2, ..., ϕK ]H , where ϕk = eiθk . We subsequently
define Φm = diag(hH

r,m)G ∈ CK×N so that hH
r,mΘG =

ϕHΦm, and thereby we have ||hH
d,m+hH

r,mΘG||2 = ||hH
d,m+

ϕHΦm||2. Note that ||hH
d,m + ϕHΦm||2 = ||hH

d,m||2 +

hH
d,mΦH

mϕ + ϕHΦmhd,m + ϕH
mΦmΦH

mϕ, similar to [9], we
hence introduce an auxiliary variable χ and define

Wm =

[
ΦmΦH

m Φmhd,m

hH
d,mΦH

m 0

]
, ϕ̃ =

[
ϕ
χ

]
. (23)

Therefore, the SNR γm can be further expressed as γm =

ρm(||hH
d,m||2 + ϕ̃

H
Wmϕ̃). Next, a positive semidefinite ma-

trix (PSD) Ψ associated to the RIS reflecting coefficients
is constructed. Specifically, we define Ψ = ϕ̃ϕ̃

H
with the

constraints Ψ ⪰ 0 and rank(Ψ) = 1. Consequently, we have
ϕ̃

H
Wmϕ̃ = Tr(Wmϕ̃ϕ̃

H
) = Tr(WmΨ). Based on the

above analysis, we can express the SNR of UE m in the t-th
frame as γt

m = ρm(||(ht
d,m)H ||2+Tr(W t

mΨ)), and we have

T t
R,m =

U t
mI(Dt

m)

B log2(1 + ρm(||(ht
d,m)H ||2 + Tr(W t

mΨ)))
. (24)

In P4-1, let γt
th,m represent the threshold SNR when the

equality in (22a) holds. Consequently, (22a) requires us to sat-
isfy γt

m = ρm(||(ht
d,m)H ||2+Tr(W t

mΨ)) ≥ γt
th,m, ∀m ∈ M,

which is equivalent to the following inequalities:

Tr(W t
mΨ) ≥

γt
th,m

ρm
− ||(ht

d,m)H ||2, ∀m ∈ M. (25)

Similarly, we can transform constraint (22b) into following
inequality via (24):

Tr(W t
mΨ) ≥ 1

ρm

(
2

Ut
mI(Dt

m)

B(T
t,eq
m +κt

m) − 1

)
−||(ht

d,m)H ||2, ∀m ∈ M,

(26)
where Tt,eq

m =
Bt−1

m Xm

F t
m

− T t
L,m, which is fixed when both

Dt
m and F t

m are determined in the t-th frame.
Based on all the above analysis, P4-1 is transformed into

the following problem P4-2:

P4-2: Minimize
Ψ,{κt

m}

M∑
m=1

(
2St

m|κt
m|+ PmT t

R,m

)
(27)

s. t. Ψk,k = 1, k = 1, 2, ...,K + 1, (27a)
Ψ ⪰ 0, (27b)
(22c), (25), (26). (27c)

In P4-2, we relax the non-convex constraint rank(Ψ) = 1

and adopt the semidefinite relaxation (SDR) method to address
it. Therefore, P4-2 becomes a convex semidefinite program
(SDP) that can be solved optimally by using a conventional
convex optimization tool. Note that only offloading transmis-
sion power consumption Et

R,m = PmT t
R,m is considered in

P4-2 since the local computing energy consumption Et
L,m is

fixed when Dt
m has already been determined in the t-th frame.

Also note that solving P4-2 will not necessarily give us a rank-
one solution, and in this case the Gaussian randomization [13]
can be utilized to retrieve a sub-optimal solution.

In Algorithm 1, we summarize the entire proposed frame-
work for collaborative inference in an RIS-assisted MEC
network, combining the learning and optimization steps.
Algorithm 1 Framework for Proposed Collaborative Inference.

Initialization:
1) Initialize computing backlog limitation Bth, parameters

{Pm,Γm, fm, Xm} of each UE, bandwidth B and max-
imum available CPU frequency Fmax at the MEC server.

2) Initialize all neural networks and the experience replay
memory.

Actions:
1) Obtain initial state s0.
2) For t = 1 : T
3) Check all the DNN tasks and generate {U t

m}.
4) Determine the offloading decisions and CPU frequency

allocations at by the actor network according to current
state st;

5) With given Dt and F t, obtain the RIS coefficients θt via
solving P4-2.

6) Obtain the current computing queue backlogs {Bt
m}, which

are given by the updated state space.
7) Observe reward rt and new state st+1.
8) Store transition (st, at, rt, st+1) in the experience replay

memory;
9) Sample a random minibatch transition from the experience

replay memory;
10) Train the critic and actor network, respectively;
11) Update target networks.
12) End for.

IV. NUMERICAL RESULTS

In this section, we analyze the performance of the pro-
posed algorithm. In the simulations, the channels are mod-
eled as follows: hl,m =

√
ξ0d

−αl,m

l,m

∼
gl,m, l ∈ {d, r} and

G =
√

ξ0d
−αB

B

∼
gB . dl,m, αl,m and

∼
gl,m denote the distance

to the RIS/BS, path loss exponent, and complex Gaussian
distributed fading components for the m-th UE, respectively.
Similarly, dB , αB ,

∼
gB are the distance from the RIS to the BS,

path loss exponent, and complex Gaussian distributed fading
components of such links. The channel parameters are listed
below in Table I.

Parameter Definition Value
αd,m Path loss exponent for the m-th UE to the BS 5
αr,m Path loss exponent for the m-th UE to the RIS 2
αB Path loss exponent from the RIS to the BS 3.5
ξ0 Path loss at the reference point d0 = 1 m -30 dB
σ2 Noise power -95 dBm

TABLE I: List of channel parameters.
In Fig. 3, we first analyze the average computing backlog

at the MEC server attained with the proposed algorithm with
and without considering RIS assistance. It is evident that
with the deployment of RIS, whose coefficients are obtained
from our proposed RIS optimization subroutine, results in a
reduced average computing backlog. We further observe that
the computing backlog is improved when the maximum CPU
frequency constraint Fmax at the MEC server increases, which
is expected since increasing Fmax leads to enhances processing
capability at the MEC server.
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Fig. 3: Influence of Fmax constraint.
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Fig. 4: Influence of bandwidth B.
Next, in Fig. 4, we investigate the impact of bandwidth used

for transmission in the offloading phase. This figure plots the
curves of long-term average energy consumption versus the
bandwidth B, where the red and blue curves represent the long-
term average energy consumption with and without deploying
RIS. In Fig. 4, it is readily seen that the energy consumption
is lower with RIS assistance. We additionally observe that the
long-term average energy consumption becomes smaller as the
bandwidth B is increased. This phenomenon occurs because
increasing the bandwidth B mainly enables the UEs to offload
more layers of DNN tasks to be processed at the MEC server,
providing improvements in the energy consumption.

Finally, we evaluate the convergence of the proposed DRL-
based algorithm embedded with the RIS coefficients optimiza-
tion subroutine, as presented in Fig. 5. This figure shows the
reward curve as the number of training episodes grows. It
reveals that the training will converge around 720 episodes,
which assures the feasibility of our proposed algorithm in
addressing the long-term constrained optimization problem.

V. CONCLUSION

In this paper, we have investigated the long-term average
energy consumption of collaborative inference in an RIS-
assisted MEC network subject to long-term average computing
queue backlog constraints. We have first presented the system
model and described the collaborative inference model as well
as wireless transmissions when RIS is employed. We then
have defined computing queue backlog at the MEC server
and introduced the energy consumption for the UEs. We have
subsequently formulated an optimization problem aimed at
minimizing the long-term average energy consumption for all
UEs, subject to long-term average computing queue backlog,
maximum computing queue backlog and maximum MEC
CPU frequency constraints. To address this problem, we have
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Fig. 5: Convergence.
presented a DRL learning based approach to optimize the
offloading decisions {Dm} and frequency allocations {Fm}
at the MEC server. Furthermore, we have proposed an opti-
mization subroutine to find the optimal RIS coefficients for
any given {Dm} and {Fm}. Our numerical results indicate
that the introduction of RIS results in a better performance,
and increasing the maximum CPU frequency Fmax at the
MEC server improves the computing queue backlog. Further-
more, we have also observed that increasing the bandwidth
in offloading transmission leads to a lower average energy
consumption. Finally, we have explicitly demonstrated the
convergence performance, further validating the effectiveness
of our proposed algorithm in this paper.
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