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In this article, we define a new invariant for finite groups, called the 

action-genus. Let G be a finite group. Among all graphs Γ whose 

automorphism group is isomorphic to G, define the action-genus of 

G to be the minimal genus of a closed connected orientable surface 

on which Γ can be cellularly embedded. Here, we elucidate some 

basic properties for the action-genus of a finite group, establish the 

action-genus of a few infinite families of finite groups, and then 

conclude with some open questions about the action-genus of finite 

groups in general. 
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1. Introduction 

Throughout this article, all groups considered are finite and all graphs 

considered are finite and simple. The automorphism group of a graph Γ, 

denoted AutΓ, is the set of adjacency preserving permutations of the vertices 

of Γ. In 1936, K¨onig [20] questioned which groups could be realized as the 

automorphism group of some graph. Three years later, Frucht [8] established 

that every group may be realized as the automorphism group of some graph. 

Naturally, this result gave rise to numerous extremal problems in graph 

theory. Given a group G, there are infinitely many graphs whose 

automorphism groups are isomorphic to G. Consequently, it is possible to 

construct graphs with automorphism groups isomorphic to G with arbitrarily 

large order, size, or genus. It is far more interesting to consider how small a 

graph can be, and the concept of minimizing graph invariants under certain 

symmetry restrictions is well-studied. 

As an example, there are many results in the study of vertex-minimal 

graphs with a prescribed automorphism group. For a group G, let α(G) denote 

the minimum number of vertices among all graphs Γ such that 
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AutΓ ∼= G. Babai [3] proved that if G is a group different from the cyclic 

1 

group of order 3, 4, and 5, then α(G) ≤ 2|G|. (These three excluded cyclic 

groups satisfy α(G) = 3|G|.) A direct consequence of the results due to Hetzel 

[18] and Godsil [10, 11] established that Babai’s bound can actually be 

sharpened for most groups. In particular, they proved that α(G) ≤ |G| provided 

G is distinct from each of the following groups: an abelian group of exponent 

greater than 2; an elementary abelian group of orders 4, 8, or 16; a 

generalized dicyclic group; and one of ten exceptional groups whose orders 

are at most 32. In addition to the aforementioned bounds, the exact value of 

α(G) has been computed for the following infinite families of groups G: abelian 

groups [1, 25, 31]; hyperoctahedral groups [17]; symmetric groups [27]; 

alternating groups of degree at least 13 [22]; generalized quaternion groups 

[13]; dihedral groups [12, 14, 16, 23]; and quasi-abelian and quasi-dihedral 

groups [21]. 

The idea of minimizing the size of a graph under certain symmetry 

restrictions has also been considered. Let e(G,m) denote the minimum 

number of edges among all graphs Γ with m vertices and AutΓ ∼= G; if no such 

graphs exist, then consider e(G,m) to be undefined. For given group G, the 

Minimal-Line Problem is to determine the value of e(G,m) for each positive 

integer m. Erd¨os and R´enyi [7] first posed this problem for graphs that have 

no nontrivial automorphisms. In 1967, Quintas [26] solved the Minimal-Line 

Problem for the identity group. Of course it is natural to then consider the 

Minimal-Line Problem for nontrivial groups. The value of e(G,m) is undefined 

if m < α(G). Moreover, if m ≥ α(G) and m − α(G) is small, then the values of 

e(G,m) can vary greatly. However, for sufficiently large values of m a certain 

stability is realized. McCarthy and Quintas [24] proved that for each group G, 

there exists an integer M such that for all m ≥ M, it is possible to construct a 

graph on e(G,m) edges with automorphism group isomorphic to G. 

Nevertheless, the exact value of e(G,m) is only known in a few cases. In 

particular, e(G,m) has been computed for all integers m provided G is 

nontrivial and isomorphic to one of the following groups: a symmetric group 

[27]; the cyclic group of order 3 [9]; a dihedral group of order 2n, where n is a 

prime power or twice a prime power [16]; or a hyperoctahedral group [17]. 

In this article, we are interested in genus-minimal graph embeddings with 

prescribed automorphism groups. While we have created a new invariant on 

this topic, the idea of graph embeddings is not new and has received much 

attention. Recall that the genus of a graph Γ, denoted γ(Γ), is the smallest 

genus of all the orientable surfaces on which Γ can be embedded. The 

difficultly of establishing γ(Γ) is well-known [5], and its complexity was listed 
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as one of the 12 most important open problems in [19]. The Graph Genus 

Problem asks the following question: given a graph Γ and a positive integer n, 

does n exceed γ(Γ)? Thomassen [32, 33] established this problem is NP-

complete for general graphs and cubic graphs, and that finding the minimum 

genus of a graph is NP-hard. 

Motivated by the aforementioned research on vertex-minimal graphs and 

edge-minimal graphs with prescribed automorphism groups, we define the 

action-genus of a group below. Note that the genus of a group is similar in 

name only and an interested reader can see [34] for more information on the 

genera of groups. 

Definition 1.1. Let G be a group. Among all graphs Γ with AutΓ ∼= G, define 

the action-genus of G, denoted γa(G), to be the minimal genus of a closed 

connected orientable surface on which Γ can be cellularly embedded. 

The definitions of a closed connected orientable surface and a cellular 

embedding are stated in Section 2. The action-genus of a group is well-posed 

because every group may be realized as the automorphism group of some 

connected graph [8], and every such graph has a cellular embedding in a 

surface [15]. Thus, every group has an action-genus. This group invariant can 

be ambitious to compute because, as mentioned above, calculating the genus 

of a graph is hard and here the genus of all graphs with a prescribed 

automorphism group needs to be considered. Of course, the only exception to 

this occurs when the action-genus of a group is 0; in this case, establishing 

one connected planar graph with the prescribed automorphism group is 

sufficient. As an example, let n ≥ 3 be an integer and consider the dihedral 

group of order 2n. Since the cycle graph of length n can be cellularly 

embedded in the sphere and has automorphism group isomorphic to D2n, we 

have that γa(D2n) = 0. 

This article is organized as follows. In Section 2, we develop the 

background and notation necessary to compute the action-genus of some 

infinite families of groups; as the action-genus of a group G is a novel group 

invariant, it is natural to investigate γa(G) for some simple cases and we do so 

in this section. In Section 3, we will establish the action-genus of nontrivial 

abelian groups. The results of Section 4 establish the action-genus for 

generalized quaternion groups. Finally, we pose some open questions 

throughout Section 5, which involve the action-genus of groups in general as 

well as two extensions of the action-genus of groups. 
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2. Background and Examples 

In this article, we are only considering closed connected orientable surfaces. 

Recall that a closed surface is a 2-dimensional compact topological manifold 

without boundary. Such a surface S is connected provided there is a 

continuous path on S between any two points on S. Finally, S is orientable 

provided an anticlockwise sense of rotation is preserved by traversing any 

simple closed curve on S once. It is well-known that every closed connected 

orientable surface is homeomorphic to a sphere or a connected sum of tori 

(see, for example, [15]); these homeomorphism classes are depicted in Figure 

1. The genus of such a surface is the number of tori needed to obtain it 

through the connected sum operation, where the genus of the sphere is 

defined to be 0. 

 

 

(e) Connected sum of g tori with g ∈Z and g ≥ 4 

Figure 1: Homeomorphism classes of closed connected orientable surfaces. 

The definition of action-genus of a group requires the associated graphs 

to be cellularly embedded in the aforementioned surfaces. A graph Γ is 

embedded on a surface S provided Γ can be represented in S where the 

vertices of Γ are distinct points in S and each edge in Γ is a simple arc 

connecting its two ends such that no two edges intersect (except possibly at a 

common end). For example, the complete graph on five vertices, denoted K5, 

( a)Sphere ( b)Torus 

( c)Connectedsumoftwotori ( d)Connectedsumofthreetori 

... 
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cannot be embedded on the sphere. However, it can be embedded on the 

torus; one such embedding is depicted in Figure 2. 

 

Figure 2: An embedding of K5 on the torus. 

Assume that Γ is a graph embedded on a closed connected orientable 

surface S. In this case, Γ is a topological subspace of S, and thus has a 

complement. This embedding is cellular if the complement of Γ in S is 

homeomorphic to a disjoint union of open disks. As an example, the cycle 

graph of length 5 (drawn as a pentagon) can be cellularly embedded on the 

sphere as its complement is homeomorphic to a disjoint union of two open 

disks. However, the graph Γ = C5 ∪ K4, which has 9 vertices, 11 edges, and is 

depicted in Figure 3, has no cellular embedding on the sphere. It is 

 

Figure 3: The graph Γ = C5 ∪ K4 which as no cellular embedding on the sphere. 

not possible to cellularly embed Γ on the sphere because, in any spherical 

embedding, there is a face of Γ that is not homeomorphic to an open disk. Of 

note, an embedding of a graph on the sphere is cellular if and only if the graph 

is connected. However, an embedding of a connected graph on a surface of 

positive genus may or may not be cellular. For example, Figure 4 depicts two 

embeddings of the complete graph on four vertices, denoted K4, on the torus. 

The embedding in Figure 4(a) is not cellular as one of the faces is 

homeomorphic to a cylinder; Figure 4(b) depicts a cellular embedding of K4 

on the torus. 

With all the necessary terminology for Definition 1.1 in hand, we continue 

with some more examples of the action-genus of groups. 

5 

1 

2 

3 

4 
4 

1 

2 

5 3 
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Figure 4: Two embeddings of K4 on the torus. 

Example 2.1. For n ∈ Z with n ≥ 3, let Sn denote the symmetric group on n 

symbols. To compute the value of γa(Sn), we must consider all graphs Γ with 

AutΓ ∼= Sn. Certainly, one such graph that comes to mind is Kn, the complete 

graph on n vertices. However, Ringel and Youngs [30] proved that 

 

is the minimal genus of a surface on which Kn can be cellularly embedded. 

Another graph with automorphism group isomorphic to Sn is the complement 

of Kn — the empty graph on n vertices; but this graph cannot be cellularly 

embedded on any surface because it is disconnected. Thus, we turn our 

attention to the star graph on n + 1 vertices. This graph is depicted in Figure 

5, and its automorphism group is isomorphic to Sn. Since 

 

Figure 5: A graph with automorphism group isomorphic to Sn. 

the star graph is planar and connected, it can be cellularly embedded on the 

sphere. Therefore, γa(Sn) = 0. 

Notice that Definition 1.1 does not require the cellular embedding to be 

closed (a cellular embedding of a graph in a surface is closed if each face is 

( a)Non-cellularembeddingof K 4 ( b)Cellularembeddingof K 4 

n − 1 

n 1 

2 

3 
4 

0 
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bounded by a cycle in the graph). In the next example, we will compute the 

action-genus of two alternating groups. 

Example 2.2. Consider the alternating group on 4 symbols, denoted A4. Define 

Γ to be the graph with 36 vertices and 66 edges depicted in Figure 6. A quick 

computation in SageMath [6] proves that the automorphism group of Γ is 

generated by the permutations 

σ := (1,10,31)(2,11,32)(3,12,33)(4,13,34)(5,14,35)(6,15,36)(7,16,28) 

(8,17,29)(9,18,30)(19,22,25)(20,23,26)(21,24,27) and τ := 

(1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15)(19,28) 

(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), and 

that A4 
∼= ⟨σ,τ⟩. Since Γ is planar and connected, it can be cellularly 

 

Figure 6: A graph with automorphism group isomorphic to A4. 

embedded on the sphere. Therefore, γa(A4) = 0. 

Let Γ9 be the induced subgraph of Γ on the vertices in {1,2,...,9}. The graph 

Γ was constructed by replacing each vertex of a tetrahedron with Γ9. In a 

similar way, if each vertex on a dodecahedron is replaced by Γ9, the resulting 

graph will have 180 vertices and 330 edges. Its automorphism group is 

isomorphic to the alternating group on 5 symbols, denoted A5, and thus γa(A5) 

= 0. 



8 Chris Cornwell et al. 

Part of calculating the action-genus for an infinite family of groups 

 involves constructing infinitely many graphs Γn with Aut(Γn) ∼= Gn. 

Establishing the automorphism groups of Γn for all n ∈ N requires results on 

both graphs and groups. We review these necessary results now. For the graph 

Γ, let V (Γ) and E(Γ) denote the vertex set of Γ and edge set of Γ, respectively. 

An edge between the vertices u and v in Γ is denoted [u,v]. In this case, we say 

that the ends of the edge [u,v] are u and v, and that u and v are adjacent or 

neighbors in Γ. If S ⊂ V (Γ), then the induced subgraph of Γ on S is the graph 

whose vertex set is S and whose edge set consists of all edges in E(Γ) that have 

both ends in S. The graph Γ − {v} denotes the induced subgraph on V (Γ)\{v}. 

In order to establish the automorphism group of a given graph Γ, we will use 

the Orbit-Stabilizer Theorem, which states the relationship between the order 

of AutΓ, the size of the orbit of a vertex v in AutΓ, and the order of the stabilizer 

of v in AutΓ. Specifically, for each v ∈ V (Γ), the orbit of v is 

O(v) := {σ(v) : σ ∈ AutΓ} 

and the stabilizer of v is 

stab(v) := {σ ∈ AutΓ : σ(v) = v}; 

the Orbit-Stabilizer Theorem states that |AutΓ| = |O(v)|·|stab(v)|. Lastly, we 

require the so-called orbit of an edge in AutΓ. Let SV (Γ) denote the symmetric 

group on the set V (Γ). If G is a subgroup of the permutation group SV (Γ), then 

for vertices u,v ∈ V (Γ) the set 

OG{u,v} = {[σ(u),σ(v)] : σ ∈ G} 

defines the edge orbit of [u,v] ∈ E(Γ). With these preliminary results in hand, 

we can now compute the action-genus of nontrivial abelian groups. 

3. Abelian Groups 

In this section, we will prove that the action-genus of all nontrivial abelian 

groups G is 0. To this end, we will construct a graph ΓG with Aut(ΓG) ∼= G that 

can be cellularly embedded on the sphere. For convenience of the reader, as 

we construct this graph ΓG in Definition 3.1 below, a planar embedding is 

described; since ΓG is a plane connected graph it has a corresponding cellular 

embedding on the sphere. 

Definition 3.1. Let n,i ∈ Z+ with n ≥ 2. Define the graph Γ(n,i) on 



 On a new invariant for finite groups 9 

3n + in vertices with vertex set 

 

and 4n + in edges as follows. First, construct a regular 2n-gon and sequentially 

label its vertices . Second, for each j ∈ {1,2,...,n}, place the vertex

 outside of the 2n-gon equidistant from the vertices and . Finally, 

to each vertex vki with k ∈ {2n + 1,2n + 2,...,3n}, attach a path of length i that 

extends radially outward with respect to the center of the 2n-gon; for each k 

∈ {2n + 1,2n + 2,...,3n}, sequentially label the vertices in each path

 starting at the vertex closest to vertex vki. The graphs 

Γ(5,3) and Γ(8,1) are depicted in Figure 7(a) and Figure 7(b), respectively. 

(a) Depiction of Γ(5,3)

(b) Depiction of Γ(8,1) 

Figure 7: The graphs 

Γ(5,3) and Γ(8,1) 

constructed in 

Definition 3.1. 

Let G be a 

nontrivial abelian 

group. By 

the 

Fundamental Theorem of Finitely Generated Abelian Groups, there exists 

integers a1,a2,...,am ≥ 2 such that 

G ∼= Za1 × Za2 × ··· × Zam, 

where Zaj denotes the cyclic group of order aj and j ∈ {1,2,...,m}. Define the 

graph 

Γˆ
G = Γ(a1,1) ∪ Γ(a2,2) ∪ ··· ∪ Γ(am,m). 

Finally, define ΓG to be the graph with vertex set and 

edge set 

and . 

Note that, by construction, Γ(n,i) is a planar graph. Hence, Γˆ
G is comprised of 

m planar components and is also planar. Since the graph ΓG was then 

constructed by connecting vertex 0 to aj vertices in each component Γ(aj,j), the 
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graph ΓG is connected. Moreover, these additional edges of E(ΓG) in 

 can clearly be included without crossings, yielding a planar 

embedding of ΓG. 

In the forthcoming lemma, we will prove that the automorphism groups 

of certain subgraphs of ΓG − {0} are cyclic. 

Lemma 3.2. Assume that G is a nontrivial abelian group, and write 

G ∼= Za1 × Za2 × ··· × Zam, 

where a1,a2,...,am ≥ 2 are integers. Let ΓG be the graph constructed in Definition 

3.1. For each j ∈ {1,2,...,m}, the automorphism group of the induced subgraph of 

ΓG on the vertices in  is cyclic of order aj. 

Proof. For each j ∈ {1,2...,m}, let Γ¯G(j) denote the induced subgraph of 

ΓG on the vertices in . The permutation 

 

which composes of j+3 cycles of length aj, preserves the adjacency relations 

of ΓG and thus is an automorphism Γ¯
G(j) with order aj. As a result, Zaj 

∼= ⟨σj⟩ ≤ 

Aut  for each j ∈ {1,2...,m}. We will invoke the OrbitStabilizer Theorem 

below to prove that Aut . 

Note that the vertices in Γ¯G(j) − {0} have degree at most 4. Moreover, each 

vertex in  has degree 4 in ΓG with at least three degree-3 

neighbors. Since vertex 0 is only adjacent to vertices of degree 4, it does not 

lie in the same orbit as  under the action of 

Aut . Thus, the set  actually forms an orbit of 

Aut  because the action of σj on these vertices is transitive. By the 

Orbit-Stabilizer Theorem, 

(1) Aut stab stab , 

and so we examine stab . Let φ ∈ stab  Aut , so that 

. The neighbors of  in ΓG form an invariant set under φ; in 

other words, 
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and the induced subgraph of ΓG on the vertices 0,v  , and  is 

depicted in Figure 8. Notice that φ(0) = 0 because 0 is the only vertex 

 

Figure 8: The induced subgraph on the vertex  and its neighbors. 

in Γ¯
G(j) all of whose neighbors have degree 4. The vertex  has only one 

neighbor, namely , that is adjacent to a vertex of degree at most 2, 

which implies . Consequently, both vertices  and are 

fixed by  is adjacent to the fixed vertex  and  is not. 

It follows that φ(vij) = vij for all i ∈ {1,2,...,2aj} because these vertices compose 

the only 2aj-cycle in Γ¯
G(j) whose degree sequence alternates between 4 and 

3. In turn, φ then fixes all other vertices in Γ¯
G(j). Therefore, φ is the identity 

element of Aut   and stab  = 1; by Equation (1) we have that 

|Aut(Γ¯
G(j))| = aj. The desired result now follows because Zaj 

∼= ⟨σj⟩ ≤ Aut 

 and |Zaj| = aj = |⟨σj⟩|.  

We will use this lemma to prove that the graph ΓG constructed in Definition 

3.1 has the proper automorphism group. 

Proposition 3.3. Let G be a nontrivial abelian group. The automorphism group 

of the graph ΓG constructed in Definition 3.1 is isomorphic to G. 

Proof. Since G is a nontrivial abelian group, there exists integers 

a1,a2,...,am ≥ 2 

such that 

G ∼= Za1 × Za2 × ··· × Zam 

by the Fundamental Theorem of Finitely Generated Abelian Groups. Define 

the permutation 

v 
j 
1 

v 
j 
2 

v 
j 
2 a j 

v j 2 a j +1 

0 
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for each j ∈ {1,2,...,m}. Let ΓG be the graph constructed in Definition 3.1; σj 

preserves the adjacency relations of ΓG and thus is a automorphism of ΓG with 

order aj. As a result, ⟨σ1,σ2,...,σm⟩ ≤ Aut(ΓG), and since G ∼= ⟨σ1,σ2,...,σm⟩, it 

suffices to prove that |Aut(ΓG)| = |G|. 

Since vertex 0 in ΓG is the only vertex whose neighbors all have degree 4, 

it is fixed under any automorphism of ΓG. Notice that Γˆ
G can be obtained by 

deleting vertex 0 in ΓG, and the subgraphs Γ(aj,j), where j ∈ {1,2,...,m}, are the 

m components of Γˆ
G. We claim that no two components have the same 

number of vertices of degree 1 and the same number of vertices of degree 2 

— proving that each component is invariant under every automorphism of ΓG. 

To this end, recall that the component Γ(aj,j) has aj vertices of degree 1. If ak = 

aℓ for some distinct k,ℓ ∈ {1,2,...,m}, then Γ(ak,k) has ak(k − 1) vertices of degree 

2, while Γ(aℓ,ℓ) has aℓ(ℓ − 1) vertices of degree 2. It follows that ak(k −1) ̸= 

aℓ(ℓ−1) and each component is invariant under every automorphism of ΓG. 

Therefore, these components are the unions of vertex orbits in Aut(ΓG). 

Now consider the induced subgraph of ΓG on the vertices in {0}∪Γ(a1,1), 

denoted by Γ¯
G(1). By Lemma 3.2, Aut  is cyclic of order a1, and so the 

vertices   compose an orbit of Aut(ΓG) because of the 

transitive action on them by σ1. By the Orbit-Stabilizer Theorem, 

(2) |Aut(Γ stab stab . 

Thus, we will examine the subgroup stab  of Aut(ΓG). The proof of Lemma 

3.2 established that Aut  is generated by the permutation σ1, and thus 

any element of stab  will fix all of Γ(a1,1). Consequently, we examine the 

action of stab( ) on the rest of ΓG. Since σj fixes  for all j ∈ {2,3,...,m}, we have 

that σj ∈ stab( ) provided j ̸= 1. Moreover, the automorphism group of the 

induced subgraph of ΓG on the vertices in  is cyclic 

of order aj by Lemma 3.2. Because each 

subgraph Γ(aj,j) is invariant, stab   and Equation (2) 

implies 
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|Aut(Γ stab . 

Since we previously established that 

G ∼= ⟨σ1,σ2,...,σm⟩ ≤ Aut(ΓG), 

the result now follows.  

With these results in hand, we are now able to prove that the actiongenus 

of every nontrivial abelian group is 0. 

Theorem 3.4. If G is a nontrivial abelian group, then γa(G) = 0. 

Proof. The graph ΓG constructed in Definition 3.1 satisfies Aut(ΓG) ∼= G by 

Proposition 3.3. Since ΓG is planar and connected by construction, it can be 

cellularly embedded on the sphere. Therefore, γa(G) = 0, as desired.  

Next, we will establish an infinite family of groups with positive 

actiongenus. 

4. Generalized Quaternion Groups 

In this section, we will establish an infinite family of groups with positive 

action-genus. For n ≥ 4 an integer, let Q2n denote the generalized quaternion 

group of order 2n. We will use the following presentation of Q2n: 

(3) Q2n = Dσ,τ : σ2n−1 = 1 = τ4,τστ−1 = σ−1,σ2n−2 = τ2E. 

It is an easy exercise to prove that every element of Q2n can be expressed as σiτj 

for i ∈ {0,1,...,2n−1 − 1} and j ∈ {0,1}; additionally, σ2n−2 = τ2 is the only element of 

order 2 in Q2n, and every element in the set Q2n\⟨σ⟩ has order 4. 

To prove that γa(Q2n) is positive, we proceed as follows. In Definition 4.1, 

we construct a graph Γn for all n ≥ 4. The results of Proposition 4.2 prove that 

Aut(Γn) ∼= Q2n, and we construct a cellular embedding of Γn on the torus in 

Proposition 4.3. An illustrative example for Definition 4.1 and Proposition 4.3 

is given in Example 4.4 when n = 5. Finally, Theorem 4.5 will prove that γa(Q2n) 

= 1 for all n ≥ 4. 

Definition 4.1. Assume that n ≥ 4 is an integer. Define the permutations σn := 

(1,2,...,2n−1)(2n−1 + 1,2n−1 + 2,...,2n) 
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(2n + 1,2n + 2,...,3 · 2n−1)(3 · 2n−1 + 1,3 · 2n−1 + 2,...,2n+1) and τn := τ1τ2, 

where 

2n−2 

τ1 := (1,2n−1+1,2n−2+1,3·2n−2+1) Y(i,2n+2−i,2n−2+i,3·2n−2+2−i) 
i=2 

and τ2 is obtained by adding 2n to each entry in τ1. Set G = ⟨σn,τn⟩, and notice 

that G is a subgroup of S2n+1. It is easily verified that σn and τn satisfy the 

relations of Q2n given in Equation (3) and thus generate a group isomorphic to 

Q2n. Define the graph Γn on 2n+1 vertices with V (Γn) = {1,2,...,2n+1} and where 

E(Γn) contains the following four edge orbits: 

OG{1,2n−1 + 1}, OG{1,2n + 1}, OG{1,2n + 2}, and OG{1,3 · 2n−1 + 1}. 

Each edge orbit of contains 2n edges, and thus Γn has size 4 · 2n = 2n+2. 

The graph Γ5 is constructed in Example 4.4 and depicted in Figure 12. In 

the forthcoming proposition, we will establish the automorphism group of 

this graph Γn for all n ≥ 4. 

Proposition 4.2. For n ≥ 4, the graph Γn constructed in Definition 4.1 has 

automorphism group isomorphic to Q2n. 

Proof. Let Γn, σn, and τn be as given in Definition 4.1, and recall that 

⟨σn,τn⟩ ∼= Q2n. Since the edges in Γn are the images of the edges 

[1,2n−1 + 1], [1,2n + 1], [1,2n + 2], and [1,3 · 2n−1 + 1] 

under the elements of ⟨σn,τn⟩, the permutations σn and τn will preserve all 

adjacency relations of Γn. Therefore, Q2n 
∼= ⟨σn,τn⟩ ≤ Aut(Γn), and it suffices to 

prove that |Aut(Γn)| = 2n. To this end, partition V (Γn) into the following two 

sets: 

 V1 := {1,2,...,2n} and V2 := {2n + 1,2n + 2,...,2n+1}. 

The vertices in V1 and V2 have degree 5 and 3, respectively. Consequently, V1 

and V2 are invariant sets under the action of Aut(Γn). Since ⟨σn,τn⟩ ∼= Q2n acts 

transitively on the sets V1 and V2, the orbits of Aut(Γn) are V1 and V2, and 
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(4) |Aut(Γn)| = |O(1)| · |stab(1)| = 2n · |stab(1)| 

by the Orbit-Stabilizer Theorem. 

To prove that |stab(1)| = 1, let φ ∈ stab(1) ≤ Aut(Γn). Since 1 is fixed by φ, 

its neighbors compose an invariant set under φ; in other words, the set 

{2n−1 + 1,3 · 2n−2 + 1,2n + 1,2n + 2,3 · 2n−1 + 1} 

is fixed setwise by φ. Consider the induced subgraph of Γn on vertex 1 and its 

neighbors, denoted by Γ¯
n(1), which is depicted in Figure 9. Since 2n + 2 

 

Figure 9: The induced subgraph of Γn on vertex 1 and its neighbors. 

is the only degree-1 vertex in Γ¯
n(1), φ(2n + 2) = 2n + 2. It follows that the sets 

of vertices {2n−1 + 1,3 · 2n−2 + 1} and {2n + 1,3 · 2n−1 + 1} are invariant under φ 

because the first set is contained in V1 and the latter set is contained in V2. To 

establish that these sets are actually fixed pointwise by φ, consider the 

induced subgraph of Γn on the vertices at most distance 2 from vertex 1; this 

graph is depicted in Figure 10. Since vertex 7 · 2n−2 is the only vertex with 

degree 1 in this subgraph, it is fixed by φ. It follows that its only neighbor 

satisfies φ(3·2n−2 +1) = 3·2n−2 +1 and thus all the neighbors of 1 are fixed under 

φ. Lastly, note that φ(2) = 2 because in this subgraph it is the only neighbor of 

the fixed vertex 2n + 2 with a neighbor of degree 2. In summary, φ(1) = 1 

implies that vertices 2, 2n−1 + 1, 2n + 1, and 3 · 2n−1 + 1 are fixed by φ. 

Repeating the argument above with vertex 1 replaced by vertex 2, which 

is possible as these vertices lie in the same orbit under Aut(Γn) and φ(2) = 2, 

yields that vertices 3, 2n−1 + 2, 2n + 2, and 3 · 2n−1 + 2 are fixed by φ. Continuing 

this process by replacing i with i + 1 for i ∈ {3,4,...,2n−1}, 

1 
2 n +1 3 · 2 n − 1 +1 

3 · 2 n − 2 +1 2 n − 1 +1 

2 n +2 
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Figure 10: The induced subgraph of Γn on the vertices at most distance 2 from 

vertex 1. 

proves that all vertices of Γn are fixed by φ ∈ stab(1). Therefore, φ is the trivial 

automorphism of Aut(Γn) and |stab(1)| = 1. Equation (4) then implies that 

|Aut(Γn)| = 2n. Because we previously established that Q2n 
∼= ⟨σn,τn⟩ ≤ Aut(Γn), 

it follows that Aut(Γn) ∼= Q2n for all n ≥ 4.  

The graph Γn constructed in Definition 4.1, which satisfies Aut(Γn) ∼= Q2n 

by Proposition 4.3, will be used to establish that γa(Q2n) ≤ 1. In the proposition 

that follows, we will cellularly embedded Γn on the torus. 

Proposition 4.3. The graph Γn constructed in Definition 4.1 can be cellularly 

embedded on the torus for all n ≥ 4. 

Proof. Since graph embeddings on the torus can be difficult to visualize, in this 

proof we will utilize the planar representation of the torus (which depicts the 

torus through identifying the opposite sides of a rectangle). To describe our 

embedding of Γn for all n ≥ 4, we first discuss the placement of the vertices of 

Γn in the rectangle and then discuss how to draw the edges of Γn. 

Partition the vertices of Γn into eight rows of size 2n−2, where each row 

contains the following vertices. 

1 

2 n +1 3 · 2 n − 1 +1 

3 · 2 n − 2 +1 2 n − 1 +1 

2 n +2 

2 n − 2 +1 

3 · 2 n − 2 +2 2 

7 · 2 n − 2 +1 5 · 2 n − 2 +1 
2 n − 1 +2 

2 n +1 2 n − 1 

7 · 2 n − 2 



 On a new invariant for finite groups 17 

Row 1: 1,2,...,2n−2 

Row 2: 2n + 1,2n + 2,...,5 · 2n−2 

Row 3: 3 · 2n−1 + 1,3 · 2n−1 + 2,...,7 · 2n−2 

Row 4: 2n−1 + 1,2n−1 + 2,...,3 · 2n−2 

Row 5: 2n−2 + 1,2n−2 + 2,...,2n−1 

Row 6: 5 · 2n−2 + 1,5 · 2n−2 + 2,...,3 · 2n−1 

Row 7: 7 · 2n−2 + 1,7 · 2n−2 + 2,...,2n+1 Row 8: 3 · 

2n−2 + 1,3 · 2n−2 + 2,...,2n 

In the rectangle representing the torus, fix a positive distance d and draw 

consecutively labelled vertices within each row at distance d apart such that: 

1. Row a is positioned above Row a + 1 for all a ∈ {1,2,...,7}; 

2. Vertices 5·2n−2+1 and 3·2n−2+1 are aligned vertically and lie farthest to 

the left; 

3. Vertices 2n+1, 2n−1+1, 2n−2+1, and 7·2n−2+1 lie on the perpendicular 

bisector of the vertices 5 · 2n−2 + 1 and 5 · 2n−2 + 2; and 

4. Vertices 1 and 3 · 2n−1 + 1 align vertically with vertex 5 · 2n−2 + 2. 

In this case, the vertices in Rows 1 and 3 are aligned vertically, the vertices in 

Rows 2, 4, 5, and 7 are aligned vertically, and the vertices in Rows 6 and 8 are 

aligned vertically. 

To describe the placement of the edges in Γn for this embedding, we will 

partition E(Γn) into two sets. Define 

 

and E2 := E(Γn)\E1. The set E1 will contain the edges of Γn that cross a boundary 

of the rectangle that represents the torus in our embedding, while E2 contains 

all other edges of Γn, which will cross no boundary of the rectangle. We note 

that E1 contains 2n−1 + 4 of the 2n+2 edges of Γn. Draw each edge [u,v] ∈ E2 to lie 

along the line segment that represents the shortest distance between vertices 

u and v. This will result in three rows of 2n−2 −1 cycles of length 6 each with an 

additional cord, which are depicted in Figure 11, the path on vertices 1 and 2n 

+ 1, and the three triangles 
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2n−1+1+i 

3 · 2n−1+j 

2n−1+j2n−1+1+j 

2n−2+j2n−2+1+j 

5 · 2n−2+1+j 

Figure 11: In the proof of Proposition 4.3: The 3(2n−2 −1) subgraphs of Γn 

created by the inclusion of the edges in E2, where i ∈ {1,2,...,2n−2 − 1} ∪ {2n−2 + 

1,2n−2 + 2,...,2n−1 − 1} and j ∈ {1,2,...,2n−2 − 1}. 

(1,2n−1 + 1,3 · 2n−1 + 1), (2n−1 + 1,5 · 2n−2 + 1,2n−2 + 1), 

and 

(2n−2 + 1,3 · 2n−2 + 1,7 · 2n−2 + 1). 

Next, the 2n−1 edges of E1 in 

 

3 · 2 n − 1 + i 3 · 2 n − 1 +1+ i 

2 n +1+ i 

i i +1 
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can be drawn without crossings over the identified top and bottom edges of 

the rectangle that represents the torus. Reading from left to right, note that 

these edges will cross this boundary of the rectangle in the following order: 

σ2n−2τ[1,3 · 2n−1 + 1], σ2n−2τ[1,2n−1 + 1], σ2n−2+1τ[1,3 · 2n−1 + 1], σ2n−2+1τ[1,2n−1 + 

1], ..., σ2n−1−1τ[1,3 · 2n−1 + 1],σ2n−1−1τ[1,2n−1 + 1]. 

Finally, we consider the four remaining edges of E1, namely those in 

. 

The edges σ2n−1−1[1,2n+2] and τ[1,2n+2] can be included in our embedding of 

Γn without crossings over the identified left and right sides of the rectangle. 

Starting at vertex σ2n−2−1(1) = 2n−2, draw the edge σ2n−2−1[1,2n + 2] over the top 

of the rectangle, then over the right side of the rectangle ending at vertex 

σ2n−2−1(2n + 2) = 5 · 2n−2 + 1. Lastly, starting at the vertex σ2n−2τ(1) = 3 · 2n−2 + 1, 

without any edge crossings draw the edge σ2n−2τ[1,2n + 2] over the bottom of 

the rectangle, then over the left side of the rectangle ending at vertex σ2n−2τ(2n 

+ 2) = 7 · 2n−2. Since all faces in this embedding of Γn are polygons, it is a cellular 

embedding for all n ≥ 4, as desired.  

Before proving the main result of this section, we give an illustrative 

example of Definition 4.1 and Proposition 4.3 when n = 5. 

Example 4.4. Assume that n = 5. The permutations σ5 and τ5 stated in 

Definition 4.1 are as follows. 

σ5 := (1,2,...,16)(17,18,...,32)(33,34,...,48)(49,50,...,64) 

 

τ2 := (33,49,41,57)(34,64,42,56)(35,63,43,55)(36,62,44,54) 

(37,61,45,53)(38,60,46,52)(39,59,47,51)(40,58,48,50) τ5 

:= τ1τ2 
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The graph Γ5 has 64 vertices with vertex set V (Γ5) = {1,2...,64}. Since G = ⟨σ5,τ5⟩ 

∼= Q32 is a subgroup of S64, the 128 edges of Γ5 are 

E(Γ5) = OG{1,17} ∪ OG{1,33} ∪ OG{1,34} ∪ OG{1,49}. 

As an example, the edge orbit 

OG{1,17} = {[ω(1),ω(17)] : ω ∈ G = ⟨σ5,τ5⟩} 

contains 32 edges; these edges are obtained by applying each of the elements 

in G, namely , to the edge 

[1,17] to obtain the edges 

[1,17], [2,18], [3,19], [4,20], [5,21], [6,22], [7,23], [8,24], 

[9,25], [10,26], [11,27], [12,28], [13,29], [14,30], [15,31], [16,32], 

[9,17], [10,18], [11,19], [12,20], [13,21], [14,22], [15,23], [16,24], 

[1,25], [2,26], [3,27], [4,28], [5,29], [6,30], [7,31], [8,32], 

respectively. The graph Γ5 is depicted in Figure 12; its automorphism group is 

isomorphic to Q32 by Proposition 4.2. 
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Figure 12: The graph Γ5, which was constructed in Definition 4.1. 

Next, we will use the process described in the proof of Proposition 4.3 to 

embed Γ5 in the torus. Partition the vertices of Γ5 into eight rows of size 8, 

where each row contains the following vertices. 

Row 1: 1,2,3,4,5,6,7,8 Row 5: 9,10,11,12,13,14,15,16 

Row 2: 33,34,35,36,37,38,39,40 Row 6: 41,42,43,44,45,46,47,48 

Row 3: 49,50,51,52,53,54,55,56 Row 7: 57,58,59,60,61,62,63,64 

Row 4: 17,18,19,20,21,22,23,24 Row 8: 25,26,27,28,29,30,31,32 

In the rectangle representing the torus, fix a positive distance d and draw the 

consecutively labelled vertices within each row at distance d apart with: 

1. Vertices 41 and 25 aligned vertically and positioned farthest to the left; 
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2. Vertices 33, 17, 9, and 57 positioned on the perpendicular bisector of 

vertices 41 and 42; and 

3. Vertices 1 and 49 aligned vertically with vertex 42. Now, partition the 

edges of Γ5 into the following two sets: 

 

and E2 := E(Γ5)\E1. Recall that the set E1 contains the edges of Γ5 that will cross 

a boundary of the rectangle that represents the torus, and E2 contains all other 

edges of Γ5, which will cross no boundary of the rectangle. Draw each edge 

[u,v] ∈ E2 to lie along the line segment that represents the shortest distance 

between vertices u and v. This will result in three rows of seven 6-cycles each 

with an additional cord, the edge [1,33], and the three triangles (1,17,49), 

(17,41,9), (9,25,57). The 16 edges of E1 in 

 

can now be drawn without crossings over the identified top and bottom 

boundaries of the rectangle that represents the torus; reading from left to 

right, these edges will cross the boundary of the rectangle in the following 

order: 

[25,33], [1,25], [26,34], [2,26], [27,35], [3,27], [28,36], [4,28], [29,37], 

[5,29], [30,38], [6,30], [31,39], [7,31], [32,40], [8,32]. 

Finally, we consider the four remaining edges of E1: 

σ7[1,34] = [8,41], σ8τ[1,34] = [25,56], σ15[1,34] = [16,33] 

and 

τ[1,34] = [17,64]. 

Include the edges [16,33] and [17,64] in our embedding of Γ5 without 

crossings over the identified left and right sides of the rectangle. Starting at 

vertex 8, draw the edge [8,41] over the top of the rectangle, then over the right 

side of the rectangle ending at vertex 41. Lastly, starting at the vertex 25, draw 

the edge [25,56] over the bottom of the rectangle, then over the left side of the 

rectangle ending at vertex 56 without any edge crossings. This cellular 
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embedding of Γ5 on the rectangular representation of the torus is depicted in 

Figure 13. 

 

Figure 13: The graph Γ5, which was constructed in Definition 4.1, embedded 

on the torus; here, we use the planar representation of the torus where the 

opposite sides of a rectangle have been identified. 

We will conclude this section with a proof that the action-genus of every 

generalized quaternion group Q2n with n ≥ 4 is 1. 

Theorem 4.5. If n ≥ 4 is an integer, then γa(Q2n) = 1. 

Proof. Let Γn be the graph constructed in Definition 4.1. By Proposition 4.2, we 

have that Aut(Γn) ∼= Q2n for all n ≥ 4. It follows that γa(Q2n) ≤ 1 because Γn has 

a cellular embedded on the torus by Proposition 4.3. Babai [2] proved that no 

graph whose automorphism group is isomorphic to a generalized quaternion 

group is planar. Consequently, γa(Q2n) > 0 and thus γa(Q2n) = 1, as desired.
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5. Discussion and Open Questions 

In this section, we pose four open questions that involve the action-genus of 

groups. Our main focus in this article has been to compute the action-genus 

of a given infinite family of groups; these results produced infinite collections 

of groups with small action-genus. It is natural to ask the following question. 

Open Question 1. Given a positive integer n, does there exist a group G with 

γa(G) = n? 

In the past, there was great interest in computing the genera of infinite 

families of graphs. For example, Beineke and Harary [4] established the genus 

of the hypercube graph, and Rignel [29, 28] calculated the genus of the 

complete bipartite graph. Ringel and Youngs [30] computed the genus of the 

complete graph, which solved the Heawood Map-Coloring Problem. There has 

also been some research on computing the genera of tripartite graphs; 

however only partial results have been established (see [34] for more 

information). For each of these aforementioned families of graphs, the genera 

grows without bound. We wonder if this is a property that the action-genus of 

groups can also exhibit. 

Open Question 2. Does there exist an infinite family of groups such 

that γa(Gn) is unbounded? 

The remaining two open questions involve extensions of the action-genus 

of groups and are based on prior work completed in topological graph theory. 

If Γ is a connected graph, the maximum genus of Γ is the largest genus of all 

the orientable surfaces on which Γ can be cellularly embedded. Motivated by 

the work on this invariant, we make the following definition for groups G. 

Among all graphs Γ with AutΓ ∼= G, define the maximum actiongenus of G, 

denoted γa
M(G), to be the maximal genus of a closed connected orientable 

surface on which Γ can be cellularly embedded. In Example 2.1, we proved 

that γa(S4) = 0; the cellular embedding of K4 in the torus depicted in Figure 

4(b) shows that 1. Consequently, we ask the following question. 

Open Question 3. Let G be a group. What is the value of γa
M(G)? How does it 

compare to the value of γa(G)? 

There are two types of closed surfaces, and in this article we have only 

considered one type — orientable surfaces. The second type of closed 
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surfaces are called non-orientable surfaces, all of which have been classified. 

Every closed connected non-orientable surface can be obtained by cutting 

holes in a sphere and closing off each hole using a M¨obius band (see, for 

example, [15]). The crosscap number of a closed connected non-orientable 

surface is the number of M¨obius bands used to obtain its homeomorphism 

type. For k ∈ N, let Nk denote a closed connected non-orientable surface with 

crosscap number k. The crosscap number (or non-orientable genus) of a 

graph Γ is the minimal k such that Γ can be embedded in Nk. Influenced by 

these definitions, we make the following definition for groups G. Among all 

graphs Γ with AutΓ ∼= G, define the non-orientable action-genus of G, 

denoted γ˜a(G), to be the minimal non-orientable genus of a closed connected 

nonorientable surface on which Γ can be embedded. We conclude this article 

with the following question. 

Open Question 4. Let G be a group. What is the value of ˜γa(G)? How does it 

compare to the value of γa(G)? 
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