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In this article, we define a new invariant for finite groups, called the
action-genus. Let G be a finite group. Among all graphs I' whose
automorphism group is isomorphic to G, define the action-genus of
G to be the minimal genus of a closed connected orientable surface
on which T' can be cellularly embedded. Here, we elucidate some
basic properties for the action-genus of a finite group, establish the
action-genus of a few infinite families of finite groups, and then
conclude with some open questions about the action-genus of finite
groups in general.
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1. Introduction

Throughout this article, all groups considered are finite and all graphs
considered are finite and simple. The automorphism group of a graph T,
denoted AutT, is the set of adjacency preserving permutations of the vertices
of I. In 1936, K'onig [20] questioned which groups could be realized as the
automorphism group of some graph. Three years later, Frucht [8] established
that every group may be realized as the automorphism group of some graph.
Naturally, this result gave rise to numerous extremal problems in graph
theory. Given a group G, there are infinitely many graphs whose
automorphism groups are isomorphic to G. Consequently, it is possible to
construct graphs with automorphism groups isomorphic to G with arbitrarily
large order, size, or genus. It is far more interesting to consider how small a
graph can be, and the concept of minimizing graph invariants under certain
symmetry restrictions is well-studied.

As an example, there are many results in the study of vertex-minimal
graphs with a prescribed automorphism group. For a group G, let a(G) denote
the minimum number of vertices among all graphs I' such that
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Autl’ = G. Babai [3] proved that if G is a group different from the cyclic
1

group of order 3, 4, and 5, then a(G) < 2|G|. (These three excluded cyclic
groups satisfy a(G) = 3|G|.) A direct consequence of the results due to Hetzel
[18] and Godsil [10, 11] established that Babai’s bound can actually be
sharpened for most groups. In particular, they proved that a(G) < |G| provided
G is distinct from each of the following groups: an abelian group of exponent
greater than 2; an elementary abelian group of orders 4, 8, or 16; a
generalized dicyclic group; and one of ten exceptional groups whose orders
are at most 32. In addition to the aforementioned bounds, the exact value of
a(G) has been computed for the following infinite families of groups G: abelian
groups [1, 25, 31]; hyperoctahedral groups [17]; symmetric groups [27];
alternating groups of degree at least 13 [22]; generalized quaternion groups
[13]; dihedral groups [12, 14, 16, 23]; and quasi-abelian and quasi-dihedral
groups [21].

The idea of minimizing the size of a graph under certain symmetry
restrictions has also been considered. Let e(G,m) denote the minimum

number of edges among all graphs I with m vertices and Autl' ~= G; if no such
graphs exist, then consider e(G,m) to be undefined. For given group G, the
Minimal-Line Problem is to determine the value of e(G,m) for each positive
integer m. Erd os and R’enyi [7] first posed this problem for graphs that have
no nontrivial automorphisms. In 1967, Quintas [26] solved the Minimal-Line
Problem for the identity group. Of course it is natural to then consider the
Minimal-Line Problem for nontrivial groups. The value of e(G,m) is undefined
if m < a(G). Moreover, if m 2 a(G) and m - a(G) is small, then the values of
e(G,m) can vary greatly. However, for sufficiently large values of m a certain
stability is realized. McCarthy and Quintas [24] proved that for each group G,
there exists an integer M such that for all m 2 M, it is possible to construct a
graph on e(Gm) edges with automorphism group isomorphic to G.
Nevertheless, the exact value of e(G,m) is only known in a few cases. In
particular, e(G,m) has been computed for all integers m provided G is
nontrivial and isomorphic to one of the following groups: a symmetric group
[27]; the cyclic group of order 3 [9]; a dihedral group of order 2n, where nis a
prime power or twice a prime power [16]; or a hyperoctahedral group [17].
In this article, we are interested in genus-minimal graph embeddings with
prescribed automorphism groups. While we have created a new invariant on
this topic, the idea of graph embeddings is not new and has received much
attention. Recall that the genus of a graph [, denoted y(I), is the smallest
genus of all the orientable surfaces on which I' can be embedded. The
difficultly of establishing y(I') is well-known [5], and its complexity was listed
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as one of the 12 most important open problems in [19]. The Graph Genus
Problem asks the following question: given a graph I' and a positive integer n,
does n exceed y(I')? Thomassen [32, 33] established this problem is NP-
complete for general graphs and cubic graphs, and that finding the minimum
genus of a graph is NP-hard.

Motivated by the aforementioned research on vertex-minimal graphs and
edge-minimal graphs with prescribed automorphism groups, we define the
action-genus of a group below. Note that the genus of a group is similar in
name only and an interested reader can see [34] for more information on the
genera of groups.

Definition 1.1. Let G be a group. Among all graphs I' with Autl' = G, define
the action-genus of G, denoted y.(G), to be the minimal genus of a closed
connected orientable surface on which I" can be cellularly embedded.

The definitions of a closed connected orientable surface and a cellular
embedding are stated in Section 2. The action-genus of a group is well-posed
because every group may be realized as the automorphism group of some
connected graph [8], and every such graph has a cellular embedding in a
surface [15]. Thus, every group has an action-genus. This group invariant can
be ambitious to compute because, as mentioned above, calculating the genus
of a graph is hard and here the genus of all graphs with a prescribed
automorphism group needs to be considered. Of course, the only exception to
this occurs when the action-genus of a group is 0; in this case, establishing
one connected planar graph with the prescribed automorphism group is
sufficient. As an example, let n = 3 be an integer and consider the dihedral
group of order 2n. Since the cycle graph of length n can be cellularly
embedded in the sphere and has automorphism group isomorphic to D2, we
have that y.(Dz,) = 0.

This article is organized as follows. In Section 2, we develop the
background and notation necessary to compute the action-genus of some
infinite families of groups; as the action-genus of a group G is a novel group
invariant, it is natural to investigate y.(G) for some simple cases and we do so
in this section. In Section 3, we will establish the action-genus of nontrivial
abelian groups. The results of Section 4 establish the action-genus for
generalized quaternion groups. Finally, we pose some open questions
throughout Section 5, which involve the action-genus of groups in general as
well as two extensions of the action-genus of groups.
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2. Background and Examples

In this article, we are only considering closed connected orientable surfaces.
Recall that a closed surface is a 2-dimensional compact topological manifold
without boundary. Such a surface S is connected provided there is a
continuous path on S between any two points on S. Finally, S is orientable
provided an anticlockwise sense of rotation is preserved by traversing any
simple closed curve on S once. It is well-known that every closed connected
orientable surface is homeomorphic to a sphere or a connected sum of tori
(see, for example, [15]); these homeomorphism classes are depicted in Figure
1. The genus of such a surface is the number of tori needed to obtain it
through the connected sum operation, where the genus of the sphere is
defined to be 0.

N

(a)Sphere (b)Torus

(c)Connectedsumoftwotori (d)Connectedsumofthreetori

(e) Connected sum of g tori withg €Zand g = 4

Figure 1: Homeomorphism classes of closed connected orientable surfaces.

The definition of action-genus of a group requires the associated graphs
to be cellularly embedded in the aforementioned surfaces. A graph I is
embedded on a surface S provided I' can be represented in S where the
vertices of ' are distinct points in S and each edge in I' is a simple arc
connecting its two ends such that no two edges intersect (except possibly at a
common end). For example, the complete graph on five vertices, denoted Ks,
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cannot be embedded on the sphere. However, it can be embedded on the
torus; one such embedding is depicted in Figure 2.

s >

3 e
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Figure 2: An embedding of K5 on the torus.

Assume that I' is a graph embedded on a closed connected orientable
surface S. In this case, I' is a topological subspace of S, and thus has a
complement. This embedding is cellular if the complement of ' in S is
homeomorphic to a disjoint union of open disks. As an example, the cycle
graph of length 5 (drawn as a pentagon) can be cellularly embedded on the
sphere as its complement is homeomorphic to a disjoint union of two open
disks. However, the graph I' = C5 U K4, which has 9 vertices, 11 edges, and is
depicted in Figure 3, has no cellular embedding on the sphere. It is

) <D

Figure 3: The graph I' = (s U Ks which as no cellular embedding on the sphere.

not possible to cellularly embed I' on the sphere because, in any spherical
embedding, there is a face of I that is not homeomorphic to an open disk. Of
note, an embedding of a graph on the sphere is cellular if and only if the graph
is connected. However, an embedding of a connected graph on a surface of
positive genus may or may not be cellular. For example, Figure 4 depicts two
embeddings of the complete graph on four vertices, denoted Ki, on the torus.
The embedding in Figure 4(a) is not cellular as one of the faces is
homeomorphic to a cylinder; Figure 4(b) depicts a cellular embedding of K;
on the torus.

With all the necessary terminology for Definition 1.1 in hand, we continue
with some more examples of the action-genus of groups.
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(a)Non-cellularembeddingof K4 (b)Cellularembeddingof K4

Figure 4: Two embeddings of K4 on the torus.

Example 2.1. For n € Z with n = 3, let S, denote the symmetric group on n
symbols. To compute the value of ya.(S), we must consider all graphs I with

Autl' 7= S,. Certainly, one such graph that comes to mind is K,, the complete
graph on n vertices. However, Ringel and Youngs [30] proved that

[(n —3)(n - ’1)1

12

is the minimal genus of a surface on which K, can be cellularly embedded.
Another graph with automorphism group isomorphic to S, is the complement
of K, — the empty graph on n vertices; but this graph cannot be cellularly
embedded on any surface because it is disconnected. Thus, we turn our
attention to the star graph on n + 1 vertices. This graph is depicted in Figure
5, and its automorphism group is isomorphic to S,. Since

Figure 5: A graph with automorphism group isomorphic to Si.

the star graph is planar and connected, it can be cellularly embedded on the
sphere. Therefore, y.(S,) = 0.

Notice that Definition 1.1 does not require the cellular embedding to be
closed (a cellular embedding of a graph in a surface is closed if each face is
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bounded by a cycle in the graph). In the next example, we will compute the
action-genus of two alternating groups.

Example 2.2. Consider the alternating group on 4 symbols, denoted As. Define
I" to be the graph with 36 vertices and 66 edges depicted in Figure 6. A quick
computation in SageMath [6] proves that the automorphism group of T is
generated by the permutations

o= (1,10,31)(2,11,32)(3,12,33)(4,13,34)(5,14,35)(6,15,36)(7,16,28)
(8,17,29)(9,18,30)(19,22,25)(20,23,26)(21,24,27) and T :=

(1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15)(19,28)
(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36),  and

that A+ 7= (o,7). Since I is planar and connected, it can be cellularly

Figure 6: A graph with automorphism group isomorphic to As.

embedded on the sphere. Therefore, y.(44) = 0.

Let ['s be the induced subgraph of I' on the vertices in {1,2,..,9}. The graph
[' was constructed by replacing each vertex of a tetrahedron with I'e. In a
similar way, if each vertex on a dodecahedron is replaced by 'y, the resulting
graph will have 180 vertices and 330 edges. Its automorphism group is
isomorphic to the alternating group on 5 symbols, denoted As, and thus y.(4s)
=0.
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Part of calculating the action-genus for an infinite family of groups

{Gn}oZ0 involves constructing infinitely many graphs I', with Aut(T',) ~= Ga.
Establishing the automorphism groups of ', for all n € N requires results on
both graphs and groups. We review these necessary results now. For the graph
[, let V (I') and E(I') denote the vertex set of I and edge set of [, respectively.
An edge between the vertices u and vin I is denoted [u,v]. In this case, we say
that the ends of the edge [u,v] are u and v, and that u and v are adjacent or
neighbors in I. If S ¢ V (T'), then the induced subgraph of I on S is the graph
whose vertex setis S and whose edge set consists of all edges in E(I") that have
both ends in S. The graph I' - {v} denotes the induced subgraph on V (I')\{v}.
In order to establish the automorphism group of a given graph I, we will use
the Orbit-Stabilizer Theorem, which states the relationship between the order
of AutT, the size of the orbit of a vertex vin Autl, and the order of the stabilizer
of vin Autl. Specifically, for each v € V (T'), the orbit of v is

0(v) :={o(v) : 0 € Autl’}
and the stabilizer of v is
stab(v) := {0 € Autl": a(v) = v};

the Orbit-Stabilizer Theorem states that |Autl'| = |O(v)]|-|stab(v)|. Lastly, we
require the so-called orbit of an edge in AutI. Let Sy ()denote the symmetric
group on the set V (I'). If G is a subgroup of the permutation group Sy, then
for vertices u,v € V (I') the set

Oc{u,v} ={[o(u),0(v)]: 0 € G}

defines the edge orbit of [u,v] € E(I'). With these preliminary results in hand,
we can now compute the action-genus of nontrivial abelian groups.

3. Abelian Groups

In this section, we will prove that the action-genus of all nontrivial abelian

groups G is 0. To this end, we will construct a graph I'c with Aut(I'¢) ~= G that
can be cellularly embedded on the sphere. For convenience of the reader, as
we construct this graph I'c in Definition 3.1 below, a planar embedding is
described; since I'¢is a plane connected graph it has a corresponding cellular
embedding on the sphere.

Definition 3.1. Let n,i € Z+* with n 2 2. Define the graph I'(n,i) on
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3n + in vertices with vertex set
V(0(n,)) = {0}, 0h - i}

and 4n + in edges as follows. First, construct a regular 2n-gon and sequentially
label its vertices?1: Va: - - - » V2., Second, for each j € {1,2,..,n}, place the vertex

Vn+j outside of the 2n-gon equidistant from the vertices ¥ 2j-1and¥2;. Finally,
to each vertex vii with k € {2n + 1,2n + 2,..,3n}, attach a path of length i that
extends radially outward with respect to the center of the 2n-gon; for each k
€ {2n + 1,2n + 2,.,3n}, sequentially label the vertices in each path

Vn Vkgans + + Vkepin starting at the vertex closest to vertex vi. The graphs
['(5,3) and I'(8,1) are depicted in Figure 7(a) and Figure 7(b), respectively.

vl (a) Depiction of I'(5,3)
(b) Depiction of I'(8,1)

Figure 7: The graphs
+  I(53)andI(8,1)
constructed in
Definition 3.1.

Let G be a
nontrivial  abelian
group. By

the
Fundamental Theorem of Finitely Generated Abelian Groups, there exists
integers a1,az,...,am 2 2 such that

Ty

G ~= Zaix Zaz % +++ X Zam,
where Zqg denotes the cyclic group of order agjand j € {1,2,..,m}. Define the
graph
I ¢=T(ay,1) UT(az2) U -+ U T(amm).
Finally, define I'cto be the graph with vertex setV(I'c) = {0} U V(rﬁ?)and
edge set

E(l'g) = E(f-G)U{[uiJ,U} :Vj e {1‘2""’m}andki € {1.3,...,2(1.j—l}}_

Note that, by construction, I'(n,i) is a planar graph. Hence, FAG is comprised of

m planar components and is also planar. Since the graph I'; was then
constructed by connecting vertex 0 to a;vertices in each component I'(a;j), the
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graph T is connected. Moreover, these additional edges of E(I'¢) in

E(lq) \E(FG) can clearly be included without crossings, yielding a planar
embedding of Te.

In the forthcoming lemma, we will prove that the automorphism groups
of certain subgraphs of I'c - {0} are cyclic.

Lemma 3.2. Assume that G is a nontrivial abelian group, and write

G T =Za1x Zaz % +++ X Zan,

where a1,ay,..,am 2 2 are integers. Let T'¢ be the graph constructed in Definition
3.1. For each j € {1,2,..,m}, the automorphism group of the induced subgraph of

Joad J
. . Vi, Usyen ey (o . . .
['con the vertices m{o} Y { L2 720000 M3a,4-iay } is cyclic of order a;.

Proof. For each j € {1,2..,m}, let I"(j) denote the induced subgraph of

Jod 7
: : Vy,U5,...,Uq . .
['con the vertices in {0} U { 1 Y2 ? P3aj+ia, } . The permutation
R O | J J oo J
aj - = (7/'1- U3, ... ~"’2a_,,—1) (1’2, Vs« - HLQQI.)
ayd oy J

H (112(1‘,-—0—1—0—.2'(1,_.,- ) UZ(L\,--{—Q-{—R‘(L_.,- LA UH(:_.,--{—R‘H_.;)
k=0

which composes of j+3 cycles of length a;, preserves the adjacency relations
of ['cand thus is an automorphism F_(;(]') with order a;. As a result, Zg,” = (0)) <

Aut TGU)) for each j € {1,2..,m}. We will invoke the OrbitStabilizer Theorem
below to prove that Aut La(j)) = (o),
Note that the vertices in I"¢(j) - {0} have degree at most 4. Moreover, each

vl vl vl . ,
vertex in 191+ U3+ +++ V3, -1} has degree 4 in I'; with at least three degree-3
neighbors. Since vertex 0 is only adjacent to vertices of degree 4, it does not

Jo,.Jd
U1, Uz -

J
.. . ) .
lie in the same orbit as * “2a;—1ynder the action of

5 oo I
Aut I_G(J')). Thus, the set { U1 U3 V0,1 } actually forms an orbit of
Aut FGU)) because the action of ojon these vertices is transitive. By the
Orbit-Stabilizer Theorem,

(1) AutTe(@)] =10 (‘{)| “Istab (‘{)| = a; " |stab (U"{) )
and so we examine stab (v1). Let ¢ € stab (v]) < Aut IWG(J.)), so that

¢(v]) = v{ The neighbors of 1in I';form an invariant set under ¢; in
other words,
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" ol ayd J _ J oo J
({0, b2~1'2aj~1'2aj+1}) = {Osb2~"’2aj~"’2aj+1}

T o
and the induced subgraph of I'c on the vertices 0,v1’ 2" “2a;, and “2a;+1is
depicted in Figure 8. Notice that ¢(0) = 0 because 0 is the only vertex

) VIZa,- +1
v
"

]
VZa,'

Figure 8: The induced subgraph on the vertex1 and its neighbors.

inT _(;(j) all of whose neighbors have degree 4. The vertex 1 has only one
neighbor, namelyq‘:J?a,:H, that is adjacent to a vertex of degree at most 2,
which implies @(7"%%“ ) = T"%ﬂj-*-l. Consequently, both vertices '”g and T"%a.jare
fixed by ¥ a8 ”Ug is adjacent to the fixed vertexﬂt”%ﬂﬂrl and 'U‘gaj is not.

It follows that ¢(v#) = vifor all i € {1,2,..,2a;} because these vertices compose

the only 2aj-cycle in F_(;(]] whose degree sequence alternates between 4 and

3. In turn, @ then fixes all other vertices in F_G(]'). Therefore, ¢ is the identity
- i

element of Aut FG(J)) and stab (1‘1) |= 1; by Equation (1) we have that
|Aut[F_G(]))| = a;. The desired result now follows because Zq ~= (0j) < Aut
(7)) and |2a) = ;= |(op)]. O

We will use this lemma to prove that the graph ¢ constructed in Definition
3.1 has the proper automorphism group.
Proposition 3.3. Let G be a nontrivial abelian group. The automorphism group
of the graph T'¢ constructed in Definition 3.1 is isomorphic to G.

Proof. Since G is a nontrivial abelian group, there exists integers
ayaz,..,dm = 2
such that

G~_ Zaix Zaz X *+* X Zan

by the Fundamental Theorem of Finitely Generated Abelian Groups. Define
the permutation
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aj= (r’{ 'ufé, ceey “%a,,—l) ('Ur;, 'ui. ey -1,'“4"2.%_)

J
H (v:" T T vl )
2a;+1+ka;’ “2a;42+ka;’ » Y3a;+ka;
k=0

for each j € {1,2,..,m}. Let ['¢c be the graph constructed in Definition 3.1; g;
preserves the adjacency relations of I'cand thus is a automorphism of I'c with

order a;. As a result, (01,02,...0m) < Aut(l'¢), and since G ~= (01,02..,0m), it
suffices to prove that |Aut(I'¢)| = |G|.
Since vertex 0 in I'¢is the only vertex whose neighbors all have degree 4,

it is fixed under any automorphism of I'c. Notice that I'¢can be obtained by
deleting vertex 0 in [';, and the subgraphs I'(a;j), where j € {1,2,..,m}, are the

m components of I' c. We claim that no two components have the same

number of vertices of degree 1 and the same number of vertices of degree 2
— proving that each component is invariant under every automorphism of T'.
To this end, recall that the component I'(a;j) has ajvertices of degree 1. If ax=
aefor some distinct k€ € {1,2,..,m}, then I'(ai k) has ax(k - 1) vertices of degree
2, while I'(ae#) has as(f — 1) vertices of degree 2. It follows that ax(k -1)/=
a¢(¥-1) and each component is invariant under every automorphism of T¢.
Therefore, these components are the unions of vertex orbits in Aut(I'¢).

Now consider the induced subgraph of I'; on the vertices in {0}UI'(a1,1),
denoted by F_G(l). By Lemma 3.2, Aut FG(I)) is cyclic of order aj, and so the

11 Wl ,
vertices Y1:Y3:---:Y2a,~1 compose an orbit of Aut(I;) because of the
transitive action on them by o1. By the Orbit-Stabilizer Theorem,

1 SV — 1

2) 1Aut(re)] =[O (01)] - |seab (v1) | = a1 [ggap (v1) |

Thus, we will examine the subgroup stab (”D of Aut(T¢). The proof of Lemma
3.2 established that Aut 11(7(1)) is generated by the permutation o1, and thus

(

1
any element of stab (v1) will fix all of T (a1,1). Consequently, we examine the

(

action ofstab(”% ) on the rest of T'¢. Since a,-fixes'”} forallj €{2,3,.,m}, we have
that g; € stab(Ui) provided j/= 1. Moreover, the automorphism group of the
od o i
induced subgraph of I'c on the vertices in {0pu {?'1’ Vs« + 2 U3a;+ia, } is cyclic
of order a;by Lemma 3.2. Because each
A1) —

subgraph TI'(a;j) is invariant, stab (v1)| = @203+ am ang Equation (2)
implies
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e o] = @1 gap (0])| = razas -, = 6]

Since we previously established that

G "= (01,02...,0m) < Aut(T'¢),
the result now follows. O

With these results in hand, we are now able to prove that the actiongenus
of every nontrivial abelian group is 0.

Theorem 3.4. If G is a nontrivial abelian group, then y.(G) = 0.

Proof. The graph I'; constructed in Definition 3.1 satisfies Aut(I'c) ~= G by

Proposition 3.3. Since I'¢is planar and connected by construction, it can be
cellularly embedded on the sphere. Therefore, y.(G) = 0, as desired. ]

Next, we will establish an infinite family of groups with positive
actiongenus.

4. Generalized Quaternion Groups

In this section, we will establish an infinite family of groups with positive
action-genus. For n 2 4 an integer, let Qz2.denote the generalized quaternion
group of order 2. We will use the following presentation of Q2.

(3) Q2,.= Do, T: 02:1= 1 = T4,T0T-1= 0-1,02.2= T2E.

Itis an easy exercise to prove that every element of Q2.can be expressed as oit/
fori€{0,1,.,2m1- 1} andj € {0,1}; additionally, 02~2= t2is the only element of
order 2 in @2, and every element in the set Q2.\(o) has order 4.

To prove that y.(Q2-) is positive, we proceed as follows. In Definition 4.1,
we construct a graph I, for all n = 4. The results of Proposition 4.2 prove that

Aut(T';) 7= Q2 and we construct a cellular embedding of I', on the torus in

Proposition 4.3. An illustrative example for Definition 4.1 and Proposition 4.3
is given in Example 4.4 when n = 5. Finally, Theorem 4.5 will prove that y.(Q2-)
=1forallnz4.

Definition 4.1. Assume that n = 4 is an integer. Define the permutations o,:=

(1,2,..,20-1) (2014 1,211+ 2,..,2n)
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(2n+ 1,27+ 2,.,3 - 2n1)(3 - 2n-1+ 1,3 - 2071+ 2, 27+1) and T, := T1Ty,
where
Zn—Z

T1:= (1,27-141,2n-2+1,3-2n-2+1) Y(i,2"+2—i,2"-2+i,3-2"-2+2—i)
i=2

and 1, is obtained by adding 27 to each entry in 71. Set G = {(0,,7,), and notice
that G is a subgroup of Sz... It is easily verified that o, and 7, satisfy the
relations of Qz.given in Equation (3) and thus generate a group isomorphic to
Q2. Define the graph T'; on 2n+1 vertices with V (I's) = {1,2,..,2"*1} and where
E(T») contains the following four edge orbits:

06{1,2m1+ 1}, 0{1,27 + 1}, 0¢{1,27+ 2}, and O{1,3 - 21 + 1}.

Each edge orbit of contains 27 edges, and thus ', has size 4 - 2n= 2n+2,

The graph I'sis constructed in Example 4.4 and depicted in Figure 12. In
the forthcoming proposition, we will establish the automorphism group of
this graph ', for all n = 4.

Proposition 4.2. For n = 4, the graph T, constructed in Definition 4.1 has
automorphism group isomorphic to Q2.

Proof. Let 'y, 04, and 1, be as given in Definition 4.1, and recall that

(04,Tn) ~ = Q2. Since the edges in I',are the images of the edges

[1,20-1+ 1], [1,27+ 1], [1,27+ 2], and [1,3 - 2n-1+ 1]

under the elements of {(o,,17,), the permutations o, and 7, will preserve all

adjacency relations of I'». Therefore, Q2. = (0, Tn) < Aut(l's), and it suffices to

prove that |Aut([,)| = 2. To this end, partition V (I's) into the following two
sets:

Vi:={1,2.,27}  and Vyi= {20+ 1,20+ 2,..,2m1},

The vertices in Viand V> have degree 5 and 3, respectively. Consequently, /1

and V;are invariant sets under the action of Aut(T',). Since {(0,,7,) ~ = Qz.acts
transitively on the sets Vi and V>, the orbits of Aut(I';) are V1 and V>, and
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(4) |Aut(I';)| = |0(1)] - |stab(1)| = 2»- |stab(1)|

by the Orbit-Stabilizer Theorem.
To prove that |stab(1)| = 1, let ¢ € stab(1) < Aut(I';). Since 1 is fixed by ¢,
its neighbors compose an invariant set under ¢; in other words, the set

{2n-1+ 1,322+ 1,20+ 1,20+ 2,3 - 201+ 1}

is fixed setwise by ¢. Consider the induced subgraph of I'»on vertex 1 and its

neighbors, denoted by F_n(l), which is depicted in Figure 9. Since 27+ 2
2" +1 3.2 149

3:2772% 41 2" 141

2" +2

Figure 9: The induced subgraph of I';on vertex 1 and its neighbors.

is the only degree-1 vertex in T (1), @(27+ 2) = 27+ 2. It follows that the sets
of vertices {2n-1+ 1,3 - 2n-2+ 1} and {27+ 1,3 - 2n-1+ 1} are invariant under ¢
because the first set is contained in Vi and the latter set is contained in V2. To
establish that these sets are actually fixed pointwise by ¢, consider the
induced subgraph of I'; on the vertices at most distance 2 from vertex 1; this
graph is depicted in Figure 10. Since vertex 7 - 272 is the only vertex with
degree 1 in this subgraph, it is fixed by ¢. It follows that its only neighbor
satisfies ¢(3:27-2+1) = 3:2n-2+1 and thus all the neighbors of 1 are fixed under
@. Lastly, note that ¢(2) = 2 because in this subgraph it is the only neighbor of
the fixed vertex 27 + 2 with a neighbor of degree 2. In summary, ¢(1) = 1
implies that vertices 2, 2m-1+ 1,27+ 1,and 3 - 27-1 + 1 are fixed by ¢.

Repeating the argument above with vertex 1 replaced by vertex 2, which
is possible as these vertices lie in the same orbit under Aut(T'») and ¢(2) = 2,
yields that vertices 3, 271+ 2, 27+ 2,and 3 - 271+ 2 are fixed by ¢. Continuing
this process by replacing i with i + 1 for i € {3,4,..., 271},
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27)*1 [ 9 2n+1

Figure 10: The induced subgraph of ', on the vertices at most distance 2 from
vertex 1.

proves that all vertices of ', are fixed by ¢ € stab(1). Therefore, ¢ is the trivial
automorphism of Aut(I';) and |stab(1)| = 1. Equation (4) then implies that

|Aut(T';)| = 2n. Because we previously established that Q2. = (0, Tn) < Aut(T»),
it follows that Aut(I's) ~= Qz.forall n = 4.

The graph I', constructed in Definition 4.1, which satisfies Aut(T'») ~= Q-

by Proposition 4.3, will be used to establish that y.(Q2.) < 1. In the proposition

that follows, we will cellularly embedded ', on the torus.

Proposition 4.3. The graph T, constructed in Definition 4.1 can be cellularly

embedded on the torus foralln = 4.

Proof. Since graph embeddings on the torus can be difficult to visualize, in this
proof we will utilize the planar representation of the torus (which depicts the
torus through identifying the opposite sides of a rectangle). To describe our
embedding of T'; for all n = 4, we first discuss the placement of the vertices of
['nin the rectangle and then discuss how to draw the edges of T'.

Partition the vertices of I';into eight rows of size 27-2, where each row
contains the following vertices.
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Row 1: 1,2,...,,2n-2

Row 2: 27+ 1,27+ 2,...,5 - 2n-2
Row3:3:2rn-1+13-2n1+2,.,7 - 2n2

Row 4: 2n-1+ 1,2n-1+ 2,,..,3 - 2n-2

Row 5: 2n-2+ 1,2n-2+ 2., ,2n-1

Row 6:5:2m2+15.2n2+2,.,3-2n1

Row 7:7 -« 2124 1,7 - 2n-2+ 2,21 Row 8: 3 -

2n2+4 11,3202+ 2,.,2"

In the rectangle representing the torus, fix a positive distance d and draw
consecutively labelled vertices within each row at distance d apart such that:

1. Row a is positioned above Row a + 1 foralla € {1,2,..,7};

2. Vertices 5-27-2+1 and 3-2m-2+1 are aligned vertically and lie farthest to
the left;

3. Vertices 2n+1, 2n-141, 2n-2+1, and 7-27-2+1 lie on the perpendicular
bisector of the vertices 5 - 22+ 1 and 5 - 272+ 2; and

4. Vertices 1 and 3 - 2n-1+ 1 align vertically with vertex 5 - 2n-2 + 2.

In this case, the vertices in Rows 1 and 3 are aligned vertically, the vertices in
Rows 2, 4, 5, and 7 are aligned vertically, and the vertices in Rows 6 and 8 are
aligned vertically.
To describe the placement of the edges in I'; for this embedding, we will
partition E(T'») into two sets. Define
Ey = {o'r[1,2"  + 1], 071,327+ 1] ri e {277F, L 20 - 1))

on—2_1 on—2 on—1_1

U{w[1,2" +2]:w e {o* o T,0 ,7}} C E(Ty)

and E:= E(T's)\E1. The set E1 will contain the edges of I', that cross a boundary
of the rectangle that represents the torus in our embedding, while E> contains
all other edges of 'y, which will cross no boundary of the rectangle. We note
that E; contains 27-1+ 4 of the 2+2 edges of I',. Draw each edge [u,v] € E to lie
along the line segment that represents the shortest distance between vertices
u and v. This will result in three rows of 27-2-1 cycles of length 6 each with an
additional cord, which are depicted in Figure 11, the path on vertices 1 and 2»
+ 1, and the three triangles
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2" 41+ i

3.2 14 ¢ 3-27 41

2n-1+1+i

3 2n-14j

2n-14j2n-1+1+

2n-2+j2n-2+1+

5. 2n2+14j
Figure 11: In the proof of Proposition 4.3: The 3(27-2 -1) subgraphs of T,
created by the inclusion of the edges in E>, where i € {1,2,..,2n-2- 1} U {2n-2 +
1,2n-2+ 2,.,2n-1- 1} and j € {1,2,.., 272 - 1}.

(L,2n1+1,3-2r1+ 1), (2n-1+ 1,5 2m2+ 1,2r2+ 1),

and

(2n2+ 1,3 2024+ 1,7 - 202+ 1),

Nexfc, the 2n-1edges Qf Eqin
{o'r[1, 2 1), 071,327 1] i e {20220 2 0, 2 - 1)
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can be drawn without crossings over the identified top and bottom edges of
the rectangle that represents the torus. Reading from left to right, note that
these edges will cross this boundary of the rectangle in the following order:
02.2T[1,3 * 2n-1 + 1], 02:2T[1,2n-1 + 1], 02.2+17[1,3 + 2n-1 + 1], 02s2+17[1,2n-1 +

1], .., 0201-17[1,3  2n-1+ 1],02.1-17[1,2n-1 + 1].

Finally, we consider the four remaining edges of E1, namely those in

{w[l,?”‘ +2]:we {02"7271,021147, 02”7171,7}}.

The edges 02-1-1[1,27+2] and t[1,27+2] can be included in our embedding of
' without crossings over the identified left and right sides of the rectangle.
Starting at vertex o2+2-1(1) = 2n-2, draw the edge o22-1[1,2n+ 2] over the top
of the rectangle, then over the right side of the rectangle ending at vertex
0%2-1(2n+ 2) =5 - 2n-2+ 1. Lastly, starting at the vertex o2+-2t(1) =3 - 2n-2+ 1,
without any edge crossings draw the edge o2-2t[1,2"+ 2] over the bottom of
the rectangle, then over the left side of the rectangle ending at vertex o227 (2n
+2)=7-2nm2 Since all faces in this embedding of ', are polygons, itis a cellular
embedding for all n = 4, as desired. [

Before proving the main result of this section, we give an illustrative
example of Definition 4.1 and Proposition 4.3 when n = 5.

Example 4.4. Assume that n = 5. The permutations os and ts stated in
Definition 4.1 are as follows.

05:= (1,2,.,16)(17,18,..,32)(33,34,..,48)(49,50,..,64)
8

o= (1,17,9,25) [ [ (4,34 — i,8 + 4,26 — i)
i=2
= (1,17,9,25)(2,32,10,24)(3,31, 11, 23)(4, 30, 12, 22)
(5,29,13,21)(6,28, 14, 20)(7, 27, 15, 19)(8, 26, 16, 18)

T2:= (33,49,41,57)(34,64,42,56)(35,63,43,55)(36,62,44,54)
(37,61,45,53)(38,60,46,52)(39,59,47,51)(40,58,48,50) 5

=T1T2
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The graph I'shas 64 vertices with vertex set V (I's) = {1,2...,64}. Since G = {05, Ts)
~'= Qs2is a subgroup of Ses, the 128 edges of I's are

E(l's) =0¢{1,17} U 0¢{1,33} U 0{1,34} U O¢{1,49}.
As an example, the edge orbit
06{1,17} = {{w(1),w(17)] : w € G = (05,Ts)}

contains 32 edges; these edges are obtained by applying each of the elements
0 _ 2 15 2 15
in G, namely 75 = 1,05,05,...,05°, 75,0575, 0575, - . - -‘7517'5, to the edge

[1,17] to obtain the edges
[1,17], [2,18], [3,19], [4,20], [5,21], [6,22], [7,23], [8,24],
[9,25], [10,26], [11,27], [12,28], [13,29], [14,30], [15,31], [16,32],
[9,17],[10,18], [11,19], [12,20], [13,21], [14,22], [15,23], [16,24],

[1,25], [2,26], [3,27], [4,28], [5,29], [6,30], [7,31], [8,32],
respectively. The graph I'sis depicted in Figure 12; its automorphism group is
isomorphic to Q32 by Proposition 4.2.
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58 26 57 25 33 1 34

e 2T % 35
60 | 36
6129 [ [ 77‘ T\‘f N 437
30 V4 \# —— 5
AT TSR
; ]:H:‘ﬁ#\f H
16 8
18 Hjjj 56
SRR O
=L AT
1345 _-_-_______ J_\_L \L‘/ I 5322
2 T | ~
T S ~ 20

1279 41 1749 18997

Figure 12: The graph I's, which was constructed in Definition 4.1.

Next, we will use the process described in the proof of Proposition 4.3 to
embed I'5in the torus. Partition the vertices of ['s into eight rows of size 8,
where each row contains the following vertices.

Row 1:1,2,3,4,5,6,7,8 Row 5:9,10,11,12,13,14,15,16

Row 2: 33,34,35,36,37,38,39,40 Row 6:41,42,43,44,45,46,47,48

Row 3:49,50,51,52,53,54,55,56 Row 7:57,58,59,60,61,62,63,64

Row 4:17,18,19,20,21,22,23,24 Row 8: 25,26,27,28,29,30,31,32
In the rectangle representing the torus, fix a positive distance d and draw the
consecutively labelled vertices within each row at distance d apart with:

1. Vertices 41 and 25 aligned vertically and positioned farthest to the left;
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2. Vertices 33, 17, 9, and 57 positioned on the perpendicular bisector of
vertices 41 and 42; and
3. Vertices 1 and 49 aligned vertically with vertex 42. Now, partition the

edges of I'sinto the following two sets:

By = {o'r[1,17]),0'7[1,49] : i € {8,9,...,15}}
U {w[1,34] twE {07,687,015,7}}

and E:= E(I's)\E1. Recall that the set E; contains the edges of I's that will cross
a boundary of the rectangle that represents the torus, and E, contains all other
edges of I's, which will cross no boundary of the rectangle. Draw each edge
[uv] € E>to lie along the line segment that represents the shortest distance
between vertices u and v. This will result in three rows of seven 6-cycles each
with an additional cord, the edge [1,33], and the three triangles (1,17,49),
(17,41,9), (9,25,57). The 16 edges of E1in
{o'7[1,17],0"7[1,49] : i € {8,9,...,15}}

can now be drawn without crossings over the identified top and bottom
boundaries of the rectangle that represents the torus; reading from left to
right, these edges will cross the boundary of the rectangle in the following
order:

[25,33], [1,25], [26,34], [2,26], [27,35], [3,27], [28,36], [4,28], [29,37],
[5,29], [30,38], [6,30], [31,39], [7,31], [32,40], [8,32].

Finally, we consider the four remaining edges of Ex:
07[1,34] = [8,41], 087[1,34] = [25,56], 015[1,34] = [16,33]

and
7[1,34] = [17,64].

Include the edges [16,33] and [17,64] in our embedding of I's without
crossings over the identified left and right sides of the rectangle. Starting at
vertex 8, draw the edge [8,41] over the top of the rectangle, then over the right
side of the rectangle ending at vertex 41. Lastly, starting at the vertex 25, draw
the edge [25,56] over the bottom of the rectangle, then over the left side of the
rectangle ending at vertex 56 without any edge crossings. This cellular
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embedding of ['s on the rectangular representation of the torus is depicted in
Figure 13.

99999

24

A < 4

64

25 26 27 k28 29 30 31 32

Figure 13: The graph I's, which was constructed in Definition 4.1, embedded
on the torus; here, we use the planar representation of the torus where the
opposite sides of a rectangle have been identified.

We will conclude this section with a proof that the action-genus of every
generalized quaternion group Qz.withn = 4 is 1.

Theorem 4.5. If n = 4 is an integer, then y.(Qz.) = 1.

Proof. Let 'y be the graph constructed in Definition 4.1. By Proposition 4.2, we

have that Aut(I's) ™= Qz.for all n = 4. It follows that y.(Q2.) < 1 because I', has

a cellular embedded on the torus by Proposition 4.3. Babai [2] proved that no
graph whose automorphism group is isomorphic to a generalized quaternion
group is planar. Consequently, y.(Q2:) > 0 and thus y.(Q2:) = 1, as desired.

O
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5. Discussion and Open Questions

In this section, we pose four open questions that involve the action-genus of
groups. Our main focus in this article has been to compute the action-genus
of a given infinite family of groups; these results produced infinite collections
of groups with small action-genus. It is natural to ask the following question.

Open Question 1. Given a positive integer n, does there exist a group G with
)/a(G) = n7

In the past, there was great interest in computing the genera of infinite
families of graphs. For example, Beineke and Harary [4] established the genus
of the hypercube graph, and Rignel [29, 28] calculated the genus of the
complete bipartite graph. Ringel and Youngs [30] computed the genus of the
complete graph, which solved the Heawood Map-Coloring Problem. There has
also been some research on computing the genera of tripartite graphs;
however only partial results have been established (see [34] for more
information). For each of these aforementioned families of graphs, the genera
grows without bound. We wonder if this is a property that the action-genus of
groups can also exhibit.

Open Question 2. Does there exist an infinite family of groups {Gn}nZosuch
that ya(G») is unbounded?

The remaining two open questions involve extensions of the action-genus
of groups and are based on prior work completed in topological graph theory.
If T is a connected graph, the maximum genus of I" is the largest genus of all
the orientable surfaces on which I can be cellularly embedded. Motivated by
the work on this invariant, we make the following definition for groups G.

Among all graphs I' with Autl' = G, define the maximum actiongenus of G,

denoted y,M(G), to be the maximal genus of a closed connected orientable
surface on which I' can be cellularly embedded. In Example 2.1, we proved
that y.(S4) = 0; the cellular embedding of K4 in the torus depicted in Figure

4(b) shows that 7a'(S4) 21, Consequently, we ask the following question.

Open Question 3. Let G be a group. What is the value of y."(G)? How does it

compare to the value of y.(G)?

There are two types of closed surfaces, and in this article we have only
considered one type — orientable surfaces. The second type of closed
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surfaces are called non-orientable surfaces, all of which have been classified.
Every closed connected non-orientable surface can be obtained by cutting
holes in a sphere and closing off each hole using a M"obius band (see, for
example, [15]). The crosscap number of a closed connected non-orientable
surface is the number of M"obius bands used to obtain its homeomorphism
type. For k € N, let N denote a closed connected non-orientable surface with
crosscap number k. The crosscap number (or non-orientable genus) of a
graph I is the minimal k such that I' can be embedded in Ny Influenced by
these definitions, we make the following definition for groups G. Among all

graphs I' with Autl’ ~= G, define the non-orientable action-genus of G,
denoted y7,(G), to be the minimal non-orientable genus of a closed connected
nonorientable surface on which I can be embedded. We conclude this article
with the following question.

Open Question 4. Let G be a group. What is the value of "y.(G)? How does it
compare to the value of y.(G)?
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