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Abstract

Let C be a smooth projective curve of genus g > 2, and let N be the moduli
space of stable vector bundles on C of rank 2 and fixed determinant of odd degree.
We construct a semiorthogonal decomposition of Db (N) conjectured by Narasimhan
and by Belmans, Galkin, and Mukhopadhyay. It has two blocks for each i th symmetric
power of C fori =0,...,g — 2 and one block for the (g — 1)st symmetric power. We
conjecture that the subcategory generated by our blocks has a trivial semiorthogonal
complement, proving the full BGMN conjecture. Our proof is based on an analysis
of wall-crossing between moduli spaces of stable pairs, combining classical vector
bundles techniques with the method of windows.
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1. Introduction
Let C be a smooth complex projective curve of genus g > 2. Let N = M¢c (2, A) be
the moduli space of stable vector bundles on C of rank 2 and fixed determinant A of
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odd degree. It is a smooth Fano variety of index 2, with Pic N = Z - 8 for some ample
line bundle 6.

THEOREM 1.1
DY (N) has a semiorthogonal decomposition (P, A), where

A=(0*® % (0")?>®%:. (")’ @9 (B")*®Fe.
o 0")*®9;,, 0*)>®8s (0*)?®9;, 0*®Y,
9o, 0*®9,, (0%)?®9%4, (0*)°®Ys, e
0" ®9;, 0*)?>®Fs, 0*R®8Fs, G1).

Each subcategory §; ~ D?(Sym’ C) (resp., §; ~ D?(Sym’ C)) is embedded in
DY(N) by a fully faithful Fourier-Mukai functor with kernel given by the ith ten-
sor bundle &% (resp., E&) (see Section 2) of the Poincaré bundle & on C x N
normalized so that det &, ~ 0 for every x € C.

There are two blocks isomorphic to D?(Sym'’ C) for eachi =0,...,g —2 and
one block isomorphic to D®(Sym®™! C), which appears on the first or second line
of (1.1), depending on the parity of g.

The blocks appearing in (1.1) cannot be further decomposed (see [26]). Remark-
ably, our decomposition is compatible with the results of Mufioz [29]-[31] (cf. [5,
Proposition 3.2]), that the operator of the quantum multiplication by ¢;(/N) on the
quantum cohomology Q H*(N) has eigenvalues 81, where

A=(1-g), 2-gV-1,3-g).....(g=3), (g—=2V-1, (g 1)

and the eigenspace of 81 is isomorphic to H *(Sym?® —1-Ric ). There are many other
results (e.g., [12], [24]) on cohomology and motivic decomposition of N compatible
with (1.1). This provides ample evidence toward the expectation that > = 0. We hope
to address this question in the future, as well as to use our methods to study properties
of analogous Fourier—-Mukai functors for moduli spaces of vector bundles of higher
rank on curves and for moduli spaces of sheaves with 1-dimensional support on K3
surfaces.

Partial results toward Theorem 1.1 have appeared in the literature. The case g = 2
is a classical theorem of Bondal and Orlov [7, Theorem 2.9], who also proved that
£ =0 in that case. Fonarev and Kuznetsov [15] proved that D?(C) — D?(N) if C
is a hyperelliptic curve using an explicit description of N due to Desale and Ramanan
[13]. They also proved that D®(C) < D®(N) fora general curve C by a deformation
argument. Narasimhan [32], [33] proved that D%(C) < DP(N) for all curves using
Hecke correspondences. He also showed that one can add the line bundles @ and 6*
to D?(C) to start a semiorthogonal decomposition of D?(N).
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In [6], Belmans and Mukhopadhyay work with the moduli space M¢ (r, A) of
vector bundles of rank r and determinant A, where r > 2 and deg A = 1. They
show that there is a fully faithful embedding D?(C) — D®(Mc¢ (r, A)) provided
that the genus is sufficiently high. Moreover, they use this embedding to find the
start of a semiorthogonal decomposition of D?(M¢ (r, A)) of the form 6*, D?(C),
0, 6* ® Db(C), this way extending the decomposition on N = M¢ (2, A) present
in [33]. Belmans, Galkin, and Mukhopadhyay have conjectured, independently of
Narasimhan, that D?(N) should have a semiorthogonal decomposition with blocks
Db (Symi C) (see [3], [24]), and have collected additional evidence toward this con-
jecture in [5]. Lee and Narasimhan [25] proved using Hecke correspondences that, if
C is non-hyperelliptic and g > 16, there is a fully faithful functor D?(Sym? C) —
DP(N) whose image is left semiorthogonal to the copy of D?(C) obtained earlier.
They also introduced tensor bundles & i of the Poincaré bundle (see Section 2),
which we discovered independently. If D € Sym’ C is a reduced sum of points x; +
.-+ + X;, then the fiber (& i )p is a vector bundle on N isomorphic to the tensor prod-
uct &5, ®--- ® &y, . If the points have multiplicities, then (SW) p 1s a deformation
of the tensor product over A! (see Corollary 2.9).

Instead of using Hecke correspondences (although they do make a guest appear-
ance in Section 6), we prove Theorem 1.1 by analyzing Fourier—Mukai functors given
by tensor bundles F® of the universal bundle F on the moduli space of stable pairs
(E, ), where E is arank-2 vector bundle on C with fixed odd determinant line bun-
dle of degree d and ¢ € H(E) is a nonzero section. The stability condition on these
spaces depends on a parameter, and we use extensively results of Thaddeus [39] on
wall-crossing. If d = 2g — 1, then there is a well-known diagram of flips

NVANPERN
| |

My N

(12

where My =P332, M is the blowup of My in C, the rational map M;_; --» M; is
a standard flip of projective bundles over Sym’ C, and £ : M ¢—1 — N is a birational
Abel-Jacobi map with fiber PH?(E) over a stable vector bundle E. Accordingly,
DP(M;) has a semiorthogonal decomposition into D?(M;_;) and several blocks
equivalent to D?(Sym’ C) with torsion supports (see Proposition 3.18 or [4]). While
these decompositions do not descend to N and are not associated with the universal
bundle, they are useful. Philosophically, tensor bundles on Symi C x N are related
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to exterior powers of the tautological bundle of the universal bundle, which appear in
the Koszul complex of the tautological section that vanishes on the flipped locus. One
can try to connect two Fourier—Mukai functors via mutations. In practice, this Koszul
complex is difficult to analyze except for M; (see Section 5). We followed another
strategy toward proving Theorem 1.1.

In order to prove semiorthogonality in (1.1) and full faithfulness of the Fourier—
Mukai functors via the Bondal-Orlov criterion, we had to investigate coherent coho-
mology for a large class of vector bundles. The main difficulty in this kind of analysis
is to find a priori numerical bounds on the class of acyclic vector bundles to get the
induction going.

Definition 1.2

For an object ¥ in the derived category of a scheme M, we say that ¥ is I"-acyclic
if RT'(¥) = 0. That is, for us I'-acyclicity will mean the vanishing of all cohomol-
ogy groups, including H(¥). Other authors have used the term immaculate for this
property (cf. [1]).

Theorem 1.1 then requires the proof of I'-acyclicity for several vector bundles.
It is worth emphasizing that the moduli space N depends on the complex structure
of the curve C by a classical theorem of Mumford and Newstead [28] later extended
by Narasimhan and Ramanan [34]. The uniform shape of Theorem 1.1 is thus a sur-
prisingly strong statement about coherent cohomology of vector bundles on N that
does not involve any conditions of the Brill-Noether type. Our approach utilizes the
method of windows into derived categories of geometric invariant theory (GIT) quo-
tients of Teleman [38], Halpern-Leistner [18], and Ballard, Favero, and Katzarkov [2]
to systematically predict behavior of coherent cohomology under wall-crossing. This
dramatically reduces otherwise unwieldy cohomological computations to a few key
cases, which can be analyzed using other techniques. Rather unexpectedly, one of the
difficult ingredients in the proof is acyclicity of certain line bundles (see Section 6).
While cohomology of line bundles on the space of stable pairs was extensively stud-
ied in [39] in order to prove the Verlinde formula, the line bundle that we need is
outside the scope of that paper.

Analogous recent applications of windows to moduli spaces include the proof of
the Manin—Orlov conjecture on A;Io,n by Castravet and Tevelev [9]-[11] and analysis
of Bott vanishing on GIT quotients by Torres [40].

2. Tensor vector bundles
Let C be a smooth projective curve over C. For integers « > 1 and 1 < j < «, let
wj: C* — C be the jth projection, and let 7 : C* — Sym® C be the categorical
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Sa-quotient, where S, is the symmetric group. Since C* is Cohen—Macaulay (in
fact smooth), Sym® C is smooth, and 7 is equidimensional, we conclude that T is
flat by miracle flatness. Therefore, any base change 7 : C* x M — Sym* C x M is
also a finite and flat categorical Sy-quotient, where M is any scheme over C. The
constructions in this section are functorial in M. In the following sections, M will be
one of the moduli spaces we consider.

Notation 2.1
For an S,-equivariant vector bundle & on C% x M, we will denote by rf “ & the
Sq-invariant part of the pushforward . &.

LEMMA 2.2
Let & be an Sy -equivariant locally free sheaf on C* x M. Then t4« & and tf"‘ & are
locally free sheaves on Sym* C x M.

Proof

The scheme C* x M is covered by S,-equivariant affine charts Spec R and 7* is
given by the inclusion of invariants RS« C R. Since R is a finitely generated and flat
RS«-module, it is also a projective R5¢-module. Let E = H°(Spec R, &). Since E
is a projective R-module, it is a direct summand of R® for some s. It follows that E is
a projective RS¢-module; that is, 74 & is locally free. Since ES¢ is a direct summand
of E as an RS« -module, it is also a projective RS« _-module. Therefore, rf *gisa
locally free sheaf as well. O

Definition 2.3
For any vector bundle ¥ on C x M, we define the following fensor vector bundles
on Sym* C x M,

o o
—K
Jf"g"‘zrfo‘<®nj’-‘ff"> and 7 aztfa(®n;?®sgn),
j=1 j=1

where S, acts on C* and also permutes the factors of the corresponding vector bundle
on C*. Here sgn is the sign representation of Sy .

LEMMA 2.4

The formation of tensor vector bundles is functorial in M ; that is, given a mor-
phism f: M’ — M and its base changes C x M’ — C x M and Sym* C x M’ —
Sym® C x M, which we also denote by f, we have

FHER = () and fF =)
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Proof
Since t is flat, this follows from cohomology and base change. O

For a divisor D € Sym* C and a vector bundle ¥ on Sym* C x M, we write
9p :=9|(pyxm. We usually view §p as a vector bundle on M.

Remark 2.5
For the empty divisor D = 0, we have §y >~ Q.

LEMMA 2.6
If D =" agxy with x; # xj for k # 1, then we have

F™)p = RF ™Yo T o =QRQF “apre. @D

Proof

Indeed, the quotient 7 : C% — Sym® C is étale locally near D € Sym* C isomorphic
to the product of quotients [[C* — []Sym*t C. Moreover, the stabilizer of the
point D under the Sy-action is [ | Se, , and sgn restricts to the tensor product of sign
representations of [ [ Sy, . U

Consider the nonreduced scheme D, = Spec C[¢]/¢%, with maps pt <5 Dy, LS pt

# #
given by the obvious pullbacks C LN Clz]/t* L, C. We still write 7 and p for the base

changes to M of these morphisms, that is, M N Dy x M ﬁ) M . For a locally free
sheaf ¥ on D, x M, we denote by Fo = 1*F its restriction to M.

Definition 2.7

For two vector bundles ¥, § on a scheme M, we will say that ¥ is a deformation of
€ over A' if there is a coherent sheaf ¥ on M x A, flat over A!, with 3:'|, ~ ¥ for
t #0, while %o~ §.

LEMMA 2.8

Every locally free sheaf ¥ on Dy x M is a deformation of p* ¥y over Al. In particu-
lar, p+ ¥ is a deformation of 370@“ over Al

Proof

LetA: A; x Dy — Dy be the map defined by its pullback A* : # > 5, and also denote
by A its base change to M . We claim that the locally free sheaf A* ¥ gives the required
deformation. Indeed, the restriction of A*F to {so} € A! is the pullback of F along

the composition by, = A o jg,,
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Js A
]DaxMC—())DaxA;xM—)]DaxM,

determined by its pullback bfo i1 +> sof. When so # 0, by F =~ ¥ . On the other
hand, when s¢ = 0, the map by factors as the composition

DaxMiMiﬂD)axM,

so by ¥ = p*1*F = p*Fy, as desired. The last statement follows from projection
formula and the fact that p.p*Ops >~ (9;3“. O

Suppose that D = «ax is a fat point, that is, a divisor given by a single point x
with multiplicity «, and let ¢ be a local parameter on C at x. Note that the notation
O p is unfortunately ambiguous, because it can denote both the structure sheaf of
the subscheme D C C and the skyscraper sheaf of the point {D} € Sym® C. When
confusion is possible, we denote the latter sheaf by O(p;. Then

Clt1,....t4]
™*Opy > ————— (2.2)

P (o1 o)
is the so-called covariant algebra, where o1, ...,04 are the elementary symmetric
functions in variables 7; = 7} (7). Call B4 = Spec t*0p}. By the Newton formulas,
t;‘ =0 for every j = 1,...,a, and in particular, every map n; : B, — C factors

through D,,. By abuse of notation, we have a diagram of morphisms

Tj

. q
BexM —— DegxM —— CxM

Sl e

M

COROLLARY 2.9 -
Let D = x1 + -+ + Xq (possibly with repetitions). Then both (¥%2*)p and (¥ a)D
are deformations of Fx, ® -+ ® Fy,, over Al.

Proof

By (2.1), it suffices to consider the case when D = ax. Using the notation as in
the diagram (2.3), the restriction (¥%%)p can be written as rf “(® n}*q*fﬁ‘ ), by
flatness of 7. The construction of Lemma 2.8 commutes with the S,-action, so
S (®n7q*F) is a deformation of rSa (@77 p*Fx) over Al since (¢*F)o =
Fx = Fl{x}xm - Note that 77 p* = t*, so using the projection formula, we get that

—X
(%) p is a deformation of (®3f=1 Fo)® o (OB, xm ), and similarly, (F o{) D
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is a deformation of (®‘;=1 Fy) ® TS (Op,xm ® sgn). By flatness of the quotient
C* — Sym* C, the covariant algebra Op, (2.2) is the regular representation C[S,]
of Sy . It follows that it contains the trivial and the sign representations each with mul-
tiplicity 1, and therefore e (Op,xm) = S (Op, xm ® sgn) = Ops. This concludes
the proof. ([

Remark 2.10

If we have a G-action on M and a G-equivariant bundle ¥, then the deformations
constructed in the proofs of Lemma 2.8 and Corollary 2.9 are also G-equivariant,
that is, given by a G-equivariant bundle on A! xM. This is because the map A :
Al'xDy xM — Dy xM is given by the identity on the factor M, and hence A is
G-invariant. Thus, the pullback A* ¥ of a G-equivariant sheaf is naturally again a
G -equivariant sheaf.

Definition 2.11

A vector bundle ¥ on a scheme M is said to be a stable deformation of a vector
bundle § over Al if there is some vector bundle X such that ¥ @ X is a deformation
over A! of a direct sum §®” for some r > 0.

PROPOSITION 2.12
Let D = x + D. Then the vector bundle (¥ %%) p is a stable deformation of the vector
bundle ¥ ® (3‘7&("_1))5 over A,

Proof

By Lemma 2.6, it suffices to consider the case D = ax. Let W, = C* be the tau-
tological representation of Sy, which splits as a sum of the trivial and the standard
representations, Wy, = C @ V. For any S, -equivariant vector bundle & on By, x M,
we have

t3a(8 @ Wy) = 154(8) ® 15%(€ @ V). (2.4)

On the other hand, we have Wy = C[Sy/Sa—1], where Sy—1 <> Sy is the inclusion
given by fixing the oth element. Then by Frobenius reciprocity, 7 Se (& W, =
a1 (&) =ps 0 (J'ra)f""1 (€), where my is the ath projection. By Lemma 2.8, this
bundle is a deformation of ((Jro[)f‘)"1 6)3* over A'. Now let & be ® 77q* ¥ . Then

o (&) is precisely (¥%¢)p and, by projection formula,

(261,520 (- (@i ),
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a—1
So— X(a—1
= 72 ® ()3 Q7" F)| = F® (FHD) g,
. o
j=1

since the subscheme (¢, = 0) C B, is isomorphic to B,—_; and the restriction of 7,
to it is isomorphic to the quotient 7 (for the group Sy—1). O

Remark 2.13

We will use stable deformations for semicontinuity arguments. If ¥ is a stable defor-
mation of §, M is proper, and H?(§) = 0, then, by the semicontinuity theorem,
HP?(F) =0, too. In particular, if § is I"-acyclic, then so is ¥ .

Remark 2.14

Let D =x; 4+ D, D = x5 + --- 4+ x4 (possibly with repetitions). Suppose that M
is proper. Since (¥%%)p and Fo ® (37&(“_1))5 are both deformations of ¥y, ®
- ® Fy, over A! by Corollary 2.9, they have the same Euler characteristic. Com-
bining this with Remark 2.13, if H? (¥ ® (F¥©@=)5) =0 for p > 0, then both
HP(F¥*)p) =0 for p >0 and HO((F¥)p) = HO(F ® (F¥@D)5). The

- — R(a—
same results hold for (¥ a)D and ¥, ® (¥ @ 1)) ~

B
3. Wall-crossing on moduli spaces of stable pairs

Let C be a smooth projective curve of genus g > 2 over C. In [39], Thaddeus studies
moduli spaces of pairs (E,¢), where E is a rank-2 vector bundle on C with fixed
determinant line bundle A and ¢ € H°(E) is a nonzero section. We use these results
extensively and so, for ease of reference, try to follow the notation in [39] as closely
as possible. We always assume that d = deg £ > 0. For a given choice of a parameter
o € Q, the following stability condition is imposed: for every line subbundle L C E,
one must have

deu I < 4o if¢peHOL),
5+o ifg¢ H(L).

Throughout the text, we work with the general assumption o € (0, d /2], which guar-
antees the existence of stable pairs (see [39, 1.3]). The next lemma follows the ideas
of [39, 2.1].

LEMMA 3.1
For a given line bundle A of degree d, the moduli stack My (\) of semistable pairs
is a smooth algebraic stack.
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Proof

Mq(A) is a fiber of the morphism Mg — Pic?(C), (E, ¢) — det E, from the stack of
semistable pairs (E, ¢), where E is a degree d vector bundle. We first show that Mg
is smooth. Obstructions to deformations of a morphism of sheaves ¢ from a fixed

source O¢ to a varying target E lie in Ext!([O¢ g E], E). The truncation exact

triangle of the complex [0 ¢ i E] yields an exact sequence
Ext!(E,E) 4 Ext'(O¢, E) — Ext' ([0¢ 4 El,E)—0.

We claim that the first map is surjective, so obstructions vanish. By Serre duality,

it suffices to prove injectivity of the map of sheaves E*(K¢) 2) E*® E(Kc) and
this follows from ¢ # O (cf. the proof of [39, 2.1]). Next we consider obstructions to
deformations of (F,¢) fixing the determinant, which amounts to studying the map

Ext'(E, E)o i Ext!' (Oc, E), where Ext! (E, E)¢ denotes traceless endomorphisms.
However, this map is also surjective because the Serre-dual map is induced by the

map of sheaves E*(K¢) g End(E)o(Kc), where End(E) is identified with the
quotient of End(E) by the subspace of scalar multiples of the identity. This map is
still injective, as a nonzero scalar multiple of the identity cannot have rank 1. O

The moduli space My (A) of S-equivalence classes of stable pairs exists as a
projective variety and, in the case there is no strictly semistable locus, it is smooth,
isomorphic to the stack M, (A) and carries a universal bundle F with a universal
section ¢ : Ocxpm,(a) — F. A salient point is that stable pairs, unlike stable vector
bundles, do not have any automorphisms besides the identity (see [39, 1.6]). Note that
nontrivial multiples of the identity are not automorphisms, as they do not preserve the
section ¢.

The spaces My (A) can be obtained as GIT quotients as follows (see [39, Sec-
tion 1] for further details). Let y = y(E) =d +2—2g.For d > 0, every bundle E of
rank 2 and det E = A is generated by global sections, and y = h°(E). Then My (A) is
a GIT quotient of U x PCX by SL,, where U C Quot is the locally closed subscheme
of the Quot scheme (see [17]) corresponding to locally free quotients O é —» E induc-
ing an isomorphism s : CX 5 HO(E) and such that A2E = A. The isomorphism s
induces a map A2C* — H%(A), and we get an inclusion U x PCX < PHom xPC*,
where we write P Hom for PHom(A?C*, H%(A)), and a quotient s : Of — E on the
left is sent to the induced map in the first coordinate. Then M;(A) can be seen as the
GIT quotient of a closed subset of PHom xPC* by SL,, where the linearization is
given by O(y + 20,40).

For arbitrary d, we pick any effective divisor D on C with deg D > 0, and
M (A) can be seen as the closed subset of My (A(2D)) consisting of pairs (E, ¢)
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such that ¢|p = 0. This way, My (A) is a GIT quotient by SL,/, with y' =d +
2 —2g 4 2deg D, of the closed subset X C U’ x PCX determined by the condition
that ¢ vanishes along D (see [39, 1.9, 1.20]). Regardless of the GIT, the embedding
Mg (A) C My (A(2D)) will play an important role in our induction arguments.

Remark 3.2

Scalar matrices in SL, act trivially on U x PCX’, so the action factors through the
quotient SL,» — PGL, . If we replace O(y’ + 20,40) by its y'th power, this line
bundle carries a PGL,-linearization and M, (A) can also be written as a GIT quotient
X I'PGL,-. Moreover, the moduli stack My (A) is isomorphic to the corresponding
GIT quotient stack [X**/PGL,/].

For fixed A but varying o, the spaces My (A) are all GIT quotients of the same
scheme, with different stability conditions. The GIT walls occur when 0 € d/2 + Z,
and for 0 <i <v = |(d —1)/2] we have different GIT chambers with moduli spaces
My, My, ..., My, where M; = M;(A) = Ms(A) for o € (max(0,d/2—i—1),d/2—
i). These M; are smooth projective rational varieties of dimension d + g — 2 (see [39,
2.2, 3.6]). Indeed, My =PH'(C, A™!) is a projective space, M; is a blowup of M
along a copy of C embedded by the complete linear system of wc ® A, and the
remaining ones are small modifications of M. More precisely, for each 0 <i <v =
|(d —1)/2] there are projective bundles IP’VViJr and PW;~ over the symmetric product
Sym’ C, of (projective) ranks d + g — 2i —2, i — 1, respectively, with embeddings
IP’W;L — M; and PW;” < M;_4, and such that ]P’Wi+ parameterizes the pairs (£, ¢)
appearing in M; but notin M;_;, while PW,” parameterizes those appearing in M;_;
but not in M; .

We have a diagram of flips (3.1), where M; is the blowup of M;_; along PW;~
and also the blowup of M; along IP’WZ.+. Here N is the moduli space of ordinary
slope-semistable vector bundles as in the introduction and the map M, — N is an
“Abel-Jacobi” map with fiber PH?(C, E) over a vector bundle E. If d > 2g — 1 the
Abel-Jacobi map is surjective, and if d = 2g — 1 it is a birational morphism (see [39,
Section 3] for details).

SONLSNS N
l l

My N
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Notation 3.3
By abuse of notation, we will sometimes write M;(d) to denote the moduli space
M; = M;(A), where d = degA.

Notation 3.4
In what follows, v will always denote | (d — 1)/2].

The Picard group of M; = Bl¢ M, is generated by a hyperplane section H in
My = P4*+872 and the exceptional divisor E; of the morphism M; — Mj. Since
the maps M; --+ M are small birational modifications for each i > 1, there are
natural isomorphisms Pic M} >~ Pic M;, i > 1. The following notation is taken from
[39, Section 5].

Definition 3.5

For each m, n, we denote the line bundle Oy, ((m + n)H —nEy) by O1(m,n),
while O; (m, n) will denote the image of Oy, (m, n) under the isomorphism Pic M >~
Pic M;.

Remark 3.6

By [39, 5.3], the ample cone of M; is bounded by @;(1,i — 1) and O;(1,i) for 0 <
i < v, while the ample cone of M, is bounded below by @,(1,v — 1) and contains
the cone bounded on the other side by @, (2, d — 2). In other words, the ray bounding
the cone above has slope at least (d — 2)/2.

Remark 3.7

For any effective divisor D on C of degD = «, we have a closed immersion
Mi_o(A(=2D)) — M;(A), as the locus of pairs (E,¢) where the section ¢
vanishes along D (see [39, 1.9]). The restriction of O;(m,n) to M;_4(A(=2D))
is Qj_q(m,n —ma) (see [39, 5.7]). If i — a = 0, the restriction of @;(m,n) to
My(A(—=2D)) =P is Opr (n + m(1 —i)). This follows from [39, 5.7] together with
the fact that, for an embedding P" = My (A(—2x)) — M;1(A), O p, (Ey) restricts to
Opr (—1) while O p, (H) restricts to Opr.

Suppose that d > 0. Then the universal bundle F on M; x C is the descent
from the equivariant vector bundle % (1) on X x C C U x PCX x C, where OX — F
is the universal quotient bundle over U x C, and the universal section q~5 descends
from the universal section of ¥ (1) (see [39, 1.19]). Let 7w : C x M; — M; be the
projection. For every i > 1, the determinant of cohomology line bundle det 7y F' (cf.
[21]) descends from @ (0, y) on PHom xPC* (see [39, 5.4, proof of 5.14]). On M,
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detm F corresponds to Oy, ((g —d — 1)H — (g — d)E1) = O1(—1,g — d). For
x € C, call Fyx = F|(x}xm- The line bundle det Fy = A2 F, does not depend on x,
and it is the descent of 9 (1,2) on PHom xPC*. It corresponds to O, (E; — H) =
O;(0,—1) (see [39, 5.4, proof of 5.14]).

For arbitrary d, consider an embedding 1 : M; < M’ = M;(A(2D)), deg D >
0, as above, and let F’ be the universal bundle on M’. Then we have a short exact
sequence (see [39, 1.20])

0—F —>1*"F' - 1"F'|pxm; — 0. (3.2)

In particular, F is the descent from an objecton X x C C U’ x PCX x C. The same
is true for detm F and A2 Fy.

LEMMA 3.8
Fy ~1*F] for every x € C.

Proof
We tensor (3.2) with O (xyxa, , Which gives an exact sequence

-1
0— Torcup, 0" F'|pxm;» Otxyxm;) = Fx — 1% Fy
— 1" F'| pxm; @cxm; Oyxm; — 0.

If x ¢ D, then TOVI(Z*F/|DxMI.,(9{x}XMI.) =1*"F'|pxm; ® O (xyxm; = 0, and we get
Fy ~1*F[. If x € D, then ‘Torlc(@D,@x) >~ 0Op ®c Ox ~ O, and the sequence
splits into two isomorphisms, 1* F;, >~ Fy and 1 * F ~1* F}. O

LEMMA 3.9
On M()ZPr, x ZOPF @0@7(—1)

Proof
In fact, Fy is a rank-2 bundle on P", carrying a nowhere vanishing section, and with
determinant Opr (—1). Hence, F, must be isomorphic to Opr @ Opr (—1). O

Definition 3.10
We introduce notation for some important line bundles:

I/I_l =detm F =0;(—1,g—d),
Ap = A*Fy = 0;(0,-1),

=y @ ALET —0,(1,g—1)
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and

0:=y>®@ AL, =0;2,d-2),
where y =d + 2 —2g (cf. [32, Proposition 2.1]).

LEMMA 3.11
For a point x € C and every i > 1, we have exact sequences

0—> Ay = FY = Ou;a) = Omti_ (A(—2x)) = 0 (3.3)
and

0_>(9Mi(A)_>Fx_>AM_>AM|M[_1(A(—2x))_)O- (34)

Proof

By Remark 3.7, the zero locus of the section ¢, of Fy is smooth and has codimen-
sion 2. Therefore, the Koszul complex and the dual Koszul complex of (Fy, ¢y) are
exact. O

Definition 3.12

Let M = M;(A) be a moduli space in the interior of a GIT chamber, as above, and let
F be the universal bundle on C x M. We apply the constructions of Section 2 to F.
In particular, for a divisor D € Sym* C, we will denote

— —&
Gp=(F*)p and Gp=(F )p.
We write G, 6\5 for their respective duals.

LEMMA 3.13
We have the following formulas:

(F\/)th ~ ((AV)Xla X A;,;x) ® 1_7&057
Gy~ (F™ ), Gy ((FV)5),.

Proof
Let us denote

o o

—~KX ~

A =QuinY),  FR=Q)alF
j=1 j=1
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which are bundles on C® and C% x M, respectively. By [14, Théoreme 2.3], (A )X

—~ KX
is the descent of AV . Using this together with the fact that F¥ ~ F ® (det F)~! ~
FQ(AXAy)!, we get

—~ KX ~ ~
(FY) = 5o (AV " KA ® F¥) =~ (AP R ARR) @ o5 (F¥e),

The latter expression is precisely ((AY)X* X Ayf)®F Ma

We write Ogymer c(—A/2) := tf"‘(@ca ® sgn), a line bundle on Sym® C such
that Ogype ¢ (—A/ 2)®2~ (9 syme ¢ (—A), where A C Sym® C is the diagonal divisor.
The morphism 7 is ramified along B = = (A) generically of order 2, so O ca (B) is
a relative dualizing sheaf for t. The equivariant structure on @ ce (B) is dual to the
equivariant structure of the ideal sheaf O ca(—B) C @ ¢«. Since the local equation of
B is anti-invariant, O ca (B) ~ * Ogyne ¢ (A /2) @ sgn.

By duality,

~ ~ —K
((FV))" = ol (FH(B)) = o (F™ @ sgn)(A/2) = F " (A/2),
Restricting to a divisor D € Sym® C, we obtain
—X
((FY)) = (F )b,

and similarly, arguing with F" in place of F, we get

(F)% ~ (F")p.
This completes the proof. O

COROLLARY 3.14
We have G} ~ Gp ® A;[degD and Gp =~ EZ ® Aie,lgD.

Proof
This follows from restricting (F )% ~ ((AV)¥* K A ® FB*to{D}x M. O

Consider again the diagram (3.1). The wall between two consecutive chambers
M;_1 and M; occurs at 0 = d /2 — i. The birational transformation M;_ --» M; is
an isomorphism outside of the loci PW,” C M;_4, IPI/Vi+ C M;, where W~ and Wl-+
are vector bundles over the symmetric product Sym’ C of rank i and d + g — 1 — 2i,
respectively. We have a diagram
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_M/M\
-

o~

where M is both the blowup of My = M;— along PW,” and the blowup of
My_e = M; along IP’WI.“L. The variety M, is singular, obtained from the contraction
to Sym’ C of the exceptional locus PW;~ Xsymi € IP’W,-+ cM.

When d > 0, My+(A) and M, (A) are obtained as GIT quotients of U x PC*,
with y = d +2—2g. When d is arbitrary, take an effective divisor D’ of large degree,
so that My < M := Ms(A(2D')), where M/ is a GIT quotient with a semistable
locus X' C U’ xPCX, y =d +2—2g+2deg D'. The spaces Mg+ (A) and Mg (A)
are then GIT quotients by SL, of a closed subset of U’ x PCY" determined by the
condition that in the pair (E’, ¢’), the section ¢’ vanishes along D’. If we call £,

o—e = M;

&£ the corresponding linearizations, then we can write X C X', the semistable locus
of £, as the union X = X**(L4) U X*(L_) U Z, where the locus Z = X*(£4) N
X" (&£-) corresponds to pairs (E’, ¢’), such that E’ splits as

E'=L &K,

with deg L’ =i + degD’, degK' =d —i + degD’, and ¢’ € H°(L') vanishes
along D’ (see [39, 1.4]). The map Oé/ —» E’ is then given by a block-diagonal
matrix (0% — L') & (0% — K'), where a = h°(L’), b = h°(K’), and a + b =
h°(L" ® K') = y'. The strictly semistable locus X*%(&£o) = X*(£+) U X¥(£_)
consists of the orbits whose closure intersects Z (cf. [36, Remark 7.4]).

Using techniques from [18] and [2], we compare the derived categories on either
side of the wall M. We write My = X /¢, PGLy (cf. Remark 3.2) and take
Kempf—Ness (KN) stratifications of the unstable loci X*(£4) with strata S i deter-
mined by pairs (Z/, /\i), where A/ () = M‘r(t)_1 are one-parameter subgroups and
Z7 is the fixed locus of A/ = )Li (see [18, Section 2.1] for details).

Remark 3.15

From the discussion above, it follows that in this case the KN stratification of the
unstable locus in X with respect to £ has only one stratum Si, parameterizing
framed extensions as in [39, (3.2), (3.3)]. In the notation of [ 18, Section 2], the stratum
S+ is determined by the pair (Z, 1), where A = A = G, is the stabilizer of Z, and
some power of A acts on a split bundle E’ = L’ @ K’ by (¢?,179).
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Remark 3.16

Let 3 be the stack [Z/IL], where L is the Levi subgroup, that is, the centralizer of
A in PGL, . We have a short exact sequence of groups 1 — G, — L — PGL, x
PGLj, — 1 with G,, = A acting on Z trivially and [Z/PGL, x PGLp] ~ Sym’ C.
Indeed, the action of PGL, x PGL}; on Z is free, and each orbit is determined by a
divisor D € Sym’ C, where D + D’ is the zero locus of the section ¢’ € HO(L').
Therefore 3 ~ [Symi C /G,,], with the trivial action of Gy,.

For 0 =d/2—i with 1 <i <v, Ms1e (¢ > 0) is isomorphic to the corre-
sponding quotient stack, since the action of PGL,- is free on the stable locus by [39,
1.6]. Let nt = weight,li det ‘A@;/X|Z' For any choice of an integer w, D?(My+¢)

is equivalent to the window subcategory G C D?([X /PGL,/]) determined by
objects having A -weights in the range [w, w + 14+ ) for the unique stratum S+ (see
[18, Theorem 2.10]). If weight, wx|z = n— — n4+ > 0, then we get an embedding
Db(MU+€) C Db(MU_E) (see [18, Proposition 4.5] and the Remark following it).

LEMMA 3.17
In the wall-crossing between the spaces Mg1¢(A) = Mi—1 and My_(A) = Mj, the
window has widthny =i, n-=d + g—1-—2i.

Proof

We use the notation as in the discussion above, with My — M/ := M,(A(2D’)),
D’ effective with deg D’ > 0. For £, there is no strictly semistable locus and
in fact PGL,  acts freely on the semistable locus (see [39, 1.6]), so M;_; =
Msie(A) = Xlg, SLy and M; = My_(A) = X/g_SLy are isomorphic to
the quotient stacks [X%(£+)/PGL,/] (cf. Remark 3.2). By Lemma 3.1, both
[X/PGL,/] and [X'/PGL,/] are smooth quotient stacks of dimension d + g — 2
and d + g — 2 + 2deg D’, respectively, and thus X and X’ are both smooth and
X C X’ is a local complete intersection cut out precisely by the 2deg D’ conditions
imposed by the vanishing of a section along D’.

Recall that the unique KN stratum of X*(&£4) is determined by (Z,A) (cf.
Remark 3.15), where for a pair (E’, ¢') € Z, the bundle E' = L’ & K’ is acted on by
(some power of) A = G,, by (t?,17%). We will first compute the weights with respect
to this action, and later rescale according to the parameterization that describes the
whole one-parameter subgroup. By [36, Lemma 7.6] and its proof, the A-weights of
N¢ x on Z are all £(a +b) = £y or 0. Then the weights of NSVi/X are all
+y,and nt = weight;ki det NSVi/X | z is just the codimension of S+ C X. Since S+
is the bundle WijE on Z, we have codim(S+ C X) =r1k Wf, so that ny =iy’ and
n-=(d+g—-1-2i)y.
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As a one-parameter subgroup of PGL,/, A is given by sending ¢ — diag(s?, ...,
sb ,87%, ...,57%), where s¥" = t. Indeed, note that this is well defined, since
when replacing s by &s, with & a y’th root of unity, the matrix A(¢) gets scaled
by & = £7%. Also, note that this A is injective, whereas its y'th power f
diag(tb o th 7% ..., t7%) is not. Therefore, all weights computed above need
to be rescaled by 1/ y’. This gives the formulas in the statement. ([

Using this we obtain the following result.

PROPOSITION 3.18

For 1 <i < % (resp., i > d+3¢—1) there is an admissible embedding
Db(M;_1) = Db(M;) (resp., DP(M;) = D®(M;_y)). When 1 <i < FE=1 tpe
admissible embedding can be chosen to be the window subcategory GJ - Db(Mi)
determined by the range of weights [0,i) C [0,d + g —1—2i) (c¢f. [18]) and moreover
there is a semiorthogonal decomposition

D®(M;) = (D?(M;—1), D*(Sym' C),..., Db (Sym’ C)) (3.5)

with w =d + g — 3i — 1 copies of D?(Sym’ C) given by the fully faithful images
of functors Rjx(L*(-) @ O, (1)) : D?(Sym’ C) — DY(M;) for1 =0,....;u—1,
where 1 : IP’WI.+ — Sym* C is the projection and j : IP’I/VZ.Jr < M, the inclusion.

The semiorthogonal decomposition (3.5) follows from [4], as the birational trans-
formation between M;_; and M; is a standard flip of projective bundles over Sym’ C.
Here we provide an alternative proof for this case. We also note that [36, Corol-
lary 8.1] shows the admissible embeddings D®(M;_) < D®(M;) when i is in the
specified range.

As explained in the introduction, Proposition 3.18 does not provide a semiorthog-
onal decomposition with Fourier—Mukai functors associated with Poincaré bundles
and it is not used in our paper. However, we find this result relevant.

Proof

If i = 1, this follows from Orlov’s blowup formula in [35]. Let i > 1. From Lem-
ma 3.17, weighty wx|z = n- —n+ = (d + g — 1 —3i). By [18, Proposition 4.5,
Remark 4.6], and since My+e =~ [X*°(£+)/PGL,/], we get a window embedding
D®(Myy¢) € DP(M,_.) if ny < n_ and the other way around if 7, > 5_. More-
over, if G = D®(M, ) is a window, determined by the range of weights [w, w +
n+) C [w, w+n_), then [18, Theorem 2.11] and [2, Theorem 1] give semiorthogonal
blocks D?(3), so that

DP(M—e) = (G . DP(3)w..... DPBwru—1). (3.6)
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where 4 = n— — n4+ and 3 = [Z /1] is the quotient stack by the Levi subgroup. By
Remark 3.16, Db(3) = ngm (Sym’ C), so the blocks in (3.6) are given by the fully
faithful images of Rj.(L7*(-) ®L O, (1)) : D?(Sym’ C) — Db(M;) forl € [w, w+
W), where m : IE”Wl.+ — Sym' C is the projection and j : IP’VVl.Jr < M; the inclusion.
Taking w = 0 gives the claim. O

COROLLARY 3.19
Ifd <2g —1, then D®(M;_;) C D®(M;) forany 1 <i <w.

Proof
In this case i < (d —1)/2 < g — 1, so the inequality i < (d + g — 1)/3 holds for
everyi. U

Consider an object G in D®([X/ PGL,/]) descending to some objects on
D®(M;_;) and D?(M;). We can use windows to determine when such object
can “cross the wall.” Namely, if the weights of G are in the required range, cohomol-
ogy groups will be the same on either side. By abuse of notation, we often denote in
the same way both the object on D?([X/PGL,/]) and the objects it descends to in
Msic(N).

THEOREM 3.20
Leto =d/2—i, 1 <i <v.If A, B are objects in D?([X/PGL,/]), with » = X-
weights satisfying the inequalities

1 +2i —d — g <weighty B|z —weight) A|z <i, (3.7)

then RHomyy, , (A, B) = RHomy, (A, B). In particular, if 1 +2i —d — g <
weight, B|z <, then RT'y;,_, (B) = Ry, (B).

Proof
By Lemma 3.17, (3.7) is equivalent to the inequalities

—n— < weight, B|z —weight, A|z <4,
so the quantization theorem (see [ 18, Theorem 3.29]) implies that
RHomy, (4, B) = RHom[X/pGLX,](A, B) = RHomy,,__(A, B).

Indeed, the first equality follows directly from [18, Theorem 3.29] applied on
M+, while the second is the same theorem applied on M;_., using the fact that
weight, B|z —weight;, A|z = —(weight, B|z — weight; A|z). O
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We finish this section with the computation of all weights that we need in order
to construct the semiorthogonal decompositions.

THEOREM 3.21
The objects of the form Fy, Ay, ¥, , Gp on both M;_1 and M; are the descents of
objects Fx, Ay, ¥, &, Gp on Db([X/PGLX/]) that have A-weights

weights;, Fy|z = {0,—1},

weight; Ay |z = —1,
weight, |z =d +1—g —i,
weight, £|z = g —i,

weights, Gp|z = {0,—1,...,—deg D}.

Proof

Leto =d/2—i,and embed 1 : My (A) — M/ = My(A(2D’)) for an effective divi-
sor D', deg D' > 0, as usual. Recall that the universal bundle F’ on C x M _ is
the descent of /(1) on C x X’ C C x U’ x PCX', where " is the universal family
on C x U’ (see [39, 1.19]). Let us compute the A-weights of #, (1) on the o-strictly
semistable locus, for a point x € C. The fiber of ¥ over L' @ K’ is L, @ K., which
is acted on with weights b in the first component and —a in the second. Since the
A-weight of O, (1) over the section (¢',0) is —b, the weights of F(1) are 0 and
—a —b =—y'. By Lemma 3.8, we have Fy, >~ 1*F. Hence, Fy also is the descent of
an object with weights 0 and —y’.

The bundle det 7 F’ descends from det 1. %/ (1). On the fiber of m %’ over L’ &
K’, X actson H°(L") @ H°(K') with weights b and —a, with multiplicities 21°(L’) =
a and h°(K’) = b, respectively. Taking the tensor product with Opcx (1) shifts each
weight by —b, and then taking the determinant we get weight, detm % '(1)|z =0 -
a+ (—a—>b)-b=—by'. For det F, which is the descent of det ¥,/ (1), we see that A
acts with weights b, —a on L', & K, and then shifting by —b and taking determinants
we get weight, det #/(1)|zr = —a —b=—)'.

Now for the universal bundle F on C x Ms+.(A), we use the short exact
sequence (3.2). From this we see that Ay = det Fy >~ det F, is the descent of an
object with A-weight equal to —x". Also, since detm F'|prxp,, ., = det@,cp/ Fy =
(det F/)%eD’ | we obtain that ¥~! = detm F = detm F’ ® (det F/)~4eD" is the
descent of an object with A-weight equal to —by’ + deg D’ y’. Recall that deg L' =
i +degD’, deg K’ =d —i + deg D’ (see the discussion before Remark 3.15), so
by Riemann—Roch b = h°(K’) =d —i + deg D’ + 1 — g and the weight of ¥ is
—x'(degD’ —b)=y'(d+1—g—i).Asfor{ =y ® Aﬁ;zgﬂ, the weights must
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be(d+1—g—i—(d—2¢g+ 1))y =(g—1i)x . Rescaling everything by 1/’ as in
Lemma 3.17, we get the weights as in the statement.

Finally, we consider Gp. Let D = x; + -+ 4+ x,. Since by construction tensor
bundles are functorial in M, the bundle G p is the descent of a vector bundle (& xa) D
on X, where M = X /SL, and € descends to F. By Lemma 2.9, (&%) p is a defor-
mation of &5, ® - ® &, , and the deformation can be chosen to be SL,-equivariant
(see Remark 2.10). Therefore, (6€¥%)p has the same weights as the tensor product
Ex, ®® &y, thatis, 0,—1,...,—a. O

Remark 3.22

Observe that 0;(1,0) = ¢ ® Aﬁ,,_g and 9;(0,1) = A3}, so we can use the previous
theorem to see that in general, a line bundle O;(m,n) is the descent on both M;_;
and M; of an object having A-weight m(1 —i) + n on the strictly semistable locus of
the wall.

4. Acyclic vector bundles on M;—easy cases

In order to prove Theorem 1.1, we will first construct fully faithful functors CDfx :
D?(Sym® C) — D?(M;) for « < i and show that, after suitable twists, the essen-
tial images of these functors are semiorthogonal to each other in the required way
(see Theorem 9.3, Definition 10.1, and Theorem 10.4 below). By means of Bondal—
Orlov’s criterion in [7], this reduces to the computation of RI" for a large class of
vector bundles on M;. In particular, we will need to prove I"-acyclicity for several of
these vector bundles.

THEOREM 4.1
Letd >2and1<i <v.Let D =Xy + -+ Xo, D' = y1 +--- + yg (possibly with
repetitions). Suppose that

degD—g<t<d—degD —i—1.
Then
o B
RTwya) () F, ® Q) Fy ® Aly 0871) =0, (4.1)
k=1 k=1

Remark 4.2
By Corollary 2.9 and semicontinuity, the same vanishing holds if in (4.1) we replace
Q=1 Fy, by either G, or G and ®£=1 Fy, by either Gp: or Gpr.

We start with a lemma.
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LEMMA 4.3
RFMl(d)((ng(d)(_kH +1E1)=0for0<k<d+g—2and0<[<d+g—4.
In particular, taking t =k =1 we get RTpr,q)(A4,) =0for0<t <d +g—4.

Proof
Consider the short exact sequence

O—)@Ml(d)—>(9M1(d)(E1)—>(97,(—1)—>0, (4.2)

where E1 = IEDWIJr and 7 : Ey — C isthe P"-bundle, r =d + g —4; Opr,a)(—kH)
is ['-acyclic provided that 0 < k <d 4+ g —2 = dim M;(d). Then twisting (4.2) by
Om,@)(—kH) and taking a long exact sequence in cohomology gives I'-acyclicity
of Oy, a)(—kH + E;) for such k. Similarly, twisting by powers of Oz, (a)(E1)
and using induction, we get that RI s, (2)(Opr, ) (—kH + [E)) = 0 as well, since
Or(=1)is -acyclicfor0 <l <d + g —4. O

We will prove Theorem 4.1 by induction, starting with the base case i = 1.

LEMMA 4.4
The statement of Theorem 4.1 holds fori = 1.

Proof
Leta =deg D, B =deg D’. We are given that o« — g < t < d — B —2. We do induction
ona + B.1f @ = f =0, then we have to check that A, @ ¢! = —(t + g)H + (g +
t —1)Eq is T'-acyclic on M1(d). By Lemma 4.3, this holds provided that 0 <7 + g <
d+g—2and0=<g+1t—1=<d + g — 4, which is true by hypothesis.

If @ > 0, then we write D = D + Xxq. Consider the exact sequence (3.3) from

Lemma 3.11 and twist it by U := @3} Fy ® ®£=1 Fy, @ A4y, ® {1 to get

o B
0>Ay U > Q) FY @R Fy, ® Ay @™ - U = Ulpgya—2) — 0.
k=1 k=1
(4.3)

The restriction of Fy to Mo(d —2) =P",r =d + g — 4, is equal to Opr @ Opr (—1)
by Lemma 3.9. Therefore, we see that the restriction of the bundle U = ®z;11 Fy ®
®£=1 Fy, @ A, ® ¢! to Mo(d —2) is a sum of bundles @ Opr(s;) ® Opr (1 —
t —g), with —f <s; <o —1 (cf. Remark 3.7). These are all I"-acyclic on pd+e—4
since by hypothesis

a—t—g<0, —PB+l-t—g>—(d+g—4). 4.4)
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Now we look at the first and third terms from the sequence (4.3), which are
FVEY @@ Py ® Ay @ and Q) Fy, @ @, Fy @ Al @71
We observe that they both satisfy the inequalities of the hypothesis, so by induction
they are ["-acyclic on M1 (d). Therefore, applying RT to (4.3) we see that the second
term must also be ["-acyclic, as desired.
Similarly, if 8 > 0, then we write D’ = D’ + v and use the exact sequence

0—)(9M1(d)—> Fyﬁ —>AM _>AM|M0(d—2)_>Os

twisted by Qg —; Fy, ® ®£: Fy, ® A%, ® {~!'. The resulting term on the right is
asum @ Opr (sj) @ Opr(—t — g), with —f + 1 <s; <, and it is again I"-acyclic
by the same inequalities (4.4). Finally, the remaining two terms are I'-acyclic by
induction, and we conclude that RT 7, @) (®j=; Fy, ® ®£:1 Fy, A4, Q571 =0
as well. O

Proof of Theorem 4.1

Let « = degD and 8 = degD’. We do induction on i. If i = 1, then this is
Lemma 4.4. Let i > 1, and suppose that the statement holds for i — 1. For ¢ in
the given range, we have

o B
RFM,',I(d)<® F;;( %) ® F)’k X Asu ® é'—l) =0
k=1 k=1

by the induction hypothesis. Consider the wall-crossing between M;_; and M;.
Here, the bundle ®j_; Fy, ® ®£=1 Fy, ® A%, ® ¢7! descends from an object
with weights {— —¢ +i —g,...,a0 —t +i — g} (see Theorem 3.21). Our hypothesis
guarantees thato —t +i—g<i=nyand —B—t+i—g>14+2i—d—g=—-n_,
that is, all these weights live in the range (—n—, n+). By Theorem 3.20, this implies
RTu;a)(@f—1 Fry ® Qpoy Fy ® Ay ® £71) = RTw, )@, Fy, ®
®£=1 Fy, ® Ay, ® {1) =0, as desired. O

5. A fully faithful embedding D?(C) c D®(M;)
The following Theorem 5.1 is a special case of Theorem 9.3 and will be needed for our
proof of the latter. Namely, the results of the present section will be used in Sections 7
and 9, in results that are necessary for Theorem 9.3. While Theorem 5.1 could be
avoided by including it as a step of a more complicated inductive proof, we find it
more convenient to prove it first, both to make the inductions less cumbersome and to
introduce some ideas that will help understand the general picture.

We assume that v > 1, that is, d > 3. As before, let E; C M; be the excep-
tional locus of the blowup M1 — My along C C M. By Orlov’s blowup formula in
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[35], we have a fully faithful functor W : D?(C) < D®(M,), corresponding to the
Fourier—-Mukai transform given by Oz (E1), where Z = C x¢ E;. Now consider the
Fourier—Mukai transform

®p = Rp«(Lg* () ®L F): D®(C) — D (M)
determined by the universal bundle F on C x M.

THEOREM 5.1
The functor ®F is fully faithful.

We need a few constructions and lemmas first. Observe that Z = C x¢ E7 is sup-
ported precisely on the zero locus of the universal section ¢ : Ocxy, — F. Indeed,
pairs (E, ¢) in IE”WIJr = E parameterize extensions

0—>0c(x)— E—>A(—x)—0

with the canonical section ¢ € H?(C,O¢(x)) vanishing on x € C (see [39, 3.2]),
and in fact ¢~> has no zeros outside this locus, since M;\ E; consists of extensions
0 — Oc — E — A — 0 together with a (constant) section ¢ € H°(C,O¢) (see [39,
3.1]). Since Z has codimension 2, we have a Koszul resolution

N2FY = FY 4 00,2 0. (5.1)

LEMMA 5.2
We have RT pr, (A3f) = 0.

Proof
Recall that A;} = Opm,(H — E;). We have an exact sequence

0—0Om(H—-E)—>Ou(H)— 0O, (H)—0,

so it suffices to show that j* : H? (M1, O p, (H)) = HP?(E;,0F,(H)) forevery p,
where j : £y < M is the inclusion. For each p, consider the commutative diagram

*

HP(My, 0, (H)) - HP(Ey,OF,(H))

”*T q*T (5.2)

H?(My.Opmy(H)) —— HP(C.0c(H))
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where 1 : C — M, = P4+8=2 ig the inclusion, 7 : M; = Bl¢c My — M, is the
blowup along C, and ¢ = |g, : E; — C, which is a P"-bundle. Hence, both ver-
tical arrows in (5.2) are isomorphisms. Indeed, these pullbacks are fully faithful
at the level of derived categories. Moreover, 1 : C < M, is the embedding by the
complete linear system |wc ® A| (see [39, 3.4]). Therefore, Oc(H) ~ wc ® A
and * : H%(Mo,Op,(H)) — H°(C,0O¢c(H)) is an isomorphism. For p > 0,
H?(My.0pm,(H)) =0 because My is a projective space. On the other hand, since
degwec ® A > degwc, we also have H?(C,0O¢(H)) = 0 for p > 0. In summary,
the two vertical maps and the lower horizontal map in the commutative diagram are
isomorphisms for all p. Hence, the same holds for the upper horizontal map. O

LEMMA 5.3
Let x € C. Then RTp, (FY) =0, while RTp, (Fy) = C, with H*(My, Fy) = C
given by restriction of the universal section (,23 of F to {x} x M.

Proof
Consider the resolution (5.1) and restrict to {x} x M; to get

Ay — FY — Opm,] = Opr, (5.3)

where P, = Mo(A(—2x)) is the fiber over x € C C M, along the blowup 7 : M; —
My. We twistby Ay = Op, (E1 — H) to get

[On, 5 Fe > Ap] S Opr (1), (5.4)

using that FY ® Ay = FyY ® (A2Fy) >~ Fx and that Oy, (H) restricts trivially to
Opr. (see Lemma 3.11 for a generalization of (5.3) and (5.4)). It is well known that
RI'(Opr (—1)) = 0. By Lemma 4.2, we also have RI'(A ) = 0. Hence, by (5.4),
é induces an isomorphism RI'(O s, ) >~ RI'(Fy). As M; is a blowup of a projective
space along a smooth center, we get RT'(Fy) ~ RT (O p,) ~ C, with HO(M, Fy) =
C given by restriction of ¢ to {x} x Mj.

To show that RT s, (F,') = 0, we apply RT to (5.3). We already know that
RT'p, (A;,Il) = 0 by Lemma 5.2, so it suffices to show that that the restriction map
H?(M;,0p,) — HP (P, Opr,) is an isomorphism for every p. For p > 0, both vec-
tor spaces vanish, because we have a projective space and a blowup of a projective
space. For p = 0, we have an isomorphism of one-dimensional vector spaces because
this is just restriction of constant sections. O

Proof of Theorem 5.1
By Bondal-Orlov’s criterion (see [7]), in order to show full faithfulness of ®r we
only need to consider the sheaves ®f(Oy) = Fx for closed points x € C. On the
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other hand, consider the functor ¥ from Orlov’s blowup formula, with Fourier—Mukai
kernel Oz(E1), Z = C x¢ E1. We can compute ¥(0,) = ®g_, (£,)(0x) for a point
x € C using (5.1) as follows. As before, let P, = Mo(A(—2x)) denote the fiber over
x € C C My along the blowup. The fact that O s, (H) restricts trivially to this fiber
implies that both A ps and Oy, (E1) restrict to Opr (—1) there. Now we restrict (5.1)
to {x} x M and twist it by Ay to get P, (£,)(Ox) =[Oy, — Fx — Ay] =
Opr. (=1), as in (5.4). Since we already know that W is fully faithful, we have

0 ifx#y,
Homps s,y (¥ (0x). W(Oy)[k]) =40 ifx=yandk #0,1,  (5.5)
C ifx=yandk=0,1.

But RHomys, (¥(0y), ¥(0y)) ~ RI' o RHom(¥(Ox), ¥(Oy)) can also be ob-
tained as follows: take R Hom(¥(Ox), ¥(O9y)) >~ ¥(Oy)" oL ¥ (0,) as an inner
tensor product obtained from the double complex

(91\/11 F;@AM — Ayp

T ! T

A;ll QF, — F/®F, —— F, (5.6)
A;ll F;/ Om,

which produces the total complex
[Asf = F) @ F) = O3 & (F, ® Fy) > Fx ® Fy > Ay
~ W(0y)Y @F ¥(0,), (5.7)

again using Fy >~ F;Y ® A pr. Recall that our descriptions of W(0y) and W(0Oy)" were
obtained from the Koszul resolution (5.4) and its dual. In particular, the maps O s, —
F; ® Ay ~ Fyx and Oy, — F, appearing in (5.6) correspond to the restriction of
the universal section ¢ to {x} x M; and {y} x M, respectively.

The hypercohomology RI" of (5.7) can be computed by taking the spectral
sequence with first page EPY = H4(X,¥7) = HP14(X,¥*). On the other hand,
we know that the RI" of this complex is given by (5.5). We will combine these to
show that

ifx # y,

0
RTpy (F) ® F)) = 5.8
Ml( x y) {CEB(C[—]] 1fx=y ( )
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By Lemma 4.3, RT 'y, (Ap) = 0, and by Lemma 5.2, Ry, (A}}) = 0. Also,
Lemma 5.3 computes the hypercohomology of both Fy and F,. Summing up, apply-
ing RT to (5.7) yields a spectral sequence E f’ 4 of the form

HY(FY ® Fy) 0 0

0 — 0 — H°OpM)®?® H)FY ® Fy) — HO(Fy)® H°(Fy,) — 0,

where the map H°(Q,)®% — HO(F,) @ H(F,) is the isomorphism C2 — C2
given by the universal section in each coordinate, by Lemma 5.3 and the discussion
above. Since this spectral sequence converges to (5.5), we obtain (5.8). ([

6. Acyclicity of powers of A},
The goal of the present section is to prove the following generalization of Lemma 5.2.

THEOREM 6.1
Suppose that2 <d <2g+ 1land 1 <k <l <v. Then

RTp,a)(A3F) =0.

I"-acyclicity of these negative powers of A jy will be crucial for the cohomology
computations in the upcoming sections.

LEMMA 6.2
Under the assumptions of Theorem 6.1, H®(M;(d), A;lk) =0.

Proof

Since M; is isomorphic to M, in codimension 1, it suffices to prove that H°(M,
A;lk) = H%(M,,kH —kE{) = 0. Recall that M is the blowup of P" in C embedded
by a complete linear system of K¢ + A, r =d + g —2, E; is the exceptional divisor,
and H is a hyperplane divisor. The claim is that there is no hypersurface D C P” of
degree k that vanishes along C with multiplicity at least k. We argue by contradiction.
Choose r + 1 points x1,...,X,+1 € C in linearly general position. Then D vanishes
at these points with multiplicity > k. Let R be a rational normal curve passing through
X1,...,Xr4+1. Let R and D be the proper transforms of R and D in Bly,  x,., P,
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Then D-R < kr —k(r +1) < 0. It follows that R C D. But we can choose R passing
through a general point of P", which is a contradiction. O

LEMMA 6.3
Under the assumptions of Theorem 6.1, if RT'pp, (d)(AXlk) =0, then

RT a1,y (A3f) =0.

Proof

By Theorem 3.21, in the wall between M;_; and M;, A;,Ik descends from an object

of weight k, with —n_ <k <n4 whenk <[ <w, thatis, 1 +2/ —d —g <k < forl

in that range. This way, 0 = RI'y, (A;Ik) = RI'y, (A;,Ik) for [ > k by Theorem 3.20.
O

Definition 6.4
For 0 <« < i, we introduce the following loci:

E¥ :={(E.s) | Z(s) C C has degree > o} C M;,
D¢ :={(D.E.s)|slp =0} CSym* C x M;,
R?:={(D.E,s) | s|p = 0and Z(s) has degree >a + 1} C DY,

where Z(s) denotes the zero locus subscheme of the section s.

Note that El’ is precisely IF’Wl.+ (see [39, proof of 3.2]), while Ei1 = E; is the
proper transform of E; under the birational equivalence given by (3.1). Recall that
Oum; (E;) = 0;(1,—1) according to Definition 3.5. For a divisor D € Sym* C, we
observe that the fiber (DY)p along the projection Sym* C x M; — Sym® C is
isomorphic to M;_4(A(—2D)) (see Remark 3.7 or [39, 1.9]). Similarly, (R¥)p =~
Ei_4(A(—=2D)). In particular, D¥ is smooth, and we have a diagram

R - D

L o

a+1 o4
et~ E
where v is the normalization morphism.

LEMMA 6.5
We have the following commutative diagram
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0 —— v*(Qqu(—R?‘) — v*(9D§x —_— V*(9R§?‘ — 0

e

0 — JE?"‘“ e OE;" —_— (9Eq+1 — 0
1 1

where JElq+1 >V, (9th (—RY) is the conductor sheaf of the normalization (6.1) and

+1, . .
RY (resp., Elo‘ ) is a conductor subscheme in DY (resp., EY).

Proo

Frorr{ the flipping diagram (3.1), EZ C My is the projective bundle P W, and
E%,, C Mgy is isomorphic to E¢ away from ESf| ~P W, .

CLAIM 6.6

Eg . | has a multicross singularity generically along Eg_tll (concretely, this means
that a general section of Eg , | that intersects Eg_':_'ll in a point is étale locally isomor-
phic to the union of coordinate axes in A1),

Given the claim, and since multicross singularities are seminormal (see [23]),
E g‘ 1 has seminormal singularities in codimension 1. Fori > o+ 1, El"‘ is isomorphic
to £ 11 in codimension 2, and so also has seminormal singularities in codimension 1.
Next we argue by induction on « that D7 — E¥ has reduced conductor subschemes
EXT! C E¥ and R* C DY and EX! is Cohen-Macaulay and seminormal, and in
particular that we have a commutative diagram (6.2).

Indeed, £ l-l C M; is Cohen—Macaulay as a hypersurface in a smooth variety. Sup-
pose that £ is Cohen-Macaulay. Since it is seminormal in codimension 1 by the
above, it is seminormal everywhere (see [ 16, Corollary 2.7]). Therefore, its conductor
subschemes in E¥ and DY are both reduced (see [42, Lemma 1.3]) and all of their
associated primes have height 1 in E¥ and D7, respectively (see [16, Lemma 7.4]).
It follows that these conductor subschemes are equal to E;"H and RY, respectively.
Finally, R C Dy is Cohen—Macaulay as a hypersurface in a smooth variety and
therefore El"‘ e El"‘ is also Cohen—Macaulay (see [37, Theorem 2.2]), and we can
proceed with induction.

It remains to prove the claim. We analyze the flipping diagram (3.1) between
the spaces M, and M,+,, where M, contains projective bundles IP’WJH (over
Sym**™! C)and PW, ~ EZ (over Sym® C) of dimensions 2o + 1 and d + g —2—a,
respectively. What is their intersection over a point D’ € Sym**! C, for simplicity a
reduced sum of points? By [39, 3.3], P W, | parameterizes pairs (£, ¢) that appear
in extensions
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0-L—>E—>AQL1—0

with degL =d —a — 1 and ¢ ¢ H°(L). Projecting ¢ to A ® L™ gives a nonzero
vector y € H(A ® L™') with Z(y) = D’, so that A ® L™! = O¢c(D’), where
deg D’ = o + 1 (this gives the map from PW_, , to Sym**! C). Moreover, at
D’ the section lifts to a section of Op' QL ~ Op ®A(—D’), and this vector
uec H(Op ® A(—D’)) (determined uniquely up to a scalar) determines (E,¢)
uniquely (see [39, 3.3]).

The same pair (E,$) belongs to P W, if it can be given by an extension

0—-0Oc(D)—E—->A(-D)—0

with ¢ € H°(O¢ (D)) and deg D = « (see [39, 3.2]). Since ¢ vanishes at D and
its image in @¢ (D’) vanishes at D’, we have D C D’. Since we assume that D’
is a reduced divisor, there are exactly o 4 1 choices for D. Since u has to vanish
at points of D C D’, there is exactly one vector u € H°(Op: @ A(—=D’)) (up to a
multiple) that works for a given choice of D. Moreover, in this way we get a basis
of H*(Op ® A(—D’)) ~ C**1. It follows that, over D’ € Sym**' C, PW,, ; and
P W, ~ E% intersect in @ + 1 reduced points which form a basis of the projective
space (PW_ ,)pr ~ P*.

The strict transform of IP’WMJr in Myy1is EY 1 which contains the bundle
P WanH of dimension d 4+ g —3 —« (the flipped locus). After the flip, linearly indepen-
dent intersection points in (P W, ;) pr NP W, become linearly independent normal
directions of branches of EZ 11 along P W;Srl, that is, EJ 11 has a multicross singu-
larity in codimension 1, as claimed. We illustrate the geometry of M, My 4+ and the
common resolution Ma_l,_l in Figure 1. O

COROLLARY 6.7
If the claim of Theorem 6.1 is proved for 1 <k =1 <i — 1, then, for 1 <a <i —1,
RT (@E;X(l,i —1)) ~ RI'y; ((9E.“+l (1,i — 1)) via RT'(B).

Proof

Twisting by @;(1,i — 1) and applying RI" to the bottom sequence in (6.2), we see
that it suffices to show that J a+1(1,i — 1) = vy 0 pe (—R¥)(1,i — 1) is I'-acyclic.
But v is a finite map, so this is equivalent to I'-acyclicity of (91);_1 (=R¥)(1,i —1).
Using the Leray spectral sequence for the fibration p : D¥ — Sym® C, it suffices to
prove that RI'(O pe p(—R{'p)(1,i — 1)) = 0. Under the isomorphism (DHp ~
M;_o(A(=2D)), R¥ C Sym*C x M; restricts to E! , on M;_o(A(=2D)),
while Q;(m,n) on M;(A) restricts to Q;_q(m,n — ma) on M;_o(A(—2D)) (cf.
Remark 3.7). Therefore,
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A

. (PW(”:)D'
M a M a+1
Figure 1. (Color online) Common resolution Ma+1 of My and My 41.
RT ;@) (0 02, p (=R p)(1,i = 1)) = RUu,_, (d—20) (A7)
which is zero by hypothesis. O

LEMMA 6.8
Suppose that d <2g + 1. Thenfor 1 <i <d +1—g, i <v, we have H? (M;(d),
O;(1,i —1)) =0 forany p > 0.

Proof
Recall that wpy, = Op, (3,4 —d — g) for every 1 <k < v (see [39, 6.1]). First,
we see that there is some i < k < v such that the bundle Oy, (1,i — 1) ® a);llk =

Opm,(4,d + g + i —5) is big and nef. By the description of the ample cones in
Remark 3.6, it suffices to check that (4,d + g + i — 5) € R? lies in the closed cone
bounded below by the ray through (1,7 — 1) and above by the ray through (2,d —2).
Considering the slopes, this is equivalent to i — 1 < M < d 2 The inequality
on the left is equivalent to 3i < d + g — 1, which is guaranteed by the fact that
i<v=|(d—-1)/2] and d <2g + 1. The other inequality is equivalent to i <d +
1 — g, which is given as a hypothesis. Therefore, there is some k > i, k < v such that
Om(1i —1) @ wy, 1s big and nef. By the Kawamata—Viehweg vanishing theorem,
HP (M, 0r(1,i — 1)) =0 for p > 0.
Now, we claim that in fact
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RTy; ((Di(l’i - 1)) = RFM,—_H ((9i+1(1,i — 1)) =...
= RTp, (Ok(1.i = 1)). 6.3)

Indeed, in the wall-crossing between M;_; and M|, there are windows of width 4 =
landn-=d+g—1-2/and O;(1,i —1), O;_1(1,i —1) both descend from the same
object that has A-weight i — [ (see Theorem 3.21, Remark 3.22). By Theorem 3.20,
we will have RT'a,_ (O7—1(1,i — 1)) = RT'a, (O (1,i — 1)) whenever

142l —-d—-g<i-Il<l. (6.4)

But (6.4) holds for any i <[ <k, because then i < 2/, while 3/ <3(d — 1)/2 <
i +d 4+ g— 1 provided that d < 2g + 1. Therefore, (6.3) holds and in particular
HP(M;,0;(1,i — 1)) =0 for p > 0. O

Remark 6.9

Suppose that d < 2g + 1. Then (6.4) holds for / € (i/2,v], and the same reason-
ing shows that RT3, (O;(1,i — 1)) = RT'»,(O;(1,i — 1)) for every |i/2] <[ <wv.
In particular, under the same hypotheses of Lemma 6.8, O;(1,i — 1) has no higher
cohomology whenever |i/2] <[/ <w.

Definition 6.10
Let L; be the line bundle on Sym’ C defined by

L; =det ' mA(—A) @ det ! 1 O(A), (6.5)

where A C Symi C x C is the universal divisor (cf. [39, 6.5]). To emphasize the
degree d, sometimes we denote this line bundle by L;(d).

LEMMA 6.11
HP?(Sym! C,L;(d))=0ifp>0,1<i<d—g.

Proof
By [39, 7.5] (see also [27]), and mixing notation for line bundles and divisors,

Li(d)=(d-2im+20 and  Kg,ic=(g—i—Dn+o. (6.6)

where 7 = x + Sym'~! C C Sym’ C is an ample divisor for any fixed x € C and
o C Sym’ C is a pullback of a theta divisor via the Abel-Jacobi map; in particular, o
is nef. It follows that L;(d) — Kg i c =(d —i —g+ 1)n+oisampleifi <d —g,
and the result follows by the Kodaira vanishing theorem. O
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LEMMA 6.12
Suppose thati +g <d <2g+ 1. Then y(M;(d),9;(1,i —1)) = x(Sym’ C, L;(d)).

Proof
Since i <d — g, we can use Lemma 6.8 together with [39, 7.8] to compute

2(0:(1i = 1))
(1 _ t3)2i—d—1(1 _ 12)2d+1—2i—2g

= Res{
=0

T S pd e (1-50 -0 —1%)* dt}

(l+t)2d+l_2i—2g(l+3l+l2)g(1_l)d
fFI(1 ¢ 4 (2)d+1-2i t}'

Res{ 6.7)

t=0

On the other hand, we use the Hirzebruch—Riemann—Roch theorem to compute, using
the formulas (see [39, Section 7])

N — d—20)n+20 AN noo\iEtl o 0o
Ch(Ll) =e s td(Sym C) = (1 — e—ﬂ) exp(eI7 1 n)

and notation from the proof of Lemma 6.11, that

eM(d—2i) 1 g
x(Li)= E}jg{(l_e—m(z = 1) d"}’

where we have used [39, 7.2] with

B(n) =2+

A = @20 (L

)i—g+1 1 1
l—e? ’

e"—1 »n

If we let u(n) = e” — 1, then u is biholomorphic near n = 0, with (0) = 0, u’(0) =1,
so we can do a change of variables u = e — 1, du = e dn to obtain

d—i—
(I+u) §Qu + 1)8 du}.

x(Li) = Eze(s){ it (6.8)
Next, we apply an ad hoc change of variables
t 1—1¢?
U=———, du=-————dt
2 +t+1 (12 +1+1)?
to (6.8) and we get precisely (6.7) after some algebraic manipulations. O

For what follows, we need some geometric constructions. Fix a point x € C, and
consider a subvariety M;_;(d — 1) C M;(d + 1) of codimension 2 as in Remark 3.7,
with D = x. Let B be the blowup of M;(d + 1) in M;_;(d — 1) with exceptional
divisor &.
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Consider the P'-bundle PF, over M;(d + 1) that parameterizes triples (E, ¢, ),
where ¢ is a nonzero section of E and / C E is a line, subject to the usual stability
condition (see Section 3) that for every line subbundle L C E, one must have

oo I < i+1 ifp € HO(L), ©9)
85 = d—i+1 ifgp¢HOL). '

LEMMA 6.13
With the notation as above, the blowup B of M;(d + 1) in M;_1(d — 1) is isomorphic
to the following locus:

Z={(E.¢.l) : ¢(x) €l} CPF,.

Proof

Indeed, the projection of Z onto M;(d + 1) is clearly an isomorphism outside of
M;_1(d — 1), since the latter is precisely the locus where ¢ (x) = 0. Over M;_1(d —
1), the fiber of this projection is P!. By the universal property of the blowup, it
suffices to check that Z is the blowup of M;(d + 1) in M;_1(d — 1) locally near
(E,¢) € M;_1(d — 1), where we can trivialize F, >~ @ & . Its universal section
can be written as s = (a,b), where a,b € O is a regular sequence (its vanishing
locus is M;_;(d — 1) locally near (E, ¢)). Then Z is locally given by the equation
ay —bx = 0, where [x : y] are homogeneous coordinates of the P!-bundle PF given
by the trivialization Fy >~ @ @ @. Thus Z is indeed isomorphic to the blowup B. [

Now we can prove the main result of this section.

Proof of Theorem 6.1

By Lemma 6.3, it suffices to prove that Ry, (A;}) is zero for every i = 1,...,v,
which we will do by induction on i. The base case i = 1 is Lemma 5.2. Recall that
Oum; (E;) = 0i(1,—1). Twist the tautological short exact sequence for E; C M; by
O;(1,i —1) to get

0> Ay = 0;(1i—1) 50 (1,i —1)—0.

It suffices to prove that Ry, (O;(1,i — 1)) =~ RT'g; (Og; (1,i — 1)) via Ry. By the
induction hypothesis, we can apply Corollary 6.7 to see that

RU(Of;(1.i = 1)) -~ RT(O i (1,i — 1)) = RT(Opp+(1.i — 1)).

But O, +(1,i — 1) restricts trivially to each fiber of IE"WiJ’. Arguing as in [39, 6.5],

where an analogous statement is proved for @PWi_(l’i — 1) (but using [39, 3.2]
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instead of [39, 3.3]), the restriction O, +(1,7 — 1) is a pullback of the line bun-
dle L; on Symi C defined in (6.5). Alternatively, it is clear that (9PW_+ (1,i — 1) and

Opw~(1,i —1) are pullbacks of the same line bundle on Sym’ C because these projec-
tive bundles are contracted to their base Sym’ C by birational morphisms from M; (d)
and M;_1(d) to the (singular) GIT quotient M, (d), where 0 = % — i is the slope of
the wall between the moduli spaces M;(d) and M;_;(d). Furthermore, O;(1,i — 1)
is a pullback of a line bundle from that GIT quotient.

This implies that RF((9PWi+ (1,i —1)) >~ RT(Sym’ C, L;). Therefore, it suffices

to show that
RTp,(ay(Qi(1,i = 1)) =~ RTg i ¢ (Li(d)) (6.10)

via the composition of functors as above.

CLAIM 6.14
Ifd =i+ g, then (6.10) holds.

Proof

In this case, H?(M;,©;(1,i —1)) = H?(Sym' C, L;) = 0 for p > 0 by Lemmas 6.8
and 6.11. Using this together with the fact that A;,,i = ;(0,7) has no global sections
by Lemma 6.2, it suffices to prove that 1°(M;, ©;(1,i — 1)) = h®(Sym’ C, L;) or,
equivalently, that x(M;, @;(1,i — 1)) = y(Sym' C, L;). Thus, Lemma 6.12 proves
the claim. U

We now proceed by a downward induction on d, starting with any d such that
d > i + g. For such d, we have the result by the claim above.

Next we perform a step of the downward induction assuming that the theorem
holds for degree d + 1. As above, we fix a point x € C and consider the subva-
riety M;_1(d — 1) C M;(d + 1) of codimension 2 described in Remark 3.7. Let
J C O pm; (a+1) be its ideal sheaf. As in the proof of Lemma 6.11, we denote the divi-
sor x +Sym'~! C ¢ Sym’ C by 7 and, by abuse of notation, we denote its pullback to
the projective bundle P W, by 7 as well. Note that M; i (d — 1) N\PW;* =PW,T .
To summarize, we have a commutative diagram of sheaves on M;(d + 1) with exact
rows, where we suppress closed embeddings from notation:

0 4 Om;@a+1y — Om;_y@a-1) —= 0

N

0 —— (9]P,Wl_+(—r]) — OIPWI.“‘ e QIP’W,-'L —— 0
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We tensor (6.11) with @;(1,i — 1). Recall that the restriction of @;(1,i — 1) to

M;_1(d—-1)is O;—1(1,i —2),to IP’W+ is the pullback of L;(d + 1) from Sym’ C,
and to P W+1 is the pullback of L;_ 1(d — 1) from Sym‘~! C. By inductive hypoth-
esis on 7, the arrow y in (6.11) gives an isomorphism in cohomology after tensoring
with @;(1,i — 1). The same is true for 8 by our inductive assumption on d. By the
5-lemma, we conclude that we have an isomorphism

RU(4(1,i —1)) = RF(@PW(—n)(l,i —1)). (6.12)

As O W+(1 i — 1) is the pullback of L;(d + 1), we see that O W+( n(1,i —1)
is the pullback of L;(d) to the projective bundle (see (6.6)). Hence we can rewrite
(6.12) as

RTg(0p(1.i —1)(—€)) = RTg, . o (Li(d)). (6.13)

where B is the blowup of M;(d + 1) in M;_;(d — 1) and & its exceptional divisor.
Recall that the goal is to prove (6.10). We can do one extra simplification. Let
o= % — i be the slope on the wall between the moduli spaces M;(d) and M;_;(d),
and let M, (d) be the corresponding (singular) GIT quotient. The birational morphism
M;(d) — My (d) contracts the projective bundle P VVl.Jr to its base Sym’ C, and in

particular proving (6.10) is equivalent to proving that
RTp,(a)(0i(1,i = 1)) = RTg i ¢ (Li(d)) (6.14)

by projection formula and Boutot’s theorem [8, Corollaire]. To show how (6.13)
implies (6.14), we need a geometric construction, a variant of the Hecke correspon-
dence, relating B to My (d).

By Lemma 6.13, B carries a family of parabolic (at x € C) rank-2 vector bundles
E with a section ¢. The parabolic line at x defines a quotient £ — ¢, and we define
arank-2 vector bundle E’ as an elementary transformation by the formula

0—>E - E—0O,—0. (6.15)

Our condition ¢ (x) € [ implies that the section ¢ lifts to a section ¢’ of E’. Elemen-
tary transformation is well known to be a functorial construction (see [34, Section 4]),
and in fact we claim that (E’, ¢’) is a o -semistable pair; that is, we have a morphism

h: B—> Ms(d), (E,¢,1)—~ (E',¢").
Indeed, we need to check that
if o’ € HO(L),
deg L < if¢" € H'(L')
d—i if¢’¢H°(L’)

for every line subbundle L’ C E’, which follows from (6.9) applied to L’.
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By the Kolldr vanishing theorem in [22, Theorem 7.1], Rh«Op = Oy, (q).
Indeed, B is smooth, M (d) has rational singularities, and a general geometric fiber
of h is isomorphic to P! (given by extensions (6.15) with fixed E’). By projection
formula, (6.13) implies (6.14) if we can show that

h*0;(1,i —1)~Og(1,i — 1)(—8&).

Outside of & and for any ¢ € C, the bundle F, over the stack of the o-semistable
pairs (resp., its determinant A’), pulls back to the bundle F, over B \ & (resp., its
determinant A), by (6.15). On the other hand, the divisor El’ of o-semistable stable
pairs (E’, ¢’) such that ¢ has a zero, pulls back to the analogous divisor E; of B\ &,
because the section ¢ of E is the same as the section ¢’ of E’. Since E and A generate
the Picard group of B\ &, it follows that 1* O0;(1,i — 1) ~ Op(1,i — 1)(—c &) for
some integer c. It remains to show that ¢ = 1. To this end, we re-examine the diagram
(6.11). Note that the proper transform Pof P WiJr in B is isomorphic to its blowup in
P Wifl, which is the Cartier divisor 1. Therefore, P~P Wi+. However, the restriction
h*O;(1,i — 1)|3 is isomorphic to the pullback of L;(d) from Sym‘ C, while the
restriction @ g (1,7 — 1)| is isomorphic to the pullback of L;(d + 1). Since L;(d) ~
L;(d + 1)(—n), and € restricts to P as 7, the claim follows. O

7. Acyclic vector bundles on M;—hard cases
The main goal of the present section is to prove the following result.

THEOREM 7.1
Supposethat2 <d <2g+1land1 <i <v.LetD =x1+++Xxq, D' =y +--+
v8 (possibly with repetitions), and let t be an integer satisfying

degD —i—1<t<d+g—2i—1—degD’. (7.1)

Ift ¢ [0, deg D], then we have
o
RUwa((Q F ) ® Gor @ Ay ) =0,
k=1

Equivalently, if deg D ¢ [t, t + deg D'], then

R (G5 & (® ) @ M) =0
k=1

Remark 7.2

In the vanishings of Theorem 7.1, we can write G} or 62 in place of ®Z=1 F;;,
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and Gpr or G p in place of ®£=1 Fy, . This follows from Corollary 2.9 and semi-
continuity.

These computations will allow us to verify both the Bondal-Orlov conditions for
the fully faithful embeddings of D?(Sym® C) into D?(M;), for o < i, as well as
the vanishings needed in order to show semiorthogonality between the corresponding
subcategories of D?(M;) thus defined.

We start with a lemma on My (d).

LEMMA 7.3

Letd >0andi =0. Let D =x1 + -+ + Xo, D' = y1 + -+ + yg (possibly with
repetitions), and let t be an integer satisfying deg D <t <d + g —1—deg D’. Then
RT a0y (®f=1 F2) ® (@, Fy) ® Ajy) =0.

Proof

The vector bundle (Ri_; Fy) ® ((®£=1 Fy,) ® A'|m, has the form
D Opats—2(s; — 1) on My =P4T872 where —f < s; < a (see Lemma 3.9). By
hypothesis, « —t <0 and —f — ¢ > —(d + g — 2), so this bundle is ['-acyclic. = O

THEOREM 7.4
Letd >2and 1 <i <v.Let D =x1 +---+ Xq, D' = y1 + - + yg (possibly with
repetitions), and let t be an integer satisfying

degD <t <d+g—1—2i—degD’.
Then RT ;@) (=1 FY) ® (R _, Fy,) ® Ay) =0

Proof

By Theorem 3.21, the bundle (®)_, FY)® ((X)f=1 Fy,) ® A%, descends from an
object with weights in [-f — ¢, —t]. For every 1 < j <i, these weights live in the
window between M;_; and M, since by hypothesis 1 +2j —d —g <—f —t and
a —t <0< j. Then using Theorem 3.20, RT s, a)(Qy=; Fy,) ® ((8,‘6;1 Fy)®
AL = R, (a) (Ri=y Fy)® (®£:1 Fy,) ® A%,), so it suffices to show the the-
orem for the case i = 1.

Also, using (Qf =y Fy,) ® (=, Fy) ® Ay ~ (Rf =y Fu) ® (R, Fyy)®
A’A;"‘, it is easy to see that it suffices to show the theorem for the case o« = 0. So we
assume that ¢ = 0 and do induction on 8. If 8 =0, then 0 <t <d + g — 4 and the
result follows from Lemma 4.3. If 8 > 0, write D' = D' + vg. We use the sequence
(3.4) from Lemma 3.11 with Fy, and twist it by (®£;i Fy,) ® A, to obtain an
exact sequence
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p—1 B
0—> Q) Fy ® Ay > Q) Fy, @ Aly
k=1 k=1
B—1 B—1
S RF, ® AT F,®A’+1‘ -0
= LT A

Of these terms, RFMO(d—z)(®£: Fy, ® A%F') =0 by Lemma 7.3, since 0 <
t+1<(d—-2)+g—1—(B—1), while by induction Ry, (d)(®,€;i F,, ®AYy) =
RTa, @) (@EZ) Fye ® ALFY) = 0. Therefore, we obtain R, 2y (®F_, Fy, ®
A%y) =0 as well. O

COROLLARY 7.5
Suppose that d > 0and 0 <i <wv. Let D = x1 + --- 4+ xq (possibly with repetitions),
witha =degD <d + g —2i — 1. Then

RTy, (/(cg) ka) = RTy,(Gp) = RTw,(Gp) =C. (1.2)
=1

Moreover, ifi > 1, the unique (up to a scalar) global section of these bundles vanishes
precisely along the union of codimension 2 loci M;_1(A(—2xy)), fork €{1,...,a}.

Proof

When i =0, Fx, = Opr @Opr(—1) on My =P", r =d + g —2 (see Lemma 3.9),
and ®ka splits as a sum of line bundles € Opr (s7), where —a <s; <0 and
exactly one of the summands is Opr. Since @ <d + g —2, Ry, (R~ Fx,) =Cin
this case. Since Gp and G p are deformations of @p_, Fy, over A', we have (7.2)
by semicontinuity and equality of the Euler characteristic.

Leti > 1. We see that, using Theorem 3.20, it suffices to prove (7.2) on M;(d).
In fact, by Theorem 3.21, ®r_, F. %, descends from an object with weights within
[—o, 0], all of which live in the window (1 +2j —d — g, j) for 1 < j <i,
since 1 +2j —d —g <1+ 2i —d — g < —a by hypothesis. This way we get
RTpm, (=1 Fxi) = RUam, (R =1 Fx;)- Similarly, RT'y, (Gp) = RT'p, (Gp) and
RTu,(Gp) = RTp, (G p).

Hence, we take i = 1 and o« < d + g — 3. In this case, d > 2. Let us show
that RTp, (Q) Fx, ) =~ C first. We do induction on «. If D = 0, then the result is
trivial. Otherwise, use the sequence (3.4) from Lemma 3.11 on Fy, to obtain an exact
sequence

a—1 o a—1 a—1
0—>](§ka —>§ka —>1(§ka ®AM—>I§ka ®AM‘MO<d_2)_’O'
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Of these terms, we get RI'yy, (d)(®z;11 Fy, ® Apr) =0 from Theorem 7.4. Also, we
have RI'y,(a—2) (®z;11 Fy, ® Apy) =0 from Lemma 7.3, given that here r = 1 and
0<l<(d—-2)+g—1—(x—1). Using the hypercohomology spectral sequence
EP? = HY(X, F?) and induction, we obtain

o a—1
Rw, (@) Fr ) = RUwy (@) ) = C.
k=1 k=1

Finally, by Corollary 2.9 both Gp and Gp are deformations over A! of
X%~ Fx;» so we have (7.2) by semicontinuity and equality of the Euler charac-
teristic. It also follows that the global section of Gp (resp., G p) is a deformation of
the global section of @ _, Fx, over A', which does not vanish outside of the union
of loci M;_1(A(—2xg)) fork = 1,...,«. On the other hand, the tautological sections
of these bundles, that is, the descent of the tensor product of tautological sections of
X n;‘ F i (resp., this tensor product tensored with the sign representation) for G p
(resp., G p), vanish precisely along these loci. O

A key step in the proof of Theorem 7.1 will be the following proposition.

PROPOSITION 7.6
Suppose that d > 2 and 1 <i <wv. Let D be an effective divisor on C, and suppose
thatdeg D <d + g —2i — 1. Then

RTu,@) (G} ® ASEP ™) = RTay,a)(Gp ® A7) = 0. (7.3)

We will first show how Theorem 7.1 follows from Proposition 7.6 and then pro-
ceed with the proof of Proposition 7.6.

Proof of Theorem 7.1
Note that, by rewriting G p in terms of G}, using Corollary 3.14, both statements
can be seen to be equivalent, so we will only prove the first one.

We first suppose that D = 0 and do induction on degD’. If D = D' = 0,
then we need to show that for t # 0 with —i — 1 <t <d + g —2i — 1 we have
RTp;(a)(A%,) = 0.1f £ > 0, then Lemma 4.3 ensures that RTp7, (4)(A%,) =0, since
i>landsot <d + g—4.Butalsoforevery l <j <iwehave 1 +2j —d —g <
—t <0 < j, that is, the weight of A’ lives in the window between M;_; and M, so
we conclude that RTp, (4)(A%,) = RTpm, a)(A,) = 0 by Theorem 3.20. Suppose
now that # <0, so that —i <7 < 0. By Theorem 6.1, RI "y, (d)(Aﬁw) =0.

Let D =0 and deg D’ > 1. By induction, we may assume that the result holds for
divisors D’ with deg D' < deg D’. We need to show that RTyy, (d)(ﬁpf ®AL) =0
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for—i—1<t<d+g—2i—1—deg D’ and ¢ # 0. The case t = —1 follows directly
from Proposition 7.6, since here deg D’ < d + g —2i — 1, so we may assume that
t ¢ {—1,0}. We write D’ = D’ + y and use the fact that G p- is a stable deforma-
tion of Fy ® G ;5 over A (see Proposition 2.12). If we take the second sequence of
Lemma 3.11 twisted by G 5 ® A, then we get an exact sequence

0-Gp @Ay > F, 0G5 Ay, >G5 AN - Gs @A |y, —0.

Observe that this is an acyclic chain complex involving Fy ® G 5 ® Ay, and where
the remaining three terms satisfy the corresponding inequalities from (7.1): —i — 1 <
t<d+g—2i—1—degD’,—i—1<t+1<d+g—2i—1—degD’,—(i—1)—1<
t+1<d—2+g—2({—1)—1—degD’. Giventhat ¢ ¢ {—1,0}, we have both 7, 1 +
1 # 050 by induction we see that RT'y, (4)(G 5, ® AY,) = RTy,0)(G 5, ® AYF') =
0. On the other hand, we obtain RI'ys, | (2—2) (G 5 ® A;{l) = 0 either by induction
if i > 1, or from Lemma 7.3 if i = 1. Therefore, we get the desired vanishing from
the corresponding hypercohomology spectral sequence and semicontinuity.

Next we do induction on & = deg D. If & > 1, then we write D = D+ Xq and
take the first sequence of Lemma 3.11 with F/ , twisted by (R F M) ®Gp ®
Aﬁw. This way we get an exact sequence involving (Qx_, F;;) RGp ® Asw, and
where the remaining terms are (®}_} Fy,) ® Gpr ® Al;! and (RFZ] Fy) ®
Gp ® Ay, on M;(d), and (RF_] Fy) ® Gpr ® Ay, on M;_1(d —2). All three
still satisfy the inequalities (7.1): degD —i —1 <t —1<d + g —2i —1 —deg D',
degD —i—1<t<d+g—2i—1—degD’,degD —(i—1)—1<t<d—
24 g—2(G—1)—1—degD'. Further, t, t — 1 ¢ [0, degD], so by induction
RTu,a) (®FZ) FY) ® G pr @ Aly) = RT w0y (R Fr) ® G pr ® Afy) =0,
while RFMi_l(d—Z)((®z;11 F;;) ®Gp ® AfM) = (0 either by induction when i > 1
or by Lemma 7.3 when i = 1 (observe that when i = 1 we must have ¢t > deg D).
By looking at the corresponding hypercohomology spectral sequence, we obtain the
vanishing RT a7, () (R =1 Fy,) ® Gpr ® Ayy) =0. O

It remains to prove Proposition 7.6, which will take the rest of this section and
require several steps. First, we see that it reduces to showing that Gp ® A;,,l has no
global sections on M;(d).

LEMMA 7.7
Under the assumptions of Proposition 7.6, (7.3) is equivalent to proving that

H°(M1(d),Gp ® Ayf) =0 (7.4)

for the case that every point in D has multiplicity at least 2.
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Proof
First, we see that (7.4) is clearly necessary, so we need to show that it is sufficient.
Note that G} ® Ai;gD_l ~ G p ® A}, by Corollary 3.14. We know by Theorem 3.21
that for 1 < j < this bundle descends from an object with weights within [—deg D +
1, 1], where 1 < j and —degD + 1 > 1+ 2j — d — g by hypothesis. Hence, by
Theorem 3.20, it suffices to show (7.3) wheni = 1.

We write D = a1x1 + -+ + asXs with xg # x;. If deg D = 0, then we are done
by Lemma 5.2. Let us now assume that some «; = 1, say, for simplicity, «; = 1.
Then we can write D = D + x; and argue by induction on deg D as follows. By
Lemma 3.11, we obtain an exact sequence

0>G5®A) >Gp®Ay —Gp—Gplu, —0,

where My = My(A(—2x1)). By the induction hypothesis, the first term in each
sequence is ["-acyclic. By Corollary 7.5, the last two terms in each sequence have

vanishing higher cohomology and H° = C with a global section that does not vanish
along My(A(—2x1)). Thus

RTw,@)(Gp ® Ay) =0

by the hypercohomology spectral sequence E{? = H?(X, ¥ ?) and semicontinuity.
So we can assume that . > 1 for all k. Again, we write D = D + x; and get

0>G5®Ay > Fx, ®G5® Ay - Gp—Gplu, —0. (7.5)

The last two terms in (7.5) still have RT" = C, but now the global section van-
ishes along My(A(—2x1)). Therefore, applying the same hypercohomology spectral
sequence, we conclude that Fyy; ® G 5® A;} has the following cohomology: 77 =0
for p >2and h® = h! = 1. By Remark 2.14, its stable deformation G p ® A}/ must
have h? = 0 for p > 2 and h® = h'. Hence, it suffices to show that H°(M;(d),Gp ®
A7) =0, as claimed. O

In what follows, we focus on proving (7.4), under the assumptions of Proposi-
tion 7.6, and with D = a;xq + -+ + g X, @ > 1. We recall the construction of G p
from the proof of Corollary 2.9 adapted to our case when D is not necessarily a fat
point. Let M = My (d).

Let B, = H, the covariant algebra, and let B, = Spec B,. Write the
indexing set {1, ..., «} as a disjoint union of sets Ay of cardinality oy fork =1,...,s,
and denote B = By, ®--- ® By, . Forevery j € A, we have a diagram of morphisms
as in (2.3),
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j dk
By XX By xM ——— Dy, xM —— CxM

RN

We let ¥ = q,’:F , where F is the universal bundle, and therefore Gp =

tf ap XSy ® n; ¥k ®sgn). Here 7, does not change local sections of sheaves,
but just forgets the B-algebra structure. Thus (7.4) is equivalent to the following:
A;} R Jr;f F i does not have skew-invariant global sections (with respect to each
factor of Sg, X -+ X Sg,).

The restriction of Ay, ® @77 F to the special fiber M is Ay ® @ F ek,
While the group Sy, X --- X Sg, acts trivially on the special fiber, the action on the
vector bundle is still nontrivial (the action permutes tensor factors within each block).

LEMMA 7.8
Suppose that s = 1; that is, D = ax is a fat point. Write ¥ = q} F, and let p be as
in (7.6). Then End px ¥ = Dy. In particular, px F is indecomposable.

Proof

We see that px F = ®r(Oyx), where @ is the Fourier—-Mukai functor with ker-
nel F. The result follows from full faithfulness of ®f, which is given by Theo-
rem 5.1. O

LEMMA 7.9

As a representation of Sq, X -+ X Sy, the space H(M, Al_lll ® Fx%iak) is iso-
morphic to the direct sum Vo, @ -+ ® Vi, of irreducible representations, where each
V. is the standard (o — 1)-dimensional irreducible representation of Sy, and the
other factors Sy, | # k, act on Vg, trivially. If we realize the representation Vg,
as{) ajej | Y aj =0} C C*%, then the vector ejr —e;» € Vy, corresponds to the
global section s/ j» of A;ll ®Q F,?liak that can be written as a tensor product of
the universal sections s; of Fy, with | # k, the universal sections si of Fx, in posi-
tions j # j'.j", and the section of A3} ® Fx, ® Fy, (in positions j', j”) given by
wedging (recall that Ay is the determinant of Fy, ).

Proof

The sections s j~ satisfy the same linear relations as the difference vectors e; —e i,
namely, that s, ;, + Sj,j5 + -+ S8j,_,j, +8j., =0 for ji,...,jr € Ar. Indeed,
choose a basis { f1, f>} in a fiber of the rank-2 bundle Fy, so that the universal section
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is equal to f> and the determinant is given by fi A f. After reordering of ji,..., jr,
and ignoring factors of s;;» given by the universal sections s; of Fy, with [ # k, we
have

Siz+s3+ o+ =01 2)® L L— (L1 L& R f
+L®([1i®2)Q Q- LQ(L®f1)®® f
4o =0.

Let jr = min(Ag) for k =1,...,s. It suffices to prove that the sections s, ; for
k=1,....sand j € Ax \ {jx} form a basis of H*(M, A3} ® ®F2ak). We prove
this by induction on «. This is true if « = 0 by Lemma 5.2 and if « = 1 by Lemma 5.3.
Let F = FE“‘ ®---® Fx% @ =1 We have the usual exact sequence obtained from
Lemma 3.11:

0>Ay ®F > A} ® FQ Fr, > F — Flp, — 0, (7.7)

where My = My(A(—2x;5)). By Corollary 7.5, the last two terms have vanishing
higher cohomology and H® = C. If oy = 1 or, equivalently, Ay = {a}, then the
global section of F does not vanish along My and therefore H 0(A;,,1 Q F) =
H O(AX,,1 Q F ® Fyx,) by the corresponding hypercohomology spectral sequence,
and the basis stays the same. On the other hand, if @ # Js, then the global section
of F (the tensor product of universal sections) vanishes along My inducing the zero
map H(F) — HO(F|p,). Moreover, the section s, € H°(A}} ® F ® Fy,) maps
onto the global section of F . Thus the claim also follows from the hypercohomology
spectral sequence. O

The sheaf ) m; ¥ carries a filtration by B>y (& 7; Fk), where B>y is
the ideal of monomials of degree at least d. The associated graded object is
gr(®7; Fi) == Qi FE% ®0, B. If Ayl ® @ 7f Fi has a skew-invariant
global section, an associated graded section will be a skew-invariant global section of
Ay ®et( @7 Fi).

By Frobenius reciprocity, the space of skew-invariants in (Vg, KIdX-.. X 1d) ®
B C H°(M,Ay} ® @ Fx) ® B has dimension a; — 1 and basis

a"A A
> (S = S sy A R B A, (7.8)
—\ ot/ ot”;
i<j J
r=1,...,a—1, where A; € C[t1,...,1,] is the Vandermonde determinant. Global

sections of H(M, A;} @R F,?[,f) ® B coming from Vg, , k > 1 are analogous. We
will show that these global sections of A3} ® gr(®) 7} ¥ k) do not lift to sections of
A;,ll R 7 Fr.
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LEMMA 7.10
It suffices to prove (7.4) for s = 1 and a = «.

Proof

We argue by induction on s. Let D = ayxs+ -+ +ogxy, and suppose that HO(AXJ1 ®
G 5) = 0. Arguing as in the proof of Lemma 7.9, using the usual spectral sequences,
we get HO(A3} ® Fy! ® G 5) = Vg, , with a basis given by (7.8). Note that A; € By,
is the element of top degree. Therefore, lifting basis elements to sections of G p is
equivalent to lifting them to G, x, - O

From now on, we let ¢ = o1, x = x1, and ¥ = ¥ 1. The space of skew-invariants
in HO(A7} ® ; _ A VA
in H(Ay} ® F2%) ® By has basis I, = Y-, _;( e T

Writing, formally, s;; = e; — e, we also have I, =), %ei. We claim that no I,
1

)sij, r=1,...,00 — L.

lifts to a global skew-invariant section T, of A R 77 ¥ . We argue by induction
on «.

LEMMA 7.11
Let D = ax, D' = (« — 1)x. Assuming that (7.4) holds for D', we have

So—
HO(BoxM. Ay ® @} F @sgn) = C .
where Sy—1 C Sy is the subgroup fixing the last index.

Proof
We start with the Koszul complex on C x M

0—>detF¥Y — FY = Ocxmu — Qg — 0, (7.9

where D’ C C x M is the vanishing locus of the universal section. Recall that D’
is smooth over C with fibers M(A(—2x)) C M of codimension 2 over x € C. In
particular, D’ is flat over C, and so the local generator ¢ € my, for x € C is not a zero
divisor in O g . It follows that the pullback of (7.9) to D, x M is also exact:

0— Ayt = FV = Opg xmt — Opy xm(A(-2x)) = 0.

We pull back to B, xM and tensor with the locally free sheaf ®3‘;11 ﬂ;‘ F to obtain

a—1 (o4
0— Ay, ®®n}‘.?7—>A1_Ml ®®n;‘?
j=1 j=1

a—1 a—1
QR F > Qn;F (7.10)
j=1 j=1

%
By x M(A(—2x))
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Next we compute Sy—1-skew-invariant cohomology of the first, third, and fourth
terms of (7.10). For each of these terms U, we have H°(U ® sgn)Se—1 =

p*n&g‘i 1(U ® sgn), which by Lemma 2.8 is a deformation Of o copies of
Jo n&g",‘k 1(U ® sgn) over A!. For the first term U = Ay ! ® ® _17'[ *F in (7.10),

Sal

we have that p*n,% (U ® sgn) is isomorphic to A7, M ® Gp’ (see the proof of

Proposition 2.12), Wthh is I'-acyclic by the induction assumption. For the last two
terms, p n(f"; 1(U ® sgn) is isomorphic to G p/ and ED/|M(A(_2X)), respectively,
both of which have RI" = C by Corollary 7.5.

From this, it follows that H 0(A ® ® _171 F ®@sgn)Se—1 = 0, while
HYQ@Zi 7 F @sgn)Set = HUQIZ ) F logxma2x) ® sgn)set =
C* and their higher cohomology vanishes. Furthermore, the last two groups
are isomorphic to D, as Dy-modules and generated by the universal section
(®‘;;11 71;'.‘2) ® Ag—1, which under the restriction map to By, x M(A(—2x)) goes
to (®a:11 la7} %) ® Aq—1. Therefore, the first page of the spectral sequence
EP? = H1(X, F7) associated with (7.10) has the following shape:

0 —= H2BoxM. Ay @ @ 7] F @sgn)’et —= 0 ——= 0

0 HI(BCZ XM’A_Ml ®®?:1 JT;?@sgn)Sa—l — >0 —= 0

lal

0 — H°Bo xM, Ay, ®®_1n F @sgn)Se—1 —= D, ‘>}D)

We conclude that H°(By xM, Ay ® ®F N F @sgn)Se—1 = C*L, O

Proof of Proposition 7.6

We need to show that none of the Sy—_;-skew-invariant global sections found in

Lemma 7.11 is Sy-skew-invariant. We can explicitly write a basis of H%(By xM,
7 ® ®j 17y F ®sgn)Se-1 = Hom(r} F ®j_17r* F ®sgn)Se—1, Namely,

con51der the surjection w; ¥ — Fx, followed by an 1somorph1sm F, 5 I 17 ~

Fy. Then we tensor with ®% i 27{*2 multiply by 7§731$*.- 14>, and skew-

symmetrize over {1,2,...,a — 1}. This way we obtain a morphlsm
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a—1
So—1
e Hom(n; N ®nj* N2 ®sgn)
Jj=1

and, therefore, also morphisms

a—1

So—
u,tau,...,to‘f_zueHom(n&"?,@n;?@sgn) g (7.11)
j=1

We claim that 1@2p # 0, and therefore (7.11) gives a basis of the space
HO(By xM, A;,,l ® ®‘;:1 n}* F® sgn)SOf—l over C. Indeed, notice that
1872 e384 - 14_5) is equal (up to sign) to the Vandermonde determi-
nant A, € B,, and it is also equal (up to a multiple) to ti"_l Aqg_1, where Ay_q is the
Vandermonde determinant in #1, . . ., #,—; . We show that these two expressions are not
equal to zero. Let Bi? be the degree (g) component of By, Being spanned by A, BLP
is isomorphic to sgn as an S,-module. Consider a monomial m = t{i L..gde ¢ ByP.
If dj = di, then m is fixed by (j k) € S, so it must vanish. This leaves only the
orbit of 1¢~12$72---1,_1 under Sy, which all must be nonzero with

a—l,a-2

o(tf T YTty ) = (sgno)if T S T tg (7.12)

for o € S,. Monomials in tf‘_l Ay—1 of the form (7.12) have 6 (1) = 1 and 0 () = «.
Moreover, they appear with a relative factor of sgno by antisymmetry of Ay_q, so
they do not cancel in By, as claimed.

Therefore, 1272 can be described as follows: it is the surjection 7} ¥ —» Fy
followed by an isomorphism F)y = 1971 F ~ Fy, twisted by ®7;12 n}* ¥, multiplied
by Aq—1 and then skew-symmetrized over {1,2,...,a — 1}. So the associated graded
section of 1272 is Z‘;;ll Sja - Ag # 0 (cf. Lemma 7.9).

Finally, we check that no linear combination of (7.11) is Sy-skew-invariant. In
fact, if @ > 2, the associated graded section does not involve s i for j,k < «, while
if @ = 2, the section is s12( f1 — f2), which is symmetric, not skew-symmetric. This

completes the proof. O

8. Computation of RHom(Gp,Gp)
Now we will compute some of the Ext groups between Gp and G p+, which will be
needed in the proof of our semiorthogonal decomposition.

PROPOSITION 8.1
Letd <2g + 1and 1 <i <wv. Suppose that D, D’ are effective divisors, and let t be
an integer satisfying

degD—i—1<t<d+g—1-2i—degD'.
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Then

H?(Mi(d),G} ® Gpr ® Ay) =0
forevery p>degD —t.

Proof
Let « = deg D, B = deg D’. We first do the case @« = 8 = 0, for which we need
to show vanishing of H?(M;(d),A},) for p > —t. If t = 0, this is trivial. If 7 <
0, observe that i > —t, so Theorem 6.1 gives RT'y, (A},) = 0. If 1 > 0, we notice
that A%, has weight —¢, with 1 +2j —d — g < —t < j forevery 1 < j <i, so by
Theorem 3.20 we must have RI'a, (A%,) = RT'p, (AY,). But the latter is zero by
Lemma 4.3, since t <d + g — 4.

Now we prove the result for § = 0 and « > 1 by induction on «. Write D =
D + x, and twist (3.3) by G;f) ® A’ to get an exact sequence

0->GieAy' > F/®GL oAy
— G% ® Aﬁu — G% ® A§\4|Mi_1(d—2) — 0. (8.1)

By induction, the first term has H?(M; (d),G% ® A’A;l) =0 for p >a —t, and
the third term has H”(Ml-(d),Gl\é ® AYy) =0 for p>a—t— 1. We see that on
the last term we also have H?(M;_(d — 2), Gg ® Aly)=0for p>a—1t—1.
Indeed, if i > 1, this follows by induction, while if i = 1, we have t > o — | and
the restriction of G¥ ® Al to Mo(d —2) = P4+8=4 is a deformation of a sum of
line bundles @ Opa+s—4(sj) with —(d + g —4) <—1 <s; <a—t—1<0 (see
Corollary 2.9, Remark 3.7). If « — ¢t — 1 < 0, this sum of line bundles is I'-acyclic,
and if &« — ¢t — 1 = 0, this has vanishing cohomology H? for p >0=«a —¢t —1.In
either case, we conclude that the last term has vanishing H? for p >« —¢ — 1 by
semicontinuity. Taking the hypercohomology spectral sequence Ef*? = HY(X, ¥ P)
of (8.1), we conclude that H?(M;(d), Fy ® Gé ® A%,) =0 for p>a —t. Since
G}, ® Al is a stable deformation over A' of FY ® G} ® Al by Proposition 2.12,
then by semicontinuity we also have H?(M;(d), G}, ® A%,) for p >t —a.

Finally, we do induction on 8 > 1. Similarly, write D’ = D’ + y, and twist (3.4)
by G} ® G, ® Al to get an exact sequence

0>Gh®Gs ANy, -Gy ®Gs ®F,®Ay
- Gh®Gp @AY -G ®Gs & Ny M, @—2) — 0.

By induction, the first term has H?” = 0 for p > « — ¢ and the third one has H? =0
for p > o —t — 1. The last term has vanishing pth cohomology for p > o — ¢ —
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1, which follows by induction when i > 1. It remains to check the case i = 1. In
this case, the restriction Gl\g ®Gp ® Ax{ ! |M;_,(@a—2) is a deformation of a sum
D Opa+g—a(sj), with —(d + g —4) < —t — f <a —t — 1 < 0. As before, we see
that this has vanishing H? for p > « —t — 1 and the same is true for G, ® G5, ®
A;}rl |M;_, (@—2) by semicontinuity. The result then follows from taking the spectral
sequence E f’ 4 = H9(X, ¥7) and semicontinuity. O

COROLLARY 8.2
Letd <2g+1and0<i <v.IfdegD <i anddegD’ <d + g — 1 —2i, then we
have

H?(M;(d).G}, ® Gp') =0

for every p >degD.

Proof
If i =0, then D must be zero and the result follows from Corollary 7.5. For i > 1,
this follows from taking ¢ = 0 in Proposition 8.1. O

Using the previous results we can show that G} ® G p has exactly one nontrivial
global section, up to scalar multiplication. We need a lemma first.

LEMMA 8.3

Let d <2g + 1, and let D, D' be two effective divisors on C of degD =« <1,
degD’ <d + g—2i — 1. Write D = x1 + -+ + Xq, in arbitrary order and possibly
with repetitions. Then for every k < o we have h®(M;(d), (®I;~:1 F;’I) ®Gp)<l1.

Proof

If i =0, then « = k = 0 and this is given by Corollary 7.5. Leti > 1, s0o d > 2. We
do induction on k. If k = 0, this still follows from Corollary 7.5. Otherwise, we use
Lemma 3.11 to get an exact sequence

k—1 k
0—»»68)132 ®Gp @ Ay _’CED}%; ® Gpr

=1 j=1

k-1 k-1

—>®F;/j ®ED/—>®F;/I_ ®ED/

j=1 j=1

i—1

where M;_; = M;_1(A(—2xg)). The first term can be seen to be I'-acyclic using
Theorem 7.1. Indeed, here t = —1 ¢ [0, k — 1] and the inequalities (k — 1) —i — 1 <
—1l<d+g—2i —1—degD’ are satisfied since k <« <i anddegD’' <d + g —
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2i. On the other hand, h°(M; (d), (®I;_11 FY ) ® G p/) < 1 by induction. Therefore,
taking the hypercohomology spectral sequence EPY = HY(X,FP) of the T-acyclic
complex above, we conclude that 2°(M; (d), (®]= F;/j) ®Gp)<laswell O

COROLLARY 8.4
Suppose that d <2g + 1, and let 0 <i <v. Ifdeg D <1, then

Homyy, 4)(Gp.Gp) =Homyy, 4)(Gp.Gp) =C

Proof
We have Homyy, (4)(Gp.Gp) = HO(M;(d), G}, ® Gp). By Corollary 3.14, G}, ®
Gp ~ 6\5 ® Gp, so Homyy, 4)(Gp.Gp) = HomMi(d)(ED,ED) has dimension
h°(GY, ® Gp) = h%(G;, ® G p), which by Corollary 2.9 and semicontinuity, is at
most h°(M; (d), (®degD Fv ) ® G p). But by Lemma 8.3, this dimension is at most
1, since by hypothesis deg D <i <d + g—2i — 1. On the other hand, the identity
provides a nontrivial map Gp — Gp, so dimHomyy, (4)(Gp, Gp) must be exactly 1.
U

9. Full faithfulness
In this section, we construct fully faithful embeddings from D?(Sym*C) to
Db(Mi(A)),forO§a <i,wherel <i<vandd <2g—1.

Definition 9.1

For 0 <a <1, let CIfo : D?(Sym“ C) — D% (M;(A)) be the Fourier-Mukai functor
determined by F®* e Db(Sym“ C x M;(A)), where F is the universal bundle on
C x M;(A). Similarly, let B, : D?(Sym® C) — D?(M;(A)) be the Fourier—Mukai
functor given by f&x € D?(Sym* C x M;(A)) (see Definition 2.3 for F®* and

fﬁtx).

Remark 9.2 _
For « = 0, the functor <I>f, = 62) is simply the (derived) pullback of the map from
M; (M) to a point.

We have already proved in Theorem 5.1 that <I>1 ®F is fully faithful. The main
result of the present section is a generalization of that result.

THEOREM 9.3 )
Suppose that 2 <d <2g —1. For 1 <i <wv, 0 <a <1, both <I>fx and 5; are fully
faithful functors.
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We will use induction to prove Theorem 9.3. First we need to investigate
RHom(Gp,Gpr) between different divisors. We want to obtain I'-acyclicity of
G}, ® Gpr, for which we need some preliminary computations.

LEMMA 9.4
Letd >0 and 0 <i <wv. Let D, D' be effective divisors on C with D = ax and
x¢& D . Ifa+degD' <d +g—2i —1, then

RTu, (G} ® Gpr ® AYy) =C

Moreover, if i > 1, then the unique (up to a scalar) global section of G} ® Gp/ ®
AS, vanishes precisely along the union of codimension 2 loci M;_1(A(—2x)) and

M;—1(A(=2y)) for y € supp(D’).

Proof
We use the fact that G), ® Gpr ® A%, is a deformation over A' of (F})®* ®
degD Fy, ® A, ~ F®* ® ®degD Fy,, where D' = )" yi. By Corollary 7.5, we
see that Ry, (F2* ® ®degD Fy,) = C, so by semicontinuity and equality of the
Euler characteristic, we must have RT'y, (G}, ® Gpr ® A$,) = C as well. Further-
more, the global section of G}, ® Gpr ® A4, is a deformation of the global section
of Fy O ®degD F, over A, which does not vanish outside of the union of loci
M;_1(A(—2x)) and M;_1(A(—2y%)). On the other hand, the tautological section of
this bundle vanishes precisely along these loci. O

LEMMA 9.5

Suppose that 2 <d <2g + 1 and 1 <i <wv. Let D, D’ be effective divisors with
D =ax and D' = Bx + D', x ¢ D'. Suppose that « = deg D < i and deg D' <
d +g—2i —1. Then the map RTp1;(a)(G oy ® G px) = RTp1.(a)(G oy ®G g ®G p,)
given by tensoring with the unique (up to scalar) section of G p (cf Corollary 7.5) is
an isomorphism.

Proof
We argue by induction on «. If « = 0, this is clear, as the map RI'y, (d)(E'B x) =
RTp;a)(Gpx ® G j5,) is C — C (cf. Corollary 7.5).

For the inductive step, we argue as in the proof of Proposition 7.6, specifically as
inLemma 7.11: G, ~ A% ® Gax = A% ® rf"‘(@_‘}‘:l 77 ), which is a direct
summand in

7Sa-1 (é t ?) 9.1)
iz
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Here ¥ = ¢*F = ¢} F from (7.6). So it suffices to prove our claim for the bundle
(9.1). As in the proof of Lemma 7.11, we have an exact sequence

a—1
0—>AM®®n —>AM®®7T
j=1
a—1
*F *F — 0, 9.2
_)5877’ —>§3n1 B XM —1 (A(—2x)) ©2)

to which we apply 72!, then tensor with AL ® Gy (resp., with ALY ® Gpy ®
G 5) and then compute RI'. The resulting left term is a deformation of a copies of
Ay ® ﬁ};_l)x ® Gpy (resp., Ay} ® Ez;_l)x ® Ggx ® G j,), both of which are
I'-acyclic by Theorem 7.1.

Therefore, we have two exact triangles related by a commutative diagram:

RT(AE QU @ 72 F ®Gpy)Se-t —> RT(AF ®U @72 F @Gy ® G )51

i |

RT(A*®@U ® Ggy)Se-t RT(AL*®U ® Gpyx ® G j,) 51

i i

RT(AY* ® U ® Gpxlpgxm)Se! —= RT(AL* QU ® Gy ® G pylBoxnr) ¢!

l i

(9.3)

where U = ® _1 n , M’ = M;_;(A(—2x)), and the horizontal maps are multi-
plication by the umversal section of G - The middle row of (9.3) is a deformation of
a copies of the map RT (d)(ézx—l)x ®Gpx) — RFMi(d)(EE;—l)x ®Gpc®G ),
which is an isomorphism by the induction assumption. The same is true for the third
row, on the moduli space M;_1 (A (—2x)). We conclude that the first row of (9.3) must
also be an isomorphism, which completes the proof. O

LEMMA 9.6

Suppose that 2 <d <2g + 1 and 1 <i <wv. Let D, D’ be effective divisors with
D = ax and multy(D') <o — 1. Suppose that « = degD <i and degD’ <d +
g—2i—1 Ifwe assume that <I>a, and CI> are fully faithful for every o’ < o, then
RTy,a)(Gp ® Gpr) =0.
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Proof

By Lemma 9.5, it suffices to consider the case D’ = fx, where § < «. Moreover,
arguing as in Lemma 9.5, we can assume that « = 8 + 1, so it suffices to show that
RT y; (d)(ﬁ(jx,ﬁ(,,_l)x) = 0 under the assumptions « < i, @ < d + g —2i. Note that
if i =1, then « = 1 and this follows (unconditionally) from Lemma 5.3. So we can
assume that i > 1 and use full faithfulness of 5;/ and 5;71 as in the hypothesis. As
in Lemma 9.5, we consider the exact sequence (9.2), twist it by AII‘;"‘ ® E(a—l) x»and
take Sy—1-invariant global sections. The resulting term on the left vanishes by semi-
continuity and Theorem 7.1. It suffices to show that the second term vanishes, because
it contains RI'yy; (d)(E;/x ® G (g—1)x) as a direct summand. But the last two terms
are deformations over A! of o copies of the map R Homyy, (4) (ﬁ(a_l)x,ﬁ(a_l) x) —
RHomyy; | a—2) (E(a,l)x,ﬁ(a,l,x), which is an isomorphism by our assumption

that 5;_1 and 6;__11 are fully faithful. This completes the proof. O

THEOREM 9.7

Suppose 2 <d <2g+ 1and 1 <i <v. Let D, D' be effective divisors on C, with
D & D' and satisfying deg D <i and degD’ <d + g — 2i — 1. If we assume that
6;/ is fully faithful for every o’ < deg D, then RT (d)(E\g ®Gp)=0.

Proof
We do induction on deg D. If deg D = 1, then we have D = x and mult,(D’) =0,
so the result follows from Lemma 9.6 with o = 1.

LetdegD > 1,and so i > 1 as well. Since D £ D’, there is a point x € D with
multy (D) = «, multy (D) <a—1.If supp(D) = {x}, then D = ax is a fat point and
the result follows from Lemma 9.6. Otherwise, we can find a point y # x such that
D=D-— y is effective. From (3.3), we get an exact sequence

05>Gp®Gp ®A; - FY ®Gp &G
— 6% ® ED/ — 6\1/3 ® ED/ |Mi—l (d—2) = 0.
By induction, RTyy (d)@é ®Gp) =Rl (a—2(G j ® Gpr) = 0. On the other
hand, the term G5 ® Gpr ® AI_‘,I1 satisfies the inequalities (7.1) with ¢t = —1 ¢

[0,deg D], so by Theorem 7.1 it is I'-acyclic. As usual, the result follows from the
hypercohomology spectral sequence and semicontinuity. O

Now we can prove the main result of this section.

Proof of Theorem 9.3
By Bondal-Orlov’s criterion in [7], we only need to consider the images of skyscraper
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sheaves, ®.,(O(py) = Gp and 5; (O¢py) = G p. Namely, we need to show that for
two divisors D, D’ € Sym* C we have

— — 0 ifD#D'orp<Oorp>a,
RPTy . 0(Gp ®Gp) = (9.4)
MiTD C ifp=0and D =D’

and similarly for RT's7,(7)(G ), ® Gp). Observe that since RT'y, () (6\{) ®Gp) =
RTp,(0)(G} ® Gp) (cf. Corollary 3.14), full faithfulness of @, is equivalent to
that of 5;, and it suffices to prove (9.4). We prove it by induction on ¢, where the
case o = 0 follows from the fact that Oz, (a) is an exceptional object, since M;(A)
is rational. So we assume that (9.4) holds for o’ < . If D = D’, then (9.4) follows
directly from Corollaries 8.2 and 8.4. Now let D # D’ be different divisors of degree
o« <i.Noticethati <(d —1)/2 < g—1, so the inequality & < d + g —2i — 2 holds.
Therefore, in this case (9.4) follows from Theorem 9.7 by our induction hypothesis.
We conclude that @, and 5; are fully faithful functors. O

10. Proof of the semiorthogonal decomposition

Throughout this section we fix d =degA =2g —1sothatv=(d —1)/2=g—1.
We are interested in the moduli spaces M; = M;(A), where i will always be assumed
to satisfy 1 <7 < g — 1. Note that when d = 2g — 1, the canonical bundle is wys, =
0i(-3,3-3g) = A3} ® 71 ® 67! (see [39, 6.1] and Definition 3.10).

By abuse of notation, we will denote the essential image ®: (Sym® C) simply
by CIfo, and the image 6; (Sym* C) by 6;, which by Theorem 9.3 are admissible
subcategories of D?(M;) equivalent to D?(Sym® C). In particular, (Df) is the full
triangulated subcategory generated by @y, , which is equivalent to D®(pt).

Definition 10.1
We define the following full triangulated subcategories of D?(M;):

Ay =0, @A @607, 0<2k <i,
B =D, ® AyF, 0<2k<i,
Cotr1 =P ®A ®L®O7Y, 0<2k+1<i,
Doy =By | ®AF R 0<2k+1=i.
Each of these subcategories is equivalent to some D?(Sym® C) with either o =

2k or @ = 2k + 1. These four families of subcategories constitute the building blocks
of our semiorthogonal decomposition on D®(M;). We will see that different subcat-
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egories of the form ~,; are semiorthogonal to each other, and the same is true for
subcategories within the other three blocks. We need the following lemma.

LEMMA 10.2

Let Dy, D, be admissible subcategories of a triangulated category D, and let
Q1, Q3 be spanning classes (see [20, Section 3.2]) of Dy, D,. If we have that
Homg (A, Blk]) = 0 for every A € Q1, B € Q3, and k € Z, then Homg (F,G) =0
for every F € D1, G € D,.

Proof
We need to show that D; € LD, or, equivalently, D, C ZDf.

First we see that Q; C 1D,. Let A € Q. Since D = (O‘Dz,l@z), we can fit A
in an exact triangle D — A — D’ — DJ[1], where D € D, and D’ € D,. Applying
Hom(:, B) for B € Q,, we get a long exact sequence where Hom(D, B[k]) = 0 by
definition and Hom(A4, B[k]) = 0 by hypothesis. Therefore, Hom(D’, B[k]) = 0 for
every k and every B € Q5, so D’ >~ 0 since 2, is a spanning class of D,. As a
consequence, A >~ D € 1D,.

Now let G € £,. Similarly, there is an exact triangle D — G — D’ — D[l]
with D € Dy, D’ € i)ll. Applying Hom(A4,-) with A € 27, we now see that
Hom(A, D[k]) = Hom(A4,G[k]) = 0 by the previous discussion and therefore
D’ ~ 0. This implies that G ~ D € Dy, as desired. O

PROPOSITION 10.3
Letk > 1 and 0 <2l <2k <i. Then

Home(Ml-)(‘A’Zk’ Azl) =0, Home(Ml.)(i'))zk, 0{821) =0.
Similarly, if k <l and 0 <2k + 1 <2l 4+ 1 <i, then we have
Hompos (p,) (C2k 41, C2141) =0, Homps pr,)(Dak+1, Dar+1) = 0.

Proof

Let us first show semiorthogonality between subcategories of the form Ay, Ay,
k > [, as well as semiorthogonality between those of the form B,, By, k > [.
Since skyscraper sheaves O¢p, of closed points D € Sym® C are a spanning class of
D?(Sym* C) (see [20, Proposition 3.17]), Lemma 10.2 says that semiorthogonality
can be checked on closed points. That is, it suffices to show that for D € Sym2k C,
D’ e Sym? C,with0 <2l <2k <i <g—1,wehave RTs, (G}, ® Gp ® Ak7H) =
0. But this follows from Theorem 7.1 (and Remark 7.2). Indeed, the inequalities

2k—i—1<k—-Il<d+g—-2i—1-2]
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are equivalentto k +/ <i + 1 and k + ! + 2i <d + g — 1, which are guaranteed
by the fact that k +/ <i <(d — 1)/2 < g in this case. Also, since k > [, we have
2k ¢ [k —1, k + []. This proves the first two semiorthogonality statements.

Similarly, in order to prove semiorthogonality between subcategories €k 41,
€141, k <1, as well as between Dk 41, Dajt1, K < [, we need to prove that for
D ESym2k+1C, D’eSym21+lC,withO§2k+ 1<2l+1<i<g-—1, wemust
have

RTy. (G ®Gp @ Ak =0.
Again, this can be proved using Theorem 7.1: the inequalities
2k+1—i—1<k—-Il<d+g—1-2i—Q2l+1)

are equivalentto k +/ <i and k + 1 + 2i <d + g — 2, both of which follow from
the fact that k + 1 + 1 <i < (d — 1)/2 < g in this case. Similarly, & <[ implies
k —1 &[0, 2k + 1]. This proves the required vanishing. O

THEOREM 10.4
Letd =2g —1and 1 <i < g — 1. On D®(M;), we have a semiorthogonal list of
admissible subcategories arranged in four blocks

A€.8.D. (10.1)
where
A= (Ax)o<ok<i. € = (Cokt1)1<2k+1<i>
B = (Baok)o<2k<minGi, g—2)» D = (Dak+1)1<2k+1<minGi, g—2)

as given in Definition 10.1. Within the blocks A and B, the subcategories are
arranged in increasing order of k. Within the blocks € and D, the subcategories are
arranged in decreasing order of k.

Proof

All of these are admissible subcategories of D?(M;) by Theorem 9.3, and we have
already shown in Proposition 10.3 that, within each of the four blocks in (10.1),
the corresponding subcategories are semiorthogonal in the given order. It remains
to prove semiorthogonality between different blocks.

Step 1
Between 4 and €: we show that Home(Ml_)(‘szH, Ay7) = 0. By Lemma 10.2, this
amounts to showing that
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Ry (Gp®Gp @ Akl ge =0
M;\Yp D M =

for D € Sym>**1C, D' e Sym? C, with0<2k + 1,2l <i<(d - 1)/2=g — 1.
We can apply Theorem 4.1 (and Remark 4.2) since the inequalities

2k+1—g<k—-Il<d-21—i-1

are equivalentto k +/ <g—1and k +/ + i < d — 1, which hold in this case as
k+1<i<(d—-1)/2=g— 1. This gives the corresponding semiorthogonality.

Step 2

Between A and B: let us show that Hom pp () (Bog, #21) = 0. Again by Lem-
ma 10.2, we need to show that RT'y, (G}, ® Gp’ ® A’fu_l ® 671y =0 when D €
Sym* C, D’ e Sym* C,0<2k,2l <i <(d —1)/2=g —1and 2k < g — 2. By
Serre duality, given that wp, = Ay} ® {7 ® 671, this is equivalent to showing that
G ®Gp ® AZA;k_l ® ¢~ is T'-acyclic on M; under the conditions above. This is
given by Theorem 4.1 because

2U—g<l—k—1<d—2k—i—1

is equivalentto / +k <g—1and ! + k +i < d, and these inequalities hold since
l4+k+i<2i<d-—1and2]/ 42k <g—1+ g —2in this case.

Step 3
Between 4 and D: for Home(Mi)(@zkH’ A7), we need to show that
RTw;(Gp ® Gp @ Ak @ ¢71 @ 671) = 0 whenever D € Sym**1C, D' e
Sym? C,0<2l,2k +1<i<(d—1)/2=g— 1. Again by Serre duality, this is
equivalent to I'-acyclicity of G}, ® Gp ® AL <71

If I <k, we check that this is given by Theorem 7.1. Indeed, the corresponding
inequalities

A—i—l<l—k—1<d+g—2i—1—Qk+1)

are equivalent to k + 1/ <i and [ + k 4+ 2i <d + g — 1. The former follows from
21,2k + 1 <i and the latter follows from [ + k <i < g and 2i <d — 1. Also, the
fact that k > [ implies [ —k — 1 ¢ [0, 2].

On the other hand, if [ > k, we rewrite G}, ® Gp® AIA}k_l ~Gp® Gp ®
A’]‘W_ ! using Corollary 3.14. Again, we can use Theorem 7.1. Indeed, we see that the
inequalities

Qk+1)—i—l<k—Il<d+g—2i—1-21

are equivalent to the ones above and hence are satisfied, while now / > k guarantees
k —1 ¢1[0,2k + 1]. Thus, Theorem 7.1 gives the required I"-acyclicity.
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Step 4

Next we show semiorthogonality between € and B. This amounts to I"-acyclicity of
GyRGp @NTT®®071 =G} ® Gp & AX7'=1 @ {71 (cf. Definition 3.10)
for D € Sym?* C, D' € Sym* ' C, where 0 <2k,2l + 1 <i <(d —1)/2=g— 1.
We check that Theorem 4.1 can be applied in this case:

2k —g<k—1—-1<d—-Q2l+1)—i—1

isequivalenttok +/ <g—1land k +/ +i <d — 1, both of which hold in our case.
This proves that Hom p () (Bok, €2141) = 0.

Step 5

To show that Home(Mi)(i)zkH, €5741) = 0, we need to check that 62 Gp ®
A’]‘W’l ® 071 is I'-acyclic on M;, where D € SymZkJrl C, D e Sym21+1 C,1<
2k + 1,2l +1<i<(d—-1)/2=g—1and 2k + 1 < g — 2. By Serre duality, this
is equivalent to I'-acyclicity of G, ® Gp ® Al*=1 ® ¢~ and this follows from
Theorem 4.1 since

204+1—g<l—k—-1<d—-Q2k+1)—i—1

is equivalentto / + k +1<g—1and! + k +i <d — 1, both of which hold given
the conditions above.

Step 6

Finally, we show semiorthogonality between blocks from B and £. We need to show
that if D € Sym>**1 C, D’ e Sym? C,0<2k + 1,2l <i<(d—1)/2=g—1, we
have Ry, (EZ ®Gp ® A’f\]l ® ¢71) = 0. We can use Theorem 4.1 since

Y+1l—g<k—Il<d—21—i—1

is equivalent to the inequalities k +/ < g —1and k +/ +i < d — 1, again both of
which hold in our situation. We conclude that Hom ps () (Dak+1, Bar) = 0.

This completes the proof of the theorem. O

Remark 10.5

On Db(Mg_l), this defines a semiorthogonal list of admissible subcategories
Ao, A2, .y, 63,61, B0, B, ...,...,D3,D; where we have two copies of
D?(Sym* C) for 0 < o < g — 2 and one copy of D?(Sym®~!C). We have cho-
sen D?(Sym#~! C) to appear in the block # when g — 1 is even and in € when
g — 1 is odd, but in fact any other choice of even and odd blocks would be valid too.
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Indeed, a similar computation in the proof of Theorem 10.4 still gives the required
semiorthogonalities.

Now leti =g —1,and call £ : My_; — N the last map in (3.1), where N =
Mc (2, A) is the space of stable rank-2 vector bundles with determinant A . The Picard
group of N is generated by an ample line bundle 6y, such that £*0y = 6 (see [39,
5.8, 5.9], [32, Proposition 2.1]). Then we have the following corollary.

COROLLARY 10.6

Let & be the Poincaré bundle of the moduli space N = Mc (2, A) over a curve of
genus at least 3, normalized so that detm& = Oy and det &, = Oy, and where A
is a line bundle on C of arbitrary odd degree. Fori =0,...,g — 1, let §; C D?(N)
( r%s_p., 8, ) be the essential image of the Fourier—Mukai functor with kernel & i (resp.,
& l). Then

On @G0, (03)>Q®@ %2, (03)° ®@%4. (03)*®Fs.
(05 Gs, (05)®Fs, (05)*®9s, 0509,
50, 0 ® 2. (03)*®%4, (0%)° ® . ey
(05 ®97, (05)2®9s, 0% ® 93, 9,

(10.2)

is a semiorthogonal sequence of admissible subcategories of Db (N). There are two
blocks isomorphic to D®(Sym® C) foreachi =0, ..., g—2 and one block isomorphic
to Db(Sym#~! C).

Proof

If A, A’ are two line bundles of odd degree, then it is easy to see that M¢ (2, A) ~
Mc (2, A"), so we can assume that d = deg A = 2g — 1, as before. Observe that £* is
fully faithful. Indeed, £ is a projective birational morphism of nonsingular varieties,
so we have R§«(Opm,_,) = On by [39, 5.12] and [19, (2), pp. 144-145]. Then by
adjointness,

HOme(Mg_l)(%_*A,%-*B) = HOme(N)(A, RS*S*B) = HOme(N)(A, B)

The pullback £*(&) is a vector bundle on C x Mg_; whose restriction to each C x
{(E,¢)} CC x Mg_; is exactly &. Thus, it has to coincide with the universal bundle
F up to twist by a line bundle on My_;, so that £*6 = F @ L. Then £*det&, =
Ay ® L2, which by the normalization chosen must be £*0y = 6, so L = ¢. Thus
£*(€) = F ® ¢ and the result follows from Theorem 10.4, together with the fact that
ok ~ A;,Ik under our assumption d =2g — 1. O
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