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Abstract
Let C be a smooth projective curve of genus g ! 2, and let N be the moduli
space of stable vector bundles on C of rank 2 and fixed determinant of odd degree.
We construct a semiorthogonal decomposition of Db.N / conjectured by Narasimhan
and by Belmans, Galkin, and Mukhopadhyay. It has two blocks for each i th symmetric
power of C for i D 0; : : : ; g " 2 and one block for the .g " 1/st symmetric power. We
conjecture that the subcategory generated by our blocks has a trivial semiorthogonal
complement, proving the full BGMN conjecture. Our proof is based on an analysis
of wall-crossing between moduli spaces of stable pairs, combining classical vector
bundles techniques with the method of windows.
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1. Introduction
Let C be a smooth complex projective curve of genus g ! 2. Let N DMC .2;ƒ/ be
the moduli space of stable vector bundles on C of rank 2 and fixed determinant ƒ of
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odd degree. It is a smooth Fano variety of index 2, with PicN D Z $ ! for some ample
line bundle ! .

THEOREM 1.1
Db.N / has a semiorthogonal decomposition hP ;Ai, where

ADh!!˝ G 0; .!!/2˝ G 2; .!!/3˝ G 4; .!!/4˝ G 6; : : : ;

: : : ; .!!/4˝ G 7; .!!/3˝ G 5; .!!/2˝ G 3; !!˝ G 1;

G 0; !!˝ G 2; .!!/2˝ G 4; .!!/3˝ G 6; : : : ;

: : : ; .!!/3˝ G 7; .!!/2˝ G 5; !!˝ G 3; G 1i:

(1.1)

Each subcategory G i ' Db.Symi C/ (resp., G i ' Db.Symi C/) is embedded in
Db.N / by a fully faithful Fourier–Mukai functor with kernel given by the i th ten-

sor bundle E!i (resp., E
!i

) (see Section 2) of the Poincaré bundle E on C % N
normalized so that det Ex ' ! for every x 2 C .

There are two blocks isomorphic to Db.Symi C/ for each i D 0; : : : ; g " 2 and
one block isomorphic to Db.Symg"1C/, which appears on the first or second line
of (1.1), depending on the parity of g.

The blocks appearing in (1.1) cannot be further decomposed (see [26]). Remark-
ably, our decomposition is compatible with the results of Muñoz [29]–[31] (cf. [5,
Proposition 3.2]), that the operator of the quantum multiplication by c1.N / on the
quantum cohomology QH #.N / has eigenvalues 8", where

"D .1" g/; .2" g/
p
"1; .3" g/; : : : ; .g " 3/; .g " 2/

p
"1; .g " 1/

and the eigenspace of 8" is isomorphic to H #.Symg"1"j!jC/. There are many other
results (e.g., [12], [24]) on cohomology and motivic decomposition of N compatible
with (1.1). This provides ample evidence toward the expectation that P D 0. We hope
to address this question in the future, as well as to use our methods to study properties
of analogous Fourier–Mukai functors for moduli spaces of vector bundles of higher
rank on curves and for moduli spaces of sheaves with 1-dimensional support on K3
surfaces.

Partial results toward Theorem 1.1 have appeared in the literature. The case gD 2
is a classical theorem of Bondal and Orlov [7, Theorem 2.9], who also proved that
P D 0 in that case. Fonarev and Kuznetsov [15] proved that Db.C / ,!Db.N / if C
is a hyperelliptic curve using an explicit description of N due to Desale and Ramanan
[13]. They also proved thatDb.C / ,!Db.N / for a general curve C by a deformation
argument. Narasimhan [32], [33] proved that Db.C / ,!Db.N / for all curves using
Hecke correspondences. He also showed that one can add the line bundles O and !!

to Db.C / to start a semiorthogonal decomposition of Db.N /.



THE BGMN CONJECTURE VIA STABLE PAIRS 3497

In [6], Belmans and Mukhopadhyay work with the moduli space MC .r;ƒ/ of
vector bundles of rank r and determinant ƒ, where r ! 2 and degƒ D 1. They
show that there is a fully faithful embedding Db.C / ,! Db.MC .r;ƒ// provided
that the genus is sufficiently high. Moreover, they use this embedding to find the
start of a semiorthogonal decomposition of Db.MC .r;ƒ// of the form !!, Db.C /,
O, !! ˝Db.C /, this way extending the decomposition on N DMC .2;ƒ/ present
in [33]. Belmans, Galkin, and Mukhopadhyay have conjectured, independently of
Narasimhan, that Db.N / should have a semiorthogonal decomposition with blocks
Db.Symi C/ (see [3], [24]), and have collected additional evidence toward this con-
jecture in [5]. Lee and Narasimhan [25] proved using Hecke correspondences that, if
C is non-hyperelliptic and g ! 16, there is a fully faithful functor Db.Sym2C/ ,!
Db.N / whose image is left semiorthogonal to the copy of Db.C / obtained earlier.
They also introduced tensor bundles E!i of the Poincaré bundle (see Section 2),
which we discovered independently. If D 2 Symi C is a reduced sum of points x1C
$ $ $Cxi , then the fiber .E!i /D is a vector bundle on N isomorphic to the tensor prod-
uct Ex1˝ $ $ $˝ Exi . If the points have multiplicities, then .E!i /D is a deformation
of the tensor product over A1 (see Corollary 2.9).

Instead of using Hecke correspondences (although they do make a guest appear-
ance in Section 6), we prove Theorem 1.1 by analyzing Fourier–Mukai functors given
by tensor bundles F!i of the universal bundle F on the moduli space of stable pairs
.E;#/, where E is a rank-2 vector bundle on C with fixed odd determinant line bun-
dle of degree d and # 2H 0.E/ is a nonzero section. The stability condition on these
spaces depends on a parameter, and we use extensively results of Thaddeus [39] on
wall-crossing. If d D 2g " 1, then there is a well-known diagram of flips

QM2
QM3

QMg"1

M1 M2 $ $ $ Mg"1

M0 N

(1.2)

where M0 D P3g"3, M1 is the blowup of M0 in C , the rational map Mi"1 !!"Mi is
a standard flip of projective bundles over Symi C , and $ W Mg"1!N is a birational
Abel–Jacobi map with fiber PH 0.E/ over a stable vector bundle E . Accordingly,
Db.Mi / has a semiorthogonal decomposition into Db.Mi"1/ and several blocks
equivalent to Db.Symi C/ with torsion supports (see Proposition 3.18 or [4]). While
these decompositions do not descend to N and are not associated with the universal
bundle, they are useful. Philosophically, tensor bundles on Symi C % N are related
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to exterior powers of the tautological bundle of the universal bundle, which appear in
the Koszul complex of the tautological section that vanishes on the flipped locus. One
can try to connect two Fourier–Mukai functors via mutations. In practice, this Koszul
complex is difficult to analyze except for M1 (see Section 5). We followed another
strategy toward proving Theorem 1.1.

In order to prove semiorthogonality in (1.1) and full faithfulness of the Fourier–
Mukai functors via the Bondal–Orlov criterion, we had to investigate coherent coho-
mology for a large class of vector bundles. The main difficulty in this kind of analysis
is to find a priori numerical bounds on the class of acyclic vector bundles to get the
induction going.

Definition 1.2
For an object F in the derived category of a scheme M , we say that F is %-acyclic
if R%.F /D 0. That is, for us %-acyclicity will mean the vanishing of all cohomol-
ogy groups, including H 0.F /. Other authors have used the term immaculate for this
property (cf. [1]).

Theorem 1.1 then requires the proof of %-acyclicity for several vector bundles.
It is worth emphasizing that the moduli space N depends on the complex structure
of the curve C by a classical theorem of Mumford and Newstead [28] later extended
by Narasimhan and Ramanan [34]. The uniform shape of Theorem 1.1 is thus a sur-
prisingly strong statement about coherent cohomology of vector bundles on N that
does not involve any conditions of the Brill–Noether type. Our approach utilizes the
method of windows into derived categories of geometric invariant theory (GIT) quo-
tients of Teleman [38], Halpern-Leistner [18], and Ballard, Favero, and Katzarkov [2]
to systematically predict behavior of coherent cohomology under wall-crossing. This
dramatically reduces otherwise unwieldy cohomological computations to a few key
cases, which can be analyzed using other techniques. Rather unexpectedly, one of the
difficult ingredients in the proof is acyclicity of certain line bundles (see Section 6).
While cohomology of line bundles on the space of stable pairs was extensively stud-
ied in [39] in order to prove the Verlinde formula, the line bundle that we need is
outside the scope of that paper.

Analogous recent applications of windows to moduli spaces include the proof of
the Manin–Orlov conjecture on NM0;n by Castravet and Tevelev [9]–[11] and analysis
of Bott vanishing on GIT quotients by Torres [40].

2. Tensor vector bundles
Let C be a smooth projective curve over C. For integers ˛ ! 1 and 1 & j & ˛, let
&j W C ˛ ! C be the j th projection, and let ' W C ˛ ! Sym˛ C be the categorical
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S˛-quotient, where S˛ is the symmetric group. Since C ˛ is Cohen–Macaulay (in
fact smooth), Sym˛ C is smooth, and ' is equidimensional, we conclude that ' is
flat by miracle flatness. Therefore, any base change ' W C ˛ %M ! Sym˛ C %M is
also a finite and flat categorical S˛-quotient, where M is any scheme over C. The
constructions in this section are functorial in M . In the following sections, M will be
one of the moduli spaces we consider.

Notation 2.1
For an S˛-equivariant vector bundle E on C ˛ %M , we will denote by 'S˛! E the
S˛-invariant part of the pushforward '! E .

LEMMA 2.2
Let E be an S˛-equivariant locally free sheaf on C ˛ %M . Then '! E and 'S˛! E are
locally free sheaves on Sym˛ C %M .

Proof
The scheme C ˛ %M is covered by S˛-equivariant affine charts SpecR and '! is
given by the inclusion of invariants RS˛ #R. Since R is a finitely generated and flat
RS˛ -module, it is also a projective RS˛ -module. Let E DH 0.SpecR;E/. Since E
is a projective R-module, it is a direct summand of Rs for some s. It follows that E is
a projective RS˛ -module; that is, '! E is locally free. Since ES˛ is a direct summand
of E as an RS˛ -module, it is also a projective RS˛ -module. Therefore, 'S˛! E is a
locally free sheaf as well.

Definition 2.3
For any vector bundle F on C %M , we define the following tensor vector bundles
on Sym˛ C %M ,

F !˛ D 'S˛!
!Ǫ
jD1

&!j F
"

and F
!˛ D 'S˛!

!Ǫ
jD1

&!j F ˝ sgn
"
;

where S˛ acts on C ˛ and also permutes the factors of the corresponding vector bundle
on C ˛ . Here sgn is the sign representation of S˛ .

LEMMA 2.4
The formation of tensor vector bundles is functorial in M ; that is, given a mor-
phism f W M 0!M and its base changes C %M 0! C %M and Sym˛ C %M 0!
Sym˛ C %M , which we also denote by f , we have

f !.F !˛/D .f !F /!˛ and f !.F
!˛
/D .f !F /!˛:
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Proof
Since ' is flat, this follows from cohomology and base change.

For a divisor D 2 Sym˛ C and a vector bundle G on Sym˛ C %M , we write
GD WD G j¹Dº%M . We usually view GD as a vector bundle on M .

Remark 2.5
For the empty divisor D D 0, we have G0 'OM .

LEMMA 2.6
If D DP˛kxk with xk ¤ xl for k ¤ l , then we have

.F !˛/D D
O

.F !˛k /˛kxk ; .F
!˛
/D D

O
.F

!˛k
/˛kxk : (2.1)

Proof
Indeed, the quotient ' W C ˛! Sym˛ C is étale locally near D 2 Sym˛ C isomorphic
to the product of quotients

Q
C ˛k !Q

Sym˛k C . Moreover, the stabilizer of the
point D under the S˛-action is

Q
S˛k , and sgn restricts to the tensor product of sign

representations of
Q
S˛k .

Consider the nonreduced scheme D˛ D Spec CŒt (=t˛ , with maps pt
{
,! D˛

""! pt

given by the obvious pullbacks C
"#

"!CŒt (=t˛ {#"!C. We still write { and ) for the base

changes to M of these morphisms, that is, M
{"! D˛ %M

""!M . For a locally free
sheaf F on D˛ %M , we denote by F0 D {!F its restriction to M .

Definition 2.7
For two vector bundles F , G on a scheme M , we will say that F is a deformation of
G over A1 if there is a coherent sheaf QF on M %A1, flat over A1, with QF jt ' F for
t ¤ 0, while QF j0 ' G .

LEMMA 2.8
Every locally free sheaf F on D˛ %M is a deformation of )!F0 over A1. In particu-
lar, )!F is a deformation of F ˚˛0 over A1.

Proof
Let " WA1s %D˛!D˛ be the map defined by its pullback "# W t 7! ts, and also denote
by " its base change toM . We claim that the locally free sheaf "!F gives the required
deformation. Indeed, the restriction of "!F to ¹s0º 2 A1s is the pullback of F along
the composition bs0 D " ı js0 ,
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D˛ %M ,
js0""!D˛ %A1s %M

!"!D˛ %M;

determined by its pullback b#
s0
W t 7! s0t . When s0 ¤ 0, b!s0F ' F . On the other

hand, when s0 D 0, the map b0 factors as the composition

D˛ %M
""!M

{"!D˛ %M;

so b!0F D )!{!F D )!F0, as desired. The last statement follows from projection
formula and the fact that )!)!OM 'O˚˛M .

Suppose that D D ˛x is a fat point, that is, a divisor given by a single point x
with multiplicity ˛, and let t be a local parameter on C at x. Note that the notation
OD is unfortunately ambiguous, because it can denote both the structure sheaf of
the subscheme D # C and the skyscraper sheaf of the point ¹Dº 2 Sym˛ C . When
confusion is possible, we denote the latter sheaf by O¹Dº. Then

'!O¹Dº '
CŒt1; : : : ; t˛(
.*1; : : : ;*˛/

(2.2)

is the so-called covariant algebra, where *1; : : : ;*˛ are the elementary symmetric
functions in variables tj D &!j .t/. Call B˛ D Spec '!O¹Dº. By the Newton formulas,
t˛j D 0 for every j D 1; : : : ; ˛, and in particular, every map &j W B˛ ! C factors
through D˛ . By abuse of notation, we have a diagram of morphisms

B˛ %M
#j

$

D˛ %M
q

"

C %M

M

{
(2.3)

COROLLARY 2.9
Let D D x1 C $ $ $C x˛ (possibly with repetitions). Then both .F !˛/D and .F

!˛
/D

are deformations of Fx1 ˝ $ $ $˝Fx˛ over A1.

Proof
By (2.1), it suffices to consider the case when D D ˛x. Using the notation as in
the diagram (2.3), the restriction .F !˛/D can be written as 'S˛! .

N
&!j q

!F /, by
flatness of ' . The construction of Lemma 2.8 commutes with the S˛-action, so
'S˛! .

N
&!j q

!F / is a deformation of 'S˛! .
N
&!j )

!Fx/ over A1, since .q!F /0 D
Fx D F j¹xº%M . Note that &!j )

! D '!, so using the projection formula, we get that

.F !˛/D is a deformation of .
N˛
jD1Fx/ ˝ 'S˛! .OB˛%M /, and similarly, .F

!˛
/D
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is a deformation of .
N˛
jD1Fx/˝ 'S˛! .OB˛%M ˝ sgn/. By flatness of the quotient

C ˛ ! Sym˛ C , the covariant algebra OB˛ (2.2) is the regular representation CŒS˛(
of S˛ . It follows that it contains the trivial and the sign representations each with mul-
tiplicity 1, and therefore 'S˛! .OB˛%M /D 'S˛! .OB˛%M ˝ sgn/DOM . This concludes
the proof.

Remark 2.10
If we have a G-action on M and a G-equivariant bundle F , then the deformations
constructed in the proofs of Lemma 2.8 and Corollary 2.9 are also G-equivariant,
that is, given by a G-equivariant bundle on A1%M . This is because the map " W
A1s %D˛ %M ! D˛ %M is given by the identity on the factor M , and hence " is
G-invariant. Thus, the pullback "!F of a G-equivariant sheaf is naturally again a
G-equivariant sheaf.

Definition 2.11
A vector bundle F on a scheme M is said to be a stable deformation of a vector
bundle G over A1 if there is some vector bundle K such that F ˚K is a deformation
over A1 of a direct sum G˚r for some r > 0.

PROPOSITION 2.12
LetD D xC QD. Then the vector bundle .F !˛/D is a stable deformation of the vector
bundle Fx ˝ .F !.˛"1// QD over A1.

Proof
By Lemma 2.6, it suffices to consider the case D D ˛x. Let W˛ D C˛ be the tau-
tological representation of S˛ , which splits as a sum of the trivial and the standard
representations, W˛ D C˚ V˛ . For any S˛-equivariant vector bundle E on B˛ %M ,
we have

'S˛! .E ˝W˛/D 'S˛! .E/˚ 'S˛! .E ˝ V˛/: (2.4)

On the other hand, we have W˛ D CŒS˛=S˛"1(, where S˛"1 ,! S˛ is the inclusion
given by fixing the ˛th element. Then by Frobenius reciprocity, 'S˛! .E ˝ W˛/ D
'S˛!1! .E/D )! ı .&˛/S˛!1! .E/, where &˛ is the ˛th projection. By Lemma 2.8, this
bundle is a deformation of ..&˛/

S˛!1! E/˚˛0 over A1. Now let E be
N
&!j q

!F . Then

'S˛! .E/ is precisely .F !˛/D and, by projection formula,

#
.&˛/

S˛!1! E
$
0
D Fx ˝

!
.&˛/

S˛!1!
!˛"1O
jD1

&!j q
!F

""
0
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D Fx ˝ .&˛/S˛!1!

˛"1O
jD1

.&!j q
!F /

ˇ̌
ˇ
t˛D0
DFx ˝ .F !.˛"1//.˛"1/x

since the subscheme .t˛ D 0/ # B˛ is isomorphic to B˛"1 and the restriction of &˛
to it is isomorphic to the quotient ' (for the group S˛"1).

Remark 2.13
We will use stable deformations for semicontinuity arguments. If F is a stable defor-
mation of G , M is proper, and Hp.G / D 0, then, by the semicontinuity theorem,
Hp.F /D 0, too. In particular, if G is %-acyclic, then so is F .

Remark 2.14
Let D D x1 C QD, QD D x2 C $ $ $C x˛ (possibly with repetitions). Suppose that M
is proper. Since .F !˛/D and Fx1 ˝ .F !.˛"1// QD are both deformations of Fx1 ˝
$ $ $˝ Fx˛ over A1 by Corollary 2.9, they have the same Euler characteristic. Com-
bining this with Remark 2.13, if Hp.Fx ˝ .F !.˛"1// QD/ D 0 for p > 0, then both
Hp..F !˛/D/ D 0 for p > 0 and H 0..F !˛/D/ D H 0.Fx ˝ .F !.˛"1// QD/. The

same results hold for .F
!˛
/D and Fx ˝ .F

!.˛"1/
/ QD .

3. Wall-crossing on moduli spaces of stable pairs
Let C be a smooth projective curve of genus g ! 2 over C. In [39], Thaddeus studies
moduli spaces of pairs .E;#/, where E is a rank-2 vector bundle on C with fixed
determinant line bundle ƒ and # 2H 0.E/ is a nonzero section. We use these results
extensively and so, for ease of reference, try to follow the notation in [39] as closely
as possible. We always assume that d D degE > 0. For a given choice of a parameter
* 2Q, the following stability condition is imposed: for every line subbundle L#E ,
one must have

degL&
´
d
2 " * if # 2H 0.L/;
d
2
C * if # …H 0.L/:

Throughout the text, we work with the general assumption * 2 .0; d=2(, which guar-
antees the existence of stable pairs (see [39, 1.3]). The next lemma follows the ideas
of [39, 2.1].

LEMMA 3.1
For a given line bundle ƒ of degree d , the moduli stack M% .ƒ/ of semistable pairs
is a smooth algebraic stack.
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Proof
M% .ƒ/ is a fiber of the morphism Md

% ! Picd .C /, .E;#/ 7! detE , from the stack of
semistable pairs .E;#/, where E is a degree d vector bundle. We first show that Md

%

is smooth. Obstructions to deformations of a morphism of sheaves # from a fixed

source OC to a varying target E lie in Ext1.ŒOC
&!E(;E/. The truncation exact

triangle of the complex ŒOC
&!E( yields an exact sequence

Ext1.E;E/
&!Ext1.OC ;E/! Ext1

#
ŒOC

&!E(;E
$
! 0:

We claim that the first map is surjective, so obstructions vanish. By Serre duality,

it suffices to prove injectivity of the map of sheaves E!.KC /
&!E! ˝ E.KC / and

this follows from # ¤ 0 (cf. the proof of [39, 2.1]). Next we consider obstructions to
deformations of .E;#/ fixing the determinant, which amounts to studying the map

Ext1.E;E/0
&!Ext1.OC ;E/, where Ext1.E;E/0 denotes traceless endomorphisms.

However, this map is also surjective because the Serre-dual map is induced by the

map of sheaves E!.KC /
&!End.E/0.KC /, where End.E/0 is identified with the

quotient of End.E/ by the subspace of scalar multiples of the identity. This map is
still injective, as a nonzero scalar multiple of the identity cannot have rank 1.

The moduli space M% .ƒ/ of S -equivalence classes of stable pairs exists as a
projective variety and, in the case there is no strictly semistable locus, it is smooth,
isomorphic to the stack M% .ƒ/ and carries a universal bundle F with a universal
section Q# W OC%M! .ƒ/! F . A salient point is that stable pairs, unlike stable vector
bundles, do not have any automorphisms besides the identity (see [39, 1.6]). Note that
nontrivial multiples of the identity are not automorphisms, as they do not preserve the
section #.

The spaces M% .ƒ/ can be obtained as GIT quotients as follows (see [39, Sec-
tion 1] for further details). Let +D +.E/D dC2"2g. For d ( 0, every bundleE of
rank 2 and detE Dƒ is generated by global sections, and +D h0.E/. ThenM% .ƒ/ is
a GIT quotient of U %PC' by SL', where U #Quot is the locally closed subscheme
of the Quot scheme (see [17]) corresponding to locally free quotients O'

C #E induc-

ing an isomorphism s W C' &"!H 0.E/ and such that ^2E D ƒ. The isomorphism s

induces a map ^2C'!H 0.ƒ/, and we get an inclusion U %PC' ,! P Hom%PC',
where we write P Hom for P Hom.^2C';H 0.ƒ//, and a quotient s WO'

C #E on the
left is sent to the induced map in the first coordinate. Then M% .ƒ/ can be seen as the
GIT quotient of a closed subset of P Hom%PC' by SL', where the linearization is
given by O.+C 2*; 4*/.

For arbitrary d , we pick any effective divisor D on C with degD ( 0, and
M% .ƒ/ can be seen as the closed subset of M% .ƒ.2D// consisting of pairs .E;#/
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such that #jD D 0. This way, M% .ƒ/ is a GIT quotient by SL'0 , with +0 D d C
2" 2gC 2degD, of the closed subset X # U 0 % PC'0 determined by the condition
that # vanishes along D (see [39, 1.9, 1.20]). Regardless of the GIT, the embedding
M% .ƒ/#M% .ƒ.2D// will play an important role in our induction arguments.

Remark 3.2
Scalar matrices in SL'0 act trivially on U % PC'0 , so the action factors through the
quotient SL'0 ! PGL'0 . If we replace O.+0 C 2*; 4*/ by its +0th power, this line
bundle carries a PGL'0 -linearization andM% .ƒ/ can also be written as a GIT quotient
X // PGL'0 . Moreover, the moduli stack M% .ƒ/ is isomorphic to the corresponding
GIT quotient stack ŒX ss=PGL'0 (.

For fixed ƒ but varying * , the spaces M% .ƒ/ are all GIT quotients of the same
scheme, with different stability conditions. The GIT walls occur when * 2 d=2C Z,
and for 0& i & vD b.d " 1/=2c we have different GIT chambers with moduli spaces
M0;M1; : : : ;Mv , whereMi DMi .ƒ/DM% .ƒ/ for * 2 .max.0; d=2" i"1/; d=2"
i/. TheseMi are smooth projective rational varieties of dimension d Cg"2 (see [39,
2.2, 3.6]). Indeed, M0 D PH 1.C;ƒ"1/ is a projective space, M1 is a blowup of M0

along a copy of C embedded by the complete linear system of !C ˝ ƒ, and the
remaining ones are small modifications of M1. More precisely, for each 0& i & v D
b.d " 1/=2c there are projective bundles PW Ci and PW "i over the symmetric product
Symi C , of (projective) ranks d C g " 2i " 2, i " 1, respectively, with embeddings
PW Ci ,!Mi and PW "i ,!Mi"1, and such that PW Ci parameterizes the pairs .E;#/
appearing inMi but not inMi"1, while PW "i parameterizes those appearing inMi"1
but not in Mi .

We have a diagram of flips (3.1), where QMi is the blowup of Mi"1 along PW "i
and also the blowup of Mi along PW Ci . Here N is the moduli space of ordinary
slope-semistable vector bundles as in the introduction and the map Mv ! N is an
“Abel–Jacobi” map with fiber PH 0.C;E/ over a vector bundle E . If d ! 2g " 1 the
Abel–Jacobi map is surjective, and if d D 2g" 1 it is a birational morphism (see [39,
Section 3] for details).

QM2
QM3

QMv

M1 M2 $ $ $ Mv

M0 N

(3.1)
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Notation 3.3
By abuse of notation, we will sometimes write Mi .d/ to denote the moduli space
Mi DMi .ƒ/, where d D degƒ.

Notation 3.4
In what follows, v will always denote b.d " 1/=2c.

The Picard group of M1 D BlC M0 is generated by a hyperplane section H in
M0 D PdCg"2 and the exceptional divisor E1 of the morphism M1 !M0. Since
the maps Mi !!"MiC1 are small birational modifications for each i ! 1, there are
natural isomorphisms PicM1 ' PicMi , i ! 1. The following notation is taken from
[39, Section 5].

Definition 3.5
For each m, n, we denote the line bundle OM1..m C n/H " nE1/ by O1.m;n/,
while Oi .m;n/will denote the image of OM1.m;n/ under the isomorphism PicM1 '
PicMi .

Remark 3.6
By [39, 5.3], the ample cone of Mi is bounded by Oi .1; i " 1/ and Oi .1; i/ for 0 <
i < v, while the ample cone of Mv is bounded below by Ov.1; v " 1/ and contains
the cone bounded on the other side by Ov.2; d " 2/. In other words, the ray bounding
the cone above has slope at least .d " 2/=2.

Remark 3.7
For any effective divisor D on C of degD D ˛, we have a closed immersion
Mi"˛.ƒ."2D// ,! Mi .ƒ/, as the locus of pairs .E;#/ where the section #

vanishes along D (see [39, 1.9]). The restriction of Oi .m;n/ to Mi"˛.ƒ."2D//
is Oi"˛.m;n " m˛/ (see [39, 5.7]). If i " ˛ D 0, the restriction of Oi .m;n/ to
M0.ƒ."2D//D Pr is OPr .nCm.1" i//. This follows from [39, 5.7] together with
the fact that, for an embedding Pr DM0.ƒ."2x// ,!M1.ƒ/, OM1.E1/ restricts to
OPr ."1/ while OM1.H/ restricts to OPr .

Suppose that d ( 0. Then the universal bundle F on Mi % C is the descent
from the equivariant vector bundle F .1/ on X %C # U %PC' %C , where O'# F

is the universal quotient bundle over U % C , and the universal section Q# descends
from the universal section of F .1/ (see [39, 1.19]). Let & W C %Mi !Mi be the
projection. For every i ! 1, the determinant of cohomology line bundle det&ŠF (cf.
[21]) descends from O.0;+/ on P Hom%PC' (see [39, 5.4, proof of 5.14]). On M1,
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det&ŠF corresponds to OM1..g " d " 1/H " .g " d/E1/ D O1."1;g " d/. For
x 2 C , call Fx D F j¹xº%M . The line bundle detFx D ^2Fx does not depend on x,
and it is the descent of O.1; 2/ on P Hom%PC'. It corresponds to OM1.E1 "H/D
Oi .0;"1/ (see [39, 5.4, proof of 5.14]).

For arbitrary d , consider an embedding { WMi ,!M 0 DM% .ƒ.2D//, degD(
0, as above, and let F 0 be the universal bundle on M 0. Then we have a short exact
sequence (see [39, 1.20])

0! F ! {!F 0! {!F 0jD%Mi ! 0: (3.2)

In particular, F is the descent from an object on X %C # U 0 % PC'0 %C . The same
is true for det&ŠF and ^2Fx .

LEMMA 3.8
Fx ' {!F 0x for every x 2 C .

Proof
We tensor (3.2) with O¹xº%Mi , which gives an exact sequence

0! T or1C%Mi .{
!F 0jD%Mi ;O¹xº%Mi /! Fx! {!F 0x

! {!F 0jD%Mi ˝C%Mi O¹xº%Mi ! 0:

If x …D, then T or1.{!F 0jD%Mi ;O¹xº%Mi /D {!F 0jD%Mi ˝O¹xº%Mi D 0, and we get
Fx ' {!F 0x . If x 2D, then T or1C .OD;Ox/ ' OD˝C Ox ' Ox , and the sequence
splits into two isomorphisms, {!F 0x ' Fx and {!F 0x ' {!F 0x .

LEMMA 3.9
On M0 D Pr , Fx 'OPr ˚OPr ."1/.

Proof
In fact, Fx is a rank-2 bundle on Pr , carrying a nowhere vanishing section, and with
determinant OPr ."1/. Hence, Fx must be isomorphic to OPr ˚OPr ."1/.

Definition 3.10
We introduce notation for some important line bundles:

 "1 WD det&ŠF DOi ."1;g " d/;
ƒM WD ^2Fx DOi .0;"1/;

, WD ˝ƒd"2gC1M DOi .1; g " 1/
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and

! WD 2˝ƒ'M DOi .2; d " 2/;

where +D d C 2" 2g (cf. [32, Proposition 2.1]).

LEMMA 3.11
For a point x 2 C and every i ! 1, we have exact sequences

0!ƒ"1M ! F _x !OMi .ƒ/!OMi!1.ƒ."2x//! 0 (3.3)

and

0!OMi .ƒ/! Fx!ƒM !ƒM jMi!1.ƒ."2x//! 0: (3.4)

Proof
By Remark 3.7, the zero locus of the section #x of Fx is smooth and has codimen-
sion 2. Therefore, the Koszul complex and the dual Koszul complex of .Fx ;#x/ are
exact.

Definition 3.12
LetM DMi .ƒ/ be a moduli space in the interior of a GIT chamber, as above, and let
F be the universal bundle on C %M . We apply the constructions of Section 2 to F .
In particular, for a divisor D 2 Sym˛ C , we will denote

GD D .F!˛/D and GD D .F
!˛
/D:

We write G_D , G
_
D for their respective duals.

LEMMA 3.13
We have the following formulas:

.F _/!˛ '
#
.ƒ_/!˛ $ƒ"˛M

$
˝F!˛;

G_D ' .F _
!˛
/D; G

_
D '

#
.F _/!˛

$
D
:

Proof
Let us denote

cƒ_!˛ WDǪ
jD1

&!j .ƒ
_/; bF!˛ WD

Ǫ
jD1

&!j F;
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which are bundles on C ˛ and C ˛ %M , respectively. By [14, Théorème 2.3], .ƒ_/!˛

is the descent of cƒ_!˛ . Using this together with the fact that F _ ' F ˝ .detF /"1 '
F ˝ .ƒ$ƒM /"1, we get

.F _/!˛ ' 'S˛!
#
.cƒ_!˛ $ƒ"˛M /˝ bF!˛$' #.ƒ_/!˛ $ƒ"˛M

$
˝ 'S˛! .bF!˛/:

The latter expression is precisely ..ƒ_/!˛ $ƒ"˛M /˝F!˛ .
We write OSym˛ C ."-=2/ WD 'S˛! .OC˛ ˝ sgn/, a line bundle on Sym˛ C such

that OSym˛ C ."-=2/˝2 'OSym˛ C ."-/, where-# Sym˛ C is the diagonal divisor.
The morphism ' is ramified along B D '"1.-/ generically of order 2, so OC˛ .B/ is
a relative dualizing sheaf for ' . The equivariant structure on OC˛ .B/ is dual to the
equivariant structure of the ideal sheaf OC˛ ."B/#OC˛ . Since the local equation of
B is anti-invariant, OC˛ .B/' '!OSym˛ C .-=2/˝ sgn.

By duality,

#
.F _/!˛

$_ ' 'S˛!
#bF!˛.B/

$
' 'S˛! .bF!˛ ˝ sgn/.-=2/' F!˛

.-=2/:

Restricting to a divisor D 2 Sym˛ C , we obtain

#
.F _/!˛

$_
D
' .F!˛

/D;

and similarly, arguing with F _ in place of F , we get

.F!˛/_D ' .F _
!˛
/D:

This completes the proof.

COROLLARY 3.14
We have G_D 'GD ˝ƒ

"degD
M and GD 'G

_
D ˝ƒ

degD
M .

Proof
This follows from restricting .F _/!˛ ' ..ƒ_/!˛ $ƒ"˛M /˝F!˛ to ¹Dº%M .

Consider again the diagram (3.1). The wall between two consecutive chambers
Mi"1 and Mi occurs at * D d=2" i . The birational transformation Mi"1 !!"Mi is
an isomorphism outside of the loci PW "i #Mi"1, PW Ci #Mi , where W "i and W Ci
are vector bundles over the symmetric product Symi C of rank i and d C g" 1" 2i ,
respectively. We have a diagram
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QM

Mi"1 DM%C) M%") DMi

M%

where QM is both the blowup of M%C) D Mi"1 along PW "i and the blowup of
M%") DMi along PW Ci . The variety M% is singular, obtained from the contraction
to Symi C of the exceptional locus PW "i %Symi C PW Ci # QM .

When d ( 0, M%˙).ƒ/ and M% .ƒ/ are obtained as GIT quotients of U %PC',
with +D dC2"2g. When d is arbitrary, take an effective divisorD0 of large degree,
so that M% ,!M 0% WDM% .ƒ.2D

0//, where M 0% is a GIT quotient with a semistable
locusX 0 # U 0%PC'0 , +0 D dC2"2gC2degD0. The spacesM%˙).ƒ/ andM% .ƒ/

are then GIT quotients by SL'0 of a closed subset of U 0 % PC'0 determined by the
condition that in the pair .E 0;#0/, the section #0 vanishes along D0. If we call L˙,
L0 the corresponding linearizations, then we can write X #X 0, the semistable locus
of L0, as the union X DX ss.LC/[X ss.L"/tZ, where the locus Z DXu.LC/\
Xu.L"/ corresponds to pairs .E 0;#0/, such that E 0 splits as

E 0 DL0˚K 0;

with degL0 D i C degD0, degK 0 D d " i C degD0, and #0 2 H 0.L0/ vanishes
along D0 (see [39, 1.4]). The map O'0

C # E 0 is then given by a block-diagonal
matrix .Oa

C # L0/ ˚ .Ob
C # K 0/, where a D h0.L0/, b D h0.K 0/, and a C b D

h0.L0 ˚ K 0/ D +0. The strictly semistable locus X sss.L0/ D Xu.LC/ [ Xu.L"/
consists of the orbits whose closure intersects Z (cf. [36, Remark 7.4]).

Using techniques from [18] and [2], we compare the derived categories on either
side of the wall M% . We write M%˙) D X //L˙ PGL'0 (cf. Remark 3.2) and take
Kempf–Ness (KN) stratifications of the unstable loci Xu.L˙/ with strata Sj˙ deter-
mined by pairs .Zj ;"j˙/, where "j".t/D "

j
C.t/

"1 are one-parameter subgroups and
Zj is the fixed locus of "j D "jC (see [18, Section 2.1] for details).

Remark 3.15
From the discussion above, it follows that in this case the KN stratification of the
unstable locus in X with respect to L˙ has only one stratum S˙, parameterizing
framed extensions as in [39, (3.2), (3.3)]. In the notation of [18, Section 2], the stratum
S˙ is determined by the pair .Z;"/, where "D "C DGm is the stabilizer of Z, and
some power of " acts on a split bundle E 0 DL0˚K 0 by .tb; t"a/.
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Remark 3.16
Let Z be the stack ŒZ=L(, where L is the Levi subgroup, that is, the centralizer of
" in PGL'0 . We have a short exact sequence of groups 1! Gm ! L! PGLa %
PGLb ! 1 with Gm D " acting on Z trivially and ŒZ=PGLa % PGLb( ' Symi C .
Indeed, the action of PGLa % PGLb on Z is free, and each orbit is determined by a
divisor D 2 Symi C , where D CD0 is the zero locus of the section #0 2 H 0.L0/.
Therefore Z' ŒSymi C=Gm(, with the trivial action of Gm.

For * D d=2 " i with 1 < i & v, M%˙) (. > 0) is isomorphic to the corre-
sponding quotient stack, since the action of PGL'0 is free on the stable locus by [39,
1.6]. Let /˙ D weight!˙ det N _S˙=X jZ . For any choice of an integer w, Db.M%˙)/

is equivalent to the window subcategory G˙w # Db.ŒX=PGL'0 (/ determined by
objects having "˙-weights in the range Œw; wC /˙/ for the unique stratum S˙ (see
[18, Theorem 2.10]). If weight!!X jZ D /" " /C > 0, then we get an embedding
Db.M%C)/#Db.M%")/ (see [18, Proposition 4.5] and the Remark following it).

LEMMA 3.17
In the wall-crossing between the spaces M%C).ƒ/DMi"1 and M%").ƒ/DMi , the
window has width /C D i , /" D d C g " 1" 2i .

Proof
We use the notation as in the discussion above, with M% ,!M 0% WDM% .ƒ.2D

0//,
D0 effective with degD0 ( 0. For L˙, there is no strictly semistable locus and
in fact PGL'0 acts freely on the semistable locus (see [39, 1.6]), so Mi"1 D
M%C).ƒ/ D X //LC SL'0 and Mi D M%").ƒ/ D X //L! SL'0 are isomorphic to
the quotient stacks ŒX ss.L˙/=PGL'0 ( (cf. Remark 3.2). By Lemma 3.1, both
ŒX=PGL'0 ( and ŒX 0=PGL'0 ( are smooth quotient stacks of dimension d C g " 2
and d C g " 2 C 2degD0, respectively, and thus X and X 0 are both smooth and
X # X 0 is a local complete intersection cut out precisely by the 2degD0 conditions
imposed by the vanishing of a section along D0.

Recall that the unique KN stratum of Xu.L˙/ is determined by .Z;"/ (cf.
Remark 3.15), where for a pair .E 0;#0/ 2Z, the bundle E 0 DL0˚K 0 is acted on by
(some power of) "DGm by .tb; t"a/. We will first compute the weights with respect
to this action, and later rescale according to the parameterization that describes the
whole one-parameter subgroup. By [36, Lemma 7.6] and its proof, the "-weights of
N _
S˙=X 0

on Z are all ˙.a C b/ D ˙+0 or 0. Then the weights of N _
S˙=X

are all
˙+0, and /˙ Dweight!˙ det N _S˙=X jZ is just the codimension of S˙ #X . Since S˙
is the bundle W ˙i on Z, we have codim.S˙ # X/D rkW 'i , so that /C D i+0 and
/" D .d C g " 1" 2i/+0.
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As a one-parameter subgroup of PGL'0 , " is given by sending t 7! diag.sb; : : : ;
sb; s"a; : : : ; s"a/, where s'

0 D t . Indeed, note that this is well defined, since
when replacing s by $s, with $ a +0th root of unity, the matrix ".t/ gets scaled
by $b D $"a. Also, note that this " is injective, whereas its +0th power t 7!
diag.tb; : : : ; tb; t"a; : : : ; t"a/ is not. Therefore, all weights computed above need
to be rescaled by 1=+0. This gives the formulas in the statement.

Using this we obtain the following result.

PROPOSITION 3.18
For 1 & i & dCg"1

3 (resp., i ! dCg"1
3 ) there is an admissible embedding

Db.Mi"1/ ,! Db.Mi / (resp., Db.Mi / ,! Db.Mi"1/). When 1 < i & dCg"1
3 , the

admissible embedding can be chosen to be the window subcategory GC0 #Db.Mi /

determined by the range of weights Œ0; i/# Œ0; dCg"1"2i/ (cf. [18]) and moreover
there is a semiorthogonal decomposition

Db.Mi /D
˝
Db.Mi"1/;Db.Symi C/; : : : ;Db.Symi C/

˛
(3.5)

with 0 D d C g " 3i " 1 copies of Db.Symi C/ given by the fully faithful images
of functors Rj!.L&!.$/˝L O#.l// WDb.Symi C/!Db.Mi / for l D 0; : : : ;0 " 1,
where & W PW Ci ! Symi C is the projection and j W PW Ci ,!Mi the inclusion.

The semiorthogonal decomposition (3.5) follows from [4], as the birational trans-
formation betweenMi"1 andMi is a standard flip of projective bundles over Symi C .
Here we provide an alternative proof for this case. We also note that [36, Corol-
lary 8.1] shows the admissible embeddings Db.Mi"1/ ,!Db.Mi / when i is in the
specified range.

As explained in the introduction, Proposition 3.18 does not provide a semiorthog-
onal decomposition with Fourier–Mukai functors associated with Poincaré bundles
and it is not used in our paper. However, we find this result relevant.

Proof
If i D 1, this follows from Orlov’s blowup formula in [35]. Let i > 1. From Lem-
ma 3.17, weight!!X jZ D /" " /C D .d C g " 1 " 3i/. By [18, Proposition 4.5,
Remark 4.6], and since M%˙) ' ŒX ss.L˙/=PGL'0 (, we get a window embedding
Db.M%C)/ #Db.M%")/ if /C & /" and the other way around if /C ! /". More-
over, if GCw DDb.M%C)/ is a window, determined by the range of weights Œw; wC
/C/# Œw; wC/"/, then [18, Theorem 2.11] and [2, Theorem 1] give semiorthogonal
blocks Db.Z/k , so that

Db.M%")/D
˝
GCw ;D

b.Z/w ; : : : ;D
b.Z/wC*"1

˛
; (3.6)
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where 0D /" " /C and ZD ŒZ=L( is the quotient stack by the Levi subgroup. By
Remark 3.16, Db.Z/DDb

Gm.Symi C/, so the blocks in (3.6) are given by the fully
faithful images ofRj!.L&!.$/˝LO#.l// WDb.Symi C/!Db.Mi / for l 2 Œw; wC
0/, where & W PW Ci ! Symi C is the projection and j W PW Ci ,!Mi the inclusion.
Taking wD 0 gives the claim.

COROLLARY 3.19
If d & 2g " 1, then Db.Mi"1/#Db.Mi / for any 1& i & v.

Proof
In this case i & .d " 1/=2 & g " 1, so the inequality i < .d C g " 1/=3 holds for
every i .

Consider an object G in Db.ŒX=PGL'0 (/ descending to some objects on
Db.Mi"1/ and Db.Mi /. We can use windows to determine when such object
can “cross the wall.” Namely, if the weights of G are in the required range, cohomol-
ogy groups will be the same on either side. By abuse of notation, we often denote in
the same way both the object on Db.ŒX=PGL'0 (/ and the objects it descends to in
M%˙).ƒ/.

THEOREM 3.20
Let * D d=2 " i , 1 < i & v. If A, B are objects in Db.ŒX=PGL'0 (/, with "D "C-
weights satisfying the inequalities

1C 2i " d " g <weight!BjZ "weight!AjZ < i; (3.7)

then RHomM!C" .A;B/ D RHomM!!" .A;B/. In particular, if 1 C 2i " d " g <
weight!BjZ < i , then R%Mi!1.B/DR%Mi .B/.

Proof
By Lemma 3.17, (3.7) is equivalent to the inequalities

"/" <weight!BjZ "weight!AjZ < /C;

so the quantization theorem (see [18, Theorem 3.29]) implies that

RHomM!C" .A;B/DRHomŒX=PGL#0 +.A;B/DRHomM!!" .A;B/:

Indeed, the first equality follows directly from [18, Theorem 3.29] applied on
M%C) , while the second is the same theorem applied on M%") , using the fact that
weight!! BjZ "weight!! AjZ D".weight!BjZ "weight!AjZ/.
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We finish this section with the computation of all weights that we need in order
to construct the semiorthogonal decompositions.

THEOREM 3.21
The objects of the form Fx , ƒM ,  , ,, GD on both Mi"1 and Mi are the descents of
objects QFx , QƒM , Q , Q,, QGD on Db.ŒX=PGL'0 (/ that have "-weights

weights! QFxjZ D ¹0;"1º;
weight! QƒM jZ D"1;

weight! Q jZ D d C 1" g " i;

weight! Q,jZ D g " i;
weights! QGDjZ D ¹0;"1; : : : ;"degDº:

Proof
Let * D d=2" i , and embed { WM% .ƒ/ ,!M 0% DM% .ƒ.2D

0// for an effective divi-
sor D0, degD0( 0, as usual. Recall that the universal bundle F 0 on C %M 0%˙) is
the descent of F 0.1/ on C %X 0 # C %U 0 % PC'0 , where F 0 is the universal family
on C %U 0 (see [39, 1.19]). Let us compute the "-weights of F 0x.1/ on the * -strictly
semistable locus, for a point x 2 C . The fiber of F 0x over L0˚K 0 is L0x ˚K 0x , which
is acted on with weights b in the first component and "a in the second. Since the
"-weight of OPC#0 .1/ over the section .#0; 0/ is "b, the weights of F 0x.1/ are 0 and
"a" b D"+0. By Lemma 3.8, we have Fx ' {!F 0x . Hence, Fx also is the descent of
an object with weights 0 and "+0.

The bundle det&ŠF 0 descends from det&ŠF 0.1/. On the fiber of &ŠF 0 over L0˚
K 0, " acts onH 0.L0/˚H 0.K 0/ with weights b and "a, with multiplicities h0.L0/D
a and h0.K 0/D b, respectively. Taking the tensor product with OPC#0 .1/ shifts each
weight by "b, and then taking the determinant we get weight! det&ŠF 0.1/jZ0 D 0 $
aC ."a" b/ $ b D"b+0. For detF 0x , which is the descent of det F 0x.1/, we see that "
acts with weights b, "a on L0x˚K 0x and then shifting by "b and taking determinants
we get weight! det F 0x.1/jZ0 D"a" b D"+0.

Now for the universal bundle F on C % M%˙).ƒ/, we use the short exact
sequence (3.2). From this we see that ƒM D detFx ' detF 0x is the descent of an
object with "-weight equal to "+0. Also, since det&ŠF 0jD0%M!˙" D det

L
x2D0 F

0
x D

.detF 0x/
degD0 , we obtain that  "1 D det&ŠF D det&ŠF 0 ˝ .detF 0x/

"degD0 is the
descent of an object with "-weight equal to "b+0 C degD0+0. Recall that degL0 D
i C degD0, degK 0 D d " i C degD0 (see the discussion before Remark 3.15), so
by Riemann–Roch b D h0.K 0/ D d " i C degD0 C 1 " g and the weight of  is
"+0.degD0 " b/D +0.d C 1" g " i/. As for , D  ˝ƒd"2gC1M , the weights must
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be .d C 1" g" i " .d " 2gC 1//+0 D .g" i/+0. Rescaling everything by 1=+0 as in
Lemma 3.17, we get the weights as in the statement.

Finally, we consider GD . Let D D x1 C $ $ $C x˛ . Since by construction tensor
bundles are functorial in M , the bundle GD is the descent of a vector bundle .E!˛/D
on X , whereM DX // SL'0 and E descends to F . By Lemma 2.9, .E!˛/D is a defor-
mation of Ex1˝ $ $ $˝Ex˛ , and the deformation can be chosen to be SL'0 -equivariant
(see Remark 2.10). Therefore, .E!˛/D has the same weights as the tensor product
Ex1˝ $ $ $˝ Ex˛ , that is, 0;"1; : : : ;"˛.

Remark 3.22
Observe that Oi .1; 0/D  ˝ƒd"gM and Oi .0; 1/Dƒ"1M , so we can use the previous
theorem to see that in general, a line bundle Oi .m;n/ is the descent on both Mi"1
and Mi of an object having "-weight m.1" i/C n on the strictly semistable locus of
the wall.

4. Acyclic vector bundles on Mi—easy cases
In order to prove Theorem 1.1, we will first construct fully faithful functors ˆi˛ W
Db.Sym˛ C/ ,! Db.Mi / for ˛ & i and show that, after suitable twists, the essen-
tial images of these functors are semiorthogonal to each other in the required way
(see Theorem 9.3, Definition 10.1, and Theorem 10.4 below). By means of Bondal–
Orlov’s criterion in [7], this reduces to the computation of R% for a large class of
vector bundles on Mi . In particular, we will need to prove %-acyclicity for several of
these vector bundles.

THEOREM 4.1
Let d > 2 and 1& i & v. Let D D x1 C $ $ $C x˛ , D0 D y1 C $ $ $C yˇ (possibly with
repetitions). Suppose that

degD " g < t < d " degD0 " i " 1:

Then

R%Mi .d/

!Ǫ
kD1

F _xk ˝
Ǒ
kD1

Fyk ˝ƒtM ˝ ,"1
"
D 0: (4.1)

Remark 4.2
By Corollary 2.9 and semicontinuity, the same vanishing holds if in (4.1) we replaceN˛
kD1F

_
xk

by either G_D or G
_
D and

Nˇ
kD1Fyk by either GD0 or GD0 .

We start with a lemma.
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LEMMA 4.3
R%M1.d/.OM1.d/."kH C lE1//D 0 for 0 < k & d C g " 2 and 0& l & d C g " 4.
In particular, taking t D k D l we get R%M1.d/.ƒ

t
M /D 0 for 0 < t & d C g " 4.

Proof
Consider the short exact sequence

0!OM1.d/!OM1.d/.E1/!O#."1/! 0; (4.2)

where E1 D PW C1 and & WE1! C is the Pr -bundle, r D d C g " 4; OM1.d/."kH/
is %-acyclic provided that 0 < k & d C g " 2D dimM1.d/. Then twisting (4.2) by
OM1.d/."kH/ and taking a long exact sequence in cohomology gives %-acyclicity
of OM1.d/."kH C E1/ for such k. Similarly, twisting by powers of OM1.d/.E1/

and using induction, we get that R%M1.d/.OM1.d/."kH C lE//D 0 as well, since
O#."l/ is %-acyclic for 0 < l & d C g " 4.

We will prove Theorem 4.1 by induction, starting with the base case i D 1.

LEMMA 4.4
The statement of Theorem 4.1 holds for i D 1.

Proof
Let ˛D degD, ˇD degD0. We are given that ˛"g < t < d "ˇ"2. We do induction
on ˛Cˇ. If ˛D ˇD 0, then we have to check that ƒtM ˝ ,"1 D".t Cg/H C .gC
t "1/E1 is %-acyclic onM1.d/. By Lemma 4.3, this holds provided that 0 < tCg &
d C g " 2 and 0& gC t " 1& d C g " 4, which is true by hypothesis.

If ˛ > 0, then we write D D QD C x˛ . Consider the exact sequence (3.3) from
Lemma 3.11 and twist it by U WDN˛"1

kD1F
_
xk
˝Nˇ

kD1Fyk ˝ƒtM ˝ ,"1 to get

0!ƒ"1M ˝U !
Ǫ
kD1

F _xk ˝
Ǒ
kD1

Fyk ˝ƒtM ˝ ,"1! U ! U jM0.d"2/! 0:

(4.3)

The restriction of Fy to M0.d " 2/D Pr , r D d C g " 4, is equal to OPr ˚OPr ."1/
by Lemma 3.9. Therefore, we see that the restriction of the bundle U DN˛"1

kD1F
_
xk
˝Nˇ

kD1Fyk ˝ƒtM ˝ ,"1 to M0.d " 2/ is a sum of bundles
L

OPr .sj /˝ OPr .1 "
t " g/, with "ˇ & sj & ˛ " 1 (cf. Remark 3.7). These are all %-acyclic on PdCg"4,
since by hypothesis

˛ " t " g < 0; "ˇC 1" t " g !".d C g " 4/: (4.4)
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Now we look at the first and third terms from the sequence (4.3), which areN˛"1
kD1F

_
xk
˝Nˇ

kD1Fyk ˝ƒtM ˝ ,"1 and
N˛"1
kD1F

_
xk
˝Nˇ

kD1Fyk ˝ƒt"1M ˝ ,"1.
We observe that they both satisfy the inequalities of the hypothesis, so by induction
they are %-acyclic on M1.d/. Therefore, applying R% to (4.3) we see that the second
term must also be %-acyclic, as desired.

Similarly, if ˇ > 0, then we write D0 D QD0C yˇ and use the exact sequence

0!OM1.d/! Fyˇ !ƒM !ƒM jM0.d"2/! 0;

twisted by
N˛
kD1F

_
xk
˝Nˇ"1

kD1Fyk ˝ƒtM ˝ ,"1. The resulting term on the right is
a sum

L
OPr .sj /˝OPr ."t " g/, with "ˇ C 1 & sj & ˛, and it is again %-acyclic

by the same inequalities (4.4). Finally, the remaining two terms are %-acyclic by
induction, and we conclude thatR%M1.d/.

N˛
kD1F

_
xk
˝Nˇ

kD1Fyk˝ƒtM˝,"1/D 0
as well.

Proof of Theorem 4.1
Let ˛ D degD and ˇ D degD0. We do induction on i . If i D 1, then this is
Lemma 4.4. Let i > 1, and suppose that the statement holds for i " 1. For t in
the given range, we have

R%Mi!1.d/

!Ǫ
kD1

F _xk ˝
Ǒ
kD1

Fyk ˝ƒtM ˝ ,"1
"
D 0

by the induction hypothesis. Consider the wall-crossing between Mi"1 and Mi .
Here, the bundle

N˛
kD1F

_
xk
˝Nˇ

kD1Fyk ˝ ƒtM ˝ ,"1 descends from an object
with weights ¹"ˇ" t C i "g; : : : ; ˛" t C i "gº (see Theorem 3.21). Our hypothesis
guarantees that ˛" t C i "g < i D /C and "ˇ" t C i "g > 1C 2i "d "gD"/",
that is, all these weights live in the range ."/"; /C/. By Theorem 3.20, this implies
R%Mi .d/.

N˛
kD1F

_
xk
˝ Nˇ

kD1Fyk ˝ ƒtM ˝ ,"1/ D R%Mi!1.d/.
N˛
kD1F

_
xk
˝Nˇ

kD1Fyk ˝ƒtM ˝ ,"1/D 0, as desired.

5. A fully faithful embedding Db.C /#Db.M1/

The following Theorem 5.1 is a special case of Theorem 9.3 and will be needed for our
proof of the latter. Namely, the results of the present section will be used in Sections 7
and 9, in results that are necessary for Theorem 9.3. While Theorem 5.1 could be
avoided by including it as a step of a more complicated inductive proof, we find it
more convenient to prove it first, both to make the inductions less cumbersome and to
introduce some ideas that will help understand the general picture.

We assume that v ! 1, that is, d ! 3. As before, let E1 #M1 be the excep-
tional locus of the blowup M1!M0 along C #M0. By Orlov’s blowup formula in
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[35], we have a fully faithful functor ‰ WDb.C / ,!Db.M1/, corresponding to the
Fourier–Mukai transform given by OZ.E1/, where Z D C %C E1. Now consider the
Fourier–Mukai transform

ˆF DRp!
#
Lq!.$/˝L F

$
WDb.C /!Db.M1/

determined by the universal bundle F on C %M1.

THEOREM 5.1
The functor ˆF is fully faithful.

We need a few constructions and lemmas first. Observe thatZ D C %C E1 is sup-
ported precisely on the zero locus of the universal section Q# W OC%M1 ! F . Indeed,
pairs .E;#/ in PW C1 DE1 parameterize extensions

0!OC .x/!E!ƒ."x/! 0

with the canonical section # 2 H 0.C;OC .x// vanishing on x 2 C (see [39, 3.2]),
and in fact Q# has no zeros outside this locus, since M1nE1 consists of extensions
0!OC !E!ƒ! 0 together with a (constant) section # 2H 0.C;OC / (see [39,
3.1]). Since Z has codimension 2, we have a Koszul resolution

Œ^2F _! F _
Q&"!OC%M1 (

&"!OZ : (5.1)

LEMMA 5.2
We have R%M1.ƒ

"1
M /D 0.

Proof
Recall that ƒ"1M DOM1.H "E1/. We have an exact sequence

0!OM1.H "E1/!OM1.H/!OE1.H/! 0;

so it suffices to show that j ! WHp.M1;OM1.H//
&"!Hp.E1;OE1.H// for every p,

where j WE1 ,!M1 is the inclusion. For each p, consider the commutative diagram

Hp.M1;OM1.H//
j"

Hp.E1;OE1.H//

Hp.M0;OM0.H//

#"

{"
Hp.C;OC .H//

q" (5.2)
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where { W C ,! M0 D PdCg"2 is the inclusion, & W M1 D BlC M0 ! M0 is the
blowup along C , and q D &jE1 W E1! C , which is a Pr -bundle. Hence, both ver-
tical arrows in (5.2) are isomorphisms. Indeed, these pullbacks are fully faithful
at the level of derived categories. Moreover, { W C ,!M0 is the embedding by the
complete linear system j!C ˝ ƒj (see [39, 3.4]). Therefore, OC .H/ ' !C ˝ ƒ
and {! W H 0.M0;OM0.H// ! H 0.C;OC .H// is an isomorphism. For p > 0,
Hp.M0;OM0.H//D 0 because M0 is a projective space. On the other hand, since
deg!C ˝ ƒ > deg!C , we also have Hp.C;OC .H// D 0 for p > 0. In summary,
the two vertical maps and the lower horizontal map in the commutative diagram are
isomorphisms for all p. Hence, the same holds for the upper horizontal map.

LEMMA 5.3
Let x 2 C . Then R%M1.F

_
x / D 0, while R%M1.Fx/ D C, with H 0.M1;Fx/ D C

given by restriction of the universal section Q# of F to ¹xº%M1.

Proof
Consider the resolution (5.1) and restrict to ¹xº%M1 to get

Œƒ"1M ! F _x !OM1 (
&"!OPrx ; (5.3)

where Prx DM0.ƒ."2x// is the fiber over x 2 C #M0 along the blowup & WM1!
M0. We twist by ƒM DOM1.E1 "H/ to get

ŒOM1
Q&"! Fx!ƒM (

&"!OPrx ."1/; (5.4)

using that F _x ˝ƒM D F _x ˝ .^2Fx/' Fx and that OM1.H/ restricts trivially to
OPrx (see Lemma 3.11 for a generalization of (5.3) and (5.4)). It is well known that
R%.OPrx ."1// D 0. By Lemma 4.2, we also have R%.ƒM / D 0. Hence, by (5.4),
Q# induces an isomorphism R%.OM1/'R%.Fx/. As M1 is a blowup of a projective
space along a smooth center, we get R%.Fx/'R%.OM1/'C, withH 0.M1;Fx/D
C given by restriction of Q# to ¹xº%M1.

To show that R%M1.F
_
x / D 0, we apply R% to (5.3). We already know that

R%M1.ƒ
"1
M /D 0 by Lemma 5.2, so it suffices to show that that the restriction map

Hp.M1;OM1/!Hp.Prx ;OPrx / is an isomorphism for every p. For p > 0, both vec-
tor spaces vanish, because we have a projective space and a blowup of a projective
space. For pD 0, we have an isomorphism of one-dimensional vector spaces because
this is just restriction of constant sections.

Proof of Theorem 5.1
By Bondal–Orlov’s criterion (see [7]), in order to show full faithfulness of ˆF we
only need to consider the sheaves ˆF .Ox/ D Fx for closed points x 2 C . On the



3520 TEVELEV and TORRES

other hand, consider the functor‰ from Orlov’s blowup formula, with Fourier–Mukai
kernel OZ.E1/, Z D C %C E1. We can compute ‰.Ox/DˆOZ.E1/.Ox/ for a point
x 2 C using (5.1) as follows. As before, let Prx DM0.ƒ."2x// denote the fiber over
x 2 C #M0 along the blowup. The fact that OM1.H/ restricts trivially to this fiber
implies that both ƒM and OM1.E1/ restrict to OPrx ."1/ there. Now we restrict (5.1)
to ¹xº %M1 and twist it by ƒM to get ˆOZ.E1/.Ox/ ' ŒOM1 ! Fx ! ƒM ( '
OPrx ."1/, as in (5.4). Since we already know that ‰ is fully faithful, we have

HomDb.M1/

#
‰.Ox/;‰.Oy/Œk(

$
D

8̂
<̂
ˆ̂:

0 if x ¤ y;
0 if x D y and k ¤ 0; 1;
C if x D y and k D 0; 1:

(5.5)

But RHomM1.‰.Ox/;‰.Oy// ' R% ı RHom.‰.Ox/;‰.Oy// can also be ob-
tained as follows: take RHom.‰.Ox/;‰.Oy// ' ‰.Ox/_ ˝L ‰.Oy/ as an inner
tensor product obtained from the double complex

OM1 F _x ˝ƒM ƒM

ƒ"1M ˝Fy F _x ˝Fy Fy

ƒ"1M F _x OM1

(5.6)

which produces the total complex
%
ƒ"1M ! F _x ˚F _y !O˚2M1 ˚ .F

_
x ˝Fy/! Fx ˚Fy!ƒM

&

' ‰.Ox/
_˝L ‰.Oy/; (5.7)

again using Fx ' F _x ˝ƒM . Recall that our descriptions of‰.Oy/ and‰.Ox/_ were
obtained from the Koszul resolution (5.4) and its dual. In particular, the maps OM1!
F _x ˝ƒM ' Fx and OM1 ! Fy appearing in (5.6) correspond to the restriction of
the universal section Q# to ¹xº%M1 and ¹yº%M1, respectively.

The hypercohomology R% of (5.7) can be computed by taking the spectral
sequence with first page Ep;q1 DH q.X;F p/)HpCq.X;F #/. On the other hand,
we know that the R% of this complex is given by (5.5). We will combine these to
show that

R%M1.F
_
x ˝Fy/D

´
0 if x ¤ y;
C˚CŒ"1( if x D y:

(5.8)
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By Lemma 4.3, R%M1.ƒM / D 0, and by Lemma 5.2, R%M1.ƒ
"1
M / D 0. Also,

Lemma 5.3 computes the hypercohomology of both Fx and F _x . Summing up, apply-
ing R% to (5.7) yields a spectral sequence Ep;q1 of the form

:::
:::

:::
:::

:::

0 0 H 1.F _x ˝Fy/ 0 0

0 0 H 0.OM1/
˚2˚H 0.F _x ˝Fy/ H 0.Fx/˚H 0.Fy/ 0;

where the map H 0.OM1/
˚2 ! H 0.Fx/ ˚ H 0.Fy/ is the isomorphism C2 &"! C2

given by the universal section in each coordinate, by Lemma 5.3 and the discussion
above. Since this spectral sequence converges to (5.5), we obtain (5.8).

6. Acyclicity of powers of ƒ_M
The goal of the present section is to prove the following generalization of Lemma 5.2.

THEOREM 6.1
Suppose that 2 < d & 2gC 1 and 1& k & l & v. Then

R%Ml .d/.ƒ
"k
M /D 0:

%-acyclicity of these negative powers of ƒM will be crucial for the cohomology
computations in the upcoming sections.

LEMMA 6.2
Under the assumptions of Theorem 6.1, H 0.Ml.d/;ƒ

"k
M /D 0.

Proof
Since Ml is isomorphic to M1 in codimension 1, it suffices to prove that H 0.M1;

ƒ"kM /DH 0.M1; kH "kE1/D 0. Recall thatM1 is the blowup of Pr in C embedded
by a complete linear system ofKC Cƒ, r D d Cg"2, E1 is the exceptional divisor,
and H is a hyperplane divisor. The claim is that there is no hypersurface D # Pr of
degree k that vanishes along C with multiplicity at least k. We argue by contradiction.
Choose r C 1 points x1; : : : ; xrC1 2 C in linearly general position. Then D vanishes
at these points with multiplicity! k. LetR be a rational normal curve passing through
x1; : : : ; xrC1. Let QR and QD be the proper transforms of R and D in Blx1;:::;xrC1 Pr .
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Then QD $ QR & kr "k.rC1/ < 0. It follows thatR#D. But we can choose R passing
through a general point of Pr , which is a contradiction.

LEMMA 6.3
Under the assumptions of Theorem 6.1, if R%Mk.d/.ƒ

"k
M /D 0, then

R%Ml .d/.ƒ
"k
M /D 0:

Proof
By Theorem 3.21, in the wall between Ml"1 and Ml , ƒ"kM descends from an object
of weight k, with "/" < k < /C when k < l & v, that is, 1C2l "d "g < k < l for l
in that range. This way, 0DR%Mk .ƒ"kM /DR%Ml .ƒ"kM / for l ! k by Theorem 3.20.

Definition 6.4
For 0& ˛ & i , we introduce the following loci:

E˛i WD
®
.E; s/

ˇ̌
Z.s/# C has degree ! ˛

¯
#Mi ;

D˛
i WD

®
.D;E; s/

ˇ̌
sjD D 0

¯
# Sym˛ C %Mi ;

R˛i WD
®
.D;E; s/

ˇ̌
sjD D 0 and Z.s/ has degree ! ˛C 1

¯
#D˛

i ;

where Z.s/ denotes the zero locus subscheme of the section s.

Note that Eii is precisely PW Ci (see [39, proof of 3.2]), while E1i D Ei is the
proper transform of E1 under the birational equivalence given by (3.1). Recall that
OMi .Ei / D Oi .1;"1/ according to Definition 3.5. For a divisor D 2 Sym˛ C , we
observe that the fiber .D˛

i /D along the projection Sym˛ C % Mi ! Sym˛ C is
isomorphic to Mi"˛.ƒ."2D// (see Remark 3.7 or [39, 1.9]). Similarly, .R˛i /D '
Ei"˛.ƒ."2D//. In particular, D˛

i is smooth, and we have a diagram

R˛i D˛
i

,

E˛C1i E˛i

(6.1)

where 1 is the normalization morphism.

LEMMA 6.5
We have the following commutative diagram
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0 1!OD˛
i
."R˛i / 1!OD˛

i
1!OR˛

i
0

0 I
E˛C1
i

)
OE˛

i

ˇ

O
E˛C1
i

0

(6.2)

where I
E˛C1
i
' 1!OD˛

i
."R˛i / is the conductor sheaf of the normalization (6.1) and

R˛i (resp., E˛C1i ) is a conductor subscheme in D˛
i (resp., E˛i ).

Proof
From the flipping diagram (3.1), E˛˛ # M˛ is the projective bundle PW C˛ and
E˛˛C1 #M˛C1 is isomorphic to E˛˛ away from E˛C1˛C1 ' PW C˛C1.

CLAIM 6.6
E˛˛C1 has a multicross singularity generically along E˛C1˛C1 (concretely, this means
that a general section of E˛˛C1 that intersects E˛C1˛C1 in a point is étale locally isomor-
phic to the union of coordinate axes in A˛C1).

Given the claim, and since multicross singularities are seminormal (see [23]),
E˛˛C1 has seminormal singularities in codimension 1. For i > ˛C1,E˛i is isomorphic
toE˛˛C1 in codimension 2, and so also has seminormal singularities in codimension 1.
Next we argue by induction on ˛ that D˛

i !E˛i has reduced conductor subschemes
E˛C1i # E˛i and R˛i #D˛

i and E˛C1i is Cohen–Macaulay and seminormal, and in
particular that we have a commutative diagram (6.2).

Indeed,E1i #Mi is Cohen–Macaulay as a hypersurface in a smooth variety. Sup-
pose that E˛i is Cohen–Macaulay. Since it is seminormal in codimension 1 by the
above, it is seminormal everywhere (see [16, Corollary 2.7]). Therefore, its conductor
subschemes in E˛i and D˛

i are both reduced (see [42, Lemma 1.3]) and all of their
associated primes have height 1 in E˛i and D˛

i , respectively (see [16, Lemma 7.4]).
It follows that these conductor subschemes are equal to E˛C1i and R˛i , respectively.
Finally, R˛i # D˛

i is Cohen–Macaulay as a hypersurface in a smooth variety and
therefore E˛C1i # E˛i is also Cohen–Macaulay (see [37, Theorem 2.2]), and we can
proceed with induction.

It remains to prove the claim. We analyze the flipping diagram (3.1) between
the spaces M˛ and M˛C1, where M˛ contains projective bundles PW "˛C1 (over
Sym˛C1C ) and PW C˛ 'E˛˛ (over Sym˛ C ) of dimensions 2˛C1 and dCg"2"˛,
respectively. What is their intersection over a point D0 2 Sym˛C1C , for simplicity a
reduced sum of points? By [39, 3.3], PW "˛C1 parameterizes pairs .E;#/ that appear
in extensions
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0!L!E!ƒ˝L"1! 0

with degLD d " ˛ " 1 and # …H 0.L/. Projecting # to ƒ˝ L"1 gives a nonzero
vector 2 2 H 0.ƒ ˝ L"1/ with Z.2/ D D0, so that ƒ ˝ L"1 D OC .D

0/, where
degD0 D ˛ C 1 (this gives the map from PW "˛C1 to Sym˛C1C ). Moreover, at
D0 the section lifts to a section of OD0˝L ' OD0˝ƒ."D0/, and this vector
u 2 H 0.OD0˝ƒ."D0// (determined uniquely up to a scalar) determines .E;#/
uniquely (see [39, 3.3]).

The same pair .E;#/ belongs to PW C˛ if it can be given by an extension

0!OC .D/!E!ƒ."D/! 0

with # 2 H 0.OC .D// and degD D ˛ (see [39, 3.2]). Since # vanishes at D and
its image in OC .D

0/ vanishes at D0, we have D # D0. Since we assume that D0

is a reduced divisor, there are exactly ˛ C 1 choices for D. Since u has to vanish
at points of D # D0, there is exactly one vector u 2 H 0.OD0˝ƒ."D0// (up to a
multiple) that works for a given choice of D. Moreover, in this way we get a basis
of H 0.OD0˝ƒ."D0//' C˛C1. It follows that, over D0 2 Sym˛C1C , PW "˛C1 and
PW C˛ ' E˛˛ intersect in ˛ C 1 reduced points which form a basis of the projective
space .PW "˛C1/D0 ' P˛ .

The strict transform of PW C˛ in M˛C1 is E˛˛C1, which contains the bundle
PW C˛C1 of dimension dCg"3"˛ (the flipped locus). After the flip, linearly indepen-
dent intersection points in .PW "˛C1/D0 \ PW C˛ become linearly independent normal
directions of branches of E˛˛C1 along PW C˛C1, that is, E˛˛C1 has a multicross singu-
larity in codimension 1, as claimed. We illustrate the geometry of M˛ , M˛C1 and the
common resolution QM˛C1 in Figure 1.

COROLLARY 6.7
If the claim of Theorem 6.1 is proved for 1& k D l & i " 1, then, for 1& ˛ & i " 1,
R%Mi .OE˛

i
.1; i " 1//'R%Mi .OE˛C1

i
.1; i " 1// via R%.ˇ/.

Proof
Twisting by Oi .1; i " 1/ and applying R% to the bottom sequence in (6.2), we see
that it suffices to show that I

E˛C1
i

.1; i " 1/' 1!OD˛
i
."R˛i /.1; i " 1/ is %-acyclic.

But 1 is a finite map, so this is equivalent to %-acyclicity of OD˛
i
."R˛i /.1; i " 1/.

Using the Leray spectral sequence for the fibration p WD˛
i ! Sym˛ C , it suffices to

prove that R%.OD˛
i ;D

."R˛i;D/.1; i " 1// D 0. Under the isomorphism .D˛
i /D '

Mi"˛.ƒ."2D//, R˛i # Sym˛ C % Mi restricts to E1i"˛ on Mi"˛.ƒ."2D//,
while Oi .m;n/ on Mi .ƒ/ restricts to Oi"˛.m;n " m˛/ on Mi"˛.ƒ."2D// (cf.
Remark 3.7). Therefore,
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Figure 1. (Color online) Common resolution QM˛C1 of M˛ and M˛C1.

R%Mi .d/
#
OD˛

i ;D
."R˛i;D/.1; i " 1/

$
DR%Mi!˛.d"2˛/.ƒ˛"iM /

which is zero by hypothesis.

LEMMA 6.8
Suppose that d & 2g C 1. Then for 1 & i & d C 1 " g, i & v, we have Hp.Mi .d/;

Oi .1; i " 1//D 0 for any p > 0.

Proof
Recall that !Mk D OMk ."3; 4 " d " g/ for every 1 & k & v (see [39, 6.1]). First,
we see that there is some i & k & v such that the bundle OMk .1; i " 1/˝ !"1Mk D
OMk .4; d C g C i " 5/ is big and nef. By the description of the ample cones in
Remark 3.6, it suffices to check that .4; d C gC i " 5/ 2 R2 lies in the closed cone
bounded below by the ray through .1; i " 1/ and above by the ray through .2; d " 2/.
Considering the slopes, this is equivalent to i " 1& dCgCi"5

4
& d"2

2
. The inequality

on the left is equivalent to 3i & d C g " 1, which is guaranteed by the fact that
i & v D b.d " 1/=2c and d & 2gC 1. The other inequality is equivalent to i & d C
1" g, which is given as a hypothesis. Therefore, there is some k ! i , k & v such that
OMk .1; i " 1/˝!"1Mk is big and nef. By the Kawamata–Viehweg vanishing theorem,
Hp.Mk;Ok.1; i " 1//D 0 for p > 0.

Now, we claim that in fact
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R%Mi
#
Oi .1; i " 1/

$
DR%MiC1

#
OiC1.1; i " 1/

$
D $ $ $

DR%Mk
#
Ok.1; i " 1/

$
: (6.3)

Indeed, in the wall-crossing betweenMl"1 andMl , there are windows of width /C D
l and /" D dCg"1"2l and Ol.1; i"1/, Ol"1.1; i"1/ both descend from the same
object that has "-weight i " l (see Theorem 3.21, Remark 3.22). By Theorem 3.20,
we will have R%Ml!1.Ol"1.1; i " 1//DR%Ml .Ol.1; i " 1// whenever

1C 2l " d " g < i " l < l: (6.4)

But (6.4) holds for any i < l & k, because then i < 2l , while 3l & 3.d " 1/=2 <
i C d C g " 1 provided that d & 2g C 1. Therefore, (6.3) holds and in particular
Hp.Mi ;Oi .1; i " 1//D 0 for p > 0.

Remark 6.9
Suppose that d & 2g C 1. Then (6.4) holds for l 2 .i=2; v(, and the same reason-
ing shows that R%Mi .Oi .1; i " 1//D R%Ml .Ol.1; i " 1// for every bi=2c & l & v.
In particular, under the same hypotheses of Lemma 6.8, Ol.1; i " 1/ has no higher
cohomology whenever bi=2c& l & v.

Definition 6.10
Let Li be the line bundle on Symi C defined by

Li D det"1 &Šƒ."-/˝ det"1 &ŠO.-/; (6.5)

where - # Symi C % C is the universal divisor (cf. [39, 6.5]). To emphasize the
degree d , sometimes we denote this line bundle by Li .d/.

LEMMA 6.11
Hp.Symi C;Li .d//D 0 if p > 0, 1& i & d " g.

Proof
By [39, 7.5] (see also [27]), and mixing notation for line bundles and divisors,

Li .d/D .d " 2i//C 2* and KSymi C D .g " i " 1//C *; (6.6)

where / D x C Symi"1C # Symi C is an ample divisor for any fixed x 2 C and
* # Symi C is a pullback of a theta divisor via the Abel–Jacobi map; in particular, *
is nef. It follows that Li .d/"KSymi C D .d " i " gC 1//C * is ample if i & d " g,
and the result follows by the Kodaira vanishing theorem.
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LEMMA 6.12
Suppose that iCg & d & 2gC1. Then +.Mi .d/;Oi .1; i "1//D +.Symi C;Li .d//.

Proof
Since i & d " g, we can use Lemma 6.8 together with [39, 7.8] to compute

+
#
Oi .1; i " 1/

$

D Res
tD0

° .1" t3/2i"d"1.1" t2/2dC1"2i"2g
t iC1.1" t /dCg"1

#
1" 5.1" t /t2 " t5

$g
dt
±

D Res
tD0

° .1C t /2dC1"2i"2g.1C 3t C t2/g.1" t /
t iC1.1C t C t2/dC1"2i dt

±
: (6.7)

On the other hand, we use the Hirzebruch–Riemann–Roch theorem to compute, using
the formulas (see [39, Section 7])

ch.Li /D e.d"2i/-C2% ; td.Symi C/D
! /

1" e"-
"i"gC1

exp
! *

e- " 1 "
*

/

"

and notation from the proof of Lemma 6.11, that

+.Li /D Res
-D0

° e-.d"2i/

.1" e"-/i"gC1
!
2C 1

e- " 1
"g
d/
±
;

where we have used [39, 7.2] with

A.//D e-.d"2i/
! /

1" e"-
"i"gC1

; B.//D 2C 1

e- " 1 "
1

/
:

If we let u.//D e-"1, then u is biholomorphic near /D 0, with u.0/D 0, u0.0/D 1,
so we can do a change of variables uD e- " 1, duD e- d/ to obtain

+.Li /D Res
uD0

° .1C u/d"i"g.2uC 1/g
uiC1

du
±
: (6.8)

Next, we apply an ad hoc change of variables

uD t

t2C t C 1; duD 1" t2
.t2C t C 1/2 dt

to (6.8) and we get precisely (6.7) after some algebraic manipulations.

For what follows, we need some geometric constructions. Fix a point x 2 C , and
consider a subvariety Mi"1.d " 1/#Mi .d C 1/ of codimension 2 as in Remark 3.7,
with D D x. Let B be the blowup of Mi .d C 1/ in Mi"1.d " 1/ with exceptional
divisor E .
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Consider the P1-bundle PFx over Mi .d C 1/ that parameterizes triples .E;#; l/,
where # is a nonzero section of E and l #Ex is a line, subject to the usual stability
condition (see Section 3) that for every line subbundle L#E , one must have

degL&
´
i C 1

2 if # 2H 0.L/;

d " i C 1
2

if # …H 0.L/:
(6.9)

LEMMA 6.13
With the notation as above, the blowup B ofMi .d C1/ inMi"1.d "1/ is isomorphic
to the following locus:

Z D
®
.E;#; l/ W #.x/ 2 l

¯
# PFx :

Proof
Indeed, the projection of Z onto Mi .d C 1/ is clearly an isomorphism outside of
Mi"1.d " 1/, since the latter is precisely the locus where #.x/D 0. Over Mi"1.d "
1/, the fiber of this projection is P1. By the universal property of the blowup, it
suffices to check that Z is the blowup of Mi .d C 1/ in Mi"1.d " 1/ locally near
.E;#/ 2Mi"1.d " 1/, where we can trivialize Fx ' O˚O. Its universal section
can be written as s D .a; b/, where a; b 2 O is a regular sequence (its vanishing
locus is Mi"1.d " 1/ locally near .E;#/). Then Z is locally given by the equation
ay"bx D 0, where Œx W y( are homogeneous coordinates of the P1-bundle PFx given
by the trivialization Fx 'O˚O. Thus Z is indeed isomorphic to the blowup B .

Now we can prove the main result of this section.

Proof of Theorem 6.1
By Lemma 6.3, it suffices to prove that R%Mi .ƒ

"i
M / is zero for every i D 1; : : : ; v,

which we will do by induction on i . The base case i D 1 is Lemma 5.2. Recall that
OMi .Ei /D Oi .1;"1/. Twist the tautological short exact sequence for Ei #Mi by
Oi .1; i " 1/ to get

0!ƒ"iM !Oi .1; i " 1/
.!OEi .1; i " 1/! 0:

It suffices to prove that R%Mi .Oi .1; i " 1//' R%Ei .OEi .1; i " 1// via R2 . By the
induction hypothesis, we can apply Corollary 6.7 to see that

R%
#
OEi .1; i " 1/

$
' $ $ $'R%

#
OE i

i
.1; i " 1/

$
DR%

#
OPWC

i
.1; i " 1/

$
:

But OPWC
i
.1; i " 1/ restricts trivially to each fiber of PW Ci . Arguing as in [39, 6.5],

where an analogous statement is proved for OPW!
i
.1; i " 1/ (but using [39, 3.2]
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instead of [39, 3.3]), the restriction OPWC
i
.1; i " 1/ is a pullback of the line bun-

dle Li on Symi C defined in (6.5). Alternatively, it is clear that OPWC
i
.1; i " 1/ and

OPW!
i
.1; i"1/ are pullbacks of the same line bundle on Symi C because these projec-

tive bundles are contracted to their base Symi C by birational morphisms fromMi .d/

and Mi"1.d/ to the (singular) GIT quotient M% .d/, where * D d
2 " i is the slope of

the wall between the moduli spaces Mi .d/ and Mi"1.d/. Furthermore, Oi .1; i " 1/
is a pullback of a line bundle from that GIT quotient.

This implies that R%.OPWC
i
.1; i "1//'R%.Symi C;Li /. Therefore, it suffices

to show that

R%Mi .d/
#
Oi .1; i " 1/

$
'R%Symi C

#
Li .d/

$
(6.10)

via the composition of functors as above.

CLAIM 6.14
If d ! i C g, then (6.10) holds.

Proof
In this case,Hp.Mi ;Oi .1; i " 1//DHp.Symi C;Li /D 0 for p > 0 by Lemmas 6.8
and 6.11. Using this together with the fact that ƒ"iM DOi .0; i/ has no global sections
by Lemma 6.2, it suffices to prove that h0.Mi ;Oi .1; i " 1// D h0.Symi C;Li / or,
equivalently, that +.Mi ;Oi .1; i " 1// D +.Symi C;Li /. Thus, Lemma 6.12 proves
the claim.

We now proceed by a downward induction on d , starting with any d such that
d ! i C g. For such d , we have the result by the claim above.

Next we perform a step of the downward induction assuming that the theorem
holds for degree d C 1. As above, we fix a point x 2 C and consider the subva-
riety Mi"1.d " 1/ # Mi .d C 1/ of codimension 2 described in Remark 3.7. Let
I #OMi .dC1/ be its ideal sheaf. As in the proof of Lemma 6.11, we denote the divi-
sor xCSymi"1C # Symi C by / and, by abuse of notation, we denote its pullback to
the projective bundle PW Ci by / as well. Note that Mi"1.d " 1/\ PW Ci D PW Ci"1.
To summarize, we have a commutative diagram of sheaves on Mi .d C 1/ with exact
rows, where we suppress closed embeddings from notation:

0 I OMi .dC1/

ˇ

OMi!1.d"1/

.

0

0 OPWC
i
."// OPWC

i
OPWC

i!1
0

(6.11)
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We tensor (6.11) with Oi .1; i " 1/. Recall that the restriction of Oi .1; i " 1/ to
Mi"1.d " 1/ is Oi"1.1; i " 2/, to PW Ci is the pullback of Li .d C 1/ from Symi C ,
and to PW Ci"1 is the pullback of Li"1.d " 1/ from Symi"1C . By inductive hypoth-
esis on i , the arrow 2 in (6.11) gives an isomorphism in cohomology after tensoring
with Oi .1; i " 1/. The same is true for ˇ by our inductive assumption on d . By the
5-lemma, we conclude that we have an isomorphism

R%
#
I.1; i " 1/

$
'R%

#
OPWC

i
."//.1; i " 1/

$
: (6.12)

As OPWC
i
.1; i " 1/ is the pullback of Li .d C 1/, we see that OPWC

i
."//.1; i " 1/

is the pullback of Li .d/ to the projective bundle (see (6.6)). Hence, we can rewrite
(6.12) as

R%B
#
OB.1; i " 1/."E/

$
'R%Symi C

#
Li .d/

$
; (6.13)

where B is the blowup of Mi .d C 1/ in Mi"1.d " 1/ and E its exceptional divisor.
Recall that the goal is to prove (6.10). We can do one extra simplification. Let

* D d
2 " i be the slope on the wall between the moduli spaces Mi .d/ and Mi"1.d/,

and letM% .d/ be the corresponding (singular) GIT quotient. The birational morphism
Mi .d/!M% .d/ contracts the projective bundle PW Ci to its base Symi C , and in
particular proving (6.10) is equivalent to proving that

R%M! .d/
#
Oi .1; i " 1/

$
'R%Symi C

#
Li .d/

$
(6.14)

by projection formula and Boutot’s theorem [8, Corollaire]. To show how (6.13)
implies (6.14), we need a geometric construction, a variant of the Hecke correspon-
dence, relating B to M% .d/.

By Lemma 6.13, B carries a family of parabolic (at x 2 C ) rank-2 vector bundles
E with a section #. The parabolic line at x defines a quotient E!Ox , and we define
a rank-2 vector bundle E 0 as an elementary transformation by the formula

0!E 0!E!Ox! 0: (6.15)

Our condition #.x/ 2 l implies that the section # lifts to a section #0 of E 0. Elemen-
tary transformation is well known to be a functorial construction (see [34, Section 4]),
and in fact we claim that .E 0;#0/ is a * -semistable pair; that is, we have a morphism

h W B!M% .d/; .E;#; l/ 7! .E 0;#0/:

Indeed, we need to check that

degL0 &
´
i if #0 2H 0.L0/;

d " i if #0 …H 0.L0/

for every line subbundle L0 #E 0, which follows from (6.9) applied to L0.
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By the Kollár vanishing theorem in [22, Theorem 7.1], Rh!OB D OM! .d/.
Indeed, B is smooth, M% .d/ has rational singularities, and a general geometric fiber
of h is isomorphic to P1 (given by extensions (6.15) with fixed E 0). By projection
formula, (6.13) implies (6.14) if we can show that

h!Oi .1; i " 1/'OB.1; i " 1/."E/:

Outside of E and for any q 2 C , the bundle Fq over the stack of the * -semistable
pairs (resp., its determinant ƒ0), pulls back to the bundle Fq over B n E (resp., its
determinant ƒ), by (6.15). On the other hand, the divisor E 0i of * -semistable stable
pairs .E 0;#0/ such that #0 has a zero, pulls back to the analogous divisor Ei of B nE ,
because the section # ofE is the same as the section #0 ofE 0. SinceE andƒ generate
the Picard group of B n E , it follows that h!Oi .1; i " 1/' OB.1; i " 1/."c E/ for
some integer c. It remains to show that c D 1. To this end, we re-examine the diagram
(6.11). Note that the proper transform QP of PW Ci in B is isomorphic to its blowup in
PW Ci"1, which is the Cartier divisor /. Therefore, QP' PW Ci . However, the restriction
h!Oi .1; i " 1/jQP is isomorphic to the pullback of Li .d/ from Symi C , while the
restriction OB.1; i " 1/jQP is isomorphic to the pullback of Li .d C 1/. Since Li .d/'
Li .d C 1/."//, and E restricts to QP as /, the claim follows.

7. Acyclic vector bundles on Mi—hard cases
The main goal of the present section is to prove the following result.

THEOREM 7.1
Suppose that 2 < d & 2gC 1 and 1& i & v. Let D D x1C $ $ $Cx˛ , D0 D y1C $ $ $C
yˇ (possibly with repetitions), and let t be an integer satisfying

degD " i " 1 < t < d C g " 2i " 1" degD0: (7.1)

If t … Œ0; degD(, then we have

R%Mi .d/

!!Ǫ
kD1

F _xk

"
˝GD0 ˝ƒtM

"
D 0:

Equivalently, if degD … Œt; t C degD0(, then

R%Mi .d/

!
G_D ˝

!Ǒ
kD1

Fyk

"
˝ƒtM

"
D 0:

Remark 7.2
In the vanishings of Theorem 7.1, we can write G_D or G

_
D in place of

N˛
kD1F

_
xk

,



3532 TEVELEV and TORRES

and GD0 or GD0 in place of
Nˇ
kD1Fyk . This follows from Corollary 2.9 and semi-

continuity.

These computations will allow us to verify both the Bondal–Orlov conditions for
the fully faithful embeddings of Db.Sym˛ C/ into Db.Mi /, for ˛ & i , as well as
the vanishings needed in order to show semiorthogonality between the corresponding
subcategories of Db.Mi / thus defined.

We start with a lemma on M0.d/.

LEMMA 7.3
Let d > 0 and i D 0. Let D D x1 C $ $ $ C x˛ , D0 D y1 C $ $ $ C yˇ (possibly with
repetitions), and let t be an integer satisfying degD < t < d C g " 1" degD0. Then
R%M0.d/..

N˛
kD1F

_
xk
/˝ .Nˇ

kD1Fyk /˝ƒtM /D 0.

Proof
The vector bundle .

N˛
kD1F

_
xk
/ ˝ .

Nˇ
kD1Fyk / ˝ ƒtM jM0 has the formL

OPdCg!2.sj " t / on M0 D PdCg"2, where "ˇ & sj & ˛ (see Lemma 3.9). By
hypothesis, ˛ " t < 0 and "ˇ " t !".d C g " 2/, so this bundle is %-acyclic.

THEOREM 7.4
Let d > 2 and 1& i & v. Let D D x1 C $ $ $C x˛ , D0 D y1 C $ $ $C yˇ (possibly with
repetitions), and let t be an integer satisfying

degD < t < d C g " 1" 2i " degD0:

Then R%Mi .d/..
N˛
kD1F

_
xk
/˝ .Nˇ

kD1Fyk /˝ƒtM /D 0.

Proof
By Theorem 3.21, the bundle .

N˛
kD1F

_
xk
/˝ .Nˇ

kD1Fyk /˝ƒtM descends from an
object with weights in Œ"ˇ " t; ˛ " t (. For every 1 < j & i , these weights live in the
window between Mj"1 and Mj , since by hypothesis 1C 2j " d " g < "ˇ " t and
˛ " t < 0 < j . Then using Theorem 3.20, R%Mi .d/..

N˛
kD1F

_
xk
/˝ .Nˇ

kD1Fyk /˝
ƒtM /DR%M1.d/..

N˛
kD1F

_
xk
/˝ .Nˇ

kD1Fyk /˝ƒtM /, so it suffices to show the the-
orem for the case i D 1.

Also, using .
N˛
kD1F

_
xk
/˝.Nˇ

kD1Fyk /˝ƒtM ' .
N˛
kD1Fxk /˝.

Nˇ
kD1Fyk /˝

ƒt"˛M , it is easy to see that it suffices to show the theorem for the case ˛ D 0. So we
assume that ˛ D 0 and do induction on ˇ. If ˇ D 0, then 0 < t & d C g " 4 and the
result follows from Lemma 4.3. If ˇ > 0, write D0 D QD0 C yˇ . We use the sequence
(3.4) from Lemma 3.11 with Fyˇ and twist it by .

Nˇ"1
kD1Fyk /˝ ƒtM to obtain an

exact sequence
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0!
ˇ"1O
kD1

Fyk ˝ƒtM !
Ǒ
kD1

Fyk ˝ƒtM

!
ˇ"1O
kD1

Fyk ˝ƒtC1M !
ˇ"1O
kD1

Fyk ˝ƒtC1M

ˇ̌
ˇ
M0.ƒ."2yˇ//

! 0:

Of these terms, R%M0.d"2/.
Nˇ"1
kD1Fyk ˝ƒ

tC1
M /D 0 by Lemma 7.3, since 0 <

tC1 < .d "2/Cg"1" .ˇ"1/, while by inductionR%M1.d/.
Nˇ"1
kD1Fyk ˝ƒtM /D

R%M1.d/.
Nˇ"1
kD1Fyk ˝ ƒ

tC1
M / D 0. Therefore, we obtain R%M1.d/.

Nˇ
kD1Fyk ˝

ƒtM /D 0 as well.

COROLLARY 7.5
Suppose that d > 0 and 0& i & v. Let D D x1C $ $ $C x˛ (possibly with repetitions),
with ˛D degD < d C g " 2i " 1. Then

R%Mi

!Ǫ
kD1

Fxk

"
DR%Mi .GD/DR%Mi .GD/DC: (7.2)

Moreover, if i ! 1, the unique (up to a scalar) global section of these bundles vanishes
precisely along the union of codimension 2 loci Mi"1.ƒ."2xk//, for k 2 ¹1; : : : ; ˛º.

Proof
When i D 0, Fxk D OPr ˚OPr ."1/ on M0 D Pr , r D d C g " 2 (see Lemma 3.9),
and

N
Fxk splits as a sum of line bundles

L
OPr .sj /, where "˛ & sj & 0 and

exactly one of the summands is OPr . Since ˛ & dCg"2,R%Mi .
N˛
kD1Fxk /DC in

this case. Since GD and GD are deformations of
N˛
kD1Fxk over A1, we have (7.2)

by semicontinuity and equality of the Euler characteristic.
Let i ! 1. We see that, using Theorem 3.20, it suffices to prove (7.2) on M1.d/.

In fact, by Theorem 3.21,
N˛
kD1Fxk descends from an object with weights within

Œ"˛; 0(, all of which live in the window .1 C 2j " d " g; j / for 1 < j & i ,
since 1 C 2j " d " g & 1 C 2i " d " g < "˛ by hypothesis. This way we get
R%Mi .

N˛
kD1Fxk /DR%M1.

N˛
kD1Fxk /. Similarly, R%Mi .GD/DR%M1.GD/ and

R%Mi .GD/DR%M1.GD/.
Hence, we take i D 1 and ˛ < d C g " 3. In this case, d > 2. Let us show

that R%M1.
N
Fxk / ' C first. We do induction on ˛. If D D 0, then the result is

trivial. Otherwise, use the sequence (3.4) from Lemma 3.11 on Fx˛ to obtain an exact
sequence

0!
˛"1O
kD1

Fxk !
Ǫ
kD1

Fxk !
˛"1O
kD1

Fxk ˝ƒM !
˛"1O
kD1

Fxk ˝ƒM
ˇ̌
ˇ
M0.d"2/

! 0:
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Of these terms, we get R%M1.d/.
N˛"1
kD1Fxk ˝ƒM /D 0 from Theorem 7.4. Also, we

have R%M0.d"2/.
N˛"1
kD1Fxk ˝ƒM /D 0 from Lemma 7.3, given that here t D 1 and

0 < 1 < .d " 2/C g " 1 " .˛ " 1/. Using the hypercohomology spectral sequence
E
p;q
1 DH q.X;F p/ and induction, we obtain

R%M1

!Ǫ
kD1

Fxk

"
DR%M1

!˛"1O
kD1

Fxk

"
DC:

Finally, by Corollary 2.9 both GD and GD are deformations over A1 ofN˛
kD1Fxk , so we have (7.2) by semicontinuity and equality of the Euler charac-

teristic. It also follows that the global section of GD (resp., GD) is a deformation of
the global section of

N˛
kD1Fxk over A1, which does not vanish outside of the union

of lociMi"1.ƒ."2xk// for k D 1; : : : ; ˛. On the other hand, the tautological sections
of these bundles, that is, the descent of the tensor product of tautological sections ofN
&!j F k (resp., this tensor product tensored with the sign representation) for GD

(resp., GD), vanish precisely along these loci.

A key step in the proof of Theorem 7.1 will be the following proposition.

PROPOSITION 7.6
Suppose that d > 2 and 1 & i & v. Let D be an effective divisor on C , and suppose
that degD & d C g " 2i " 1. Then

R%Mi .d/.G
_
D ˝ƒ

degD"1
M /DR%Mi .d/.GD ˝ƒ"1M /D 0: (7.3)

We will first show how Theorem 7.1 follows from Proposition 7.6 and then pro-
ceed with the proof of Proposition 7.6.

Proof of Theorem 7.1
Note that, by rewriting GD0 in terms of G_D0 using Corollary 3.14, both statements
can be seen to be equivalent, so we will only prove the first one.

We first suppose that D D 0 and do induction on degD0. If D D D0 D 0,
then we need to show that for t ¤ 0 with "i " 1 < t < d C g " 2i " 1 we have
R%Mi .d/.ƒ

t
M /D 0. If t > 0, then Lemma 4.3 ensures that R%M1.d/.ƒ

t
M /D 0, since

i ! 1 and so t & d C g " 4. But also for every 1 < j & i we have 1C 2j " d " g <
"t < 0 < j , that is, the weight ofƒtM lives in the window betweenMj"1 andMj , so
we conclude that R%Mi .d/.ƒ

t
M / D R%M1.d/.ƒtM / D 0 by Theorem 3.20. Suppose

now that t < 0, so that "i & t < 0. By Theorem 6.1, R%Mi .d/.ƒ
t
M /D 0.

LetD D 0 and degD0 ! 1. By induction, we may assume that the result holds for
divisors QD0 with deg QD0 < degD0. We need to show that R%Mi .d/.GD0 ˝ƒtM /D 0
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for "i "1 < t < d Cg"2i "1"degD0 and t ¤ 0. The case t D"1 follows directly
from Proposition 7.6, since here degD0 & d C g " 2i " 1, so we may assume that
t … ¹"1; 0º. We write D0 D QD0 C y and use the fact that GD0 is a stable deforma-
tion of Fy ˝G QD0 over A1 (see Proposition 2.12). If we take the second sequence of
Lemma 3.11 twisted by G QD0 ˝ƒtM , then we get an exact sequence

0!G QD0 ˝ƒtM ! Fy ˝G QD0 ˝ƒtM !G QD0 ˝ƒtC1M !G QD0 ˝ƒtC1M jMi!1! 0:

Observe that this is an acyclic chain complex involving Fy ˝G QD0 ˝ƒtM and where
the remaining three terms satisfy the corresponding inequalities from (7.1): "i " 1 <
t < dCg"2i "1"deg QD0, "i "1 < tC1 < dCg"2i "1"deg QD0, ".i "1/"1 <
tC1 < d "2Cg"2.i "1/"1"deg QD0. Given that t … ¹"1; 0º, we have both t; tC
1¤ 0 so by induction we see thatR%Mi .d/.G QD0˝ƒtM /DR%Mi .d/.G QD0˝ƒtC1M /D
0. On the other hand, we obtain R%Mi!1.d"2/.G QD0 ˝ƒtC1M /D 0 either by induction
if i > 1, or from Lemma 7.3 if i D 1. Therefore, we get the desired vanishing from
the corresponding hypercohomology spectral sequence and semicontinuity.

Next we do induction on ˛ D degD. If ˛ ! 1, then we write D D QD C x˛ and
take the first sequence of Lemma 3.11 with F _x˛ , twisted by .

N˛"1
kD1F

_
xk
/˝GD0 ˝

ƒtM . This way we get an exact sequence involving .
N˛
kD1F

_
xk
/˝GD0 ˝ƒtM , and

where the remaining terms are .
N˛"1
kD1F

_
xk
/ ˝ GD0 ˝ ƒt"1M and .

N˛"1
kD1F

_
xk
/ ˝

GD0 ˝ƒtM on Mi .d/, and .
N˛"1
kD1F

_
xk
/˝ GD0 ˝ƒtM on Mi"1.d " 2/. All three

still satisfy the inequalities (7.1): deg QD " i " 1 < t " 1 < d C g " 2i " 1" degD0,
deg QD " i " 1 < t < d C g " 2i " 1 " degD0, deg QD " .i " 1/ " 1 < t < d "
2 C g " 2.i " 1/ " 1 " degD0. Further, t; t " 1 … Œ0; deg QD(, so by induction
R%Mi .d/..

N˛"1
kD1F

_
xk
/˝GD0˝ƒt"1M /DR%Mi .d/..

N˛"1
kD1F

_
xk
/˝GD0˝ƒtM /D 0,

while R%Mi!1.d"2/..
N˛"1
kD1F

_
xk
/˝GD0 ˝ƒtM /D 0 either by induction when i > 1

or by Lemma 7.3 when i D 1 (observe that when i D 1 we must have t > deg QD).
By looking at the corresponding hypercohomology spectral sequence, we obtain the
vanishing R%Mi .d/..

N˛
kD1F

_
xk
/˝GD0 ˝ƒtM /D 0.

It remains to prove Proposition 7.6, which will take the rest of this section and
require several steps. First, we see that it reduces to showing that GD ˝ƒ"1M has no
global sections on M1.d/.

LEMMA 7.7
Under the assumptions of Proposition 7.6, (7.3) is equivalent to proving that

H 0
#
M1.d/;GD ˝ƒ"1M

$
D 0 (7.4)

for the case that every point in D has multiplicity at least 2.
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Proof
First, we see that (7.4) is clearly necessary, so we need to show that it is sufficient.
Note thatG_D˝ƒ

degD"1
M 'GD˝ƒ"1M by Corollary 3.14. We know by Theorem 3.21

that for 1 < j & i this bundle descends from an object with weights within Œ"degDC
1; 1(, where 1 < j and "degD C 1 > 1 C 2j " d " g by hypothesis. Hence, by
Theorem 3.20, it suffices to show (7.3) when i D 1.

We write D D ˛1x1C $ $ $C ˛sxs with xk ¤ xj . If degD D 0, then we are done
by Lemma 5.2. Let us now assume that some ˛i D 1, say, for simplicity, ˛1 D 1.
Then we can write D D QD C x1 and argue by induction on degD as follows. By
Lemma 3.11, we obtain an exact sequence

0!G QD ˝ƒ"1M !GD ˝ƒ"1M !G QD!G QDjM0! 0;

where M0 D M0.ƒ."2x1//. By the induction hypothesis, the first term in each
sequence is %-acyclic. By Corollary 7.5, the last two terms in each sequence have
vanishing higher cohomology and H 0 DC with a global section that does not vanish
along M0.ƒ."2x1//. Thus

R%M1.d/.GD ˝ƒ"1M /D 0

by the hypercohomology spectral sequence Ep;q1 DH q.X;F p/ and semicontinuity.
So we can assume that ˛k > 1 for all k. Again, we write D D QDC x1 and get

0!G QD ˝ƒ"1M ! Fx1 ˝G QD ˝ƒ"1M !G QD!G QDjM0! 0: (7.5)

The last two terms in (7.5) still have R% D C, but now the global section van-
ishes along M0.ƒ."2x1//. Therefore, applying the same hypercohomology spectral
sequence, we conclude that Fx1˝G QD˝ƒ"1M has the following cohomology: hp D 0
for p ! 2 and h0 D h1 D 1. By Remark 2.14, its stable deformation GD ˝ƒ"1M must
have hp D 0 for p ! 2 and h0 D h1. Hence, it suffices to show thatH 0.M1.d/;GD˝
ƒ"1M /D 0, as claimed.

In what follows, we focus on proving (7.4), under the assumptions of Proposi-
tion 7.6, and with D D ˛1x1C $ $ $C ˛sxs , ˛k > 1. We recall the construction of GD
from the proof of Corollary 2.9 adapted to our case when D is not necessarily a fat
point. Let M DM1.d/.

Let B˛ D CŒt1;:::;t˛+
.%1;:::;%˛/

, the covariant algebra, and let B˛ D SpecB˛ . Write the
indexing set ¹1; : : : ; ˛º as a disjoint union of setsAk of cardinality ˛k for k D 1; : : : ; s,
and denote B DB˛1˝ $ $ $˝B˛s . For every j 2Ak , we have a diagram of morphisms
as in (2.3),
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B˛1 % $ $ $ %B˛s %M
#j

$

D˛k %M
qk

"

C %M

M

{
(7.6)

We let F k D q!kF , where F is the universal bundle, and therefore GD D
'
S˛1%(((%S˛s! .

N
&!j F k˝ sgn/. Here '! does not change local sections of sheaves,

but just forgets the B-algebra structure. Thus (7.4) is equivalent to the following:
ƒ"1M ˝

N
&!j F k does not have skew-invariant global sections (with respect to each

factor of S˛1 % $ $ $ % S˛s ).
The restriction of ƒ"1M ˝

N
&!j F k to the special fiber M is ƒ"1M ˝

N
F
˝˛k
xk .

While the group S˛1 % $ $ $ % S˛s acts trivially on the special fiber, the action on the
vector bundle is still nontrivial (the action permutes tensor factors within each block).

LEMMA 7.8
Suppose that s D 1; that is, D D ˛x is a fat point. Write F D q!1F , and let ) be as
in (7.6). Then End)!F DD˛ . In particular, )!F is indecomposable.

Proof
We see that )!F D ˆF .O˛x/, where ˆF is the Fourier–Mukai functor with ker-
nel F . The result follows from full faithfulness of ˆF , which is given by Theo-
rem 5.1.

LEMMA 7.9
As a representation of S˛1 % $ $ $ % S˛s , the space H 0.M;ƒ"1M ˝

N
F
˝˛k
xk / is iso-

morphic to the direct sum V˛1 ˚ $ $ $˚ V˛s of irreducible representations, where each
V˛k is the standard .˛k " 1/-dimensional irreducible representation of S˛k and the
other factors S˛l , l ¤ k, act on V˛k trivially. If we realize the representation V˛k
as ¹Paj ej j

P
aj D 0º# C˛k , then the vector ej 0 " ej 00 2 V˛k corresponds to the

global section sj 0j 00 of ƒ"1M ˝
N
F
˝˛k
xk that can be written as a tensor product of

the universal sections sl of Fxl with l ¤ k, the universal sections sk of Fxk in posi-
tions j ¤ j 0; j 00, and the section of ƒ"1M ˝ Fxk ˝ Fxk (in positions j 0, j 00) given by
wedging (recall that ƒM is the determinant of Fxk ).

Proof
The sections sj 0j 00 satisfy the same linear relations as the difference vectors ej 0 " ej 00 ,
namely, that sj1j2 C sj2j3 C $ $ $C sjr!1jr C sjrj1 D 0 for j1; : : : ; jr 2 Ak . Indeed,
choose a basis ¹f1; f2º in a fiber of the rank-2 bundle Fxk so that the universal section
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is equal to f2 and the determinant is given by f1 ^ f2. After reordering of j1; : : : ; jr ,
and ignoring factors of sjj 0 given by the universal sections sl of Fxl with l ¤ k, we
have

s12C s23C $ $ $C sr1 D .f1˝ f2/˝ f2˝ $ $ $˝ f2 " .f2˝ f1/˝ f2˝ $ $ $˝ f2
C f2˝ .f1˝ f2/˝ $ $ $˝ f2 " f2˝ .f2˝ f1/˝ $ $ $˝ f2
C $ $ $D 0:

Let jk Dmin.Ak/ for k D 1; : : : ; s. It suffices to prove that the sections sjkj for
k D 1; : : : ; s and j 2 Ak n ¹jkº form a basis of H 0.M;ƒ"1M ˝

N
F
˝˛k
xk /. We prove

this by induction on ˛. This is true if ˛D 0 by Lemma 5.2 and if ˛D 1 by Lemma 5.3.
Let QF D F˝˛1x1 ˝ $ $ $˝ F˝.˛s"1/xs . We have the usual exact sequence obtained from
Lemma 3.11:

0!ƒ"1M ˝ QF !ƒ"1M ˝ QF ˝Fxs ! QF ! QF jM0! 0; (7.7)

where M0 D M0.ƒ."2xs//. By Corollary 7.5, the last two terms have vanishing
higher cohomology and H 0 D C. If ˛s D 1 or, equivalently, As D ¹˛º, then the
global section of QF does not vanish along M0 and therefore H 0.ƒ"1M ˝ QF / D
H 0.ƒ"1M ˝ QF ˝ Fxs / by the corresponding hypercohomology spectral sequence,
and the basis stays the same. On the other hand, if ˛ ¤ js , then the global section
of QF (the tensor product of universal sections) vanishes along M0 inducing the zero
map H 0. QF /!H 0. QF jM0/. Moreover, the section sjs˛ 2H 0.ƒ"1M ˝ QF ˝Fxs / maps
onto the global section of QF . Thus the claim also follows from the hypercohomology
spectral sequence.

The sheaf
N
&!j F k carries a filtration by B)d .

N
&!j F k/, where B)d is

the ideal of monomials of degree at least d . The associated graded object is
gr.
N
&!j F k/ WD

N
k F
˝˛k
xk ˝OM B . If ƒ"1M ˝

N
&!j F k has a skew-invariant

global section, an associated graded section will be a skew-invariant global section of
ƒ"1M ˝ gr.

N
&!j F k/.

By Frobenius reciprocity, the space of skew-invariants in .V˛1 $ Id$ $ $ $$ Id/˝
B #H 0.M;ƒ"1M ˝

N
F
˛k
xk /˝B has dimension ˛1 " 1 and basis

X
i<j

!@r-1
@t ri

" @
r-1

@t rj

"
sij $-2 $ $ $ $$-s; (7.8)

r D 1; : : : ; ˛ " 1, where -i 2 CŒt1; : : : ; t˛i ( is the Vandermonde determinant. Global
sections of H 0.M;ƒ"1M ˝

N
F
˛k
xk /˝B coming from V˛k , k > 1 are analogous. We

will show that these global sections of ƒ"1M ˝ gr.
N
&!j F k/ do not lift to sections of

ƒ"1M ˝
N
&!j F k .



THE BGMN CONJECTURE VIA STABLE PAIRS 3539

LEMMA 7.10
It suffices to prove (7.4) for s D 1 and ˛D ˛1.

Proof
We argue by induction on s. Let QD D ˛2x2C $ $ $C˛sxs , and suppose thatH 0.ƒ"1M ˝
G QD/D 0. Arguing as in the proof of Lemma 7.9, using the usual spectral sequences,
we getH 0.ƒ"1M ˝F

˛1
x1 ˝G QD/D V˛1 , with a basis given by (7.8). Note that-i 2B˛i

is the element of top degree. Therefore, lifting basis elements to sections of GD is
equivalent to lifting them to G˛1x1 .

From now on, we let ˛D ˛1, x D x1, and F DF 1. The space of skew-invariants
in H 0.ƒ"1M ˝ F˝˛x /˝ B˛ has basis Ir D

P
i<j .

@r/
@tr
i
" @r/

@tr
j
/sij , r D 1; : : : ; ˛ " 1.

Writing, formally, sij D ei " ej , we also have Ir D
P
i
@r/
@tr
i
ei . We claim that no Ir

lifts to a global skew-invariant section eIr of ƒ"1M ˝
N
&!j F . We argue by induction

on ˛.

LEMMA 7.11
Let D D ˛x, D0 D .˛ " 1/x. Assuming that (7.4) holds for D0, we have

H 0
!
B˛ %M;ƒ"1M ˝

O
&!j F ˝ sgn

"S˛!1 DC˛"1;

where S˛"1 # S˛ is the subgroup fixing the last index.

Proof
We start with the Koszul complex on C %M

0! detF _! F _!OC%M !OD 0! 0; (7.9)

where D 0 # C %M is the vanishing locus of the universal section. Recall that D 0

is smooth over C with fibers M.ƒ."2x// #M of codimension 2 over x 2 C . In
particular, D 0 is flat over C , and so the local generator t 2mx for x 2 C is not a zero
divisor in OD 0 . It follows that the pullback of (7.9) to D˛ %M is also exact:

0!ƒ"1M ! F _!OD˛ %M !OD˛ %M.ƒ."2x//! 0:

We pull back to B˛ %M and tensor with the locally free sheaf
N˛"1
jD1 &

!
j F to obtain

0!ƒ"1M ˝
˛"1O
jD1

&!j F !ƒ"1M ˝
Ǫ
jD1

&!j F

!
˛"1O
jD1

&!j F !
˛"1O
jD1

&!j F
ˇ̌
ˇ
B˛ %M.ƒ."2x//

! 0: (7.10)
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Next we compute S˛"1-skew-invariant cohomology of the first, third, and fourth
terms of (7.10). For each of these terms U , we have H 0.U ˝ sgn/S˛!1 D
)!&

S˛"1
˛;! .U ˝ sgn/, which by Lemma 2.8 is a deformation of ˛ copies of

)!&S˛"1˛;! .U ˝ sgn/ over A1. For the first term U D ƒ"1M ˝
N˛"1
jD1 &

!
j F in (7.10),

we have that )!&S˛"1˛;! .U ˝ sgn/ is isomorphic to ƒ"1M ˝ GD0 (see the proof of
Proposition 2.12), which is %-acyclic by the induction assumption. For the last two
terms, )!&S˛"1˛;! .U ˝ sgn/ is isomorphic to GD0 and GD0 jM.ƒ."2x//, respectively,
both of which have R% DC by Corollary 7.5.

From this, it follows that H 0.ƒ"1M ˝
N˛"1
jD1 &

!
j F ˝ sgn/S˛!1 D 0, while

H 0.
N˛"1
jD1 &

!
j F ˝ sgn/S˛!1 D H 0.

N˛"1
jD1&

!
j F jB˛ %M.ƒ."2x// ˝ sgn/S˛!1 D

C˛ and their higher cohomology vanishes. Furthermore, the last two groups
are isomorphic to D˛ as D˛-modules and generated by the universal section
.
N˛"1
jD1&

!
j†/ ˝ -˛"1, which under the restriction map to B˛ %M.ƒ."2x// goes

to .
N˛"1
jD1 t˛&

!
j†/ ˝ -˛"1. Therefore, the first page of the spectral sequence

E
p;q
1 DH q.X;F p/ associated with (7.10) has the following shape:

:::
:::

:::
:::

0 H 2.B˛ %M;ƒ"1M ˝
N˛
jD1 &

!
j F ˝ sgn/S˛!1 0 0

0 H 1.B˛ %M;ƒ"1M ˝
N˛
jD1 &

!
j F ˝ sgn/S˛!1 0 0

0 H 0.B˛ %M;ƒ"1M ˝
N˛
jD1 &

!
j F ˝ sgn/S˛!1 D˛

(t˛!1˛

D˛ :

We conclude that H 0.B˛ %M;ƒ"1M ˝
N˛
jD1&

!
j F ˝ sgn/S˛!1 DC˛"1.

Proof of Proposition 7.6
We need to show that none of the S˛"1-skew-invariant global sections found in
Lemma 7.11 is S˛-skew-invariant. We can explicitly write a basis of H 0.B˛ %M;
ƒ"1M ˝

N˛
jD1&

!
j F ˝ sgn/S˛!1 D Hom.&!˛ F ;

N˛"1
jD1 &

!
j F ˝ sgn/S˛!1 . Namely,

consider the surjection &!˛ F # Fx , followed by an isomorphism Fx
&"! t˛"11 F '

Fx . Then we tensor with
N˛"1
jD2 &

!
j†, multiply by t˛"32 t˛"43 $ $ $ t˛"2, and skew-

symmetrize over ¹1; 2; : : : ; ˛ " 1º. This way we obtain a morphism
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0 2Hom
!
&!˛ F ;

˛"1O
jD1

&!j F ˝ sgn
"S˛!1

and, therefore, also morphisms

0; t˛0; : : : ; t
˛"2
˛ 0 2Hom

!
&!˛ F ;

˛"1O
jD1

&!j F ˝ sgn
"S˛!1

: (7.11)

We claim that t˛"2˛ 0 ¤ 0, and therefore (7.11) gives a basis of the space
H 0.B˛ %M;ƒ"1M ˝ N˛

jD1&
!
j F ˝ sgn/S˛!1 over C. Indeed, notice that

t˛"2˛ .t˛"11 t˛"32 t˛"43 $ $ $ t˛"2/ is equal (up to sign) to the Vandermonde determi-
nant -˛ 2 B˛ , and it is also equal (up to a multiple) to t˛"11 -˛"1, where -˛"1 is the
Vandermonde determinant in t1; : : : ; t˛"1. We show that these two expressions are not
equal to zero. Let Btop

˛ be the degree
#˛
2

$
component of B˛ . Being spanned by-˛ , Btop

˛

is isomorphic to sgn as an S˛-module. Consider a monomial mD td11 $ $ $ td˛˛ 2 Btop
˛ .

If dj D dk , then m is fixed by .j k/ 2 S˛ , so it must vanish. This leaves only the
orbit of t˛"11 t˛"22 $ $ $ t˛"1 under S˛ , which all must be nonzero with

*.t˛"11 t˛"22 $ $ $ t˛"1/D .sgn*/t˛"11 t˛"22 $ $ $ t˛"1 (7.12)

for * 2 S˛ . Monomials in t˛"11 -˛"1 of the form (7.12) have *.1/D 1 and *.˛/D ˛.
Moreover, they appear with a relative factor of sgn* by antisymmetry of -˛"1, so
they do not cancel in B˛ , as claimed.

Therefore, t˛"2˛ 0 can be described as follows: it is the surjection &!˛ F # Fx

followed by an isomorphism Fx
&"! t˛"11 F ' Fx , twisted by

N˛"1
jD2&

!
j†, multiplied

by -˛"1 and then skew-symmetrized over ¹1; 2; : : : ; ˛" 1º. So the associated graded
section of t˛"2˛ 0 is

P˛"1
jD1 sj˛ $-˛ ¤ 0 (cf. Lemma 7.9).

Finally, we check that no linear combination of (7.11) is S˛-skew-invariant. In
fact, if ˛ > 2, the associated graded section does not involve sjk for j; k < ˛, while
if ˛ D 2, the section is s12.f1 " f2/, which is symmetric, not skew-symmetric. This
completes the proof.

8. Computation of RHom.GD;GD/
Now we will compute some of the Ext groups between GD and GD0 , which will be
needed in the proof of our semiorthogonal decomposition.

PROPOSITION 8.1
Let d & 2gC 1 and 1& i & v. Suppose that D, D0 are effective divisors, and let t be
an integer satisfying

degD " i " 1 < t < d C g " 1" 2i " degD0:
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Then

Hp
#
Mi .d/;G

_
D ˝GD0 ˝ƒtM

$
D 0

for every p > degD " t .

Proof
Let ˛ D degD, ˇ D degD0. We first do the case ˛ D ˇ D 0, for which we need
to show vanishing of Hp.Mi .d/;ƒ

t
M / for p > "t . If t D 0, this is trivial. If t <

0, observe that i ! "t , so Theorem 6.1 gives R%Mi .ƒ
t
M / D 0. If t > 0, we notice

that ƒtM has weight "t , with 1C 2j " d " g < "t < j for every 1 < j & i , so by
Theorem 3.20 we must have R%Mi .ƒ

t
M / D R%M1.ƒtM /. But the latter is zero by

Lemma 4.3, since t & d C g " 4.
Now we prove the result for ˇ D 0 and ˛ ! 1 by induction on ˛. Write D D

QDC x, and twist (3.3) by G_QD ˝ƒ
t
M to get an exact sequence

0!G_QD ˝ƒ
t"1
M ! F _x ˝G_QD ˝ƒ

t
M

!G_QD ˝ƒ
t
M !G_QD ˝ƒ

t
M jMi!1.d"2/! 0: (8.1)

By induction, the first term has Hp.Mi .d/;G
_
QD ˝ ƒ

t"1
M / D 0 for p > ˛ " t , and

the third term has Hp.Mi .d/;G
_
QD ˝ ƒ

t
M / D 0 for p > ˛ " t " 1. We see that on

the last term we also have Hp.Mi"1.d " 2/;G_QD ˝ ƒ
t
M / D 0 for p > ˛ " t " 1.

Indeed, if i > 1, this follows by induction, while if i D 1, we have t ! ˛ " 1 and
the restriction of G_QD ˝ƒ

t
M to M0.d " 2/D PdCg"4 is a deformation of a sum of

line bundles
L

OPdCg!4.sj / with ".d C g " 4/ & "t & sj & ˛ " t " 1 & 0 (see
Corollary 2.9, Remark 3.7). If ˛ " t " 1 < 0, this sum of line bundles is %-acyclic,
and if ˛ " t " 1D 0, this has vanishing cohomology Hp for p > 0D ˛ " t " 1. In
either case, we conclude that the last term has vanishing Hp for p > ˛ " t " 1 by
semicontinuity. Taking the hypercohomology spectral sequence Ep;q1 DH q.X;F p/

of (8.1), we conclude that Hp.Mi .d/;F
_
x ˝ G_QD ˝ƒ

t
M /D 0 for p > ˛ " t . Since

G_D ˝ƒtM is a stable deformation over A1 of F _x ˝G_QD ˝ƒ
t
M by Proposition 2.12,

then by semicontinuity we also have Hp.Mi .d/;G
_
D ˝ƒtM / for p > t " ˛.

Finally, we do induction on ˇ ! 1. Similarly, write D0 D QD0C y, and twist (3.4)
by G_D ˝G QD0 ˝ƒtM to get an exact sequence

0!G_D ˝G QD0 ˝ƒtM !G_D ˝G QD0 ˝Fy ˝ƒtM
!G_D ˝G QD0 ˝ƒtC1M !G_D ˝G QD0 ˝ƒtC1M jMi!1.d"2/! 0:

By induction, the first term has Hp D 0 for p > ˛ " t and the third one has Hp D 0
for p > ˛ " t " 1. The last term has vanishing pth cohomology for p > ˛ " t "
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1, which follows by induction when i > 1. It remains to check the case i D 1. In
this case, the restriction G_D ˝ G QD0 ˝ ƒtC1M jMi!1.d"2/ is a deformation of a sumL

OPdCg!4.sj /, with ".d C g " 4/ & "t " ˇ & ˛ " t " 1 & 0. As before, we see
that this has vanishing Hp for p > ˛ " t " 1 and the same is true for G_D ˝G QD0 ˝
ƒtC1M jMi!1.d"2/ by semicontinuity. The result then follows from taking the spectral
sequence Ep;q1 DH q.X;F p/ and semicontinuity.

COROLLARY 8.2
Let d & 2g C 1 and 0 & i & v. If degD & i and degD0 < d C g " 1 " 2i , then we
have

Hp
#
Mi .d/;G

_
D ˝GD0

$
D 0

for every p > degD.

Proof
If i D 0, then D must be zero and the result follows from Corollary 7.5. For i ! 1,
this follows from taking t D 0 in Proposition 8.1.

Using the previous results we can show that G_D˝GD has exactly one nontrivial
global section, up to scalar multiplication. We need a lemma first.

LEMMA 8.3
Let d & 2g C 1, and let D, D0 be two effective divisors on C of degD D ˛ & i ,
degD0 < d C g " 2i " 1. Write D D x1 C $ $ $C x˛ , in arbitrary order and possibly
with repetitions. Then for every k & ˛ we have h0.Mi .d/; .

Nk
jD1F

_
xj
/˝GD0/& 1.

Proof
If i D 0, then ˛ D k D 0 and this is given by Corollary 7.5. Let i ! 1, so d > 2. We
do induction on k. If k D 0, this still follows from Corollary 7.5. Otherwise, we use
Lemma 3.11 to get an exact sequence

0!
k"1O
jD1

F _xj ˝GD0 ˝ƒ
"1
M !

kO
jD1

F _xj ˝GD0

!
k"1O
jD1

F _xj ˝GD0!
k"1O
jD1

F _xj ˝GD0
ˇ̌
ˇ
Mi!1

! 0;

where Mi"1 DMi"1.ƒ."2xk//. The first term can be seen to be %-acyclic using
Theorem 7.1. Indeed, here t D"1 … Œ0; k " 1( and the inequalities .k " 1/" i " 1 <
"1 < d C g " 2i " 1 " degD0 are satisfied since k & ˛ & i and degD0 < d C g "
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2i . On the other hand, h0.Mi .d/; .
Nk"1
jD1F

_
xj
/˝GD0/& 1 by induction. Therefore,

taking the hypercohomology spectral sequence Ep;q1 DH q.X;F p/ of the %-acyclic
complex above, we conclude that h0.Mi .d/; .

Nk
jD1F

_
xj
/˝GD0/& 1 as well.

COROLLARY 8.4
Suppose that d & 2gC 1, and let 0& i & v. If degD & i , then

HomMi .d/.GD;GD/DHomMi .d/.GD;GD/DC:

Proof
We have HomMi .d/.GD;GD/DH 0.Mi .d/;G

_
D ˝GD/. By Corollary 3.14, G_D ˝

GD ' G
_
D ˝ GD , so HomMi .d/.GD;GD/ D HomMi .d/.GD;GD/ has dimension

h0.G_D ˝ GD/ D h0.G
_
D ˝ GD/, which by Corollary 2.9 and semicontinuity, is at

most h0.Mi .d/; .
NdegD
jD1 F

_
xj
/˝GD/. But by Lemma 8.3, this dimension is at most

1, since by hypothesis degD & i < d C g " 2i " 1. On the other hand, the identity
provides a nontrivial map GD!GD , so dim HomMi .d/.GD;GD/must be exactly 1.

9. Full faithfulness
In this section, we construct fully faithful embeddings from Db.Sym˛ C/ to
Db.Mi .ƒ//, for 0& ˛ & i , where 1& i & v and d & 2g " 1.

Definition 9.1
For 0 & ˛ & i , let ˆi˛ WDb.Sym˛ C/!Db.Mi .ƒ// be the Fourier–Mukai functor
determined by F!˛ 2 Db.Sym˛ C %Mi .ƒ//, where F is the universal bundle on
C %Mi .ƒ/. Similarly, let ˆ

i

˛ WDb.Sym˛ C/!Db.Mi .ƒ// be the Fourier–Mukai

functor given by F
!˛ 2 Db.Sym˛ C %Mi .ƒ// (see Definition 2.3 for F!˛ and

F
!˛

).

Remark 9.2
For ˛ D 0, the functor ˆi0 D ˆ

i

0 is simply the (derived) pullback of the map from
Mi .ƒ/ to a point.

We have already proved in Theorem 5.1 that ˆ11 DˆF is fully faithful. The main
result of the present section is a generalization of that result.

THEOREM 9.3
Suppose that 2 < d & 2g " 1. For 1 & i & v, 0 & ˛ & i , both ˆi˛ and ˆ

i

˛ are fully
faithful functors.
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We will use induction to prove Theorem 9.3. First we need to investigate
RHom.GD;GD0/ between different divisors. We want to obtain %-acyclicity of
G_D ˝GD0 , for which we need some preliminary computations.

LEMMA 9.4
Let d > 0 and 0 & i & v. Let D, D0 be effective divisors on C with D D ˛x and
x …D0. If ˛C degD0 < d C g " 2i " 1, then

R%Mi .G
_
D ˝GD0 ˝ƒ˛M /DC:

Moreover, if i ! 1, then the unique (up to a scalar) global section of G_D ˝ GD0 ˝
ƒ˛M vanishes precisely along the union of codimension 2 loci Mi"1.ƒ."2x// and
Mi"1.ƒ."2y// for y 2 supp.D0/.

Proof
We use the fact that G_D ˝ GD0 ˝ ƒ˛M is a deformation over A1 of .F _x /

˝˛ ˝NdegD0
kD1 Fyk ˝ƒ˛M ' F˝˛x ˝NdegD0

kD1 Fyk , where D0 DPyk . By Corollary 7.5, we

see that R%Mi .F
˝˛
x ˝NdegD0

kD1 Fyk /D C, so by semicontinuity and equality of the
Euler characteristic, we must have R%Mi .G

_
D ˝GD0 ˝ƒ˛M /D C as well. Further-

more, the global section of G_D ˝GD0 ˝ƒ˛M is a deformation of the global section

of F˝˛x ˝NdegD0
kD1 Fyk over A1, which does not vanish outside of the union of loci

Mi"1.ƒ."2x// and Mi"1.ƒ."2yk//. On the other hand, the tautological section of
this bundle vanishes precisely along these loci.

LEMMA 9.5
Suppose that 2 < d & 2g C 1 and 1 & i & v. Let D, D0 be effective divisors with
D D ˛x and D0 D ˇx C QD0, x … QD0. Suppose that ˛ D degD & i and degD0 <
dCg"2i"1. Then the mapR%Mi .d/.G

_
˛x˝Gˇx/!R%Mi .d/.G

_
˛x˝Gˇx˝G QD0/

given by tensoring with the unique (up to scalar) section of G QD0 (cf. Corollary 7.5) is
an isomorphism.

Proof
We argue by induction on ˛. If ˛ D 0, this is clear, as the map R%Mi .d/.Gˇx/!
R%Mi .d/.Gˇx ˝G QD0/ is C &"!C (cf. Corollary 7.5).

For the inductive step, we argue as in the proof of Proposition 7.6, specifically as
in Lemma 7.11: G

_
˛x 'ƒ"˛M ˝G˛x Dƒ"˛M ˝ '

S˛! .
N˛
jD1&

!
j F /, which is a direct

summand in

'S˛!1!
!Ǫ
jD1

&!j F
"
: (9.1)
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Here F D q!F D q!1F from (7.6). So it suffices to prove our claim for the bundle
(9.1). As in the proof of Lemma 7.11, we have an exact sequence

0!ƒ"1M ˝
˛"1O
jD1

&!j F !ƒ"1M ˝
Ǫ
jD1

&!j F

!
˛"1O
jD1

&!j F !
˛"1O
jD1

&!j F
ˇ̌
ˇ
B˛%Mi!1.ƒ."2x//

! 0; (9.2)

to which we apply 'S˛!1! , then tensor with ƒ1"˛M ˝Gˇx (resp., with ƒ1"˛M ˝Gˇx ˝
G QD0 ) and then compute R% . The resulting left term is a deformation of ˛ copies of
ƒ"1M ˝ G

_
.˛"1/x ˝ Gˇx (resp., ƒ"1M ˝ G

_
.˛"1/x ˝ Gˇx ˝ G QD0 ), both of which are

%-acyclic by Theorem 7.1.
Therefore, we have two exact triangles related by a commutative diagram:

R%.ƒ"˛M ˝U ˝ &!˛ F ˝Gˇx/S˛!1 R%.ƒ"˛M ˝U ˝ &!˛ F ˝Gˇx ˝G QD0/S˛!1

R%.ƒ1"˛M ˝U ˝Gˇx/S˛!1 R%.ƒ1"˛M ˝U ˝Gˇx ˝G QD0/S˛!1

R%.ƒ1"˛M ˝U ˝GˇxjB˛%M 0/S˛!1 R%.ƒ1"˛M ˝U ˝Gˇx ˝G QD0 jB˛%M 0/S˛!1

(9.3)

where U DN˛"1
jD1&

!
j F , M 0 DMi"1.ƒ."2x//, and the horizontal maps are multi-

plication by the universal section of G QD0 . The middle row of (9.3) is a deformation of
˛ copies of the map R%Mi .d/.G

_
.˛"1/x˝Gˇx/!R%Mi .d/.G

_
.˛"1/x˝Gˇx˝G QD0/,

which is an isomorphism by the induction assumption. The same is true for the third
row, on the moduli spaceMi"1.ƒ."2x//. We conclude that the first row of (9.3) must
also be an isomorphism, which completes the proof.

LEMMA 9.6
Suppose that 2 < d & 2g C 1 and 1 & i & v. Let D, D0 be effective divisors with
D D ˛x and multx.D0/ & ˛ " 1. Suppose that ˛ D degD & i and degD0 < d C
g " 2i " 1. If we assume that ˆ

i

˛0 and ˆ
i"1
˛0 are fully faithful for every ˛0 < ˛, then

R%Mi .d/.G
_
D ˝GD0/D 0.
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Proof
By Lemma 9.5, it suffices to consider the case D0 D ˇx, where ˇ < ˛. Moreover,
arguing as in Lemma 9.5, we can assume that ˛ D ˇ C 1, so it suffices to show that
R%Mi .d/.G

_
˛x ;G.˛"1/x/D 0 under the assumptions ˛ & i , ˛ < d Cg"2i . Note that

if i D 1, then ˛ D 1 and this follows (unconditionally) from Lemma 5.3. So we can
assume that i > 1 and use full faithfulness of ˆ

i

˛0 and ˆ
i"1
˛0 as in the hypothesis. As

in Lemma 9.5, we consider the exact sequence (9.2), twist it byƒ1"˛M ˝G.˛"1/x , and
take S˛"1-invariant global sections. The resulting term on the left vanishes by semi-
continuity and Theorem 7.1. It suffices to show that the second term vanishes, because
it contains R%Mi .d/.G

_
˛x ˝ G.˛"1/x/ as a direct summand. But the last two terms

are deformations over A1 of ˛ copies of the map RHomMi .d/.G.˛"1/x ;G.˛"1/x/!
RHomMi!1.d"2/.G.˛"1/x ;G.˛"1/x/, which is an isomorphism by our assumption

that ˆ
i

˛"1 and ˆ
i"1
˛"1 are fully faithful. This completes the proof.

THEOREM 9.7
Suppose 2 < d & 2g C 1 and 1 & i & v. Let D, D0 be effective divisors on C , with
D !D0 and satisfying degD & i and degD0 < d C g " 2i " 1. If we assume that

ˆ
i

˛0 is fully faithful for every ˛0 < degD, then R%Mi .d/.G
_
D ˝GD0/D 0.

Proof
We do induction on degD. If degD D 1, then we have D D x and multx.D0/D 0,
so the result follows from Lemma 9.6 with ˛D 1.

Let degD > 1, and so i > 1 as well. Since D !D0, there is a point x 2D with
multx.D/D ˛, multx.D0/& ˛"1. If supp.D/D ¹xº, thenD D ˛x is a fat point and
the result follows from Lemma 9.6. Otherwise, we can find a point y ¤ x such that
QD DD " y is effective. From (3.3), we get an exact sequence

0!G
_
QD ˝GD0 ˝ƒ"1M ! F _y ˝G

_
QD ˝GD0

!G
_
QD ˝GD0!G

_
QD ˝GD0 jMi!1.d"2/! 0:

By induction, R%Mi .d/.G
_
QD ˝GD0/DR%Mi!1.d"2/.G

_
QD ˝GD0/D 0. On the other

hand, the term G
_
QD ˝ GD0 ˝ ƒ"1M satisfies the inequalities (7.1) with t D "1 …

Œ0;deg QD(, so by Theorem 7.1 it is %-acyclic. As usual, the result follows from the
hypercohomology spectral sequence and semicontinuity.

Now we can prove the main result of this section.

Proof of Theorem 9.3
By Bondal–Orlov’s criterion in [7], we only need to consider the images of skyscraper
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sheaves, ˆi˛.O¹Dº/D GD and ˆ
i

˛.O¹Dº/D GD . Namely, we need to show that for
two divisors D; D0 2 Sym˛ C we have

Rp%Mi .ƒ/.G
_
D ˝GD0/D

´
0 if D ¤D0 or p < 0 or p > ˛;

C if pD 0 and D DD0
(9.4)

and similarly for R%Mi .ƒ/.G
_
D ˝GD0/. Observe that since R%Mi .ƒ/.G

_
D ˝GD0/D

R%Mi .ƒ/.G
_
D0 ˝ GD/ (cf. Corollary 3.14), full faithfulness of ˆi˛ is equivalent to

that of ˆ
i

˛ , and it suffices to prove (9.4). We prove it by induction on ˛, where the
case ˛ D 0 follows from the fact that OMi .ƒ/ is an exceptional object, since Mi .ƒ/

is rational. So we assume that (9.4) holds for ˛0 < ˛. If D DD0, then (9.4) follows
directly from Corollaries 8.2 and 8.4. Now let D ¤D0 be different divisors of degree
˛ & i . Notice that i & .d " 1/=2& g" 1, so the inequality ˛ & d Cg" 2i " 2 holds.
Therefore, in this case (9.4) follows from Theorem 9.7 by our induction hypothesis.
We conclude that ˆi˛ and ˆ

i

˛ are fully faithful functors.

10. Proof of the semiorthogonal decomposition
Throughout this section we fix d D degƒD 2g " 1 so that v D .d " 1/=2D g " 1.
We are interested in the moduli spacesMi DMi .ƒ/, where i will always be assumed
to satisfy 1& i & g " 1. Note that when d D 2g " 1, the canonical bundle is !Mi D
Oi ."3; 3" 3g/Dƒ"1M ˝ ,"1˝ !"1 (see [39, 6.1] and Definition 3.10).

By abuse of notation, we will denote the essential image ˆi˛.Sym˛ C/ simply

by ˆi˛ , and the image ˆ
i

˛.Sym˛ C/ by ˆ
i

˛ , which by Theorem 9.3 are admissible
subcategories of Db.Mi / equivalent to Db.Sym˛ C/. In particular, ˆi0 is the full
triangulated subcategory generated by OMi , which is equivalent to Db.pt/.

Definition 10.1
We define the following full triangulated subcategories of Db.Mi /:

A2k WDˆi2k ˝ƒ"kM ˝ !"1; 0& 2k & i;

B2k WDˆi2k ˝ƒ"kM ; 0& 2k & i;

C2kC1 WDˆ
i

2kC1˝ƒ"kM ˝ , ˝ !"1; 0& 2kC 1& i;

D2kC1 WDˆ
i

2kC1˝ƒ"kM ˝ ,; 0& 2kC 1& i:

Each of these subcategories is equivalent to some Db.Sym˛ C/ with either ˛ D
2k or ˛D 2kC 1. These four families of subcategories constitute the building blocks
of our semiorthogonal decomposition on Db.Mi /. We will see that different subcat-
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egories of the form A2k are semiorthogonal to each other, and the same is true for
subcategories within the other three blocks. We need the following lemma.

LEMMA 10.2
Let D1, D2 be admissible subcategories of a triangulated category D , and let
31, 32 be spanning classes (see [20, Section 3.2]) of D1, D2. If we have that
HomD.A;BŒk(/D 0 for every A 231, B 232, and k 2 Z, then HomD.F;G/D 0
for every F 2D1, G 2D2.

Proof
We need to show that D1 # ?D2 or, equivalently, D2 #D?1 .

First we see that 31 # ?D2. Let A 231. Since D D hD2;
?D2i, we can fit A

in an exact triangle D!A!D0!DŒ1(, where D 2 ?D2 and D0 2D2. Applying
Hom.$;B/ for B 2 32, we get a long exact sequence where Hom.D;BŒk(/D 0 by
definition and Hom.A;BŒk(/D 0 by hypothesis. Therefore, Hom.D0;BŒk(/D 0 for
every k and every B 2 32, so D0 ' 0 since 32 is a spanning class of D2. As a
consequence, A'D 2 ?D2.

Now let G 2 D2. Similarly, there is an exact triangle D ! G ! D0 ! DŒ1(

with D 2 D1, D0 2 D?1 . Applying Hom.A; $/ with A 2 31, we now see that
Hom.A;DŒk(/ D Hom.A;GŒk(/ D 0 by the previous discussion and therefore
D0 ' 0. This implies that G 'D 2D?1 , as desired.

PROPOSITION 10.3
Let k > l and 0& 2l < 2k & i . Then

HomDb.Mi /
.A2k;A2l/D 0; HomDb.Mi /

.B2k;B2l/D 0:

Similarly, if k < l and 0& 2kC 1 < 2l C 1& i , then we have

HomDb.Mi /
.C2kC1;C2lC1/D 0; HomDb.Mi /

.D2kC1;D2lC1/D 0:

Proof
Let us first show semiorthogonality between subcategories of the form A2k , A2l ,
k > l , as well as semiorthogonality between those of the form B2k , B2l , k > l .
Since skyscraper sheaves O¹Dº of closed points D 2 Sym˛ C are a spanning class of
Db.Sym˛ C/ (see [20, Proposition 3.17]), Lemma 10.2 says that semiorthogonality
can be checked on closed points. That is, it suffices to show that for D 2 Sym2k C ,
D0 2 Sym2l C , with 0& 2l < 2k & i & g" 1, we have R%Mi .G

_
D˝GD0 ˝ƒk"lM /D

0. But this follows from Theorem 7.1 (and Remark 7.2). Indeed, the inequalities

2k " i " 1 < k " l < d C g " 2i " 1" 2l
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are equivalent to k C l < i C 1 and k C l C 2i < d C g " 1, which are guaranteed
by the fact that k C l < i & .d " 1/=2 < g in this case. Also, since k > l , we have
2k … Œk " l; kC l (. This proves the first two semiorthogonality statements.

Similarly, in order to prove semiorthogonality between subcategories C2kC1,
C2lC1, k < l , as well as between D2kC1, D2lC1, k < l , we need to prove that for
D 2 Sym2kC1C , D0 2 Sym2lC1C , with 0& 2k C 1 < 2l C 1& i & g " 1, we must
have

R%Mi .G
_
D ˝GD0 ˝ƒk"lM /D 0:

Again, this can be proved using Theorem 7.1: the inequalities

2kC 1" i " 1 < k " l < d C g " 1" 2i " .2l C 1/

are equivalent to k C l < i and k C l C 2i < d C g " 2, both of which follow from
the fact that k C l C 1 < i & .d " 1/=2 < g in this case. Similarly, k < l implies
k " l … Œ0; 2kC 1(. This proves the required vanishing.

THEOREM 10.4
Let d D 2g " 1 and 1 & i & g " 1. On Db.Mi /, we have a semiorthogonal list of
admissible subcategories arranged in four blocks

A;C ;B;D ; (10.1)

where

AD hA2ki0*2k*i ; C D hC2kC1i1*2kC1*i ;
B D hB2ki0*2k*min.i; g"2/; D D hD2kC1i1*2kC1*min.i; g"2/

as given in Definition 10.1. Within the blocks A and B, the subcategories are
arranged in increasing order of k. Within the blocks C and D , the subcategories are
arranged in decreasing order of k.

Proof
All of these are admissible subcategories of Db.Mi / by Theorem 9.3, and we have
already shown in Proposition 10.3 that, within each of the four blocks in (10.1),
the corresponding subcategories are semiorthogonal in the given order. It remains
to prove semiorthogonality between different blocks.

Step 1
Between A and C : we show that HomDb.Mi /

.C2kC1;A2l/D 0. By Lemma 10.2, this
amounts to showing that



THE BGMN CONJECTURE VIA STABLE PAIRS 3551

R%Mi .G
_
D ˝GD0 ˝ƒk"lM ˝ ,"1/D 0

for D 2 Sym2kC1C , D0 2 Sym2l C , with 0 & 2k C 1; 2l & i & .d " 1/=2D g " 1.
We can apply Theorem 4.1 (and Remark 4.2) since the inequalities

2kC 1" g < k " l < d " 2l " i " 1

are equivalent to k C l < g " 1 and k C l C i < d " 1, which hold in this case as
kC l < i & .d " 1/=2D g " 1. This gives the corresponding semiorthogonality.

Step 2
Between A and B: let us show that HomDb.Mi /

.B2k;A2l/ D 0. Again by Lem-
ma 10.2, we need to show that R%Mi .G

_
D ˝ GD0 ˝ ƒk"lM ˝ !"1/ D 0 when D 2

Sym2k C , D0 2 Sym2l C , 0 & 2k; 2l & i & .d " 1/=2D g " 1 and 2k & g " 2. By
Serre duality, given that !Mi Dƒ"1M ˝ ,"1˝ !"1, this is equivalent to showing that
G_D0 ˝GD ˝ƒl"k"1M ˝ ,"1 is %-acyclic on Mi under the conditions above. This is
given by Theorem 4.1 because

2l " g < l " k " 1 < d " 2k " i " 1

is equivalent to l C k < g " 1 and l C k C i < d , and these inequalities hold since
l C kC i & 2i & d " 1 and 2l C 2k & g " 1C g " 2 in this case.

Step 3
Between A and D : for HomDb.Mi /

.D2kC1;A2l/, we need to show that

R%Mi .G
_
D ˝ GD0 ˝ ƒk"lM ˝ ,"1 ˝ !"1/ D 0 whenever D 2 Sym2kC1C , D0 2

Sym2l C , 0 & 2l; 2k C 1 & i & .d " 1/=2 D g " 1. Again by Serre duality, this is
equivalent to %-acyclicity of G_D0 ˝GD ˝ƒl"k"1M .

If l & k, we check that this is given by Theorem 7.1. Indeed, the corresponding
inequalities

2l " i " 1 < l " k " 1 < d C g " 2i " 1" .2kC 1/

are equivalent to k C l < i and l C k C 2i < d C g " 1. The former follows from
2l; 2k C 1 & i and the latter follows from l C k < i < g and 2i & d " 1. Also, the
fact that k ! l implies l " k " 1 … Œ0; 2l (.

On the other hand, if l > k, we rewrite G_D0 ˝GD ˝ƒl"k"1M ' G_D ˝GD0 ˝
ƒk"lM using Corollary 3.14. Again, we can use Theorem 7.1. Indeed, we see that the
inequalities

.2kC 1/" i " 1 < k " l < d C g " 2i " 1" 2l

are equivalent to the ones above and hence are satisfied, while now l > k guarantees
k " l … Œ0; 2kC 1(. Thus, Theorem 7.1 gives the required %-acyclicity.
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Step 4
Next we show semiorthogonality between C and B. This amounts to %-acyclicity of
G_D ˝GD0 ˝ƒk"lM ˝ , ˝ !"1 DG_D ˝GD0 ˝ƒk"l"1M ˝ ,"1 (cf. Definition 3.10)
for D 2 Sym2k C , D0 2 Sym2lC1C , where 0& 2k; 2l C 1& i & .d " 1/=2D g " 1.
We check that Theorem 4.1 can be applied in this case:

2k " g < k " l " 1 < d " .2l C 1/" i " 1

is equivalent to kC l < g " 1 and kC l C i < d " 1, both of which hold in our case.
This proves that HomDb.Mi /

.B2k;C2lC1/D 0.

Step 5
To show that HomDb.Mi /

.D2kC1;C2lC1/D 0, we need to check that G
_
D ˝GD0 ˝

ƒk"lM ˝ !"1 is %-acyclic on Mi , where D 2 Sym2kC1C , D0 2 Sym2lC1C , 1 &
2k C 1; 2l C 1 & i & .d " 1/=2D g " 1 and 2k C 1 & g " 2. By Serre duality, this
is equivalent to %-acyclicity of G

_
D0 ˝ GD ˝ƒl"k"1M ˝ ,"1 and this follows from

Theorem 4.1 since

2l C 1" g < l " k " 1 < d " .2kC 1/" i " 1

is equivalent to l C k C 1 < g " 1 and l C k C i < d " 1, both of which hold given
the conditions above.

Step 6
Finally, we show semiorthogonality between blocks from B and D . We need to show
that if D 2 Sym2kC1C , D0 2 Sym2l C , 0& 2kC 1; 2l & i & .d " 1/=2D g " 1, we
have R%Mi .G

_
D ˝GD0 ˝ƒk"lM ˝ ,"1/D 0. We can use Theorem 4.1 since

2kC 1" g < k " l < d " 2l " i " 1

is equivalent to the inequalities k C l < g " 1 and k C l C i < d " 1, again both of
which hold in our situation. We conclude that HomDb.Mi /

.D2kC1;B2l/D 0.

This completes the proof of the theorem.

Remark 10.5
On Db.Mg"1/, this defines a semiorthogonal list of admissible subcategories
A0;A2; : : : ; : : : ;C3;C1;B0;B2; : : : ; : : : ;D3;D1 where we have two copies of
Db.Sym˛ C/ for 0 & ˛ & g " 2 and one copy of Db.Symg"1C/. We have cho-
sen Db.Symg"1C/ to appear in the block A when g " 1 is even and in C when
g " 1 is odd, but in fact any other choice of even and odd blocks would be valid too.
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Indeed, a similar computation in the proof of Theorem 10.4 still gives the required
semiorthogonalities.

Now let i D g " 1, and call $ WMg"1! N the last map in (3.1), where N D
MC .2;ƒ/ is the space of stable rank-2 vector bundles with determinantƒ. The Picard
group of N is generated by an ample line bundle !N , such that $!!N D ! (see [39,
5.8, 5.9], [32, Proposition 2.1]). Then we have the following corollary.

COROLLARY 10.6
Let E be the Poincaré bundle of the moduli space N DMC .2;ƒ/ over a curve of
genus at least 3, normalized so that det&ŠE D ON and det Ex D !N , and where ƒ
is a line bundle on C of arbitrary odd degree. For i D 0; : : : ; g " 1, let G i #Db.N /

(resp., G i ) be the essential image of the Fourier–Mukai functor with kernel E!i (resp.,

E
!i

). Then

!!N ˝ G 0; .!!N /
2˝ G 2; .!!N /

3˝ G 4; .!!N /
4˝ G 6; : : : ;

: : : ; .!!N /
4˝ G 7; .!!N /

3˝ G 5; .!!N /
2˝ G 3; !!N ˝ G 1

G 0; !!N ˝ G 2; .!!N /
2˝ G 4; .!!N /

3˝ G 6; : : : ;

: : : ; .!!N /
3˝ G 7; .!!N /

2˝ G 5; !!N ˝ G 3; G 1

(10.2)

is a semiorthogonal sequence of admissible subcategories of Db.N /. There are two
blocks isomorphic toDb.Symi C/ for each i D 0; : : : ; g"2 and one block isomorphic
to Db.Symg"1C/.

Proof
If ƒ, ƒ0 are two line bundles of odd degree, then it is easy to see that MC .2;ƒ/'
MC .2;ƒ

0/, so we can assume that d D degƒD 2g" 1, as before. Observe that $! is
fully faithful. Indeed, $ is a projective birational morphism of nonsingular varieties,
so we have R$!.OMg!1/ D ON by [39, 5.12] and [19, (2), pp. 144–145]. Then by
adjointness,

HomDb.Mg!1/.$
!A; $!B/DHomDb.N/.A;R$!$

!B/DHomDb.N/.A;B/:

The pullback $!.E/ is a vector bundle on C %Mg"1 whose restriction to each C %
¹.E;#/º# C %Mg"1 is exactly E . Thus, it has to coincide with the universal bundle
F up to twist by a line bundle on Mg"1, so that $!E D F ˝ L. Then $! det Ex D
ƒM ˝ L2, which by the normalization chosen must be $!!N D ! , so LD ,. Thus
$!.E/D F ˝ , and the result follows from Theorem 10.4, together with the fact that
,2k ˝ !"k 'ƒ"kM under our assumption d D 2g " 1.
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