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Abstract

The ATLAS experiment at CERN explores vast amounts of physics data to answer the most
fundamental questions of the Universe. The prevalence of Python in scientific computing
motivated ATLAS to adopt it for its data analysis workflows while enhancing users’ experience.
This paper will describe to a broad audience how a large scientific collaboration leverages the
power of the Scientific Python ecosystem to tackle domain-specific challenges and advance
our understanding of the Cosmos. Through a simplified example of the renowned Higgs
boson discovery, attendees will gain insights into the utilization of Python libraries to discrim-
inate a signal in immersive noise, through tasks such as data cleaning, feature engineering,
statistical interpretation and visualization at scale.

Keywords ATLAS, particle physics, Scikit-HEP

1. INTRODUCTION

The field of high energy physics (HEP) is devoted to the study of the fundamental forces
of Nature and their interactions with matter. To study the structure of the Universe on
the smallest scales requires the highest energy density environments possible — similar
to those of the early Universe. These extreme energy density environments are created at
the CERN international laboratory, in Geneva, Switzerland, using the Large Hadron Collider
(LHC) to collide “bunches” of billions of protons at a center-of-mass energy of /s = 13 TeV.
The resulting collisions are recorded with building-sized particle detectors positioned
around the LHC’s 27 km ring that are designed to measure subatomic particle properties.
Given the rarity of the subatomic phenomena of interest, the rate of the beam crossings is a
tremendous 40 MHz to maximize the number of high quality collisions that can be captured
and read out by the detectors. Even with real-time onboard processing (“triggering”) of the
experiment detector readout to save only the most interesting collisions, detectors like the
ATLAS experiment [1] still produce multiple petabytes of data per year. These data are then
further filtered through selection criteria on the topology and kinematic quantities of the
particle collision “events” recorded into specialized datasets for different kinds of physics
analysis. The final datasets that physicists use in their physics analyses in ATLAS is still on
the order of hundreds of terabytes, which poses challenges of compute scale and analyst
time to efficiently use while maximizing physics value.

Traditionally, the ATLAS and the other LHC experiment have created experiment-specific
custom c++ frameworks to handle all stages of the data processing pipeline, from the initial
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construction of high-level physics objects from the raw data to the final statistical analyses.
Motivated by the broad success of the Scientific Python ecosystem across many domains of
science, and the rise of the Scikit-HEP ecosystem of Pythonic tooling for particle physics [2],
[3] and community tools produced by the Institute for Research and Innovation in Software
for High Energy Physics (IRIS-HEP) [4], [5], there has been a broad community-driven
shift in HEP towards use of the Scientific Python ecosystem for analysis of physics data —
a PyHEP ecosystem [6]. The use of dataframes and array programming for data analysis
has enhanced the user experience while providing efficient computations without the need
of coding optimized low-level routines. The ATLAS collaboration is further extending this
ecosystem of tooling to include high-level custom Python bindings to the low level c++
frameworks using nanobind [7]. Collectively, these tools are modernizing the methods which
researchers are engaging data analysis at large scale and providing a novel end-to-end
analysis ecosystem for the ATLAS collaboration.

2. EMPLOYING THE SCIENTIFIC PYTHON ECOSYSTEM

The multiple stages of physics data processing and analysis map onto different parts of
the Scientific Python ecosystem. This begins with the highly-structured but jagged nature
of the event data in HEP. The data structure of each event consists of variable length lists
of physics objects (e.g. electrons, collections of tracks from charged objects). To study the
properties of the physics objects in a statistical manner, a fixed event analysis procedure is
repeated over billions of events. This has traditionally motivated the use of “event loops”
that implicitly construct event-level quantities of interest and leveraged the c++ compiler to
produce efficient iterative code. This precedent made it difficult to take advantage of array
programming paradigms that are common in Scientific Python given NumPy [8] vector
operations. The Scikit-HEP library Awkward Array [9] provides a path forward by providing
NumPy-like idioms for nested, variable-sized (JSON-like) data and also brings analysts into
an array programming paradigm [10].

With the ability to operate on HEP data structures in an array programming — or “colum-
nar” — approach, the next step is to be able to read and write with the HEP domain specific
ROOT [11] file format — which has given the particle physics community columnar data
structures with efficient compression since 1997 [12]. This is accomplished with use of
the uproot library [13], which allows for efficient transformation of ROOT data to NumPy
or Awkward arrays. The data is then filtered through kinematic and physics signature
motivated selections using Awkward manipulations and queries to create array collections
that contain the passing events. Through intense detector characterization and calibration
efforts, the ATLAS collaboration has developed robust methods and tooling to apply correc-
tions to the data and evaluate systematic uncertainties. For instance, corrections to the
signal collected by a specific calorimeter subsystem along with systematic uncertainties
due to the imperfect knowledge of the subsystem. Given the custom nature of the detector
and correction implementations, these corrections are implemented in custom c++ libraries
in the ATLAS software framework, Athena [14], [15]. To expose these c++ libraries to
the Pythonic tooling layer, custom Python bindings are written using nanobind for high
efficiency, as seen in Figure 1.

To contend with the extreme data volume, efficient distributed computing is an essential
requirement. Given the success of Dask [17] in the Scientific Python ecosystem, and its
ability to be deployed across both traditional batch systems and cloud based infrastructure
with Kubernetes, the Scikit-HEP ecosystem has built extensions to Dask that allow for native
Dask collections of Awkward arrays [18] and computing multidimensional boost-histogram
objects [19] with Dask collections [20]. Using Dask and these extensions, the data selection
and systematic correction workflow is able to be horizontally scaled out across ATLAS
collaboration compute resources to provide the data throughput necessary to make analysis
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Figure 1. The data access abstract interface from the high level user facing Python API to the ATLAS
Event Data Model (EDM) access library that exposes the shared ATLAS combined performance (CP) tools
for reconstruction, identification, and measurement of physics objects. [16]

feasible. This is often achieved through use of the high level coffea columnar analysis
framework [21] which was designed to integrate with Dask and these HEP specific Dask
extensions.

The resulting data objects that are returned to analysts are histograms of physics quantity
distributions — such as the reconstructed invariant-mass of a collection of particles or
particle momentum. Using the hist library [22] for higher level data exploration and
manipulation, physicists are then able to efficiently further manipulate the data distribu-
tions using tooling from the broader Scientific Python ecosystem and create domain-centric
visualizations using the mplhep [23] extension of Matplotlib [24]. From these high level data
representations of the relevant physics, physicists are then able to serialize the distributions
and use them for the final stages of data analysis and statistical modeling and inference.

3. UNCOVERING THE HIGGS BOSON

The most famous and revolutionary discovery in particle physics this century is the discov-
ery of the Higgs boson — the particle corresponding to the quantum field that gives mass
to fundamental particles through the Brout-Englert-Higgs mechanism — by the ATLAS and
CMS experimental collaborations in 2012. [25], [26] This discovery work was done using
large amounts of customized c++ software, but in the following decade the state of the PyHEP
community has advanced enough that the workflow can now be done using community
Python tooling. To provide an overview of the Pythonic tooling and functionality, a high
level summary of a simplified analysis workflow [27] of a Higgs “decay” to two intermediate
Z bosons that decay to charged leptons (¢) (i.e. electrons (e) and muons (1)), H — ZZ* — 44,
on ATLAS open data [28] is summarized in this section.

3.1. Loading data

Given the size of the data, the files used in a real analysis will usually be cached at a
national level “analysis facility” where the analysis code will run. Using coffea, uproot, and
Dask, these files can then be efficiently read and the tree structure of the data can populate
Awkward arrays.

3.2. Cleaning and selecting data

Once the data is in Awkward arrays, additional selections need to be applied before it can be
analyzed. Only physics objects of adequate quality are kept for further analysis and those
should reconstruct the topology of interest. In this particular case, due to the decay of the
Higgs boson to two leptons, the data selected contain four charged leptons grouped in two
opposite flavor lepton pairs (so that the total charge is zero, as the Higgs and the Z-bosons
are electrically neutral). Additionally, in order to compare various kinds of simulated data,
the events need to be normalized/weighted given their relative appearance in reality and
the amount of actual data collected by the experiment.
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from coffea.nanoevents import NanoEventsFactory, PHYSLITESchema
def get_uris_from cache(): ...

def filter name(name):
return name in (
"AnalysisElectronsAuxDyn.pt",
"AnalysisElectronsAuxDyn.eta",
"AnalysisElectronsAuxDyn.phi",
"AnalysisElectronsAuxDyn.m",
"AnalysisElectronsAuxDyn.charge",

nop

file uris = get uris from cache(...)

# uproot used internally to read files into Awkward arrays
events_mc = NanoEventsFactory.from root(
file uris,
schemaclass=PHYSLITESchema,
uproot_options=dict(filter_name=filter name),
permit_dask=True,
) .events()

Program 1. Using coffea, tree structured ROOT files are read with uproot from an efficient file cache, and
the relevant branches for physics are filtered out into Awkward arrays. The operation is scaled out on a
Dask cluster for read performance.

These selection and weighting can then be implemented in an analysis specific coffea
processor, and then the processor can be executed used a Dask executor to horizontally
scale out the analysis selection across the available compute.

3.3. Feature engineering: The invariant mass

In order to discriminate the events of interest, i.e. candidates of the Higgs boson decay,
from the vast background which has the same experimental signature, a discriminating
feature is constructed. The example shown uses a simple, physics-inspired discriminant the
“invariant mass” but the methods used can use complex feature engineering that involve
machine learning methods to calculate more efficient discriminants. The invariant mass
is the mass of a system that remains constant regardless of the system’s motion or the
reference frame in which it is measured. Invariant mass is derived from the energy and
momentum of a system of particles and is a fundamental property of the system:
1;2 _ c 2

= = p(c) (1)

where F and p is the total energy and momentum of the particles, respectively.

By detecting and measuring the energies and momenta of the detected particles at the
experiment, we can reconstruct the invariant mass of the decay system. Particle systems
originating from the decay of the Higgs boson will have a characteristic value of the
invariant mass, which after the discovery in 2012 we know it is about 125 GeV/c2. This is
the quantity that will allow us to discriminate from particle systems that originate from
background processes.

3.4. Measurement uncertainties

One of the most expensive operations that happens during the event selections is the com-
putation of systematic variations of the events to accommodate for imperfect knowledge of
the detector systems. This in practice requires applying complex, experiment specific cor-
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import awkward as ak

import hist

import vector

from coffea import processor
from distributed import Client

def get xsec weight(sample, infofile):
"""Returns normalization weight for a given
sample."""
lumi = 10 000 # pb~-1
xsec_map = infofile.infos[sample] # dictionary with
event weighting information
xsec weight = (lumi * xsec map['xsec"]) /
(xsec_map["sumw"] * xsec map["red eff"])
return xsec_weight

def lepton filter(lep charge, lep type):
"""Filters leptons: sum of charges is required to
be 0, and sum of lepton types 44/48/52.
Electrons have type 11, muons have 13, so this
means 4e/4mu/2e2mu.
sum_lep charge = ak.sum(lep_charge, axis=1)
sum lep type = ak.sum(lep type, axis=1)
good lep type = ak.any(
[sum lep type == 44, sum lep type == 48,
sum_lep type == 52], axis=0
)
return ak.all([sum lep charge == 0, good lep type],
axis=0)

class HZZAnalysis(processor.ProcessorABC):

"""The coffea processor used in this analysis."""
def init (self):

pass

def process(self, events):
# The process function performs columnar operations
on the events
# passed to it and applies all the corrections
and selections to
# either the simulation or the data (e.g.
get xsec weight and
# lepton filter). All the event level data
selection occurs here
# and returns accumulators with the selections.

vector.register awkward()
# type of dataset being processed, provided via
metadata (comes originally from fileset)
dataset category =
events.metadata["dataset name"]

# apply a cut to events, based on lepton charge
and lepton type

events = events[lepton filter(events.lep charge,
events.lep typeid)]

# construct lepton four-vectors
leptons = ak.zip(
{
"pt": events.lep pt,
"eta": events.lep_eta,
"phi": events.lep phi,
"energy": events.lep energy,

+
with_name="Momentum4D",

)

# calculate the 4-lepton invariant mass for each
remaining event
# this could also be an expensive calculation
using external tools
mlllt = (
leptons[:, 0] + leptons[:, 1] + leptons[:,
2] + leptons[:, 3]
).mass / 1000

# create histogram holding outputs, for data
just binned in m4l
mllllhist data = hist.Hist.new.Reg(
num_bins,
bin edge low,
bin edge high,
name="ml1l11",
label="$\mathrm{m {41}}$ [GeV]",
) .Weight() # using weighted storage here for
plotting later, but not needed

# three histogram axes for MC: m4l, category,
and variation (nominal and
# systematic variations)
mllllhist MC = (
hist.Hist.new.Reg(
num_bins,
bin edge low,
bin_edge high,
name="mll1l1",
label="$\mathrm{m {41}}$ [GeV]",
)
.StrCat([k for k in fileset.keys() if k !=
"Data"], name="dataset")
.StrCat(
["nominal", "scaleFactorUP",
"scaleFactorDOWN", "m4lUP", "m41DOWN"],
name="variation",

)

.Weight()
)
# ...
# fill histograms based on dataset category
# ...

return {"data": mllllhist data, "MC":
mllllhist MC}

def postprocess(self, accumulator):
pass

Program 2. A coffea processor designed to make physics motivated event selections to create accumulators of the 4-lepton invariant mass.
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import awkward as ak

from atlascp import EgammaTools # ATLAS CP tool Python nanobind bindings

def get corrected mass(energyCorrectionTool, electrons, sys=None):
electron_vectors = ak.zip(
{
"pt": energyCorrectionTool(electrons, sys=sys).newPt,
"eta": electrons.eta,
"phi": electrons.phi,
"mass": electrons.m,
+
with_name="Momentum4D",
)

return (electron_vectors[:, 0] + electron_vectors[:, 1]).mass / 1000 # GeV

energy correction_tool = EgammaTools.EgammaCalibrationAndSmearingTool()
# ...

# configure and initialize correction algorithm

# ...

energy correction_tool.initialize()

corrected_m Res UP = get corrected mass(
energy correction_tool, electrons, "Res up"
) .compute()

Program 3. Simplified example of what the Python API for a systematic correction tool with a columnar
implementation looks like.

rections to each event, using algorithms implemented in c++. Historically these tools were
implemented for an event loop processing paradigm, but with recent tooling additions, as
shown in Figure 1, efficient on-the-fly systematic corrections can be computed for array
programming paradigm:s.

The following provides an example of high level Python APIs that provide handles to these
tools to use in the workflows described so far. These tools are efficient enough to be able to
apply multiple systematic variations in analysis workflows, as seen in Figure 2.

3.5. The “discovery” plot

After running the coffea processors, the resulting data from the selections is accumulated
into boost-histogram objects, as seen visualized in Figure 3.

These histograms are then serialized into files with uproot and used by the statistical
modeling and inference libraries pyhf [29], [30] and cabinetry [31] to build binned statistical
models and efficiently fit the models to the observed data using vectorized computations
and the optimization library iminuit [32] for full uncertainties on all model parameters. The
resulting best-fit model parameters — such as the scale factor on the signal component of
the model corresponding to the normalization on the Higgs contributions — are visualized
in Figure 4, where good agreement between the model predictions and the data is observed.
The signal component, clearly visible above the additional “background” components of
the model, are Higgs boson events, with an observed count in agreement with theoretical
expectations.

4. CONCLUSIONS

When the Higgs boson was discovered in 2012, the idea of being able to perform real
Pythonic data analysis in HEP, let alone efficient analysis, was viewed as unfeasible. Though
investment in the broader Scientific Python ecosystem, and development of the domain
specific pieces in the Scikit-HEP organization the field of particle physics successfully cre-
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Figure 2. Example of the reconstructed dilepton invariant mass distribution in simulation with the
electron reconstruction and identification efficiency scale factor (SF) and corrections to the energy reso-
lution (res) energy scale (scale) computed on-the-fly using the nanobind Python bindings to the ATLAS C++
correction tools. The total variation in the systematic corrections is plotted as a hashed band. [16]

ated a PyHEP ecosystem of robust tooling. Further investment by the ATLAS collaboration
has resulted in new performant tooling for complex systematic corrections that will allow
for more full and complex operations to be performed entirely within a Python workflow,
helping to further reduce the time to insight for physics analysts.

import hist
import mplhep

mplhep.histplot(

all histograms["data"], histtype="errorbar", color="black", label="Data"
)
hist.Hist.plotld(

all _histograms["MC"][:, :, "nominal"],

stack=True,

histtype="fill",

color=["purple", "red", "lightblue"],

Program 4. Using mplhep, hist, and matplotlib the post-processed histograms of the simulation and the
data are visualized in advance of any statistical inference of best-fit model parameters.

July 10, 2024 286



Scientific Python helps answer fundamental questions of the Universe Feickert et al., 2024

60 mmm Background Z, tf
B Background ZZ°
50 A signal (my = 125 GeV)
¢ Data
V7 Stat. Unc.
> 40 -
]
<
uy
E 30 A
=
1]
-
L
20
10 1
0

80 100 120 140 160 180 200 220 240
my [GeV]

Figure 3. Using mplhep, hist, and matplotlib the post-processed histograms of the simulation and the
data are visualized in advance of any statistical inference of best-fit model parameters.

import cabinetry
import numpy as np

config = cabinetry.configuration.load("config.yml")

cabinetry.templates.collect(config)
cabinetry.templates.postprocess(config) # optional post-processing (e.g. smoothing)
workspace = cabinetry.workspace.build(config)

model, data = cabinetry.model utils.model and data(workspace)
fit_results = cabinetry.fit.fit(model, data)

# create post-fit model prediction
postfit _model = cabinetry.model utils.prediction(model, fit_ results=fit_results)

# binning to use in plot
plot_config = {
"Regions": [
{
"Name": "Signal region",
"Binning": list(np.linspace(bin_edge_low, bin_edge high, num_bins + 1)),

}
figure dict = cabinetry.visualize.data mc(
postfit model, data, config=plot config, save figure=False
)
# modify x-axis label

fig = figure dict[0]["figure"]
fig.axes[1].set xlabel("m4l [GeV]")

Program 5. Using cabinetry, pyhf, and matplotlib the data and the post-fit model prediction are visu-
alized.
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Figure 4. Using cabinetry, pyhf, and matplotlib the data and the post-fit model prediction are visualized.
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